
ABSTRACT

TUNDE-ONADELE, OLUFOGOREHAN ADETAYO. Detecting Security Attacks and Vulnerabilities
in Cloud Server Systems. (Under the direction of Xiaohui Gu).

Cloud platforms have become the most popular infrastructures for hosting various

application services. As a result, security attacks to those cloud server systems often cause

massive impact to many users. Although existing intrusion detection systems can detect

certain attacks afterwards, they cannot prevent those attacks from occurring before the

vulnerable code is released into production systems. Moreover, understanding the un-

derlying software defects that cause those security vulnerabilities is little studied. In this

dissertation, we investigate the problems of security attack and vulnerability detection to

help developers proactively diagnose and patch security bugs.

Firstly, we conduct a comparative study on the effectiveness of various static and dy-

namic vulnerability schemes for containers using exploits to 28 real world vulnerabilities

that widely exist in docker images. Our results show that the static vulnerability scanning

scheme only detects 3 out of 28 tested vulnerabilities and the dynamic anomaly detection

schemes detect 22 exploits. Combining static and dynamic schemes can further improve

the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic

schemes can achieve over 20 seconds lead time (i.e., a time window before attacks succeed)

for a group of commonly seen attacks in containers that try to gain a shell and execute

arbitrary code.

Secondly, we present our work on security attack detection and patching. We propose

Self-Patch, a self-triggering patching framework for applications running inside containers.

Self-Patch combines lightweight runtime attack detection and dynamic targeted patching

to accurately detect and classify 81% of attacks and reduce patching overhead by up to 84%

in our evaluation of over 31 real world attacks in 23 commonly used server applications.

Thirdly, we conduct a systematic study of over 110 software security vulnerabilities in

13 popular cloud server systems. We find that the vulnerable code of the studied security

vulnerabilities comprise five common categories: 1) improper execution restrictions, 2)

improper permission checks, 3) improper resource path-name checks, 4) improper sensitive

data handling, and 5) improper synchronization handling. We further extract principal

vulnerable code patterns from these common vulnerability categories.

Lastly, we use the identified principal vulnerable code patterns to proactively protect



cloud systems from security vulnerabilities due to improper code execution restrictions.

XScope, an automatic pattern-driven code execution vulnerability checker, leverages in-

sights about the root cause functions and the security patches from recent vulnerabilities

to optimize the vulnerability detection accuracy. We evaluated a prototype of XScope using

real world vulnerabilities on six commonly used real cloud server systems. XScope can

accurately localize the vulnerable functions including the high impact Log4j vulnerability

with higher detection rate and 53% lower false alarm rate than alternative schemes.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

Cloud servers provide a cost-effective platform for deploying software applications in a pay-

as-you-go fashion. However, due to its multi-tenant sharing nature, the cloud environment

is especially vulnerable to security attacks. Due to its widespread deployment, any security

vulnerability in cloud server systems can cause extensive impact on the end users Shu et al.

(2017).

For instance, vendors of the popular Java logging library, Apache Log4j, reported a seri-

ous vulnerability on December 9, 2021, affecting industries worldwide Wetter and Ringland

(2021); Korn (2021). The vulnerability, named Log4Shell, allowed attackers to execute any

commands in cloud systems that contained the library, resulting in about 200,000 global

attacks within one day of the disclosure Ltd (2021). The open source insights team from

Google Cloud estimates that Log4Shell affected 8% of all artifacts in the Maven Central

repository, which is four times the average vulnerability impact Wetter and Ringland (2021).

Thus, it is important to build efficient and non-intrusive solutions that diagnose unseen
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security attacks and deliver bug fixes to protect distributed computing environments.

Moreover, software bugs that execute arbitrary malicious code are notoriously bad for

cloud systems. In our comprehensive study, we find that such improper execution restric-

tions vulnerabilities Tunde-Onadele et al. (2022) are the predominant code vulnerability

category affecting cloud server systems. Thus, developing an automatic security vulnerabil-

ity detection tool that identifies vulnerable code patterns can help developers proactively

localize the vulnerable functions in complex large-scale cloud server programs.

1.2 Summary of the State of the Art

Existing work has been focusing on detecting security attacks using intrusion detection

systems (IDS) that take a variety of approaches including machine learning techniques Shen

et al. (2018); Lin et al. (2022, 2020); Tunde-Onadele et al. (2020); Yen et al. (2013); Dash et al.

(2016). IDS approaches can only detect a security attack after the attack happens. Such

traditional intrusion detection approaches are reactive in nature. Moreover, they often

cannot reveal how an attack has been triggered or pinpoint the vulnerable code that is the

culprit of the security attack.

Other previous work has been done to detect code vulnerabilities with static program

analysis Thomé et al. (2017b); Livshits and Lam (2005); Enck et al. (2014); Zheng and Zhang

(2013) or symbolic execution Thomé et al. (2017a); Fratantonio et al. (2016). However,

existing vulnerability detection solutions often suffer from either high false positives or

high false negatives due to too general or too narrow rule-based approaches.

1.3 Summary of Contributions

In this dissertation, we make the following contributions:

• We present a comparative study on the effectiveness of various vulnerability detection

schemes for containers. Specifically, we evaluate a set of static and dynamic detection

schemes using 28 real world vulnerabilities that widely exist in docker images. Our

results show that the static vulnerability scanning scheme only detects 3 outs of

28 tested vulnerabilities and the dynamic anomaly detection schemes detect 22

vulnerability exploits. Combining static and dynamic schemes can further improve
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the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic

anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time

window before attacks succeed) for a group of commonly seen attacks in containers

that try to gain a shell and execute arbitrary code.

• We present Self-Patch, a new self-triggering targeted patching framework for container-

based distributed computing environments. To achieve this goal, the Self-Patch frame-

work consists of three coordinating components: 1) an online attack detection module

which can dynamically detect abnormal attack activities by extracting feature vectors

from system call traces and applying unsupervised machine learning methods over

the features; 2) an attack classification scheme which classifies a detected attack into a

specific type linked to a certain CVE; and 3) a targeted patch execution module which

can install proper software patches to fix the vulnerability. We have implemented a

prototype of Self-Patch and evaluated it over 31 real-world vulnerabilities discovered

in 23 common server applications. Our experimental results show we can increase

detection rate to over 80% and reduce false alarm rate to 0.7%. In contrast, traditional

whole software upgrade schemes can either only detect 6% attacks or incur more

than 20% false alarms. Self-Patch can also reduce the memory overhead by up to 84%

and disk overhead by up to 40%.

• We present a comprehensive study over 110 recent real world security bugs in 13

popular cloud server systems. Our study first identifies five common vulnerability cat-

egories among those 110 studied security bugs: 1) improper execution restrictions, 2)

improper permission checks, 3) improper resource path-name checks, 4) improper sen-

sitive data handling, and 5) improper synchronization handling. Furthermore, we ex-

tract key software code patterns in each category and describe a set of pattern-driven

strategies for detecting those security bugs before they are released to production

cloud environments.

• We present XScope, a new pattern-driven fine-grained vulnerability detection frame-

work for proactively detecting security bugs due to improper code execution restric-

tions. XScope not only detects code execution vulnerabilities but also localizes the

vulnerable functions in complex large-scale cloud server programs consisting of tens

of thousands of functions. Furthermore, XScope combines call graph analysis and

data-flow analysis to minimize false positive rates while maintaining a high detection

3



rate. We have implemented a prototype of XScope and tested it using real world

vulnerabilities including the high impact Log4j vulnerability on six commonly used

cloud server systems. Our experimental results show that XScope can achieve a 100%

detection rate while existing security checking tools like FindSecBugs can only detect

38% of those CVEs. Moreover, XScope can reduce the false positive rate by 53% for

those CVEs that can be detected by both XScope and FindSecBugs.

The rest of the dissertation is organized as follows. Section 6 compares our work with

related work Section 2 describes our preliminary study evaluating state-of-the-art static

and dynamic security attack detection schemes for containerized applications. Section 3

presents our self-triggering patching framework for container-based distributed computing

environments. Section 4 discusses our comprehensive study and categorization of real

world security bugs in cloud server systems. Section 5 details our pattern-driven code

execution vulnerability detection framework for proactively protecting cloud systems.

Section 7 concludes the dissertation.
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CHAPTER

2

A STUDY ON CONTAINER

VULNERABILITY EXPLOIT DETECTION

2.1 Introduction

Containers have recently become a popular application deployment platform that can

package an application and its dependencies (e.g., source code, system libraries) with lower

overhead than virtual machines. However, due to its easy deployment nature, containers are

prone to various security vulnerabilities. Previous work has shown security vulnerabilities

widely exist in both official and community images Gummaraju et al. (2015); Shu et al. (2017);

Docker Image Vulnerability Research (2017). Vulnerabilities in outdated packages can be

exposed to various types of attacks (e.g., denial of service, gain privilege, execute code) and

vulnerabilities can propagate due to dependency relationships between images Shu et al.

(2017). Hence, security has become one of the top concerns for the user to use containers

in production environments Bettini (2015).

Existing container vulnerability detection schemes can be broadly classified into two
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groups: 1) static container image analysis and 2) dynamic runtime detection. The static

schemes mainly focus on static vulnerability detection using container image scanning Clair

(2017); Dockscan (2018); Banyan Collector (2018); OpenSCAP Container Compliance (2016).

Static image scanners can detect known vulnerabilities by matching the packages and their

versions with remote Common Vulnerabilities and Exposures (CVE) databases. However, the

identified package list might not always accurately include all the packages installed, and

customized code or scripts are not analyzed through static analysis. Moreover, vulnerabili-

ties that are not included in existing CVE databases will not be detected (e.g., vulnerabilities

not publicly disclosed, zero-day vulnerabilities). Dynamic runtime detection tools monitor

container behaviors and detect anomalous activities during runtime Twistlock (2017); Neu-

Vector (2018); Sysdig Falco (2018). However, most of these tools are policy-based, which

cannot adapt to changing behaviors. For example, Sysdig Falco Sysdig Falco (2018) employs

pre-defined policies that describe the allowed or disallowed behaviors for a process, in

terms of system calls, their arguments, and host resources accessed.

In this chapter, we conduct a study over different vulnerability detection techniques

and evaluate their effectiveness on detecting security vulnerabilities of the applications

running inside containers. Particularly, we focus on out-of-box detection techniques which

do not require any modifications to monitored applications and are more resilient to attacks

than inside-box schemes. We consider both static and dynamic detection techniques and

perform comparisons among them in terms of detection accuracy and overhead.

Compared to traditional host environments, containers present a set of new challenges

to vulnerability exploit detection: 1) containers are often short-lived, which implies that

the detection scheme needs to produce real time alerts without requiring a large amount

of training data; 2) containers are often dynamic, which requires that the detection should

not make any assumption about the container such as available resources or application

workloads; and 3) containers are often light-weight, which requires that the detection

algorithm should not impose high overhead to the container.

We first study the open source static analysis engine Clair Clair (2017) as an example for

static analysis tools. Clair inspects containers layer-by-layer for known vulnerabilities, which

continuously imports vulnerability data from a set of resources (e.g., Debian Security Bug

Tracker, Ubuntu CVE Tracker, Red Hat Security Data). Container images are indexed into a

list of features (e.g., installed packages, package versions), and Clair queries the vulnerability

data to correlate the indexed features with vulnerability database to generate a list of

vulnerabilities that threaten the images. We then study a set of dynamic detection schemes
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using unsupervised anomaly detection algorithms (e.g., clustering Kanungo et al. (2002),

k nearest neighbor Altman (1992), self-organizing map Kohonen (1998)). Compared to

supervised machine learning, unsupervised anomaly detection approaches do not require

labeled training data and can capture previously unseen attacks. We evaluate these different

detection schemes using real-world vulnerabilities that are triggered in commonly used

server applications such as Tomcat, Apache, and ElasticSearch.

Specifically, this chapter makes the following contributions:

• We reproduce 28 commonly seen real world security vulnerabilities discovered in

Docker Hub images and conduct a comparative study over both static and dynamic

vulnerability detection schemes using those security vulnerabilities.

• We collect the detection accuracy of CoreOS Clair, an open source static Docker image

vulnerability detection tool. Our results show that Clair can only detect 3 out of the

28 vulnerabilities.

• We implement a system call collection and feature extraction system and apply a set

of widely used unsupervised anomaly detection schemes (i.e., k nearest neighbors, k-

means clustering, k-nearest neighbors combined with principal component analysis

for dimension reduction, self-organizing map) to catch triggered attacks online.

Our results show that it is promising to use dynamic anomaly detection schemes to

catch vulnerability exploits in containers: self-organizing map based anomaly detection

can catch 22 out of 28 tested vulnerability exploits while incurring a low false positive

rate (1.7% on average). Moreover, the dynamic anomaly detection scheme can achieve

more than 20 seconds lead time (e.g., a time window before attacks succeed) for a group of

attacks that try to gain a shell and execute arbitrary code. We also find that it is beneficial to

combine static and dynamic vulnerability detection schemes, which can further improve

the detection coverage to catch 24 exploits.

The rest of the section is organized as follows. section 2.2 presents our empirical study

methodology. section 2.3 describes the experimental results. Finally, the section concludes

in section 2.4.
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Table 2.1 List of Explored Real-world Vulnerabilities.

Threat
Impact

CVE ID
CVSS
Score

Application
Exploitation

Tool

Return a shell
and execute

arbitrary code

CVE-2015-8103 7.5 JBoss JexBoss
CVE-2017-7494 10.0 Samba Metasploit
CVE-2016-10033 7.5 PhpMailer Metasploit
CVE-2015-2208 7.5 phpMoAdmin Metasploit
CVE-2016-9920 6.0 Webmail PoC
CVE-2015-1427 7.5 Elasticsearch Metasploit
CVE-2014-3120 6.8 Elasticsearch Metasploit
CVE-2012-1823 7.5 PHP Metasploit
CVE-2017-11610 9.0 Supervisor Metasploit
CVE-2017-8291 6.8 Ghostscript PoC
CVE-2015-3306 10.0 ProFTPd Metasploit

CVE-2017-12615 6.8
Apache
Tomcat

PoC

CVE-2016-3088 7.5 Activemq Metasploit
CVE-2017-12149 7.5 JBoss PoC
CVE-2015-8562 7.5 Joomla Metasploit

Execute
arbitrary

code

CVE-2014-6271 10.0 Bash Metasploit
CVE-2017-5638 10.0 Struts PoC
CVE-2017-12794 4.3 Django PoC
CVE-2016-3714 10.0 ImageMagick Metasploit

Disclose
credential

information

CVE-2017-7529 5.0 Nginx PoC
CVE-2015-5531 5.0 Elasticsearch Metasploit
CVE-2014-0160 5.0 OpenSSL Metasploit
CVE-2017-8917 7.5 Joomla sqlmap

Consume
excessive

CPU

CVE-2016-6515 7.8 OpenSSH PoC

CVE-2014-0050 7.5
Apache
Tomcat

PoC

Crash the
application

CVE-2016-7434 5.0 NTP PoC
CVE-2015-5477 7.8 BIND Metasploit

Escalation
of privilege

CVE-2017-12635 10.0 Couchdb Burp Suite

PoC: Proof of Concept code.

2.2 Methodology

In this section, we describe our study methodology. We first introduce the real-world vul-

nerabilities studied. We then describe the set of static and dynamic vulnerability detection

schemes considered.

8



2.2.1 Real-World Vulnerabilities

Table 2.1 shows the 28 real-world vulnerabilities collected in 24 different applications from

the commonly used vulnerability repository, i.e., Exploit Database Offensive Security’s Ex-

ploit Database Archive (2018). We categorize all the 28 vulnerabilities into six groups based

on their threat impact: 1) return a shell and execute arbitrary code, 2) execute arbitrary code,

3) disclose credential information, 4) consume excessive CPU, 5) make applications crash,

and 6) perform escalation of privilege. These categories are among the top vulnerability

types discovered in Docker Hub Shu et al. (2017). Most of these vulnerabilities are reported

within the past three years and marked with “High” or “Critical” severity rankings, denoted

by CVSS scores 1. Our application set also exhibits a wide coverage, ranging from back-

end database systems to front-end web servers to represent different server applications

running inside containers.

We exploit the vulnerabilities by either executing the Proof of Concept (PoC) code or

using penetration tools (i.e., Metasploit Metasploit penetration testing framework (2018),

JexBoss JexBoss (2018), sqlmap Sqlmap (2018), and Burp Suite Burp Suite Scanner (2018)).

To emulate dynamic applications in real world, we employ commonly used workload

generator tools (e.g., Burp Suite Burp Suite Scanner (2018), JMeter Apache JMeter (2018))

to send requests to victim containers.

For web server applications such as Apache Tomcat, Django and Nginx, we request

pages from web servers with JMeter’s HTTP sampler. This sampler enables the selection of

the appropriate HTTP traffic type (e.g., GET, POST, etc.) for an application. Web requests

are also sent to Joomla and Couchdb front ends to induce database operations (e.g., create,

update and delete documents). For FTP servers such as ProFTPd, files are downloaded

from and uploaded to the FTP server using the FTP sampler. The date requests are sent to

the OpenSSH application via the JMeter plugin (i.e., SSH command). The Domain Name

Server (DNS) and Network Time Protocol (NTP) requests are sent to the BIND and NTP

applications via the JMeter plugin (i.e., UDP request). The smbclient is used with JMeter’s

OS process sampler to produce Server Message Block (SMB) network traffic for the Samba

application. As for the Elasticsearch, we send search requests via Burp Suite.

1Common Vulnerability Scoring System (CVSS) scores are provided by National Vulnerability Database.
The higher the score, the higher the severity (i.e., “None”: 0.0; “Low”: 0.1-3.9; “Medium”: 4.0-6.9; “High”:
7.0-8.9; “Critical”: 9.0-10.0).
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2.2.2 Static Vulnerability Detection Scheme

We use Clair, a widely used open source tool for static analysis of vulnerabilities in docker

containers as an example of static vulnerability detection schemes. Clair works by scanning

docker images and matching detected packages and their versions with a remote CVE

database. Vulhub Vulhub: Docker-Compose File for Vulnerability Environment (2018)

provides Dockerfiles for users to build vulnerable images. A Dockerfile is a script that

contains all the commands that execute in succession to build container images. Dockerfiles

in Vulhub use two different ways to install vulnerable applications, i.e., through the source

code and by a package manager such as apt-get install or dpkg install to

install a deb file. Vulnerable container images created from local Dockerfiles can be tagged

and pushed to the Quay.io registry. Vulnerability scanning is automatically performed by

Quay.io, and it takes about several minutes to produce the results. For each image pushed

to the Quay.io registry, Clair scans the images and reports the total number of detected

CVEs along with the distribution of the CVEs according to the severity rankings. For each

reported CVE entry, Clair also lists a set of related information, e.g, the available CVSS score,

package name, package version, and the suggestion of fixed versions of the vulnerable

package. In addition, Clair also gives a hint of the specific layer where CVEs are introduced

into images.

2.2.3 Dynamic Exploit Detection Approaches

Dynamic runtime detection schemes need to address two key issues: 1) what monitoring

data to collect and how to extract proper features from the monitoring data? and 2) what

algorithms to use for detecting vulnerability exploits?

Data Collection and Feature Extraction. The behaviors of running containers can

manifest in different system metrics (e.g., CPU utilization, memory usage, and network

traffic) or system calls. Although system metrics can be collected with low cost, they are

heavily affected by dynamic application workloads, which makes them too noisy to be

used as reliable data sources for container exploit detection. System calls are the interfaces

though which applications access the services of the operating system. We observe that

changes in the behaviors of containers from attempted attacks often manifest as variation

in system call frequencies. For example, attempted attacks targeted at containers may

introduce system calls which rarely appear during the applications’ normal executions.
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Table 2.2 An example of frequency vectors from a processed system call list.

Timestamp
System call

write read futex epoll_wait

1516544689186 2 4 50 4
1516544689286 9 8 74 8
1516544689386 0 0 9 1

Our container system call logs are collected with a lightweight open source tracing

tool called Sysdig Sysdig (2016). Sysdig supports container monitoring with transparent

instrumentation, without the agent inside each container, which enables real-time analysis

of container activities.

We extract proper features from the raw system call trace within equal sampling intervals.

We explored both system call frequency and system call execution time features, which are

called system call frequency vectors and system call time vectors, respectively. We formulate

a frequency/time vector as V (t ) = [x1, x2, ..., xn ], where xi represents the frequency or the

execution time of each type of system call in a given sample interval. Table 2.2 gives an

example of the extracted frequency vectors from a processed system call list. The first

line represents the number of appearances that sys_write, sys_read, sys_futex

and sys_epoll_wait calls make in the time interval [t , t + 100)milliseconds where

t = 1516544689186.

After extracting proper features, we need to decide what algorithms we should use to

detect vulnerability exploits. As mentioned in the introduction, container vulnerability

detection needs to meet a set of new challenges. First, the detection algorithm cannot

assume a large amount of training data because containers are often short-lived. Second, the

detection algorithm cannot assume prior knowledge about either the application behavior

or the attack behavior since containers are highly dynamic. Third, the detection algorithm

needs to be able to provide real time detection with low overhead. To address these unique

challenges of container vulnerability detection, we chose a set of light-weight unsupervised

anomaly detection schemes to evaluate.

K Nearest Neighbors (k-NN): The k-nearest neighbors algorithm (k-NN) is used to

perform outlier detection. Anomalies are those samples whose average distance to its

nearest neighbors fall into the top p percentile. There is a trade-off between true positive

rate and false positive rate when we adjust the k and p values. If we lower p , more samples

will be identified as anomalous, which might increase both true positive rate and false
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positive rate. The value of optimal k requires more sophisticated tuning algorithms. For

container vulnerability exploit detection, it is impractical to tune the parameters on-the-fly

so they can be empirically decided beforehand. In our experiments, we set k to be five and

p to be 10%.

PCA + k-NN: One of the key challenges to achieve high accuracy in the k-NN algorithm

lies in the presence of noise in the feature data (hundreds of different types of system

calls). We choose Principal Component Analysis (PCA) as our dimension reduction strategy

because PCA is fast and incurs low computation cost. In our experiments, we found that

the magnitude of the top dimension is larger than that of the fifth dimension by four orders

of magnitudes so we set the number of target dimensions to be five.

K-means: K-means is a traditional clustering method and easy to implement. K denotes

the number of clusters of feature vectors. We consider clusters with a small number of

samples, based on a cluster size threshold, as anomalous. Similar to k-NN, we can only

empirically set the value of k to perform container vulnerability exploit detection.

Self-Organizing Map: Self-organizing map (SOM) Kohonen (1998) is a special kind

of artificial neural network (ANN) which is able to reduce data dimensions and highlight

similarities among data without imposing excessive learning overhead. The SOM algorithm

preserves the relative distance between high dimensional data points so that points that

are nearby in the input data are mapped to nearby neurons in the SOM.

We conduct training of the SOM network using the algorithm outlined by UBL Dean

et al. (2012). A mapped neuron with a large neighborhood area value is far away from others

and considered abnormal. The threshold is determined by a certain percentile value p of

neighborhood area size. Intuitively, a low p value will make the detection more sensitive

and raise more alerts.

2.3 Experimental Evaluation

In this section, we first describe our evaluation setup and then present our evaluation

results in detail.

2.3.1 Experiment Setup

We set up victim containers in a virtual machine using Docker v17.05.0 in order to eliminate

the interference brought by other activities in the host. The virtual machine is equipped with
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2 GB memory and 40 GB disk, running 64 bit Ubuntu v16.04. Each victim container runs a

vulnerable application associated with a specific CVE. The static vulnerability scanning is

achieved by Clair v2.0.0. The syscall trace is collected using Sysdig v0.19.1.

To evaluate the effectiveness of each detection approach (e.g., real-time) and to restore

the container practical usage scenarios (i.e. short-liveness), we collect system calls produced

by the victim containers in a short period of time. Specifically, for each vulnerability, we first

launch the victim container and start the vulnerable application. We then send workloads

from the VM and start the Sysdig tracing module. Sysdig collects the system call traces for

about six minutes, including the system calls produced by the application under normal

workload and during the attack (i.e, from when the attack is triggered to when the attack

succeeds). We then extract the time vectors and frequency vectors from the raw system call

traces in samples of 100 milliseconds. We run different dynamic detection algorithms over

those feature vectors.

2.3.2 Detection Results

Table 2.3 Detection Result of Clair and Anomaly Detection Approaches.

Threat
Impact

CVE ID
CVSS
Score

Clair k-NN PCA + k-NN K-means SOM time SOM freq
Detected Detected FPR Detected FPR Detected FPR Detected FPR Detected FPR

Return a shell
and execute

arbitrary code

CVE-2015-8103 7.5 ✗ ✓ 9.97% ✓ 9.97% ✓ 2.98% ✓ 2.47% ✓ 0.84%
CVE-2017-7494 10.0 ✗ ✓ 9.93% ✓ 9.96% ✓ 4.27% ✓ 7.48% ✓ 1.10%
CVE-2016-10033 7.5 ✗ ✓ 9.92% ✗ 9.95% ✓ 8.78% ✓ 0.17% ✓ 0.17%
CVE-2015-2208 7.5 ✗ ✓ 9.91% ✓ 9.94% ✗ 0.00% ✓ 5.26% ✓ 3.18%
CVE-2016-9920 6.0 ✗ ✗ 9.97% ✗ 9.97% ✗ 0.00% ✓ 2.67% ✓ 0.48%
CVE-2015-1427 7.5 ✗ ✓ 9.93% ✓ 9.93% ✓ 9.14% ✓ 0.45% ✓ 1.54%
CVE-2014-3120 6.8 ✗ ✗ 9.92% ✓ 9.72% ✓ 10.08% ✓ 1.46% ✓ 1.72%
CVE-2012-1823 7.5 ✗ ✗ 9.92% ✗ 9.92% ✓ 2.76% ✓ 1.71% ✓ 6.50%
CVE-2017-11610 9.0 ✗ ✓ 9.96% ✗ 9.96% ✓ 1.13% ✓ 0.06% ✓ 1.58%
CVE-2017-8291 6.8 ✗ ✗ 9.94% ✗ 9.94% ✓ 4.90% ✗ 0.14% ✓ 1.41%
CVE-2015-3306 10.0 ✗ ✗ 9.96% ✗ 9.96% ✓ 2.56% ✓ 8.32% ✓ 0.95%
CVE-2017-12615 6.8 ✗ ✓ 9.92% ✗ 9.95% ✗ 0.00% ✓ 1.93% ✓ 1.96%
CVE-2016-3088 7.5 ✗ ✗ 9.92% ✓ 9.72% ✓ 4.30% ✓ 0.63% ✓ 3.04%
CVE-2017-12149 7.5 ✗ ✗ 9.96% ✗ 9.96% ✓ 3.36% ✓ 0.83% ✓ 1.72%
CVE-2015-8562 7.5 ✗ ✗ 9.82% ✗ 9.82% ✗ 35.27% ✗ 0.27% ✓ 5.28%

Execute
arbitrary

code

CVE-2014-6271 10.0 ✓ ✗ 9.97% ✗ 9.97% ✗ 1.60% ✗ 4.64% ✓ 0.42%
CVE-2017-5638 10.0 ✗ ✗ 9.95% ✓ 9.65% ✓ 4.09% ✓ 0.84% ✓ 3.17%
CVE-2017-12794 4.3 ✗ ✗ 9.95% ✗ 9.95% ✓ 8.90% ✗ 0.55% ✗ 3.10%
CVE-2016-3714 10.0 ✗ ✗ 9.97% ✗ 9.97% ✓ 1.06% ✓ 0.36% ✓ 0.26%

Disclose
credential

information

CVE-2017-7529 5.0 ✗ ✗ 9.78% ✗ 9.78% ✓ 10.40% ✗ 1.25% ✗ 0.08%
CVE-2015-5531 5.0 ✗ ✗ 9.95% ✗ 9.95% ✓ 5.78% ✓ 0.72% ✓ 1.22%
CVE-2014-0160 5.0 ✓ ✗ 9.95% ✗ 9.95% ✓ 5.21% ✓ 0.38% ✗ 0.96%
CVE-2017-8917 7.5 ✗ ✗ 9.92% ✓ 9.50% ✗ 0.25% ✗ 0.08% ✗ 0.13%

Consume
excessive CPU

CVE-2016-6515 7.8 ✗ ✗ 9.97% ✗ 9.97% ✓ 1.02% ✓ 6.73% ✓ 3.65%
CVE-2014-0050 7.5 ✗ ✗ 9.92% ✓ 9.72% ✓ 6.30% ✓ 2.01% ✓ 1.97%

Crash the
application

CVE-2016-7434 5.0 ✗ ✓ 9.72% ✓ 9.72% ✗ 36.57% ✗ 0.49% ✗ 0.00%
CVE-2015-5477 7.8 ✓ ✓ 9.91% ✗ 9.94% ✗ 10.22% ✓ 0.74% ✗ 0.31%

Escalation
of privilege

CVE-2017-12635 10.0 ✗ ✗ 9.79% ✗ 9.79% ✗ 33.88% ✓ 3.66% ✓ 1.26%

Average Results 10.71% 32.14% 9.92% 35.71% 9.88% 67.86% 7.67% 75.00% 1.88% 78.57% 1.71%
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We compare different vulnerability detection schemes using four metrics: 1) detection

coverage: whether each approach can detect the vulnerabilities? 2) false positive rate: how

accurate each approach can achieve for the detection? and 3) lead time: how quickly each

approach can detect the attacks and thus prevent compromise in time?

Detection Coverage

Table 2.3 shows the detection coverage of different anomaly detection approaches. Overall,

dynamic approaches achieve better detection coverage than the static approach. Specif-

ically, SOM approaches achieve the highest detection coverage on average, followed by

the K-means clustering approach. The k-NN and k-NN combined with PCA approaches

achieve the lowest detection coverage among all dynamic approaches. The static approach

(i.e., Clair) can only detect three out of 28 CVEs with the average detection coverage of

10.71%. The static approach can be utilized with a dynamic method to achieve the strengths

of both techniques. Accordingly, the highest detection coverage results from combining

the static and SOM frequency approaches. This pair can detect 24 out of 28 vulnerability

cases, giving a detection coverage of 85.71%.

Clair achieves low detection coverage due to the lack of container image features (e.g.,

installed packages, package versions), or the incomplete remote vulnerability database. For

example, Clair fails to detect the CVE-2017-7494 in the vulnerable docker image because

vulnerable packages are installed using source code. Without using package managers to

install vulnerable packages, e.g., apt-get install, Clair cannot extract the image

features, thus it fails to detect the vulnerabilities by correlating the indexed features with

remote vulnerability database. Another example is the CVE-2016-6515. Clair fails to detect

this vulnerability due to the incomplete remote vulnerability database. In fact, Clair has

extracted the container image feature (i.e. OpenSSH v1:7.2p2-4ubuntu2.1), but reports an

incomplete list of vulnerabilities that threaten this image, e.g., CVE-2016-10009, CVE-2016-

10012, CVE-2016-10010, CVE-2016-10011, CVE-2017-15906, and CVE-2016-8858.

The k-NN approach can only detect 32.14% vulnerabilities. It detects 7 out of 15 vul-

nerabilities that return a shell and execute arbitrary code and both the vulnerabilities that

crash the applications, but fails to detect other types of vulnerabilities.

The k-NN combined with PCA approach achieves a slightly better detection coverage

than the pure k-NN approach. It detects six out of 15 vulnerabilities that return a shell and

execute arbitrary code, and another four vulnerabilities in different categories.
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The K-means approach achieves 67.86% detection coverage by detecting 11 out of 15

vulnerabilities that return a shell and execute arbitrary code, 3 out of 4 vulnerabilities that

execute arbitrary code, 3 out of 4 credential information disclosure vulnerabilities, two

excessive CPU consumption vulnerabilities but it fails to detect any vulnerabilities which

could crash the application or cause escalation of privilege.

The SOM approach over system call time vectors (SOM time) achieves the average

detection coverage of 75% while the SOM approach over system call frequency vectors

(SOM frequency) achieves the average detection coverage of 79%. In particular, they both

can detect most or all of the vulnerabilities which would return an interactive shell and

enable attackers to execute arbitrary code inside containers. One insight behind this is that

system calls generated during the process of exploitation and the arbitrary code execu-

tion are distinct from those generated during applications’ normal running process. For

example, CVE-2014-3120 allows attackers to exploit a remote command execution (RCE)

vulnerability in a vulnerable version of ElasticSearch (e.g., v1.1.1). We observed that certain

system calls appear more frequently when the vulnerability is exploited (e.g.,sys_lseek,

sys_mprotect). We also found that specific system calls only appear after the attack is

triggered (e.g., sys_getuid).

The K-means, SOM time and SOM frequency approaches achieve 100% detection cover-

age for the vulnerabilities which can cause performance issues (e.g., consume excessive CPU

usage). For example, in CVE-2016-6515, the auth_password() function in OpenSSH

before version 7.3 does not limit password lengths for password authentication, which

allows remote attackers to launch a DoS attack via a long string, causing infinite loops.

Another example is CVE-2014-0050, where attackers send a crafted content-type header to

a vulnerable version of Apache Tomcat (e.g., v7.0-v7.0.50 and v8.0-v8.0.1), causing the loop

index to be always less than or equal to the upper bound, hanging Tomcat endlessly.

False Positive Rate

Table 2.3 also shows the false positive rate of different anomaly detection approaches.

Overall, the SOM approaches achieve the lowest false positive rate (1.7% for SOM frequency

and 1.9% for SOM time). followed by the K-means clustering approach (7.67%). However,

K-means approach has the largest FPR range from 0% to 36.57%. The k-NN and k-NN

combined with PCA approaches incur the highest false positive rate (9.92% FPR and 9.88%

FPR, respectively). However, these two approaches have the smallest FPR range from 9.5%
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Table 2.4 The Lead Time of Anomaly Detection Approaches for CVEs that Return a Shell and
Execute Arbitrary Code. “-”: the approach does not detect the vulnerability.

Threat Impact CVE ID
CVSS
Score

k-NN PCA + k-NN K-means SOM time SOM freq
(seconds) (seconds) (seconds) (seconds) (seconds)

Return a shell
and execute

arbitrary code

CVE-2015-8103 7.5 0 0 1 1 28
CVE-2017-7494 10.0 0 1 1 28 35
CVE-2016-10033 7.5 0 - 0 67 124
CVE-2015-2208 7 0 1 - 1 1
CVE-2016-9920 6.0 - - - 121 118
CVE-2015-1427 7.5 4 4 0 2 7
CVE-2014-3120 6.8 - 0 1 7 8
CVE-2012-1823 7.5 - - 0 44 45
CVE-2017-11610 9.0 0 - 0 1 1
CVE-2017-8291 9.0 - - 0 - 1
CVE-2015-3306 10.0 - - 1 1 1
CVE-2017-12615 6.8 0 - - 12 5
CVE-2016-3088 7.5 - 0 0 42 48
CVE-2017-12149 7.5 - - 0 8 8
CVE-2015-8562 7.5 - - - - 1

Average Lead Time 0.57 1.00 0.36 25.77 28.73

to 9.97%.

We omit the false positive rate result of Clair in our evaluation because Clair can report

hundreds or thousands of CVEs for each victim container. It is extremely time-consuming

to validate all of its detection results manually. It is also wrong to label all the CVEs identified

by Clair but not included in our benchmark in Table 2.1 as false positives.

Lead Time

Table 2.4 shows the lead time achieved by different dynamic approaches for the CVEs with

the thread impact of returning a shell to the attackers for executing arbitrary code. In those

type of CVEs, the attackers require time-consuming operations to exploit the vulnerability

such as traversing the vulnerable container to find the path of a specific writable folder

(CVE-2017-7494), or creating a backdoor file in the root folder of container-side (CVE-2016-

10033).

Overall, the SOM approaches achieve the largest detection lead time (28.7 seconds for

SOM frequency and 25.8 seconds for SOM time). However, the other approaches’ detection

lead time is very low. Specifically, the k-NN combined with PCA approach achieves the

average lead time of 1 second. The k-NN approach achieves the average lead time of 0.57

second. The worst case is the K-means approach which achieves a lead time of 0.36 second.

16



The results show that the SOM approaches are more practical than the other machine

learning methods for real-time vulnerability detection. This time window is helpful because

effective emergency measures can be taken by administrators to prevent the containers

from being totally compromised.

We do not conduct lead time analysis for other CVE impact types such as crash of the

application, because these attacks can finish immediately after the exploitation.

2.4 Summary

Emerging container techniques speed up deployments of applications and ease the distri-

bution and delivery of software, but securing containers still has a long way to go toward

maturity. In this chapter, we conduct a study to evaluate the effectiveness of different static

and dynamic vulnerability exploit detection schemes for container hosted applications.

Our initial experiments using 28 real world vulnerabilities discovered in 24 commonly used

server applications show that static vulnerability scanning of container images alone is

insufficient, which only detects 3 out of 28 vulnerabilities. Dynamic anomaly detection

schemes using unsupervised machine learning methods can effectively detect 22 vulner-

ability exploits with low false positive rates. Combining static and dynamic schemes can

further increase the detection coverage to 86% (i.e., 24 out of 28 vulnerabilities). Our experi-

ments are still preliminary. In our future work, we plan to extend our vulnerability cases and

further improve the detection accuracy by combining and augmenting our vulnerability

detection schemes.
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CHAPTER

3

SELF-PATCH: BEYOND PATCH TUESDAY

FOR CONTAINERIZED APPLICATIONS

3.1 Introduction

Containers have become increasingly popular in distributed computing environments

by providing an efficient and lightweight deployment method for various applications.

However, recent studiesDocker Image Vulnerability Research (2017)Shu et al. (2017) have

shown that containers are prone to various security attacks, which has become one of the

top concerns for users to fully adopt container technology Bettini (2015).

Containerized applications pose a set of new security challenges to distributed comput-

ing environments. First, container image repositories are prone to vulnerabilities. Indeed,

previous study Shu et al. (2017) reveals an alarming degree of vulnerability exposure and

spread in the official Docker Hub container repository. It is complex to maintain a public

or private container repository which often consists of a large number of container images

and many inheritance layers. If a container is created from a base image, any vulnerability
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included in the base image needs to be patched in the containers that are built on top of

the base image. Second, containers are often allocated with limited resources because a

large number of containers often share the resources of a single physical host. Security

patching might cause significant resource increase (e.g., memory bloating) in a patched

container, which makes the container unable to run after patching.

Existing security patching schemes in distributed computing environments often follow

a periodically scheduled whole upgrade approach, that is, updating all applications as a

whole on a certain day (e.g., every Tuesday). The approach works well in stable systems

consisting of long running applications. However, containers are often short-lived, which

makes periodical patching schemes ineffective if the vulnerable containers miss the pre-

scheduled patching day. Moreover, whole software upgrade often significantly increases

the memory and storage footprint of the patched containers. As a result, those containers

quickly become too heavy to fit in constrained resource allocations.

In this chapter, we present Self-Patch, an intelligent self-triggering security patching

framework for containerized applications. Our framework consists of three integrated

components: 1) online attack detection module which can detect security attacks using

low-cost, non-intrusive system call tracing and unsupervised autoencoder neural network

models Schmidhuber (2015); 2) attack classification module which classifies attack behav-

iors into specific vulnerability exploits by identifying most frequently appeared system

calls during the attack period and 3) targeted patch execution module which is responsible

for applying proper security patches based on the classification results. Specifically, this

chapter makes the following contributions.

• We present a new self-triggering targeted patching framework to achieve effective

and efficient attack containment for containerized applications.

• We describe an online attack detection and classification scheme using out-of-box

system call tracing and unsupervised machine learning methods.

• We have implemented a prototype of Self-Patch and evaluated it over 31 real world

security attacks in 23 commonly used server applications.

Our experimental results show that Self-Patch’s attack detection scheme can accurately

detect and classify 81% security attacks with 16 seconds lead time on average. In comparison,

other commonly used anomaly detection schemes such as k -nearest neighbor (k -NN) and
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Figure 3.1 System overview of Self-Patch.

k -means clustering algorithm can only detect 6% and 68% exploits, respectively. k -means

also produce 7% false alarms while Self-Patch only incurs 0.7% false alarms. We further

compare the memory and disk footprint change before and after patching between Self-

Patch and the existing whole upgrade approach. Our results show that Self-Patch can reduce

the memory footprint increase (caused by the applied patches) by up to 84% and disk size

increase by up to 40%.

The rest of the chapter is organized as follows. Section 3.2 describes the system design.

Section 3.3 presents our experiment setup and results. Section 3.4 concludes the chapter.

3.2 System Design

This section describes the system design of Self-Patch. We first provide an overview about

the system, followed by the design details for each component.

3.2.1 System Overview

Self-Patch aims at providing a self-triggering targeted patching framework for containerized

applications, which is illustrated by Figure 3.1. Self-Patch consists of three coordinating

components: 1) attack detection, 2) attack classification, and 3) targeted patch execution.

The attack detection module monitors container runtime behaviors by analyzing system
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Table 3.1 A frequency vector sample for the ActiveMQ application (CVE-2016-3088). An attack is
triggered at t = 1528903079912.

Timestamp
System call

access sendto lseek fcntl

1528903079812 0 0 0 0
1528903079912 59 4 0 5
1528903080012 299 18 2 0
1528903080112 0 0 0 0

call traces via unsupervised autoencoder neural network learning methods. We pick system

call data for our attack detection because many attacks manifest in system call invocations.

We decide to use an unsupervised machine learning method in order to achieve online

detection for both known and unknown attacks.

Upon detecting anomalies in container runtime behavior, we need to decide what

type of vulnerability the detected attack targets on. The attack classification component

extracts top frequently used system calls during the attack period. To map to a specific

vulnerability, we perform offline profiling to extract the vulnerability signature by extracting

the top frequently used system calls after triggering the corresponding attack. Note that we

make an assumption here that attacks targeting the same vulnerability exhibit the same

behavior in terms of top frequently used system calls. We find our assumption holds in our

experiments. We plan to further validate this assumption using more attacks in our future

work.

After the vulnerability is identified, the targeted patch execution module is dynamically

triggered to contain the attack by patching the victim container to fix the vulnerability

targeted by the attack. We first bring the victim container offline and then apply the proper

software updates to the container in a quarantined environment. Once the patching is

complete, an updated container image is committed to the repository for spawning fu-

ture containers. We now present the design details of each component in the following

subsections.

3.2.2 Attack Detection

Self-Patch performs attack detection by analyzing system call traces invoked by the con-

tainerized application. For robustness, we leverage an existing container monitoring tool

Sysdig Sysdig (2016) to achieve out-of-box monitoring from the host kernel. We can collect
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Figure 3.2 Architecture of the autoencoder.

all the system calls invoked by an application running inside the container from outside.

Although system call sequences (i.e., n-gram) have been used to identify attacks in intrusion

detection systems Forrest et al. (1996), they require a database of recognized sequences

for detecting attacks, which cannot handle dynamic workload and mimicry attacks. In this

work, we propose to first extract system call features to model runtime application behav-

iors and then apply unsupervised machine learning methods to detect attack behaviors.

Specifically, we compute the frequencies of each system call type per sampling period to

form a frequency vector. For example, Table 3.1 shows a frequency vector time series where

the access system call is invoked 299 times within [1528903080012, 1528903080112)mil-

lisecond. Intuitively, when an attack is triggered to exploit a certain vulnerability in the

application, certain types of system calls are invoked more frequently than normal. For ex-

ample, in Table 3.1, we can see an abnormal frequency increase for access and sendto

system calls after the attack is triggered at time 1528903079912.

To achieve online anomaly detection, we leverage unsupervised multi-variate machine

learning to detect abnormal system call frequency changes. We choose autoencoder neural

network as our detection model because it does not require labelled training data and can

achieve good accuracy with a relatively small number of neurons with low training cost.

The autoencoder neural network builds a model that learns to reconstruct training samples

with minimal error. This is achieved by representing the input data in a lower dimensional

space with a small number of neurons, that is called the encode step. Thereafter, in the

decode step, the model attempts to regenerate the data that was compressed by the encode

step. Thus, the autoencoder network typically has a symmetric architecture as depicted in

Figure 3.2. The figure shows the network configuration of our autoencoder implementation
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with four hidden layers between the input and output layers. In the encode region, the

network is fully connected from the input layer to the following two hidden layers. The

encode region is fully linked to the identical but reversed decode region by their innermost

layers of neurons. The length of the vectors is the number of different system call types (e.g.,

read, write, futex) produced by the application. The number of neurons in the input layer

and output layers of the autoencoder is determined by the number of different system call

types appeared in the system call training data. The weights between neurons are updated

with the sigmoid activation function. Furthermore, the mean squared error (MSE) is the

loss function which is minimized via back propagation.

The model classifies test samples with low reconstruction errors as normal and those

with high reconstruction errors as abnormal. We determine the error threshold based on

the reconstruction errors observed in the training data. Specifically, a certain percentile

rank of reconstruction errors from the training set is selected as the threshold. We choose 99

percentile value as our threshold in our experiments. We found the 99 percentile threshold

works well in our experiments.

3.2.3 Attack Classification

After detecting an attack, we want to classify the attack to into a specific type which is

linked to a vulnerability identifier (e.g. CVE ID). Once this is obtained, we can update

the application to the proper version. Similarly, signatures for new attacks would also be

generated, which can contribute to the development of new security updates.

The attack classification in our system is guided by the alarms raised by our detection

models. Based on the detected attack period, we extract the top ranked system calls with

the following algorithm. The rank is calculated by taking an average of the frequency counts

for each system call during the interval. The list of system calls and their counts, sorted in

descending order, serves as the rank. To extract signature patterns, we first identify the top

k ranked system calls (e.g., k = 5) and then concatenate the names of those selected system

calls into a string. The attack signature is denoted by the hash value from running a Secure

Hash Algorithm (SHA) on the string. For example, let us consider the denial of service

(DOS) attack to Network Time Protocol (NTP) vulnerability (CVE-2016-7434). The top five

frequent system calls are: rt_sigprocmask, gettid, write, read and clock_-

gettime. The rt_sigprocmask system call checks or modifies the blocked signals

of a thread, while gettid gets the thread ID. Furthermore, the denial of service attack is
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#!/bin/bash
# download files
apt-get update
apt-get -y install wget gcc make
wget https://github.com/.../ghostscript-x.xx.tar.gz
tar xvf ghostscript-x.xx.tar.gz

# install files
cd ghostscript-x.xx
./configure
make install

# remove files
apt-get purge -y wget gcc make
apt-get autoremove -y
cd ..
rm -r ghostscript-x.xx.tar.gz ghostscript-x.xx

Figure 3.3 A targeted patching example for Ghostscript.

caused by sending an extremely long character to the NTP service over a socket connection.

Thus, the application would need to make read and write calls to service this request. The

clock_gettime call retrieves the time of a requested clock.

The signature is then mapped to a corresponding existing CVE ID that is collected by

an offline profiling process using the same signature extraction algorithm. However, if we

fail to map the signature with any existing CVE, we mark this attack as an unknown attack

which requires further investigation.

3.2.4 Targeted Patch Execution

After a specific attack is detected and classified, Self-Patch triggers the targeted patching

module over the victim container to contain the attack. The targeted patch execution

module focuses on installing only the specific libraries needed to address the identified

vulnerability. Our patching process consists of three steps: downloading new software

packages, installing new software packages, and removing unnecessary files.

Obtaining source files involves using tools such as wget or git or APT, depending on

where the files are located. Wget is useful for downloading files provided by a URL (Uniform
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Resource Locator), git clone for GitHub repositories and apt-get update for

retrieving packages provided by APT.

Installation may require other tools like make or pip to compile and install the ap-

plication. Applications downloaded from source with a Makefile are typically installed

with ./configure to prepare a Makefile, followed by make to compile source code

and finally a make install to move the compiled files to proper locations. Those ap-

plications configured with APT can leverage apt-get install -only-upgrade

commands, whereas those with pip can usepip installwhich handles both the down-

load and install steps. Applications that escape the above efforts, may be be supplemented

with files from third party entities such as Personal Package Archives (PPA) supervised by

Ubuntu.

Finally, the installation is cleaned up. Downloaded archive source files and folders

extracted from them as well as their outdated counterparts can be removed with basic

Linux commands. APT can handle this process with apt-get purge and apt-get

autoremove commands.

Figure 3.3 presents a basic targeted patch example for three Ghostscript vulnerabilities

(CVE-2018-16509, CVE-2018-19475 and CVE-2019-6116). In the download files section,

dependent wget, gcc and make libraries are retrieved with APT to execute the rest of the

installation procedure. Whereas, wget downloads the tar archive that contains the new

application version source files. Notice that after the file is installed, these files and packages

are removed.

The difficulty in the patch execution lies in the installation differences among applica-

tions. Discovering these libraries and installation steps involves extensive searches over

security databases, application sites and manuals. We compare results of this targeted

method of applying updates to the alternate periodical update approach in Section 3.3.2.

Targeted patching is applied to the container in a quarantined environment isolated

from other normal applications. Meanwhile, various security countermeasures can be

applied. For instance, further requests from the compromised container can be dropped

while new trusted containers are spawned to replace compromised ones. After a successful

update, an image is saved from the container with a docker commit. The resulting

image is then used to deploy new containers.
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Table 3.2 List of explored real-world vulnerabilities.

Threat
Impact

CVE ID
CVSS
Score

Application
Attack

Duration
(seconds)

Return a shell
and execute

arbitrary code

CVE-2012-1823 7.5 PHP 1
CVE-2014-3120 6.8 Elasticsearch 9
CVE-2015-1427 7.5 Elasticsearch 60
CVE-2015-2208 7.5 phpMoAdmin 2
CVE-2015-3306 10 ProFTPd 4
CVE-2015-8103 7.5 JBoss 30
CVE-2016-10033 7.5 PHPMailer 125
CVE-2016-3088 7.5 Apache ActiveMQ 49
CVE-2016-9920 6 Roundcube 121
CVE-2017-11610 9 Supervisor 2
CVE-2017-12615 6.8 Apache Tomcat 13
CVE-2017-7494 10 Samba 36
CVE-2017-8291 6.8 Ghostscript 1

Execute
arbitrary

code

CVE-2014-6271 10 Bash 2
CVE-2015-8562 7.5 Joomla 1
CVE-2016-3714 10 ImageMagick 4
CVE-2017-12794 4.3 Django 1
CVE-2017-5638 10 Struts 29
CVE-2018-16509 9.3 Ghostscript 2
CVE-2018-19475 6.8 Ghostscript 2
CVE-2019-6116 6.8 Ghostscript 2

Disclose
credential

information

CVE-2014-0160 5 OpenSSL 14
CVE-2015-5531 5 Elasticsearch 2
CVE-2017-7529 5 Nginx 1
CVE-2017-8917 7.5 Joomla 1
CVE-2018-15473 5 OpenSSH 2

Consume
excessive CPU

CVE-2014-0050 7.5 Apache Tomcat 45
CVE-2016-6515 7.8 OpenSSH 20

Crash the
application

CVE-2015-5477 7.8 BIND 6
CVE-2016-7434 5 NTP 1

Escalate
privilege level

CVE-2017-12635 10 CouchDB 1

3.3 Experimental Evaluation

In this section, we present our evaluation methodology and experimental results. We im-

plement a prototype of Self-Patch and conduct the experiments using machines running

on 64-bit Ubuntu 16.04. Each machine is equipped with a dual-core 2.6 GHz CPU along

with 4 GB memory.
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3.3.1 Evaluation Methodology

Real world vulnerabilities

We evaluate Self-Patch using 31 real world vulnerabilities discovered in 23 commonly

used server applications, highlighted in Table 3.2. We especially focus on vulnerabilities

of medium to high severity reported in the last five years. These applications include

widespread web services (e.g. Apache Tomcat, Nginx, Elasticsearch) and database services

(e.g. CouchDB), which are recently popular Carter (2018), Datadog (2018). Attacks to ap-

plication vulnerabilities result in threat impacts that fall into six categories classified by

a recent study Shu et al. (2017): 1) return a shell and execute arbitrary code; 2) execute

arbitrary code; 3) disclose credential information; 4) consume excessive CPU; 5) crash the

application and 6) escalate privilege level.

Experiment setup

We run workload generated with Apache JMeter1 on the container of each target vulnerabil-

ity, to approach real world system operation. Specifically, JMeter quickly delivers appro-

priate requests to the applications. The supplied request rate increases to the maximum

value that the application can accommodate. After running the container for a period of

normal operation, enough to train the detection model, an attack is triggered to exploit the

security vulnerability. The attack then executes for a subsequent period until no further

attack activity is made. Meanwhile, we use Sysdig Sysdig (2016) to record the system calls

invoked by the running containerized applications. We separate the entire system call trace

into two halves. We use the first half of the data to train the detection model as it consists of

enough samples of normal operation. However, we use the whole trace to extract detection

and attack signature results.

To evaluate the results of targeted patching, we repeat the above process. Immediately

after the vulnerability is triggered, we execute the targeted patching. At the same time, we

monitor the memory utilization and disk size. In particular, we track the memory usage

by leveraging the APIs exposed by cAdvisor2. Meanwhile, the container disk size is col-

lected with native Docker commands. The sizes of the read-only image layers and writable

container layers are summed and given by the docker ps -s command.

1Apache Jmeter can be found at https://jmeter.apache.org/
2cadvisor available at https://github.com/google/cadvisor
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Alternative Schemes

To evaluate Self-Patch’s performance, we compare it with several baseline methods. Self-

Patch consists of three phases, i.e., attack detection, attack classification, and targeted

patch execution. For the attack detection phase, we compare Self-Patch against k -nearest

neighbors (k -NN) Altman (1992) and k -means Kanungo et al. (2002) techniques. For the

targeted patch execution phase, we evaluate our approach against the whole upgrade

method. We describe each alternative method in detail below.

k -NN for anomaly detection: We take the system call frequency vectors as input and re-

turn the outliers at their corresponding timestamps. The k -NN algorithm typically involves

assigning a label to a data point based on the majority vote from its k closest neighbors.

Abnormal samples are those too far away from their neighbors. We calculate the average

distance of each point to its nearest neighbors and determine the anomalous ones with

larger distances. In our experiment, we empirically select k as 5. In addition, we choose the

samples with the top 10% largest average neighbor distance as the outliers.

k -means for anomaly detection: We customize the k -means algorithm for the anomaly

detection phase in a similar way to the k -NN algorithm. To be specific, data samples are

distributed to one of the k randomly initialized cluster centers. Thereafter, the cluster

centers are recalculated based on the average position of its members and then cluster

memberships are reassigned. This process is performed iteratively until no more change

occurs. Here, the algorithm identifies abnormal samples as those that belong to isolated

clusters with a little membership. The tuning process is similar to that of k -NN. We observe

the detection and false positive rate while varying k and keeping the cluster size threshold

constant and vice versa. The resulting number of clusters is equal to ten (k = 10). Meanwhile,

the cluster threshold for determining anomalous clusters is set to 100, which is chosen to

achieve a good tradeoff between true positive rate and false positive rate in our experiments.

Whole upgrade for patch execution: This approach refers to the conventional manner in

which security updates are performed in Debian-based Linux systems that containers run

on. Old versions of all packages found by the package manager are updated to their newest

versions. In our study, this is accomplished by an apt-get update followed by an

apt-get upgrade of the APT package manager. The update command refreshes the

package source lists to find the latest available packages while the latter installs the newly

found software versions. We also employ the corresponding commands for containers

based on Alpine Linux (i.e. replacing aptwith apk).
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3.3.2 Results and Analysis

In this subsection, we discuss our experimental results. Firstly, we discuss the results of

detecting attacks. Then we analyze the results of signatures extracted from the system.

Lastly we compare the cost of targeted patching by Self-Patch with that of whole upgrade.

Attack Detection Results

We present the detection results of Self-Patch over three evaluation metrics, i.e., true positive

rate, false positive rate (F P R ) and lead time.

For detection coverage, we measure whether the attack is detected by checking whether

the alarm is raised after the attack is triggered and before the attack is successful. The

detection coverage is also referred as true positive rate (T P R ) in this chapter calculated by

the following standard true positive rate equation, where T P is number of attacks that are

detected and F N is the number of attacks that are undetected.

T P R =
T P

T P + F N
(3.1)

Next, we use the standard false positive rate F P R as the second evaluation metric. F P

represents the number of false alarms and T N represents the number of normal data

samples that Self-Patch correctly does not generate alarms on.

F P R =
F P

F P +T N
(3.2)

Lastly, we assess detection performance using lead time as the third metric. Lead time is

defined to be the amount of time between the first alert from the detector after the malicious

command is executed and completed. This represents the amount of flexibility the system

has to initiate security countermeasures before the container is fully compromised.

Table 3.3 shows the detection results for each detection approach (i.e. k -NN, k -means

and Self-Patch). The detection coverage results show that k -NN performs much more poorly

than k -means and Self-Patch. k -NN detects 2 of 31 attacks (6.45%), whereas, k-Means and

Self-Patch detection recognize 21 (67.74%) and 25 (80.65%), respectively. Self-Patch also

demonstrates superior performance with a lower average FPR of 0.72% than the 7.16%

k-Means result. The average lead time of Self-Patch is the longest (16.38 seconds), compared

with both k -means (13.53 seconds) and k -NN (0.15 seconds). Although the attacks have
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Table 3.3 Detection result of Self-Patch and alternative approaches.

Threat
Impact

CVE ID
CVSS
Score

k-NN k-Means Self-Patch

Return a shell
and execute

arbitrary code

CVE-2012-1823 7.5 ✗ ✗ ✗

CVE-2014-3120 6.8 ✗ ✓ ✓

CVE-2015-1427 7.5 ✓ ✓ ✓

CVE-2015-2208 7.5 ✗ ✗ ✓

CVE-2015-3306 10 ✗ ✓ ✓

CVE-2015-8103 7.5 ✗ ✓ ✓

CVE-2016-10033 7.5 ✗ ✓ ✓

CVE-2016-3088 7.5 ✗ ✓ ✓

CVE-2016-9920 6 ✗ ✗ ✓

CVE-2017-11610 9 ✗ ✓ ✓

CVE-2017-12615 6.8 ✗ ✗ ✓

CVE-2017-7494 10 ✗ ✓ ✓

CVE-2017-8291 6.8 ✗ ✗ ✓

Execute
arbitrary

code

CVE-2014-6271 10 ✗ ✗ ✓

CVE-2015-8562 7.5 ✗ ✓ ✗

CVE-2016-3714 10 ✗ ✓ ✓

CVE-2017-12794 4.3 ✗ ✓ ✗

CVE-2017-5638 10 ✗ ✓ ✓

CVE-2018-16509 9.3 ✗ ✗ ✓

CVE-2018-19475 6.8 ✗ ✗ ✓

CVE-2019-6116 6.8 ✗ ✗ ✓

Disclose
credential

information

CVE-2014-0160 5 ✗ ✓ ✓

CVE-2015-5531 5 ✗ ✓ ✓

CVE-2017-7529 5 ✗ ✓ ✗

CVE-2017-8917 7.5 ✗ ✓ ✓

CVE-2018-15473 5 ✗ ✓ ✓

Consume
excessive CPU

CVE-2014-0050 7.5 ✗ ✓ ✓

CVE-2016-6515 7.8 ✗ ✓ ✓

Crash the
application

CVE-2015-5477 7.8 ✗ ✗ ✗

CVE-2016-7434 5 ✓ ✓ ✗

Escalate
privilege level

CVE-2017-12635 10 ✗ ✓ ✓

Average Results 6.45% 67.74% 80.65%

varied attack periods, noted in Table 3.2, Self-Patch more consistently yields higher lead

time

We express the detection coverage, FPR and lead time of each method over the attacks

in each threat impact category in Figure 3.4, 3.5 and 3.6, respectively. Figure 3.4 shows

that Self-Patch achieves the highest detection coverage in all but two categories: disclose

credential information and crash the application. Although k-means outperforms Self-Patch

in these areas, it suffers from a much higher false positive rate. Furthermore, Self-Patch

as well as the other detection approaches struggle with attacks that crash the application.

This is likely because the crash causes the container end abruptly and lose data before an

alarm is confidently raised. We plan to improve the accuracy of Self-Patch in future work

with strategies that leverage system call arguments.
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Figure 3.4 True positive rate result of anomaly detection approaches.

Figure 3.5 False positive rate result of anomaly detection approaches.

Attack Classification Results

Table 3.4 summarizes the patterns that correspond to attacks on each vulnerability, in-

cluding the underlying top system calls for each pattern entry. We observe that Self-Patch
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Figure 3.6 Lead time result of anomaly detection approaches.

produces unique patterns for 29 of the 31 CVEs. In particular, the duplicates are observed

among three of four containers of the GhostScript application used for image processing.

However, other applications with multiple containers of distinct vulnerabilities do not yield

identical signatures. The GhostScripts attacks exploiting CVE-2018-16509, CVE-2018-19475

and CVE-2019-6116 are of a similar fashion. They involve uploading vulnerable image

files embedded with malicious content to bypass the GhostScript security sandbox and

execute commands. Thus, one can expect similar behavior from these attacks. Regardless,

the GhostScript vulnerabilities can all be addressed by the same targeted patch.

Patching Results

We discuss the patching results, including success status and patching costs, i.e., memory

and disk costs. The patching results are shown in Table 3.5, Figure 3.7 and Figure 3.8.

First, we describe how we determine whether patching is successful or not. After the

completion of each patching experiment, we save the image of the container for future

testing. We then start a new container using the image just created and then execute the

attack commands. If the commands continue to work as before, we mark this patching

experiment as unsuccessful, otherwise, we mark it as successful. Targeted patching by Self-

Patch achieves 80.65% success rate. Note that this is a 100% of the cases where the attack
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Table 3.4 Top system call composition of generated patterns.

CVE ID Pattern Top System Calls

CVE-2012-1823 24355 futex switch epoll_wait write read
CVE-2014-3120 770ab stat lstat setitimer switch read
CVE-2015-1427 81b6c futex switch stat read lseek
CVE-2015-2208 ffffe switch select nanosleep read stat
CVE-2015-3306 e0eaa futex switch stat sched_yield close
CVE-2015-8103 81dbf read mmap close writev lstat

CVE-2016-10033 a8c13 switch futex epoll_wait read stat
CVE-2016-3088 e01e9 write fcntl geteuid getegid switch
CVE-2016-9920 a53d4 read switch stat close poll

CVE-2017-11610 f58fe stat lstat read close switch
CVE-2017-12615 a0ea6 futex switch stat close epoll_wait
CVE-2017-7494 f23a4 futex switch epoll_wait read sched_yield
CVE-2017-8291 634c5 mmap close open fstat switch
CVE-2014-6271 10b79 lstat fstat access close open
CVE-2015-8562 5f2a6 switch read stat close mmap
CVE-2016-3714 139c2 read lseek open switch futex

CVE-2017-12794 15862 stat switch poll sendto futex
CVE-2017-5638 26a4a lstat stat setitimer fcntl read

CVE-2018-16509 a060e fcntl setitimer stat chdir sendto
CVE-2018-19475 a060e fcntl setitimer stat chdir sendto
CVE-2019-6116 a060e fcntl setitimer stat chdir sendto
CVE-2014-0160 22184 epoll_wait switch close writev write
CVE-2015-5531 0c129 switch futex epoll_wait read mprotect
CVE-2017-7529 7ea25 switch poll stat writev read
CVE-2017-8917 22c99 fstat lstat access close open

CVE-2018-15473 2182c read lseek open switch stat
CVE-2014-0050 6052e xtensa ioctl_console ioctl_iflags ioctl_getfsmap ioctl_fideduperang
CVE-2016-6515 9cbbe close mmap read open fstat
CVE-2015-5477 b4736 epoll_wait sched_yield close switch futex
CVE-2016-7434 4daa5 rt_sigprocmask gettid write read clock_gettime

CVE-2017-12635 ad14b read close fstat mmap open

Table 3.5 Overall comparison result of different patching approaches.

Patching Approach
Success

Rate
Memory

Cost
Disk
Cost

Whole Upgrade 6.45% 10.13x 1.49x
Self-Patch 80.65% 4.79x 1.16x

was detected by Self-Patch. However, only 6.45% of whole upgrade trials are successful.

This demonstrates the superiority of targeted patching over periodic updates.

The reason why whole upgrade achieves such low success rate is because many con-

tainers are not configured with package managers. On one hand, there are programs whose

developers have not prepared the files that will be handled by the manager (e.g., debian

files for APT). Users of the software have no choice but to install via other provided means.

Some of such applications or libraries we encountered include JBoss, Joomla, Roundcube

and phpMoAdmin. On the other hand, when developers provide diverse ways of installa-
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Figure 3.7 Container memory cost of patching.

Figure 3.8 Container disk cost of patching.

tion (e.g. from source, binaries, etc), then users can choose to install based on preference.

Software development and IT teams, drawn to containers for the fundamental guarantee of

a consistent application environment and behavior may easily package their applications

from source files to avoid accidental upgrades. Applications built for archival purposes
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such as for showcasing vulnerabilities may also elect to install via downloaded source

files. Therefore, for applications not managed by APT, the periodic update process will

upgrade libraries other than those needed to address the vulnerability of the containerized

application in question.

In addition, the patching cost results show lower memory and disk size footprint when

performing targeted patching rather than the whole upgrade approach. On average, the size

grew to 4.79 times its original size with targeted patching versus 10.13 with whole upgrade

in memory size. Similarly, targeted patching multiplied the disk size by a factor of 1.16,

whereas whole upgrade increased the size by a factor of 1.49. Nevertheless, the following

other cases are encountered. Slightly higher memory size resulted after targeted patching

for one vulnerable application, OpenSSH (CVE-2018-15473). It is important to recall that

the whole upgrade approach did not successfully update the target application for most

entries, including OpenSSH. Finally, the whole upgrade memory size is slightly higher than

that of the targeted patch in Bash (CVE-2014-6271), although the disk size is the same. This

is attributed to both methods installing the same single Bash library for the update.

3.4 Summary

In this paper, we have presented Self-Patch, a new self-triggering targeted patching frame-

work for container-based distributed computing environments. Self-Patch aims at providing

effective and efficient solutions to protect containerized applications from security attacks.

To achieve this goal, the Self-Patch framework consists of three coordinating components: 1)

an online attack detection module which can dynamically detect abnormal attack activities

by extracting feature vectors from system call traces and applying unsupervised machine

learning methods over the extracted features; 2) an attack classification scheme which

classifies a detected attack into a specific type linked to a certain CVE; and 3) a targeted

patch execution module which can install proper software patches to fix the vulnerability.

We have implemented a prototype of Self-Patch and evaluated it over 31 real-world vul-

nerabilities discovered in 23 common server applications. Our initial experimental results

are promising, which shows we can increase detection rate to over 80% and reduce false

alarm rate to 0.7%. In contrast, traditional schemes can either only detect 6% attacks or

incur more than 20% false alarms. Compared to the whole software upgrade approach,

Self-Patch can reduce the memory overhead by up to 84% and disk overhead by up to 40%.
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CHAPTER

4

UNDERSTANDING SECURITY

VULNERABILITIES IN CLOUD SERVER

SYSTEMS

4.1 Introduction

Cloud servers provide a cost-effective platform for deploying software applications in a pay-

as-you-go fashion. However, due to its multi-tenant sharing nature, the cloud environment

is especially vulnerable to security attacks. Due to its widespread deployment, any security

vulnerability in cloud server systems can cause extensive impact on the end users Shu et al.

(2017). For instance, vendors of the popular Java logging library, Apache Log4j, reported

a serious vulnerability on December 9, 2021, affecting industries worldwide Wetter and

Ringland (2021); Korn (2021). The vulnerability, named Log4Shell, allowed attackers to

execute any commands in cloud systems that contained the library, resulting in about

200,000 global attacks within one day of the disclosure Ltd (2021). The open source insights
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// JndiManager.java Log4j CVE-2021-44228
/* An exploit example:

GET .../${jndi:ldap://attackhostname.com:23457/
AttackClass} HTTP/1.1 */

171 public <T> T lookup(final String name)... {
/* lookup is missing validation checks for the

‘name’ input. */
// the patch validates each component of the input
// JNDI uri, namely the protocol, hostname and class

172 return (T) this.context.lookup(name);
/* In eight hops, lookup calls Java’s
‘getObjectFactoryFromReference’ function to load the
AttackClass */

173 }

// NamingManager.java (package: javax.naming.spi)
137 static ObjectFactory getObjectFactoryFromReference(
138 String factoryName)
139 ... {
146 clas = helper.loadClass(factoryName);
163 return (clas != null) ? (ObjectFactory)

clas.newInstance() : null;
/* Java’s newInstance instantiates the AttackClass,
invoking the attack commands within the class. */

164 }

Figure 4.1 The Apache Log4j CVE-2021-44228 bug (CVSSv3: 10.0, CVSSv2: 9.3). The vulnerable
function lookup does not restrict the lookup of JNDI URIs before instantiating the requested class
with the security-sensitive getObjectFactoryFromReference function. This ‘improper execution
restrictions’ bug has the ‘execute arbitrary code’ impact.

team from Google Cloud estimates that Log4Shell affected 8% of all artifacts in the Maven

Central repository, which is four times the average vulnerability impact Wetter and Ringland

(2021).

Cloud security has become increasingly important for many real world critical appli-

cations. In response to security risks, previous work proposes various intrusion detection

systems to meet the resource constraints and dynamic workload challenges in cloud en-

vironments Yen et al. (2013); Du et al. (2017); Lin et al. (2020). These approaches inspect

system telemetry data such as system metrics or system calls to identify abnormal attack

behavior. However, those approaches are reactive in nature, which cannot prevent those

security vulnerabilities from affecting many cloud users. Moreover, previous intrusion

detection schemes do not provide information about the underlying software defects for

the developer to fix the security vulnerabilities. To mitigate those vulnerabilities, developers

have to manually analyze massive code bases to figure out the underlying root causes. In

this paper, we make the first step to understand the software vulnerabilities called security
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bugs in 13 commonly used cloud server systems, which provides foundations for proactively

detecting software vulnerabilities before they get released to production cloud systems.

4.1.1 Motivating Example

We illustrate security bugs affecting cloud server systems using the Apache Log4j CVE-2021-

44228 vulnerability. The bug occurs because Log4j retrieves data from any external Java

Naming Directory Interface (JNDI) server without restriction. Accordingly, attackers can

submit a request to lookup a class from the attacker’s JNDI server. The exploit example in

Figure 4.1 is an HTTP request with a path that contains a JNDI request enclosed in the ’${’

and ’}’ substitution characters. The JNDI request contains the vulnerable LDAP protocol,

the attack server attackhostname.com, and the attack class AttackClass. Log4j resolves the

request with the lookup function on line 171. The vulnerable version of the function only

contains line 172, which starts a series of invocations to retrieve the requested class using

the LDAP context. However, lookup does not validate name before this line. Eight hops

along the call path, the getObjectFactoryFromReference method of the javax.naming.spi

library loads the AttackClass from the external attackhostname.com and creates an instance

using the java.lang.Class newInstance method. Finally, the application invokes the new

AttackClass instance, executing its malicious commands.

The developers patch this bug by using allowlists to restrict each component of the

JNDI lookup requests, namely the protocol, the hostname, and the class. Developers have

to spend a long time analyzing applications in detail to identify vulnerabilities and provide

appropriate fixes. Furthermore, the analysis can be challenging because the vulnerable

functions often reside at a different location from where the symptoms, such as the results

of the executed commands, occur. Understanding the security bug root cause informs the

automatic detection and patching tools to efficiently locate the vulnerable function before

the production system is affected.

4.1.2 Contribution

In this paper, we investigate 110 recent security bugs selected from over 300 CVEs in the

past five years in 13 popular cloud server systems. We categorize the vulnerabilities by

answering the following questions: 1) what are the causes of the security bugs? 2) what

threat impact does the vulnerable code have? 3) how do developers patch the vulnerable
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code?

Specifically, this paper makes the following contributions:

• We identify five common vulnerable code patterns by systematically analyzing 110

security bugs: 1) improper execution restrictions, 2) improper permission checks, 3)

improper resource path-name checks, 4) improper sensitive data handling, 5) improper

synchronization handling,

• Our study shows that the leading causes of the security bugs are improper execution

restrictions (37%), improper permission checks (25%), and improper resource path-

name checks (24%). The remaining bugs are due to improper sensitive data handling

(7%) and improper synchronization handling (7%).

• We describe a set of vulnerable code patterns in order to catch vulnerable code before

security bugs impact production cloud systems.

The rest of the paper is organized as follows. Section 4.2 describes our methodology for

security bug collection and categorization. Section 4.3 presents the details of our security

bug categorization. Section 4.4 concludes the paper.

4.2 Methodology

In this section, we present our methodology. We provide details about the examined security

bugs, our bug discovery process, and our vulnerable code categorization.

4.2.1 Real-world security bug discovery

We examine 110 real-world security vulnerabilities in 13 popular Java cloud server appli-

cations: Apache ActiveMQ, Apache Log4j, Apache Solr, Apache Struts 2, Apache Tomcat,

Apache Unomi, Elasticsearch, GlassFish, JBoss, Jenkins, Jetty, Undertow, and WildFly (pre-

viously JBoss). The vulnerabilities reside in the core application or in Java libraries used

by these programs. To comprehensively study the current state of security vulnerabilities

in server systems, we primarily study security-focused bugs over the past 5 years (2017 to

2021) with available open-source code. After inspecting the source code of the bugs, we

exclude those that are in tiny vulnerable function and threat impact categories. Accordingly,

we examine over 300 security bugs to arrive at 110 studied bugs.
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Figure 4.2 Distribution of security bugs by threat impact.

We primarily search for recent CVEs listed for each application in the national vulnera-

bility database (NVD) NIST (2023). The database provides bug descriptions, vulnerable and

fixed versions, and other references. We also explore vulnerability databases such as Red

Hat Bugzilla Red Hat (2021), Veracode Veracode (2021), and CVEDetails CVE Details (2023)

that often include relevant references to vulnerability details. We manually examine the

appropriate application versions hosted on repositories like GitHub and Apache Subver-

sion (SVN). We compare differences in application versions, and search through developer

correspondence like commits.It is challenging and extremely time-consuming to track and

analyze vulnerable code and attack steps as many vulnerability reports do not give detailed

exploit descriptions.

Vulnerability databases often record the impact of vulnerability exploits to the system.

Figure 4.2 presents the threat impact distribution of the bugs, which is composed of bugs

that: 1) disclose credential information, 2) execute arbitrary code, 3) escalate privilege level,

and 4) return a shell and execute arbitrary code. We observe that the leading security threats

to the cloud server systems are attacks that disclose credential information and execute

arbitrary code, which account for 45% and 41% of the studied bugs, respectively. In contrast,

the escalate privilege level and return a shell and execute arbitrary code represent 9% and

5% of the bugs, respectively.
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Table 4.1 List of studied vulnerabilities by root cause.

Root
Cause

Description CVE ID
Threat
Impact

Count

Improper
execution

restrictions

Inadequate or missing
restrictions to functions that

can execute commands

CVE-2015-8103, CVE-2017-12611, CVE-2017-12629, CVE-2017-5638, CVE-2017-7504,
CVE-2017-9791, CVE-2017-9805, CVE-2018-11776, CVE-2019-0192, CVE-2019-0193,

CVE-2019-0230, CVE-2019-0232, CVE-2019-1003031, CVE-2019-10104, CVE-2019-10241,
CVE-2019-10355, CVE-2019-10431, CVE-2019-14379, CVE-2019-14439, CVE-2019-16538,
CVE-2019-17558, CVE-2019-17632, CVE-2020-10740, CVE-2020-11975, CVE-2020-13942,
CVE-2020-13957, CVE-2020-17530, CVE-2020-26217, CVE-2020-26258, CVE-2020-26259,

CVE-2020-5245, CVE-2020-9484, CVE-2021-21350, CVE-2021-21351, CVE-2021-29505,
CVE-2021-39139

Execute
arbitrary code

36

CVE-2014-3120, CVE-2015-1427, CVE-2017-12149, CVE-2019-0221
Return a shell and

execute arbitrary code
4

Improper
permissions

checks

Insufficient or missing checks
for security-sensitive parameters

used in privileged functions

CVE-2017-7674, CVE-2017-9803, CVE-2018-1000169, CVE-2018-11775, CVE-2018-1305,
CVE-2018-3831, CVE-2018-8014, CVE-2018-8034, CVE-2019-12418, CVE-2019-3894,
CVE-2019-7611, CVE-2020-1745, CVE-2020-1938, CVE-2020-27216, CVE-2020-7009,

CVE-2021-20250, CVE-2021-21605, CVE-2021-29262

Disclose credential
information

18

CVE-2018-14627, CVE-2020-13920, CVE-2020-13941, CVE-2020-1719, CVE-2020-7020,
CVE-2021-26117, CVE-2021-29943

Escalate
privilege level

7

CVE-2017-10391, CVE-2018-1000192
Execute

arbitrary code
2

Improper
resource

pathname
checks

Incomplete or missing
checks to filter requested

resource paths and filenames

CVE-2015-5531, CVE-2016-4800, CVE-2017-12196, CVE-2017-12616, CVE-2017-7658,
CVE-2017-7675, CVE-2018-1000817, CVE-2018-1047, CVE-2018-10862, CVE-2018-11784,

CVE-2018-1304, CVE-2020-1757, CVE-2020-2160, CVE-2021-24122, CVE-2021-28163,
CVE-2021-28164, CVE-2021-28169, CVE-2021-34429

Disclose credential
information

18

CVE-2016-3088, CVE-2017-12615, CVE-2017-12617, CVE-2017-2666, CVE-2017-3163,
CVE-2019-10184

Execute
arbitrary code

6

CVE-2015-4165, CVE-2017-1000029
Return a shell and

execute arbitrary code
2

Improper
sensitive

data
handling

Improper protection of
sensitive data that become
exposed in program output

CVE-2017-1000030, CVE-2018-1000176, CVE-2018-12536, CVE-2019-10212, CVE-2019-10246,
CVE-2019-10247, CVE-2019-3888, CVE-2020-25640

Disclose credential
information

8

Improper
synchronization

handling

Issues in code that
handles many concurrent

requests

CVE-2018-14642, CVE-2018-17244, CVE-2018-8037, CVE-2020-1732, CVE-2021-25122
Disclose credential

information
5

CVE-2018-12538, CVE-2019-17638, CVE-2019-3894, CVE-2019-7614
Escalate

privilege level
3

Figure 4.3 Distribution of security bugs by vulnerable code category.
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4.2.2 Vulnerable Code Categories

Prior security system work often detects attacks to server software through system events

like system call activity, instead of finding the underlying vulnerability patterns in the

code. Such an approach learns a model of normal system behavior to identify significant

deviations as attack activity. However, in previous work, we see that security attacks do

not always differ from the expected system behavior, which leads to missed detection. In

addition, unexpected activity can occur under normal operation, which results in false

alarms Tunde-Onadele et al. (2020); Lin et al. (2020). Security personnel need not only the

detection alarms that the prior systems provide but also an explanation of the attack cause

to confidently defend against attacks. Thus, we study vulnerable code to understand how

to locate the cause of software defects.

We start by investigating the vulnerabilities in similar threat impact groups because

we notice that the security attacks use similar commands to exploit them. For instance,

many attacks call the exec method of the Java Runtime class to execute arbitrary commands.

Nevertheless, attackers can modify their requests to use ProcessBuilder objects instead so

we pay attention to the code features of the vulnerable application. Specifically, we identify

the vulnerable function and variables that explain why the bug occurs at the vulnerable code

location. We examine how the attack exploitation commands move through the application

code until they succeed at a vulnerable code location, using debugging tools when possible.

Finally, we repeat our analysis for all the vulnerabilities and group similar causes to extract

common patterns.

Figure 4.3 outlines the distribution of the studied security bug categories, defined

below1.

1. Improper execution restrictions characterize inadequate or missing restrictions to

functions that can execute malicious commands.

2. Improper permission checks characterize insufficient or missing checks for security-

sensitive parameters used in privileged functions.

3. Improper resource path-name checks characterize incomplete or missing checks to

filter requested resource paths and filenames.

1We publish a dataset repository of our studied bugs resources at www.github.com/NCSU-DANCE-
Research-Group/understanding-sec-vuln.
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// DefaultActionMapper.java Struts2 CVE-2018-11776
120 + protected Pattern allowedNamespaceNames = Pattern.compile("[a-zA-Z0-9._

/\\-]*"); // pattern filters OGNL characters, % and $, from the namespace
415 + protected String cleanupNamespaceName(final String rawNamespace)
416 + if (allowedNamespaceNames.matcher(rawNamespace).matches()) {
417 + return rawNamespace;
425 + }

// OgnlRuntime.java
/* An exploit example:

GET /struts2/${...#p= new
java.lang.ProcessBuilder({’/bin/bash’,’-c’, ’ls’})
... p.start()}/help.action HTTP/1.1 */

1215 public static Object callAppropriateMethod(
OgnlContext context, Object source,
Object target, String methodName,

1216 String propertyName, List methods, Object[] args)
1218 {
1223 Method method =getAppropriateMethod(methods, target, args, ...);

// The method that aligns with the context (e.g., arguments, return value, etc
) is chosen

1293 return invokeMethod(target, method, convertedArgs);
1306 }

815 public static Object invokeMethod(Object target, Method method, Object[]
argsArray)

...
891 result = method.invoke(target, argsArray);

/* OGNL invokes the ’start’ method with an empty argsArray on the ’p’
ProcessBuilder object target.
This executes the command in the ProcessBuilder object. */

894 return result;

Figure 4.4 The Apache Struts 2 CVE-2018-11776 bug (CVSSv3: 8.1, CVSSv2: 9.3). The vulnerable
function invokeMethod calls the security-sensitive Java invoke method to execute commands
inserted into the namespace section of a URI without restriction. This ‘improper execution re-
strictions’ bug has the ‘execute arbitrary code’ impact.

4. Improper sensitive data handling characterize improper protection of sensitive data

that become exposed in program output.

5. Improper synchronization handling characterize issues in code that handles many

concurrent requests.

We find that three prominent categories, improper execution restrictions, improper permis-

sion checks, and improper resource path-name checks span 37%, 25%, and 24% of the bugs,

respectively. The remaining categories, improper sensitive data handling and improper

synchronization handling, each includes 7% of the bugs.
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4.3 Security Bug Characteristics

In this section, we explain the characteristics of our studied security bugs with representa-

tive examples. For each category, we describe its vulnerable function patterns, patching

strategies, and analysis summary.

4.3.1 Improper execution restrictions

Vulnerable function patterns: Web server applications provide features that attackers

target for code execution. Many servers offer scripting capabilities to help users auto-

mate tasks. Moreover, applications accept structured input such as extensible markup

language (XML) files via a stream of bytes and then deserialize the bytes into objects and

data structures. However, malicious users can manipulate the application to run unsafe

classes during deserialization. Thus, developers need to restrict these powerful features

so that malicious users do not compromise the server. The vulnerabilities in this category

are due to inadequate or missing restrictions to functions that can execute commands. For

instance, code that maintains a blocklist of unsafe classes may be incomplete. Therefore,

attackers can use unanticipated classes to call functions like java.lang.Runtime#exec or

java.lang.ProcessBuilder#start that create processes to execute commands.

We illustrate this category with the Apache Struts 2 vulnerability, CVE-2018-11776. The

vulnerability allows execution of expressions included in a user-requested uniform resource

identifier (URI). If the namespace section of the URI contains an object-graph navigation

language (OGNL) expression marked by ‘%{}’ or ‘${},’ Struts 2 prepares it for evaluation. The

vulnerability resides in the OgnlRuntime class of the OGNL package. Figure 4.4 shows an

example exploit request above the OgnlRuntime class (line 1215). The GET request includes

an OGNL expression within ‘${’ and ‘}’. First, the expression defines a p variable, which

refers to a Java ProcessBuilder object constructed to execute the bash command, ls. Next,

the expression calls the start method against the p object to create the bash process. To

invoke the start method in the expression, execution eventually reaches the vulnerable

function, invokeMethod on line 815. Specifically, on line 891, the Java invoke function is

called to invoke the start method against the p ProcessBuilder object given by the method

and target variables, respectively. We highlight how these vulnerable variables connect to

the exploit request with data dependency flow arrows. Accordingly, a new process starts to

run the ls command. However, the application can execute any malicious code injected in
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the crafted URI.

Patching strategies: We notice four main patching approaches. First, developers im-

plement input checks to avoid improper use of an execution function. For example, the

manual patch of CVE-2018-11776 is applied in the DefaultActionMapper class, where the

namespace section of the URI is parsed. Specifically, ActiveMQ uses the regex pattern on

line 120 in a cleanupNamespaceName method to prevent the use of OGNL characters by

excluding them from the set of allowed characters. As another example, JBoss (CVE-2020-

5245) includes checks to exclude commands within scripting characters, ‘${}.’ Second,

developers eliminate unsafe classes using a blocklist, or define allowed ones in an allowlist.

For instance, the jackson-databind library of Apache Struts 2 (CVE-2019-14379) prevents

the invocation of an ehcache class that is used to load other unsafe classes. Third, developers

introduce security variables to control the callers of execution functions. For example, the

patch for Elasticsearch (CVE-2014-3120) only allows registered plugins to call its execution

function. Finally, developers may disable a feature that allows command execution by

default or altogether if it is not a core application function. For example, the Apache Solr

CVE-2017-12629 patch stops parsing external entities of XML files.

Observations: Improper execution restrictions frequently occur because no restrictions

are present. In 22 out of 41 bugs (54%), the applications do not have checks to filter unsafe

inputs or prevent unsafe classes from evaluating inputs. We also find that 16 out of 41 bugs

(39%) are due to improper restrictions during deserialization. Developers often address

deserialization with blocklists. However, applications that filter classes with blocklists (22%

of cases) tend to be vulnerable because the lists need to be comprehensive. Attackers only

need to find a new unsafe class to defeat this measure. For instance, applications that use

XStream for XML processing encounter at least five recent CVEs related to deserialization.

Thus, the fix for the most recent of them, CVE-2021-39139, modifies the application to use

an allowlist by default.

4.3.2 Improper permission checks

Vulnerable function patterns: Web server applications use permissions to control different

levels of access to its resources. Applications use permissions for privileged server functions

such as actions related to connections, file access, and security policies. In addition, the

libraries they leverage offer parameters to control specific security-relevant functions. Fur-

thermore, the application considers internet protocol properties such as hypertext transfer
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//NIOSSLTransport.java ActiveMQ CVE-2018-11775
65 protected void initializeStreams() throws ... {
95 + sslParams.setEndpointIdentificationAlgorithm("HTTPS"); // the patch sets

endpoint identification
118 sslEngine.beginHandshake(); // starts the handshake that eventually invokes

checkTrusted()
131 }

// X509TrustManagerImpl.java (package: sun.security.ssl)
237 private void checkTrusted(X509Certificate[] chain,

String authType, SSLEngine engine, boolean isClient) throws ... {
248 // check endpoint identity
249 String identityAlg = engine.getSSLParameters()
250 .getEndpointIdentificationAlgorithm();

/* ActiveMQ does not set SSLParameters where the SSLEngine is created */
/* Since identityAlg is null, checkIdentity will not execute */

251 if (identityAlg != null && identityAlg.length() != 0) {
252 checkIdentity(session, chain[0], identityAlg, isClient,
253 getRequestedServerNames(engine));
254 }

// SSLParameters.java
249 // @return the endpoint identification algorithm, or null if none
257 public String getEndpointIdentificationAlgorithm() {
258 return identificationAlgorithm;

// identificationAlgorithm is null by default
259 }

Figure 4.5 The ActiveMQ CVE-2018-11775 bug (CVSSv3: 7.4, CVSSv2: 5.8). The function initial-
izeStreams never sets an identification algorithm so the variable identityAlg does not meet the
condition to call the security-sensitive checkIdentity function to better secure TLS connections.
This ‘improper permission checks’ bug has the ‘disclose credential information’ impact.

protocol (HTTP) header attributes that impact security. Accordingly, managing multifaceted

permissions becomes complex and error-prone. The vulnerabilities in this category do not

have sufficient checks for security-sensitive parameters. Such parameters may be variables

related to configuration, security context, or keys used in sensitive functions.

For example, Apache ActiveMQ versions before 5.15.6 establish socket connections

without the use of transport layer security (TLS)/secure socket layer (SSL) parameters to

verify server hostname identity. This CVE-2018-11775 vulnerability exposes the application

to man-in-the-middle (MITM) attacks. During a TLS handshake, a server confirms its au-

thenticity with a certificate, which the client verifies against that from an official certificate

authority (CA). If endpoint identification is not configured for the communication, the

client does not confirm that the entity presenting the certificate is the intended hostname.

Consider the code excerpt in Figure 4.5. As the server certificate is processed, execution

reaches the Java checkTrusted function to confirm server identity. On line 249, checkTrusted

gets the endpoint identification algorithm set by SSL parameters and saves the result to
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identityAlg. However, since the identification algorithm is not set by ActiveMQ, identityAlg

is null because getEndpointIdentificationAlgorithm returns null by default (line 258). Thus,

the checkIdentity function, which performs the hostname check, is not called on line 252.

Consequently, an attacker can intercept connections between the client and the expected

server.

Patching strategies: Improper permission checks happen when applications 1) miss

security-sensitive parameters in libraries, 2) miss checks for privileged application func-

tions, or 3) have logical errors in the implementation of permissions. Accordingly, the

patches generally take three approaches. First, developers set missing configuration pa-

rameters often provided by libraries. For example, the patch of CVE-2018-11775 introduces

Java SSLParameters on lines 93-97 to configure the HTTPS endpoint identification when

initializing TLS connections. Apache Tomcat (CVE-2018-8034) also adds the TLS parameters

needed to verify the identity of a client hostname against the certificate it presents. Next, the

patch introduces checks for permissions of core application classes. The change typically

modifies supporting classes and function arguments to include the permission variable.

Apache ActiveMQ patches CVE-2020-13920 with a class that checks user access permissions

before modifying its remote method invocation (RMI) server. Finally, the patch may adjust

inaccurate logic of existing permission checks. For instance, Apache Tomcat (CVE-2018-

1305) moves permission instructions outside a check for a specific authentication level so

that the instruction applies for all levels.

Observations: We observe that 8 out of the 27 bugs (30%) occur when security configu-

rations are missing. Developers need specific knowledge of numerous properties to address

these vulnerabilities, which is challenging. We also find that 33% of the bugs are due to

logical errors in the implementation of permissions. Vulnerabilities occur when developers

apply security instructions at the wrong time or create conflicting permission variables. For

example, Apache Tomcat (CVE-2018-1305) wrongly applies security parameters at the start

of the application before the target servlet loads. Finally, we note that developers sometimes

neglect to consider error messages as privileged actions since the message can allow a user

to infer the existence of a resource.

4.3.3 Improper resource path-name checks

Vulnerable function patterns: The vulnerabilities in this category are due to incomplete or

missing checks for proper resource path-names. For instance, the code may miss a check
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// FileDirContext.java Tomcat CVE-2017-12615
/* An exploit example:

PUT /aaa.jsp/ HTTP/1.1
...Process p = Runtime.getRuntime().exec
(request.getParameter(cmd))... */

780 - protected File file(String name) {
+ protected File file(String name, boolean mustExist)

782 File file = new File(base, name);
// indirectly invokes the normalize function

+ if (name.endsWith("/") && file.isFile()) {
+ return null;
+ }

826 }

// WinNTFileSystem.java
102 private String normalize(String path, int len, int off){
107 StringBuffer sb = new StringBuffer(len);
115 sb.append(path.substring(0, off)); /* off is one less than the actual path

length so the path is returned without the last character
(e.g., ‘aaa.jsp/’ becomes ‘aaa.jsp’) */
...

159 String rv = sb.toString();
160 return rv; /* rv == ‘aaa.jsp’ is the filename to be created (with malicious

content) */
161 }

Figure 4.6 The Apache Tomcat CVE-2017-12615 bug (CVSSv3: 8.1, CVSSv2: 6.8). The vulnerable
function file does not verify safe file extensions after calling the security-sensitive normalize
function that can modify the file extension. This ‘improper resource path-name checks’ bug has
the ‘execute arbitrary code’ impact.

for a specific slash characters to ensure that a user-provided path does not go outside the

web directory.

We highlight this bug category with the Apache Tomcat CVE-2017-12615 vulnerability.

The exposure allows a user to upload and execute jakarta server pages (jsp) by bypassing

jsp restrictions. Tomcat typically processes and restricts files ending with “.jsp” using its

JSPServlet class. However, when an attacker appends an extra “/” character to the file exten-

sion, the application does not recognize it as jsp and processes it with the DefaultServlet

class instead. Figure 4.6 shows an example exploit request. The PUT request specifies the

crafted file name, ‘aaa.jsp/’, to be created, followed by some malicious content. The content

includes the java.lang.Runtime#exec function so that the jsp file can execute commands.

Before creating files, Tomcat filters out trailing slashes not allowed in Windows filenames

using the Java normalize function from the WinNTFileSystem class. In our example, at line

102, normalize will be called with the path variable as ‘aaa.jsp/’ and off as l e n−1, the index

of ‘/’. On line 159, the path is truncated by removing the trailing slash. Thus, ‘aaa.jsp’ is saved

to sb, which is passed to rv and returned. Thus, the attacker is able to successfully create a
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file with the intended jsp filename extension. After ‘aaa.jsp’ is created, it is converted to a

java file ‘aaa_jsp.java’ to service additional command requests. The attacker can now send

an additional GET request with a command as an HTTP parameter. The request reaches

the _jspService function of the ‘aaa_jsp.java’ file, which calls the inserted exec method to

execute the requested command. Thus, the Tomcat server can be used to execute arbitrary

code input by the attacker.

Patching strategies: Developers patch improper path-name checks with four main

methods. First, developers add checks to filter characters such as directory traversal charac-

ters like ‘../’ that attackers use to access unintended parent directories or other characters

that are disallowed from filenames. These patches add new character cases to check for

or use regular expressions to allow or disallow certain characters like the Apache Struts 2

(CVE-2018-11776) fix. Second, developers check for special characters that follow filenames

and extensions. Attackers insert special characters after unsafe paths, knowing that the

checks would resolve the path-name silently, as in Apache Tomcat (CVE-2017-12615) shown

in Figure 4.6. The developer patch adds filename checks primarily in the file function of

FileDirContext where files are created. After line 782, if the path-name has a trailing slash,

null is returned so that the file is not created. Third, developers use consistent path-names

to identify resources. Applications such as Jetty (CVE-2021-28163) have checks for accept-

ing resources into sensitive directories that expect absolute paths instead of other aliases.

These patches often extract absolute paths before applying checks to avoid errors. Finally,

developers fix logical errors that prevent path-names from reaching expected checks. For

example, Apache Tomcat (CVE-2017-7675) corrects the object type of a path variable to

satisfy the branch conditions for performing path-name checks as intended.

Developers usually implement the above checks against malicious path-names with a

specialized function named as normalize. These normalization functions include checks

that filter directory traversal characters, remove other special disallowed characters, or ex-

tract absolute paths. Normalization functions resemble the normalize and resolve functions

of java.nio.file.Path but include more comprehensive or application-specific checks.

Observations: Developers need to protect applications against unsafe input paths and

filenames. In 12 out of 26 (46%) cases, necessary checks are missing in the appropriate

classes. In complex application codebases, it is challenging to know where to place checks.

We observe that 17 (65%) out of the 26 vulnerabilities are in existing normalization functions.
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// WildFly CVE-2020-25640
// JmsConnectionFailedException.java
40 private static String extractMessage(IOException cause) {
41 String m = cause.getMessage();
42 if (m == null || m.length() == 0) {
43 m = cause.toString();
44 }
45 return m;

// JmsManagedConnection.java
1009 public String toString() {
1010 return "JmsManagedConnection{"
1011 + "mcf=" + mcf
1012 + ", info=" + info
1013 + ", user=" + user
1014 - + ", pwd=" + pwd

/* pwd is the password printed in plain text */
1014 + + ", pwd=****"

// the patch excludes the password
1025 + ’}’;
1026 }

Figure 4.7 The WildFly CVE-2020-25640 bug (CVSSv3: 5.3, CVSSv2: 3.5). The vulnerable function
toString outputs the security-sensitive pwd password variable. This ‘improper sensitive data
handling’ bug has the ‘disclose credential information’ impact.

4.3.4 Improper sensitive data handling

Vulnerable function patterns: These vulnerabilities occur when applications do not prop-

erly handle sensitive data such as credentials or full document paths, so that the data is

exposed to users in some program output. Applications can reveal plaintext passwords

and full file base names in error messages and web pages (CVE-2020-25640 and CVE-2019-

10247). Otherwise, the applications may display the information upon requests for certain

expected files. For instance, passwords can be found in a JVM report (CVE-2017-1000030),

keys in a configuration file (CVE-2018-1000176) or full filenames on a directory listing web

page (CVE-2019-10246).

In Figure 4.7, Wildly CVE-2020-25640 prints all field variables including password in

plain-text in exception messages. Thus, an attacker can induce an error to access exposed

credentials. WildFly has exception classes to extract and output specific exception messages.

For Java Message Service (JMS) connections, the extractMessage function of the JmsCon-

nectionFailedException class is invoked. If a message is not found for the exception via

getMessage, the toString method is called on line 43. This invokes the vulnerable toString

function of JmsManagedConnection, which prints the password pwd on line 1014.

Patching strategies: The patches often remove sensitive objects or parameters from
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// AsyncIOProcessor.java Elasticsearch CVE-2019-7614
/* Example user request stored in ./translog_user1.tlog:

PUT index1/_doc/doc1
{
"tags": ["sensitive"],
"ssn": "***-**-1234"

}
The translog is synced to disk with thread1 by:
put(location: ./translog_user1.tlog, syncListener: thread1)
*/

52 public final void put(Item item, Consumer<Exception> listener)) {
59 // we first try make a promise that we are responsible for the processing
60 final boolean promised = promiseSemaphore.tryAcquire();
61 - final Tuple<Item, Consumer<Exception>> itemTuple = new Tuple<>(item,

listener);
// tryAcquire also returns false if a semaphore permit is not acquired.
// Thus, the itemTuple variable is updated with a new value for each thread.
...

74 if (promised || promiseSemaphore.tryAcquire()) {
75 final List<Tuple<Item, Consumer<Exception>>> candidates = new ArrayList<>();
77 if (promised) {
79 - candidates.add(itemTuple);

/* A race condition can cause an itemTuple item to
connect with another listener of a different
thread context.
e.g., A thread2, instead of thread1, can receive
sensitive error/warning responses after syncing
/translog_user1.tlog. */

82 + candidates.add(new Tuple<>(item, listener));
84 promiseSemaphore.release();
95 }

Figure 4.8 The Elasticsearch CVE-2019-7614 bug (CVSSv3: 5.9, CVSSv2: 4.3). The vulnerable
function put modifies the itemTuple variable outside its critical section, which leads to a race
condition that can mix user data. This ‘improper synchronization handling’ bug has the ‘disclose
credential information’ impact.

print and log statements. For instance, in Figure 4.7, the patch uses ‘***’ on line 1014 to pro-

tect the password. Jetty (CVE-2019-10247) removes header objects that contain credentials

from the toString function of its HttpServerExchange class. In addition, the patches trim

variables that expose full paths. Finally, developers introduce permissions for getters used

to retrieve sensitive objects. Jenkins (CVE-2018-1000176) encapsulates relevant functions

in a new class that checks user accounts.

Observations: We observe that improper sensitive data handling occurs when devel-

opers do not filter sensitive object variables and full file paths from being displayed in

messages and publicly accessible files. Four of eight bugs (50%) are exposed by the toString

function of sensitive objects. The remaining bugs call log statements (25%) or getters of

sensitive objects (25%) (such as getSmtpAuthPassword, or getFileName) before the objects

are output.

51



4.3.5 Improper synchronization handling

Vulnerable function patterns: These security vulnerabilities are caused by issues in code

that handles many concurrent requests. Improper synchronization can allow threads to

access the content of variables from other thread contexts.

The Elasticsearch CVE-2019-7614 exposure, shown in Figure 4.8, can allow sensitive

responses to be delivered to the wrong user. An example PUT request is made to include

sensitive data in document doc1. Elasticsearch temporarily stores request data and statistics

in its transaction log (translog) before writing to the underlying disk. To sync the translog,

Elasticsearch invokes the put function of the AsyncIOProcessor class with the translog

location as the item and a listener thread as the listener. The vulnerable function is the put

function due to the itemTuple variable. The AsyncIOProcessor class uses semaphores to

process multiple IO operations in batches. On line 60, the semaphore tryAcquire function

returns false if a semaphore permit is not acquired. The next statement then initializes

the itemTuple variable. However, on line 79, itemTuple is also used within the critical

section from line 77 to 84. Thus, a race condition can result when itemTuple is updated

by a thread on line 61 as it is added to the candidates list by another thread on line 79.

When the write operation is complete, the listener is notified of errors or warnings such as

deprecation warnings, which can contain sensitive details from the translog. Consequently,

such messages can be returned to the wrong listener for the request.

Patching strategies: In four (50%) out of eight cases, the patches provide threads with

variables and classes to preserve their context. Elasticsearch (CVE-2018-17244) adds a

metadata field to its AuthenticationResult class to hold security token data. Context may

be added in combination with other changes. Jetty (CVE-2018-12538) employs the thread-

safe ConcurrentHashMap to track user sessions. In Figure 4.8, the patch of Elasticsearch

(CVE-2019-7614) removes line 61 from the function and replaces line 79 with line 82. It not

only updates shared variables inside the critical section to avoid race conditions but also

adds context to threads before placing them in a waitlist. In two cases, developers fix how

buffers that contain user data are managed. The Jetty CVE-2019-17638 patch adds checks to

appropriately clear the buffer before an exception occurs to prevent double release, while

the Apache Tomcat CVE-2021-25122 patch clears buffer for HTTP header content before

handling an upgrade request. Otherwise, the patch fixes improper data types and structures

used for synchronization.

Observations: Improper synchronization handling results in mix-up of user data. To
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overcome the problems, developers can implement thread-safe variables and data struc-

tures, check that structures only contain single user information, and ensure that variables

are not updated outside their critical sections. In addition, developers may provide thread

classes with context about request data to resolve the vulnerabilities.

4.4 Summary

In this paper, we have presented a comprehensive study over 110 recent real world security

bugs in 13 popular cloud server systems. Our study first identifies five common vulnerability

categories among those 110 studied security bugs: 1) improper execution restrictions, 2)

improper permission checks, 3) improper resource path-name checks, 4) improper sensitive

data handling, and 5) improper synchronization handling. Furthermore, we extract key

software code patterns in each category. We believe that our work makes the first step

toward proactively protecting cloud server systems from security bugs.
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CHAPTER

5

XSCOPE: DETECTING CODE EXECUTION

VULNERABILITIES IN CLOUD SERVER

SYSTEMS

5.1 Introduction

Cloud systems provide on-demand elastic computing resources and services over the

Internet, without requiring users to manage or maintain their own physical devices or

infrastructure. Cloud systems allow developers to quickly deploy and update their code,

without having to wait for hardware provisioning, installation, or configuration. Hence,

cloud computing enables developers to deliver new features and fixes to their users much

faster and more frequently than ever before SalesForce (2023) Cloud (2023). Code can be

deployed and executed on a cloud system, and interact with the cloud system through

various methods, such as APIs, event streaming, message brokers, or containers Baudoin

et al. (2014) Nayyar and Kasthuri (2021). Today, cloud systems often leverage open source
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code to benefit from many useful features from logging frameworks, continuous integra-

tion, continuous deployment (CI/CD), web servers, and many other open source software

projects.

However, software bugs that execute arbitrary malicious code are notoriously bad for

cloud systems. The U.S. Cybersecurity and Infrastructure Security Agency (CISA) released its

latest list of the top 12 routinely exploited vulnerabilities in 2022 Cybersecurity and Agency

(2023). Over half of them were code execution attacks, including the notorious Log4j bug. A

recent study finds the predominant code vulnerability category, representing 37% of the

examined vulnerabilities, are improper execution restrictions Tunde-Onadele et al. (2022).

Java security tools dedicate a significant of their detection solutions to address code execu-

tion bugs. For instance, 45% of the FindSecBugs OWASP (2023) bug patterns target code

execution issues. The vast MITRE ATT&CK knowledge base of observed attack tactics also

highlights an execution category and execution techniques in other categories Corporation

(2023).

Existing work has been focusing on detecting security attacks using intrusion detection

systems (IDS) Shen et al. (2018); Lin et al. (2022, 2020); Tunde-Onadele et al. (2020); Yen

et al. (2013); Dash et al. (2016). IDS approaches are reactive in nature, which can only

detect a security attack after the attack happens. Moreover, they often cannot reveal how

an attack has been triggered or pinpoint the vulnerable code that is the culprit of the

security attack. Other work has been done to detect code vulnerabilities with static program

analysis Thomé et al. (2017b); Livshits and Lam (2005); Enck et al. (2014); Zheng and Zhang

(2013) or symbolic execution Thomé et al. (2017a); Fratantonio et al. (2016). However,

existing vulnerability detection solutions often suffer from either high false positives or

high false negatives due to too general or too narrow rule-based approaches.

5.1.1 Motivating Example

Execution attacks have made a critical impact on server systems on a global scale in recent

years. On December 9, 2021, the Apache Software Foundation publicly disclosed the Log4j

vulnerability (CVE-2021-44228), Log4Shell, allowing remote code execution in dependent

Java cloud software. Five days after the disclosure, the Financial Times reported over 1.2

million Log4Shell attacks with researchers observing up to about 100 attacks per minute

Murphy (2021). The bug also affected 8% of all the Java Maven repository artifacts, compared

to the average vulnerability impact of 2%, according to the open source insights team from
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1 /*
2 * An attack example:
3 * > curl ’http://vulnerablename.com/...?action=
4 * ${jndi:ldap://attackerhostname.com/
5 * MaliciousClass}’ ...
6 */
7 // Class: JndiManager
8 public synchronized <T> T lookup(final String name)... {
9

10 return (T) this.context.lookup(name);
11 /* no security checks on the "name"
12 argument containing user input */
13 }

Figure 5.1 A real-world execution vulnerability in Apache Log4j (CVE-2021-44228). The func-
tion does not perform security checks on the name variable during a JNDI lookup. This allows
malicious user inputs in name to eventually execute.

Google Cloud Wetter and Ringland (2021). Furthermore, developers found it challenging

to locate software that depends on the Log4j package, especially over many dependency

levels. The vulnerability, undetected in the Log4j package for eight years, demonstrates the

need for vulnerability detection in cloud software.

Figure 5.1 shows the vulnerability details. The comments from line 2 to line 5 give an

example attack vector that a malicious actor can send to a vulnerable system (e.g. vulnera-

blename.com), using a simple curl HTTP request. This malicious request tells the vulnerable

application to make a Java Naming and Directory Interface (JNDI) lookup for the attacker’s

server at attackerhostname.com to retrieve a MaliciousClass. The embedded command

would be resolved by calling the vulnerable function cause, JndiManager.lookup(),

on lines 8 to 13. In particular, the part of the command highlighted in bold enters the

name argument of the function. The innerlookup function in line 10 indirectly calls a key

system-level execution function in the Java libraries to execute the value in name. So the

security vulnerability is caused by missing security checks on the name argument before

calling the system-level execution function JndiManager.lookup() that accepts

and deserializes remote objects.
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5.1.2 Contribution

In this chapter, we present XScope, an automatic pattern-driven execution vulnerability

checker for proactively identifying vulnerable program functions for cloud server systems.

In contrast to previous work, XScope does not rely on pre-defined rules to identify code

vulnerabilities. Instead, XScope proposes a drill-down protocol to narrow down the vulner-

able code segments. XScope also leverages insights about the vulnerable functions and the

security patches from recent code execution vulnerabilities to optimize code vulnerability

detection accuracy.

The key observation behind XScope is that the security attack exploiting an improper

code execution restriction vulnerability often takes advantage of missing important security

checks before invoking certain system-level execution library calls such as java.lang-

.Runtime.exec(). Thus, XScope first starts from those key system-level execution

library functions to identify potential risky functions that invoke those execution library

functions using call graph analysis. However, not all of those candidate functions are vul-

nerable. Next, XScope leverages data-flow analysis to filter out those safe functions which

include proper security checks when the functions perform any execution decision based

on external program inputs or derived data from external inputs. Those security checks are

derived from the security patches to past code execution vulnerabilities. For those candi-

date vulnerable functions, XScope performs ranking among them based on the number of

unprotected data-flow paths leading to them. In this chapter, we focus on Java programs

which are commonly used in cloud server systems. However, our approach can be applied

to any programming language with proper code analysis tools. Specifically, this chapter

makes the following contributions.

• We present a new pattern-driven vulnerability detection framework that can proac-

tively detect code execution vulnerabilities before they are released into production

environments.

• We introduce a drill-down code analysis protocol that starts by identifying candidate

vulnerable functions and then performing a security check based filtering scheme to

narrow down truly vulnerable functions.

• We have implemented a prototype of XScope and evaluated it over real-world vulner-

abilities in six commonly used cloud server systems.
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Figure 5.2 System overview of XScope.

Our results show that XScope can localize the vulnerable functions in all the tested

execution vulnerabilities with 166.7% higher detection rate, compared to an existing popular

security code checking tool, Find Security Bugs (FindSecBugs), provided by the Open

Worldwide Application Security Project (OWASP) OWASP (2023). Furthermore, in the cases

where both methods detect the bug, XScope can lower the false alarm by 53%.

The rest of the chapter is organized as follows. section 5.2 presents the details of our

system design. section 5.4 describes our experimental evaluation over real-world improper

execution restriction bugs. section 5.5 concludes the chapter.

5.2 System Design

In this section, we describe the system design of Xscope. We provide an overview, explain

our vulnerable code execution patterns, and discuss each component in detail.

5.2.1 Overview

XScope provides a hybrid code analysis framework to detect remote code execution vulner-

abilities that have improper execution restrictions. It combines static analysis techniques

that examine application code to pinpoint vulnerable function causes using vulnerable code

execution patterns. XScope, illustrated in Figure 5.2, consists of two primary components,

namely i) vulnerable candidate discovery, and ii) safe candidate filtering.

When XScope is triggered for a codebase, the vulnerable candidate discovery component

analyzes an intermediate representation (IR) of the application bytecode to identify a

set of candidates that can make sensitive system-level execution library function calls
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Table 5.1 Call stack snippet during an Apache Log4j (CVE-2021-44228) exploit.

Package Class.Method
org...log4j LoggerConfig.log()
...
org...log4j StrSubstitutor.resolveVariable()
...
org...log4j Interpolator.lookup()
org...log4j JndiLookup.lookup()
org...log4j JndiManager.lookup() [vulnerable function]

javax InitialContext.lookup()
com.sun ldapURLContext.lookup()
...
javax DirectoryManager.getObjectInstance()
javax NamingManager.getObjectFactoryFromReference()

[key Java execution library function]

(subsection 5.2.3). In this work, these key system-level execution library functions are those

Java functions that can execute arbitrary code (e.g. java.lang.Runtime.exec()).

Using the static analysis tool, Soot Vallée-Rai et al. (2010), we trace the application call

graph backward from the key system-level execution library functions to find reachable

vulnerable function candidates within the application. Within each vulnerable candidate

function, we can locate the specific vulnerable call on this sensitive call path, which we

refer to as the candidate sink.

Next, the safe candidate filtering module evaluates how malicious data can flow from

user-controlled application input sources to the previously obtained vulnerable candidate

sink (subsection 5.2.4). Using the CodeQL GitHub, Inc. (2021) code analysis tool, we review

the security-related operations in checks along the data-flow paths and apply filtering

techniques to remove protected functions from the candidate list, narrowing down the

actual vulnerable functions. Finally, this module tracks the remaining vulnerable data-flow

paths to output a ranked list of vulnerable functions along with a report of the identified

vulnerable paths.
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1 + protected String cleanupNamespaceName(final String
rawNamespace) {

2 + if(allowedNamespaceNames.matcher(rawNamespace).matches()
3 + return rawNamespace;
4 + } else {
5 + LOG.warn(
6 + "{} did not match allowed..."
7 + );
8 + return defaultNamespaceName;
9 + }

Figure 5.3 An example input validation (with regex) patch for Apache Struts CVE-2018-11776

5.2.2 Vulnerable Code Execution Patterns

We introduce two major code patterns that XScope examines for automatically finding

execution vulnerabilities. XScope first identifies vulnerable function patterns with call

graph techniques and then security check patterns with data-flow mechanisms.

Vulnerable Function Patterns

Table 5.1 shows an execution trace excerpt of Apache Log4j during a CVE-2021-44228 exploit.

The program execution advances from top to bottom. As discussed in subsection 5.1.1, an

attacker exploits the vulnerability by sending the vulnerable server a malicious request

containing an embedded JNDI lookup command to the attacker’s server. After receiving the

user input, Log4j invokes the log function on line 1 to process the log. As the application

processes the log, it finds shell characters that represent an unresolved expression so it

tries to substitute the expression for its value. Eventually, Log4j processes the JNDI lookup

request, calling the JndiManager.lookup() method. This lookup method sits at

the boundary between the application library and Java library functions. The execution

proceeds from lookup through the subsequent Java library functions before reaching the

getObjectFactoryFromReference method, where the referenced attack class

would be retrieved from the attacker’s server and then executed.

We refer to functions like getObjectFactoryFromReference that are responsible for

command execution as key system-level execution library functions. Our pattern-driven

checker tracks suspicious application functions based on the following key system-level
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1 + public synchronized <T> T lookup(final String name)... {
2 + URI uri = new URI(name);
3 + if (!allowedProtocols.contains(uri...)) {
4 + LOGGER.warn("Log4j JNDI does not...");
5 + return null;
6 + }

Figure 5.4 An example allowlist patch for Apache Log4j CVE-2021-44228

1 + if(!"true".equalsIgnoreCase(unsafeSerializableProperty) {
2 + throw new UnsupportedOperationException(
3 + "...");
4 + }

Figure 5.5 An example security variable patch for Apache Commons CVE-2017-7504

execution functions found in our study.

1. java.lang.reflect.Method.invoke()

2. java.lang.Runtime.exec()

3. javax.naming.spi.NamingManager.getObjectFactoryFromRef-

erence()

4. java.lang.Class.newInstance()

However, we omit system-level execution library functions that have now been depre-

cated from the Java library, namely invokeFunction and invokeMethod from the

jdk.nashorn.api.scripting.NashornScriptEngine class.

Security Check Patterns

Unsafe code execution can occur wherever malicious inputs reach the functions that lead

to key system-level execution functions without any protective checks. We investigate

security check code-patterns to understand the feasibility of execution attacks in potentially

vulnerable functions.

We examine the patches of our studied vulnerabilities and observe the following three

security-related check types. We show patch examples for each type in Figure 5.3, Figure 5.4,

and Figure 5.5.
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• Regular expression (regex) matching: These checks ensure that input strings conform

to expected values and do not contain sensitive characters that induce code execution.

Instances of these checks call the matches function of the Java Pattern class.

• Block-list/Allow-list verification: These checks determine whether a variable value is

among an approved values given in an allow-list. They call the containsmethod

to verify the variable value (e.g. List.contains(String)).

• Security variable comparison: These checks use functions like equalsIgnore-

Case and equals to ascertain the values of security properties that lead to execu-

tion.

We use the above security operations list as our model of security-related checks for filtering.

5.2.3 Vulnerable Candidate Discovery

We drill down potentially vulnerable functions in the application that can lead to code

execution in Java library functions.

To accomplish this, we trace the call graph backward from the key system-level execution

functions to extract a set of initial candidate application functions that are reachable. We de-

scribe the procedure with the Apache Log4j (CVE-2021-44228) example shown in Figure 5.6.

The call graph includes edges from caller function nodes to their callees. We search the graph

from the key system-level execution functions to discover vulnerable function candidates

in the application. For instance, on the path from javax...NamingManager.get-

ObjectFactoryFromReference(), we find candidates likeReflectionUtil-

.instantiate() and the vulnerable function, JndiManager.lookup().

Using the static analysis tool Soot Vallée-Rai et al. (2010), we construct the call graph

with the Spark framework Lhoták and Hendren (2003) with the key system-level execution

library functions as entry points to explore reachable methods. For each entry point, we

traverse the call graph with a conservative approach that includes considering any possible

callers of the newInstance method of the Class class, for example, since we cannot

statically determine dynamically loaded object types. In our implementation, we obtain the

candidates with a breadth-first search (BFS) from each key system-level execution function

until a maximum search depth. We empirically obtain the maximum search depth based

on the vulnerabilities in our study. The implementation details are described in section 5.4.
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Figure 5.6 An example call graph illustration of Apache Log4j (CVE-2021-44228), representing
function calls from caller to callee. We trace the call graph backward from the key system-level
execution functions to find vulnerable function candidates in the application libraries.

Finally, our search yields a list of functions, each with their next hop call in the call chain to

a key system-level execution library function. We pass these function and next call pairs as

candidates to the safe candidate filtering phase.

5.2.4 Safe Candidate Filtering

We filter out safe functions from the vulnerable candidate discovery module, leaving the

vulnerable ones that program inputs can flow to without protection.

We implement data-flow analysis to trace user inputs to candidate functions via the

open source code analysis engine, CodeQL GitHub, Inc. (2021). CodeQL builds an applica-

tion source code into a database that one can probe using its QL-based query language.
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Figure 5.7 Data-flow illustration using Apache Log4j (CVE-2021-44228). A candidate is consid-
ered vulnerable if there are unfiltered data-flow paths from a program input source to the candi-
date such as the path: source isr→ subpath 2→ subpath A.

In the CodeQL Semmle library, the UserInput class refers to both local and remote user

inputs. Local inputs include sources that can originate from files (e.g. FileInputStream ob-

jects), or environment variables, etc. Whereas, remote inputs include sources from relevant

Java API like the Network class, which has functions to collect user-controlled data (e.g.

getHostName). We augment the CodeQL-provided flow sources to include ServletRe-

questParameterSource and AutoCloseable sources, which track ServletRequest parameters

from the Java Servlets API (javax.servlet), and request classes that extend the Auto-

Closeable resource class (java.lang.Autocloseable), respectively. For instance,

Apache Tomcat accepts client inputs with Java ServletRequest objects.

We trace data flow from the aforementioned sources to the candidate with various

schemes that reason about the conditional constructs in the program (i.e. if checks). In our

descriptions, we refer to the conditional expression in an if check as the if predicate while

we refer to both the conditional expression and then-else statements as the if body. Our
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analysis considers a candidate unsafe if there still exist unprotected paths to the candidate

after considering the scheme. For example, Figure 5.7 illustrates a data-flow example with

Log4j (CVE-2021-44228). The diagram shows data-flow paths from the program input

source isr to the candidate function, lookup, through intermediate if checks such as

if predicate 1 in functions outside the method. The data-flow path then enters lookup

via the method argument, name, and ends up at the sink call. Note that following the

call chain from this sink would lead to a key system-level execution library function (i.e.

getObjectFactoryFromReference) as determined by the vulnerable candidate

discovery analysis, referenced in Table 5.1. Nevertheless, one also can observe a complete

path without any if checks from source isr tolookup via subpath 2, and then fromlookup

to the sink through subpath B. Since there is at least one unfiltered path from source isr to

the sink, XScope would mark lookup as vulnerable.

Furthermore, XScope uses filtering strategies that reason about if predicates to deal

with false positives and false negatives.

Filtering Strategies

Overall, XScope filters a candidate if there only exist data-flow paths through security-related

if-predicates outside the candidate function or non-trivial if-predicates in the candidate

function when flowing from a user input source to the candidate sink. We explain the details

of the filtering strategies as follows.

False Alarm Filtering Many false alarms can cause developers to become frustrated so

our scheme algorithm takes steps to filter them out. However, the challenge is finding code

patterns that achieve a good trade-off between filtering the false positives instead of the

true positives. We primarily consider security-related checks that have certain sensitive

operations along the data-flow paths, outside the last hop. If the candidate is protected

from vulnerable data-flow paths by security-related checks then it should actually be safe

so we prune such paths.

The Figure 5.7 diagram shows two subpaths, subpath 1 and subpath 2, outside the

candidate method, lookup. If if predicate 1 on subpath 1 contains the security sensitive

operations like matches, then XScope would filter the subpath 1 as that path performs

a security-related check. XScope would consider lookup as unprotected not because of

subpath 1 but due to subpath 2 followed by subpath A.

Although the operations may be used in normal non-security scenarios, we find that in-
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Figure 5.8 Data-flow scenario with a trivial check in the candidate function. XScope filters out
paths with non-trivial if predicates to avoid missing true positives.

corporating them on the vulnerable paths of sensitive sources and candidates reduces false

positive paths without missing true vulnerabilities. The results are discussed in section 5.4.

False Negative Filtering XScope also requires an if check in the final candidate hop

for the candidate to be considered safe so it filters out data-flow paths through checks

within the candidate hop. However, this would mean that any trivial checks within the

candidate that certainly do not have a security purpose can inaccurately filter the remaining

sensitive data-flow paths and cause the vulnerable function to not be detected. To avoid

false negatives, we omit trivial checks from filtering data-flow paths.

For instance, suppose the candidate in the data-flow example (depicted in Figure 5.8)

contained a non-trivial check encapsulating the sink as in Figure 5.8. All data-flow paths

have to flow through the if predicate A to reach the sink so they would all be filtered out.

This results in a false negative, although the predicate is not performing security checks.

In this work, we filter predicates that make a simple null comparison as they do not

play a security role in preventing improper code execution vulnerabilities. Instead, these

checks ensure that a function parameter is not null so that the function can execute without

failure.

From data-flow analysis, we extract the number of unrestricted data-flow paths for each

vulnerable function candidate as it measures the degree of data-flow exposure. We rank the

candidates by this number of unrestricted data-flow paths in descending order.

66



Table 5.2 List of security sensitive API.

CVE ID Application
Vulnerable Function, and

Key System-Level Execution Library Function

CVE-2021-44228 Apache Log4j
org.apache.logging.log4j.core.net.JndiManager.lookup()

javax.naming.spi.NamingManager.getObjectFactoryFromReference()

CVE-2017-7504 JBoss (Commons)
org.apache.commons.collections.InvokerTransform.transform()

java.lang.reflect.Method.invoke()

CVE-2019-0232 Apache Tomcat
org.apache.catalina.servlets.CGIRunner.run()

java.lang.Runtime.exec()

CVE-2017-7525 Jackson-databind
com.fasterxml.jackson.databind.deser.impl.SetterlessProperty.deserializeAndSet()

java.lang.reflect.Method.invoke()

CVE-2020-8840 Jackson-databind
com.fasterxml.jackson.databind.deser.impl.MethodProperty.deserializeAndSet()

java.lang.reflect.Method.invoke()

CVE-2019-0221 Apache Tomcat
org.apache.catalina.ssi.SSIExec.process()

java.lang.Runtime.exec()

CVE-2019-1003000 Jenkins (Groovy)
org.codehaus.groovy.reflection.CachedMethod.invoke()

java.lang.reflect.Method.invoke()

CVE-2020-26258 XStream
com.thoughtworks.xstream.converters.collections.MapConverter.putCurrentEntryIntoMap()

java.lang.reflect.Method.invoke()

Table 5.3 List of explored real-world vulnerabilities with unique root cause functions.

CVE ID Application
CVSS v3

Score

CVE-2021-44228 Apache Log4j 10.0
CVE-2017-7504 JBoss (Commons) 9.8
CVE-2019-0232 Apache Tomcat 8.1
CVE-2020-8840 Jackson-databind 9.8
CVE-2017-7525 Jackson-databind 9.8
CVE-2019-0221 Apache Tomcat 6.1
CVE-2019-1003000 Jenkins (Groovy) 8.8
CVE-2020-26258 XStream 7.7

Count 8

5.3 Evaluation

5.4 Experimental Evaluation

In this section, we present our evaluation methodology, assess XScope against alternative

schemes, and discuss the case studies.

5.4.1 Evaluation Methodology

Vulnerabilities studied

We study eight real-world vulnerabilities in six popular Java applications used in cloud

server systems. The applications consist of various software types including web appli-

cation servers like Apache Tomcat, data processing libraries for various object formats
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like FasterXML Jackson-databind and XStream, and logging frameworks like Apache Log4j,

etc. Table 5.3 lists the studied vulnerabilities recorded by the common vulnerabilities and

exposures (CVE) database. The table includes the CVE ID, the application name, and the

common vulnerability scoring system (CVSS) version 3.0 score. For certain vulnerabili-

ties, the vulnerable function lies in dependent libraries so we highlight the libraries in

parentheses under the application column.

We begin by examining the bug collection highlighted by the Tunde-Onadele et al.

(2022) study. The collection lists Java code execution vulnerabilities in a category known as

improper execution restrictions with CVE information and related resources such as links

to patches and exploits when available. We refer to the national vulnerability database

(NVD) NIST (2023) as well as other databases like Bugzilla Red Hat (2021) and Veracode

Veracode (2021). We select CVEs that have analysis information or available bug exploits

so that we can understand the vulnerable function causes. In Table 5.2, we present the

vulnerable functions for our studied bugs along with the key system-level execution library

functions they invoke. We observe that the majority (62.5%) of the bugs primarily execute

by calling the invoke key system-level execution function, followed by exec (25%), and

then getObjectFactoryFromReference (12.5%).

Experiment Setup

Our experiments are conducted on machines running Ubuntu 20.04 with four 3.40GHz

cores and 16GB memory. We use the following tools:

Call graph analysis with Soot Vallée-Rai et al. (2010) During vulnerable candidate

discovery, we implement the call graph analysis by performing a whole program analysis

with Soot (version 2.5). Soot transforms the Java program bytecode to Jimple intermediate

representation (IR) after constructing the call graph via its whole-jimple transformation

pack (wjtp) analysis. We specify the all-reachable parameter to consider all application

class methods as reachable so they exist in the generated call graph we analyze. In addition,

we use the safe-newinstance option to conservatively find constructors that can be called

via Java’sClass.newInstance()method. To identify vulnerable function candidates,

we search for functions outside of the standard Java libraries. Thus, we exclude functions

with library prefixes like the following: java, sun, com.ibm, etc. We empirically find

that the vulnerable functions are discovered in the candidate output list with a maximum

search depth of seven.
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Table 5.4 XScope detection result comparison with vulnerable candidate discovery (VCD) only
and related work, FindSecBugs.

CVE ID Application
Detected False Positive Rate

VCD FindSecBugs XScope VCD FindSecBugs XScope

CVE-2021-44228 Apache Log4j ✓ ✓ ✓ 5.95% 1.81% 0.00%
CVE-2017-7504 JBoss (Commons) ✓ ✗ ✓ 5.10% - 0.67%
CVE-2019-0232 Apache Tomcat ✓ ✓ ✓ 6.83% 1.64% 0.94%
CVE-2017-7525 Jackson-databind ✓ ✗ ✓ 8.89% - 1.43%
CVE-2020-8840 Jackson-databind ✓ ✗ ✓ 8.89% - 1.43%
CVE-2019-0221 Apache Tomcat ✓ ✓ ✓ 11.10% 1.64% 1.44%
CVE-2019-1003000 Jenkins (Groovy) ✓ ✗ ✓ 7.19% - 1.74%
CVE-2020-26258 XStream ✓ ✗ ✓ 13.31% - 2.85%

Detection Rate / Average False Positive Rate 100% 37.5% 100% 8.41% 1.70% 1.31%

Table 5.5 Summary of the alternative filtering schemes compared to XScope.

Scheme
Vulnerable
Candidate
Discovery

Filtering
outside the last hop

Filtering
inside the last hop

VCD ✓ N/A N/A
SCF-Naive ✓ None None
SCF-Last Hop ✓ None Non-trivial if predicate
SCF-Full Path ✓ Security-related if predicate Non-trivial if body

XScope ✓ Security-related if predicate Non-trivial if predicate

Data-flow analysis with CodeQL GitHub, Inc. (2021) In the safe candidate filtering mod-

ule, we perform data-flow analysis with the code analysis engine, CodeQL (version 2.8.2).

CodeQL first builds the program source code into a CodeQL database to allow one to explore

the codebase via queries written in the QL query language. We specify the kind property of

our queries as path-problem to be able to examine the resulting data-flow paths. As dis-

cussed in 5.2.4, we cover ReadObjectMethod and UserInput flow sources. However, we mod-

ify the UserInput class defined insemmle.code.java.dataflow.FlowSources

to include useful ServletRequest and Autocloseable resource objects. Finally, the security-

related functions we filter along the data-flow paths are:equals,equalsIgnoreCase,

contains, and matches.

Alternative approaches

We evaluate our approach against alternative static analysis security solutions that examine

Java applications.
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Table 5.6 Detection result comparison across the alternative schemes.

CVE ID
Detected False Positive Rate

SCF-Naive SCF-LH SCF-FP XScope SCF-Naive SCF-LH SCF-FP XScope

CVE-2021-44228 ✓ ✓ ✓ ✓ 0.00% 0.00% 0.22% 0.00%
CVE-2017-7504 ✓ ✓ ✓ ✓ 1.71% 0.73% 0.67% 0.67%
CVE-2019-0232 ✓ ✓ ✗ ✓ 1.44% 1.05% - 0.94%
CVE-2017-7525 ✓ ✓ ✓ ✓ 1.80% 1.46% 1.06% 1.43%
CVE-2020-8840 ✓ ✓ ✓ ✓ 1.80% 1.46% 1.06% 1.43%
CVE-2019-0221 ✓ ✓ ✗ ✓ 1.88% 1.44% - 1.44%
CVE-2019-1003000 ✓ ✓ ✓ ✓ 2.42% 1.85% 1.51% 1.74%
CVE-2020-26258 ✓ ✓ ✓ ✓ 3.60% 2.99% 2.24% 2.85%

Detection Rate / Average False Positive Rate 100% 100% 75% 100% 1.83% 1.37% 1.13% 1.31%

FindSecBugs (Spotbugs security plugin) OWASP (2023); SpotBugs (2023). Spotbugs is

the successor of the Findbugs work Hovemeyer and Pugh (2004), a Java tool for detecting

bug patterns that can incorporate data-flow and control-flow techniques. Although it has

over 400 bug patterns, they do not properly address security issues out-of-the-box. Thus,

Find Security Bugs (FindSecBugs) is the plugin designed to focus on security bugs with 141

patterns. For a fair comparison, we filter the patterns to the 64 that are relevant to improper

execution restrictions vulnerabilities. FindSecBugs leverages techniques like taint analysis

to perform its detection. We run our tests on Spotbugs version 3.1.5 available on the Eclipse

(2020-06) marketplace, and FindSecBugs version 1.12.0.

Alternative Filtering Schemes We define alternative filtering schemes as follows and

outline their characteristics in Table 5.5. In our descriptions, we refer to the conditional

expression in an if check as the if predicate while we refer to both the conditional expression

and then-else statements as the if body.

• Vulnerable Candidate Discovery (VCD) only: This scheme represents the candidates

returned from the vulnerable candidate discovery stage alone, which performs the

call graph based analysis.

• Safe Candidate Filtering - Naive (SCF-Naive): In the safe candidate filtering com-

ponent, this scheme filters a candidate only if no data-flow paths exist from a user

input source to the candidate sink. SCF-Naive performs no further filtering based on

predicates.

• Safe Candidate Filtering - Last Hop (SCF-LH): This scheme filters a candidate if there

only exist data-flow paths through a non-trivial if predicate in the candidate function

when flowing from a user input source to the candidate sink. In other words, SCF-LH
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filters the paths flowing through non-trivial if predicates in the candidate function

(last hop).

• Safe Candidate Filtering - Full Path (SCF-FP): This scheme filters a candidate if there

only exist data-flow paths through security-related if-predicates outside the candidate

function or non-trivial if-body in the candidate function when flowing from a user

input source to the candidate sink. SCF-FP filters the paths that flow through security-

related if predicates outside the last hop and non-trivial if bodies in the last hop.

Evaluation Metrics

We calculate the percentage of CVEs where the vulnerable function is detected out of all

tested CVEs as the detection rate. In addition, we record the number of false alarms above

and equal to the rank of the vulnerable function to demonstrate its rank. For each CVE, we

calculate the percentage of these false alarms compared to all the methods present in the

examined source code as the false positive rate.

The detection rate and false alarm rate are given by equations (5.1) and (5.2), respec-

tively.

D e t e c t i o n R a t e =
detected CVEs

detected CVEs+missed CVEs
(5.1)

F a l s e P o s i t i v e R a t e =
number of false alarm methods

number of codebase methods
(5.2)

5.4.2 Results Analysis

In this section, we present the analysis of the detection results. We compare the XScope de-

tection results to those of the alternative approaches and discuss our detection challenges.

Detection Results

First, we discuss the XScope results compared to the FindSecBugs work and the vulnerable

candidate discovery (VCD) only scheme, summarized in Table 5.4. The table shows the

detection status and the false positive rate for each tool over the CVEs.

VCD represents the result of the call graph based search from the key system-level

functions that can execute commands. Although VCD includes the vulnerable function
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in the candidate list, it has many false alarms as it conservatively finds potential methods

that lead to key system-level code execution functions. FindSecBugs has a 79.7% lower

average false positive rate than VCD but only detects 3 out of 8 CVEs (37.5%). Whereas, the

results show that XScope is able to achieve 100% detection rate with the lowest number

of false alarms. XScope reduces the false positive rate of VCD and FindSecBugs by 84.4%

and 22.9% on average. In the cases where both XScope and Findbugs methods detect the

CVE, XScope attains 53.3% lower average false positive rate than Findbugs. FindSecBugs

examines applications with static methods including taint analysis, a special case of data-

flow analysis. However, XScope is able to outperform such analysis with efficient vulnerable

code execution patterns and filtering techniques.

We notice that XScope performs well for cases like Apache Log4j (CVE-2021-44228),

where it accurately ranks the vulnerable function first. For CVEs like Tomcat CVE-2019-0221

with large codebases of over 19800 methods, although XScope can reduce the false alarms

to 1.44% of the codebase, there are still 285 false alarm methods. In the best performing

cases, VCD is able to initially drill down the analyzed codebase methods to about 5% before

applying the safe candidate filtering phase on those candidates.

The Jackson-databind CVEs (CVE-2017-7525, CVE-2020-8840) have similar detection

results. Although their vulnerable functions are different, they reside in the same repository

location (thecom.fasterxml.jackson.databind.deser.implpackage) and

make similar calls. Thus, XScope discovers them at the same level during VCD and finds

similar data-flow paths during SCF.

Next, we present the results for the alternative detection schemes including their detec-

tion and the false alarm rates in Table 5.6. The alternative detection schemes juxtaposed

are the safe candidate filtering schemes that drill-down the vulnerable function candidates

from VCD. Recall from Table 5.5 that SCF-Naive and SCF-LH do not filter data-flow paths

through any predicates outside the candidate, while XScope and SCF-FP filter paths through

security-related predicates. In addition, SCF-LH and XScope filter paths through non-trivial

if predicates in the last hop, while SCF-FP filters through non-trivial if bodies.

In general, as the filtering level increases, the number of false positives reduces while

maintaining vulnerable function detection. However, the SCF-FP filtering starts to become

excessive as it results in some missed detection instances (false negatives). Thus, filtering

more strictly than SCP-FP would cause more false negatives. XScope reduces the false

positive rate of SCF-Naive and SCF-LH by 28.4% and 4.37%, respectively. Although SCF-FP
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Table 5.7 Runtime measurements of the XScope components

XScope Module Execution Time (per function)

Vulnerable Candidate Discovery 73.25 ± 0.31 ms

Safe Candidate Filtering 21.64 ± 0.23 s

has 13.7% lower false alarm than XScope, XScope has 33.3% higher detection rate. The

results aligns with the observed patches, discussed in section 5.2, which often perform

filtering in the if predicates. We observe that the statements in the if body may perform

some corresponding action but do not execute the logic for security filtering.

Challenges

Overall, security vulnerability detection is a challenging endeavor, especially over mature

codebases. To determine the function causes of execution vulnerabilities, one needs to

understand how the complex application logic processes malicious inputs. Moreover, it is

difficult to validate all false positive cases without exploits for each candidate. This means

that unknown functions regarded as false positives could be vulnerabilities in practice.

In addition, although data-flow analysis tools are powerful, they have implementation

challenges. During an attack, inputs may flow through multiple libraries before the data

reaches the vulnerable application that contains the vulnerable function. The engine only

analyzes a single codebase at a time which limits our analysis to supporting single libraries.

For example, many Apache Struts 2 application versions have exposures such as CVE-2018-

11776 that are exploited with Object-Graph Navigation Language (OGNL) payloads. The

attack request flows through Struts libraries like the com.opensymphony.xwork2

package before reaching OGNL library functions that can contain the vulnerable function.

Analyzing the Struts application or OGNL library alone would fail to detect the vulnerability.

We plan to tackle such issues in future work.

5.4.3 Run-time Measurements

Table 5.7 summarizes the run-time for XScope and its components. The run-time depends

on the codebase methods and vulnerable candidates methods analyzed so we present the

average results for each function. We calculate the vulnerable candidate discovery run-time

per function in the code repository while we calculate the safe candidate filtering run-time
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per candidate function.

XScope can be run offline before server applications are released to production environ-

ments to avoid strict resource constraints. Nevertheless, users may find it useful to adjust

the configuration options of the call graph analysis done during vulnerable candidate dis-

covery. In addition, we currently use the CodeQL data-flow tool out of the box, which may

be optimized. Teams may alleviate the data-flow run-time by running XScope on smaller

parts of the codebase as the repository grows following prior testing.

5.4.4 Case Study

In this subsection, we primarily discuss the XScope detection details for the specific vulner-

abilities.

CVE-2021-44228 Apache Log4j: The Log4j logging library does not properly restrict

program inputs in log messages from evaluation. Thus, attackers can inject JNDI commands

into a vulnerable server to cause it to receive and execute malicious classes from their

external servers.

The vulnerable function for this CVE is located in JndiLookup.lookup(). Dur-

ing vulnerable candidate discovery, XScope locates the vulnerable function seven hops

fromgetObjectFactoryFromReference and also later finds it when tracing from

newInstance. Finally, after safe candidate filtering, XScope detects lookup as the

highest ranked vulnerable function candidate with 75 vulnerable paths.

FindSecBugs finds lookup under the LDAP_INJECTION pattern in the 1.12.0 ver-

sion was released after the public disclosure of the bug.

CVE-2017-7504 JBoss (Commons): The Jboss implementation of the Java Message

Service (JMS) has an HTTP Invocation layer that allows deserialization of inputs without

restriction. Thus, the application can read malicious objects an attacker inserts through the

dependent Apache Commons library. We inspect Jboss under attack to verify that the vulner-

able function is org.apache.commons.collections.InvokerTransform-

.transform().

The function directly calls theinvokeKey execution function, so XScope findstrans-

form as a candidate in the call graph at a depth of one. We observe that during the attack,

Jboss calls the readObject method of java.io.ObjectInputStream, which

aligns with the semmle ReadObjectMethod source of CodeQL. XScope determines the

transform function as vulnerable with 21 unprotected paths.
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FindSecBugs highlights the entire InvokerTransformer class for potential deserialization

but does not narrow down the vulnerable function(s).

CVE-2017-7525 Jackson-databind: Jackson-databind is vulnerable to RCE attacks when

using the deserialization features of the readValuemethod of the ObjectMapper class.

During an exploit, we observe the vulnerable function deserializeAndSet of the

SetterlessProperty class calling invoke as the next hop. XScope finds the vulnerable func-

tion deserializeAndSet as a direct caller of invoke. Nevertheless, XScope also

traces the function fromgetObjectFactoryFromReference andexec at further

depths. XScope labels the function as vulnerable with over 280 unfiltered paths from a

variety of data-flow sources including AutoCloseable resources.

Spotbugs equipped with FindSecBugs highlight the SetterlessProperty class for non-

security reasons like inheritance style issues but not for security reasons.

CVE-2020-8840 Jackson-databind: Jackson-databind is also affected by CVE-2020-8840.

Its block-list mechanism is missing restrictions for certain JNDI-related objects during

deserialization which leads to arbitrary code execution. Similar to the CVE-2017-7525 case,

the vulnerable function named deserializeAndSet calls invoke but resides in a

different class, MethodProperty.

XScope discovers deserializeAndSet one function call away from the Java in-

vokemethod. XScope detects the vulnerable function with the same number of unfiltered

paths rank as that of Jackson-databind CVE-2017-7525.

FindSecBugs also does not find security issues related to the vulnerable class for this

Jackson-databind CVE.

CVE-2019-0232 Apache Tomcat: When the Tomcat Common Gateway Interface (CGI)

protocol is enabled with the enableCmdLineArguments parameter, servers can execute

scripts via URL parameters. However, the vulnerability allows attackers to inject arbitrary

commands as the JRE passes on command line arguments in Windows.

Since the vulnerable function, CGIServlet$CGIRunner. run(), immediately

calls exec, XScope discovers a depth of one from a key system-level execution library

function. XScope traces data-flow paths especially from client request input parameters of

the Java Servlets API (ServletRequest in the semmle library) to find more than 50 unfiltered

paths.

FindSecBugs finds the vulnerable CGIServlet$CGIRunner function under theCOMMAND-

_INJECTION pattern.

CVE-2019-0221 Apache Tomcat: The vulnerable Apache Tomcat version with server
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side includes (SSI) and the printenv configuration directive allows input commands to

print and execute by default. Without properly sanitizing inputs, the application is exposed

to exploits like cross-site scripting (XSS) attacks.

XScope finds the vulnerable function, SSIExec.process(), via the exec key

system-level execution function at a depth of three. XScope also identifies data-flow paths

from ServletRequest input parameters. Thus, XScope detects the vulnerable function with

over 50 unprotected paths.

FindSecBugs finds the vulnerable function, process, under itsCOMMAND_INJECTION

pattern.

CVE-2020-1003000 Jenkins (Groovy): Jenkins allows authorized users to execute pipeline

build scripts written in Groovy to support application development, However, this Jenkins

exposure allows attackers to bypass the sandbox protection and execute scripts even on

master nodes. Attackers use Groovy abstract syntax tree (AST) transformations to override

blacklisted packages.

During vulnerable execution, the call chain theinvoke function of the Groovy Cached-

Method class. The vulnerable function is discovered one hop away from the Java execution

function, invoke. Thereafter, XScope detects the function with 51 vulnerable data-flow

paths.

FindSecBugs does not raise alerts for this vulnerable class and function.

CVE-2020-26258 XStream: The XStream deserialization library uses a class blocklist

when converting XML data to Java objects. However, attackers can use unrestricted classes

to prompt the server to request unintended server-side resources.

The vulnerable function putCurrentEntryIntoMap, from the MapConverter

class, starts the Java invocations that eventually reach the invoke key execution function.

XScope finds the vulnerable function at a depth of five. The XScope call graph report also

includes unrestricted classes like jdk.nashorn.internal.objects.Native-

String on the vulnerable call path, which can inform developer patches. After safe can-

didate filtering, XScope reports putCurrentEntryIntoMap as vulnerable with 72

unrestricted data-flow paths.

However, FindSecBugs does not recognize any functions in MapConverter or in related

classes.
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5.5 Summary

In this chapter, we present XScope, a new pattern-driven fine-grained vulnerability detec-

tion framework for proactively protecting cloud server systems from security bugs due

to improper code execution restrictions. XScope can not only detect code execution vul-

nerabilities but also localize the vulnerable functions in complex large-scale cloud server

programs consisting of tens of thousands of functions. XScope leverages general patterns

extracted from known code execution vulnerabilities and patches to achieve a higher detec-

tion rate than simple rule-based detection approaches. Furthermore, XScope combines call

graph analysis and data-flow analysis to minimize false positive rates while maintaining

a high detection rate. We have implemented a prototype of XScope and tested it using

real world vulnerabilities including the high impact Log4j vulnerability on six commonly

used cloud server systems. Our experimental results show that XScope can achieve a 100%

detection rate while existing security checking tools like FindSecBugs can only detect 38%

of those CVEs. Moreover, XScope can reduce the false positive rate by 53% for those CVEs

that can be detected by both XScope and FindSecBugs.
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CHAPTER

6

RELATED WORK

The research is related to the following areas: intrusion detection, vulnerability categoriza-

tion, and vulnerability detection.

6.1 Intrusion Detection

IDS in the literature detect security issues based on system activity such as system metrics.

We focus on comparing our work with the most related IDS work.

Shen et al. propose Tiresias using RNNs to predict security events including RCE exploit

steps Shen et al. (2018). However, it requires a large amount of labeled training data to

detect similar attacks. Lin et al. propose SHIL Lin et al. (2022) and CDL Lin et al. (2020) to

perform security attack detection in containerized environments with the goal of lowering

false alarms. Beehive leverages mining techniques over security logs from heterogeneous

security products to produce consistent incident reports Yen et al. (2013). Beehive focuses on

identifying malware infections and suspicious enterprise activities. Droidscribe Dash et al.

(2016) monitors system call run-time information to detect Android malware (including
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file access and execution malware) using a support vector machine (SVM)-based multi-

class classifier. In contrast, we identify code patterns before the application is released. In

comparison, XScope takes a proactive approach to detecting security vulnerabilities before

attacks can occur.

6.2 Vulnerability Categorization

Zhou et al. study malware samples in Android applications and reveal shortcomings of

antivirus tools against major categories of malware Zhou and Jiang (2012). In contrast, we

focus on the underlying vulnerabilities at the code level. Tsipenyuk et al. focus on classifying

coding problems called phylla into seven plus one kingdoms to help developers avoid such

error themes Tsipenyuk et al. (2005). For example, specific missing buffer checks under

the buffer overflow phyllum is classified under the input validation kingdom. In addition,

Xu et al. find five security vulnerability patterns in C code patches Xu et al. (2017). Chen

et al. study security bugs in the Linux kernel, written in C Chen et al. (2011). Compared to

these papers, we focus on vulnerabilities in Java-based cloud systems. We also present code

patterns for each category. Meng et al. investigate posts from the popular StackOverflow

forum platform to understand coding issues with Java security libraries Meng et al. (2018).

This work focuses on the proper use of security APIs, which may address some improper

permission checks bugs but does not cover the other vulnerability categories we consider.

The common weakness enumeration (CWE) list is an extensive manual community-

based effort to document software and hardware errors Corporation (2021). It provides a

taxonomy of errors, sometimes with broad code examples, potential mitigation options,

and detection approaches. The CWE system presents a database of the weaknesses but

does not give the precise root causes for specific CVE-identified vulnerabilities. We locate

the vulnerable code for each CVE to find patterns (e.g. relevant Java functions) that help

one locate and understand the vulnerability. In contrast, our work characterizes software

security bugs with vulnerable code patterns to efficiently detect the vulnerabilities that

fall under each category. The code patterns emphasize core functions to help locate the

vulnerable functions. For example, according to the NVD NIST (2023), the Log4j vulnerabil-

ity (CVE-2021-44228) has three weaknesses: deserialization of untrusted data (CWE-502),

uncontrolled resource consumption (CWE-400), and improper input validation (CWE-20).

We can focus on the vulnerable function pattern of the improper execution restrictions

79



category to detect this command execution bug. Although in the example NVD assigns

three weaknesses, the weaknesses do not give further information about locating the issue

in the code. Moreover, one weakness ’uncontrolled resource consumption’ is not involved

in fixing the core command execution issue, while the location and interaction of the other

two (’improper input validation’ and ’deserialization of untrusted data’) still need to be

connected to understand the issue.

6.3 Vulnerability Detection

Data-flow Analysis. Livshits et al. target vulnerabilities in Java web applications that lead

to control-hijacking attacks like SQL injections and cross-site scripting Livshits and Lam

(2005). They improve taint analysis precision by implementing an object naming scheme

that avoids unnecessary tainting of strings. Their work only targets unchecked inputs but

does not analyze the predicates so they would miss errors in existing checks. The authors

focus on control-hijacking attacks and not all of the improper execution restrictions vulner-

abilities. Taintdroid leverages taint analysis tracking to trace how privacy-sensitive data

leaves Android applications Enck et al. (2014). However, they are only concerned with APIs

that transmit sensitive sensor data over networks not execution functions. Taintdroid only

tracks explicit data-flow on Dalvik bytecode at the instruction-level. It does not support

comparing instructions to reason about data-flow if-checks. Zheng et al. Zheng and Zhang

(2013) tackle remote code execution attacks that execute input scripts in PHP web applica-

tions. The authors analyze the behavior of string and non-string inputs separately across

multiple requests and sessions that incorporate a string solver and a satisfiability modulo

theories (SMT) solver to derive taint analysis solutions. Their taint analysis traces client

inputs to file writes and dynamic script evaluations. However, they do not consider other

sensitive sinks like object deserialization functions in Log4j.

Vanguard examines C and C++ code for general missing check vulnerabilities Situ et al.

(2018). They perform taint analysis to find how outside sources reach sensitive operations,

followed by data-flow to find missing checks. The authors evaluate Vanguard using known

vulnerable functions in the application. Yamaguchi et al. propose Chucky to improve

manual code auditing of input validation vulnerabilities by finding abnormal checks that

deviate from regular checks around sensitive functions Yamaguchi et al. (2013). Chucky

uses static taint analysis to extract features from conditional expressions that machine
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learning techniques can use to perform anomaly detection.

TAJ is a taint analysis security solution targeted to large-scale industry applications Tripp

et al. (2009). TAJ performs taint tracking on a hybrid system dependence graph (HSDG),

where nodes are load, store, or call statements, and edges are added using dependence

context from a call graph. The call graph construction prioritizes parts of the web application

that are close to the taint source and methods that are assigned high priorities. Balzarotti et

al. propose Saner which performs static taint analysis with data-flow information to detect

incorrect input sanitization. Balzarotti et al. (2008). They combine the static analysis with

the dynamic approach of testing a suite of cross-site scripting and SQL injection attacks

to reduce false positives. Balzarotti et al. model strings with finite automata that indicate

a taint status for each character. Any paths with suspicious string values are marked for

further analysis. The FindSecBugs OWASP (2023) security package improves upon this

as a plugin of the industry-based Findbugs successor called Spotbugs SpotBugs (2023).

FindSecBugs includes taint analysis tactics to detect security bugs.

In comparison, XScope leverages both control-flow and data-flow analysis to overcome

the limited scope of rule-based detection schemes and high false positives of data-flow

analysis-only approaches.

Control-flow Analysis Thomé et al. propose a symbolic execution approach called ACO-

Solver to solve complex string operations involved in input sanitization conditions of Java

web applications Thomé et al. (2017a). ACO-Solver uses symbolic execution to search for

code that matches the specified expert-provided attack constraints. ACO-Solver leverages

existing state-of-the-art constraint-solvers to reduce the search space. If the solvers fail, it

then runs an automata-based string constraint solver guided by an ant-colony optimization

heuristic. ACO-Solver is designed for injection and XSS vulnerabilities. In contrast, XSCope

can detect a broader range of improper execution restrictions vulnerabilities.

Hybrid approaches. JoanAudit Thomé et al. (2017b) automates the software auditing

process by locating and inserting missing security checks between input program sources

and sinks. It constructs and prunes a system dependency graph (SDG) with data-flow,

control-flow, and call dependencies from Java bytecode, using a predefined list of input

sources, sanitation procedures, non-security related functions, and sensitive sink functions.

Fratantonio et al. propose TriggerScope that finds Android malware called logic bombs

that trigger under very specific check conditions Fratantonio et al. (2016). TriggerScope

combines taint analysis and symbolic execution by building a super control flow graph

(sCFG) consisting of both interprocedural and intraprocedural CFG, which they annotate
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with symbolic execution to trace how inputs flow to sensitive Android operations. Trig-

gerScope focuses on Android API relevant to mobile device privacy like permissions or

file-system operations related to time, location, and SMS messages. In comparison, XScope

aims at detecting generic code execution vulnerabilities with a fine-grained pattern-driven

approaches.

Related work in vulnerability detection use static and symbolic execution program

analysis techniques. Balzarotti propose Saner which performs static taint analysis with

data-flow information to detect incorrect input sanitization. Balzarotti et al. (2008). They

combine the static analysis with the dynamic approach of testing a suite of cross-site

scripting and SQL injection attacks to reduce false positives. Frantantonio et al build a

super control flow graph (sCFG) consisting of both interprocedural and intraprocedural

CFG, which they annotate with symbolic execution to trace how inputs flow to sensitive

Android operations Fratantonio et al. (2016). Yamaguchi et al. propose Chucky to improve

manual code auditing of input validation vulnerabilities by finding abnormal checks that

deviate from regular checks around sensitive functions Yamaguchi et al. (2013). Chucky

uses static taint analysis to extract features from conditional expressions that machine

learning techniques can use to perform anomaly detection.

Xu et al. perform a semantic analysis of application binaries using control flow graph

techniques Xu et al. (2017). Their work finds five security vulnerability patterns in C code

used to uncover vulnerabilities in other applications. Livshits et al. use taint tracking to

find violations given by process query language (PQL) specifications that correspond to

attacks due to unchecked inputs in Java applications Livshits and Lam (2005). Enck et al.

also leverage taint analysis tracking to reveal how privacy-sensitive data leave Android

applications with practical tradeoff between performance overhead and precision Enck

et al. (2014). Thomé et al. use symbolic execution to improve the efficiency of solving

complex string operations involved in matching code against expert-provided specifications

for injection and cross site scripting (XSS) vulnerabilities Thomé et al. (2017a). Shen et

al. propose VulnLoc which assigns probabilities to instructions to determine vulnerable

function locations for fixing vulnerabilities. They perform fuzzing using a single exploit,

to generate other paths that help VulnLoc avoid overfitting their models. Some works

combine program analysis with machine learning to detect vulnerabilities. Pang et al.

detect vulnerable classes with supervised models, namely support vector machines (SVM)

Pang et al. (2015). They use frequency vectors of n-grams of Java keywords and remove

features that are not significantly different between vulnerable and non-vulnerable classes.
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Some work use static analysis to detect other non-security issues like API misuse. Wan

et al. build static checkers that mainly use interprocedural data-flow analysis to analyze

how variables of misused ML API calls flow across functions Wan et al. (2021). Wang et

al. Wang (2021) study error-prone early exit (EE) paths in detecting memory leaks. They

highlight new EE scenarios to consider when checking for missing memory deallocation.

DScope Dai et al. (2018) performs intraprocedural analysis to identify loop conditions

related to Java I/O APIs that cause the system to hang. Hangfix He et al. (2020) performs

intraprocedural dataflow analysis to detect and fix certain root cause function patterns

of software hang bugs. XRay combines information flow analysis with record and replay

to locate performance bugs caused by misconfiguration. XRay finds time points where

system metric performance costs are high to evaluate the likelihood that certain inputs and

functions cause the bugs. ESG uses static analysis and symbolic execution to find program

constraints that reproduce concurrency bugs. ESG relies on information like problematic

program counter values provided in bug reports. Compared to these work, our study focuses

on understanding security bugs.
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CHAPTER

7

CONCLUSION

In this dissertation, we develop frameworks for automatically diagnosing and fixing security

bugs supported by comprehensive studies. We contribute a self-triggering targeted patching

framework for containerized systems with insights from our vulnerability exploit detection

study, and a pattern-driven fine-grained vulnerability detection framework for cloud server

systems with our understanding of security vulnerability patterns. We make the following

specific contributions:

• We present a comparative study on the effectiveness of various vulnerability detection

schemes for containers. Specifically, we evaluate a set of static and dynamic detection

schemes using 28 real world vulnerabilities that widely exist in docker images. Our

results show that the static vulnerability scanning scheme only detects 3 outs of

28 tested vulnerabilities and the dynamic anomaly detection schemes detect 22

vulnerability exploits. Combining static and dynamic schemes can further improve

the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic

anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time

window before attacks succeed) for a group of commonly seen attacks in containers
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that try to gain a shell and execute arbitrary code.

• We present Self-Patch, a new self-triggering targeted patching framework. To achieve

this goal, the Self-Patch framework consists of three coordinating components: 1)

an online attack detection module which can dynamically detect abnormal attack

activities by extracting feature vectors from system call traces and applying unsuper-

vised machine learning methods over the features; 2) an attack classification scheme

which classifies a detected attack into a specific type linked to a certain CVE; and 3)

a targeted patch execution module which can install proper software patches to fix

the vulnerability. We have implemented a prototype of Self-Patch and evaluated it

over 31 real-world vulnerabilities discovered in 23 common server applications. Our

experimental results show we can increase detection rate to over 80% and reduce

false alarm rate to 0.7%. In contrast, traditional whole software upgrade schemes can

either only detect 6% attacks or incur more than 20% false alarms. Self-Patch can also

reduce the memory overhead by up to 84% and disk overhead by up to 40%.

• We present a comprehensive study over 110 recent real world security bugs in 13

popular cloud server systems. Our study first identifies five common vulnerability cat-

egories among those 110 studied security bugs: 1) improper execution restrictions, 2)

improper permission checks, 3) improper resource path-name checks, 4) improper sen-

sitive data handling, and 5) improper synchronization handling. Furthermore, we ex-

tract key software code patterns in each category and describe a set of pattern-driven

strategies for detecting those security bugs before they are released to production

cloud environments.

• We present XScope, a new pattern-driven fine-grained vulnerability detection frame-

work for proactively detecting security bugs due to improper code execution restric-

tions. XScope not only detects code execution vulnerabilities but also localizes the

vulnerable functions in complex large-scale cloud server programs consisting of tens

of thousands of functions. Furthermore, XScope combines call graph analysis and

data-flow analysis to minimize false positive rates while maintaining a high detection

rate. We have implemented a prototype of XScope and tested it using real world

vulnerabilities including the high impact Log4j vulnerability on six commonly used

cloud server systems. Our experimental results show that XScope can achieve a 100%

detection rate while existing security checking tools like FindSecBugs can only detect
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38% of those CVEs. Moreover, XScope can reduce the false positive rate by 53% for

those CVEs that can be detected by both XScope and FindSecBugs.
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