
ClearCausal: Cross Layer Causal Analysis for Automatic Microservice Performance
Debugging

Olufogorehan Tunde-Onadele∗ §

fogo@insightfinder.com
Feiran Qin†

fqin2@ncsu.edu
Xiaohui Gu†
xgu@ncsu.edu

Yuhang Lin‡ §

yuhangl@meta.com

∗InsightFinder, Inc.
†North Carolina State University.

‡Meta, Inc.

Abstract—It is notoriously hard to debug performance prob-
lems in dynamic distributed systems such as containerized
microservices. Developers need to spend large amounts of manual
efforts to troubleshoot those performance bugs, which often incur
high cost in terms of time and resources. In this paper, we
present ClearCausal, a cross-layer causal analysis framework
for microservices which performs fine-grained causal analysis
between application function traces and infrastructure metric
data to pinpoint both the root cause service and the root cause
function. ClearCausal combines information theory-based causal
inference anomaly detection, and dynamic dependency graph to
achieve highly accurate root cause analysis. We have implemented
ClearCausal and evaluated it using real performance bugs
triggered in three benchmark microservices. Our results show
that ClearCausal can accurately localize the buggy services and
functions with much higher accuracy than other alternative solu-
tions. Specifically, in all the tested bugs, ClearCausal successfully
ranks the root cause service as the top candidate and ranks the
root cause function in the top two. ClearCausal is lightweight,
which makes it practical for real world production environments.

Index Terms—Performance Debugging, Microservices

I. INTRODUCTION

Microservice architectures have become a popular method
for deploying applications in production cloud environments.
Microservices divide applications into modular services that
are responsible for different functionality and can efficiently
scale to user demands. However, as microservice applications
develop and become increasingly complex, debugging dis-
tributed performance bugs becomes a key challenge [1], [2].
The increased complexity makes it more difficult to understand
the dependencies among different system components and
pinpoint the root cause of a performance bug manifested in
the production environment. For example, Microsoft suffered
a recent outage in its microservices-supported 365 online web
applications due to the performance issues in its caching
infrastructure [3]. An automatic root cause analysis tool can
guide developers to the root cause function quickly, saving
debugging time and cost.

Much work (e.g., [4]–[6]) has been done to debug per-
formance problems in distributed systems. However, highly
dynamic microservice applications bring new challenges to
this notoriously difficult problem. First, microservices often
share a common physical host infrastructure for saving re-
sources. As a result, many dependent or independent appli-
cation pods/containers are co-located together, which makes

§Authors contributed while PhD students at North Carolina State University.

the root cause analysis challenging. Previous work has pro-
posed various correlation methods (e.g., Pearson [7]) to local-
ize problematic microservice components [8]–[11]. However,
those correlation approaches often suffer from high false
positives, which sometimes incur more debugging work to the
developer. Furthermore, previous work often cannot localize
to the buggy function level, which still leaves most debugging
work to the developer. Previous work also proposed to leverage
Granger causality methods [6] to pinpoint root cause functions.
However, they often do not consider the dynamic dependency
relationships among different service components. Recent
work also proposed machine learning-based methods to debug
performance problems in microservices [12]–[14]. However,
those approaches either require labeled training data or a large
amount of historical data produced by a similar problem to
train their models, which can only apply to previously seen
performance problems.

A. Contribution

In this paper, we present ClearCausal, a new dependency-
aware cross-layer causal analysis framework, which leverages
both infrastructure-layer metrics (e.g., CPU usage, memory us-
age, network traffic) and application-layer performance traces
to achieve fine-grained function-level performance debugging
in distributed microservice applications. When a performance
problem such as service level objective (SLO) violation and
software hang is detected with existing methods [15], [16],
ClearCausal aims at automatically localizing the root cause
service and the buggy function among a large number of
services and functions to help developers troubleshoot mi-
croservice performance issues quickly.

The key element that decides the effectiveness of
ClearCausal is a robust causal inference method. Previous
approaches have been focusing on applying linear correlation
methods such as Pearson [7] over raw monitoring data (e.g.,
infrastructure metrics, application performance traces) directly.
However, microservices are highly dynamic distributed sys-
tems. The correlations between different monitoring data are
often non-linear. Moreover, raw monitoring data are often quite
noisy and have time lags between each other.

To address those challenges, we propose a new hybrid
approach that combines non-linear correlations and anomaly
detection into a more robust causal inference scheme. We
first employ mutual information (MI) [17], which observes
Granger causality to discover linear or non-linear causal prob-
abilities among different infrastructure or application perfor-

1



mance metrics. Second, instead of performing causal inference
over raw monitoring data, we perform anomaly detection over
both infrastructure metrics and application performance traces
to extract principal patterns, which can effectively reduce
the noise in the raw monitoring data for achieving robust
causal inference. Since microservice systems often consist of
many inter-dependent services, we also incorporate the service
dependency in our causal analysis to surface the root cause
service more effectively.

After localizing the faulty service, ClearCausal analyzes
the function execution trace of the faulty service to localize
the buggy function using a similar causal inference process.
Because ClearCausal is triggered by performance anomaly
alerts, it only performs on-demand analysis over a small
window (e.g., 10 minutes) of recent trace data for root cause
analysis.

ClearCausal enables autonomous performance debugging.
Upon receiving performance alerts, ClearCausal performs
anomaly detection and causal analysis without human inter-
vention. ClearCausal can adapt itself to external feedback,
which, however, is out of the scope of this paper.

Specifically, this paper makes the following contributions:
• We introduce a new dependency-aware cross-layer causal

analysis system to achieve fine-grained function-level root
cause localization for microservice systems.

• We present a robust hybrid causal inference algorithm
to surface the root cause service and function with high
accuracy without requiring a large amount of historical
data for model training. Thus, our approach can be
applied to previously known or unknown performance
problems.

• We have implemented a prototype of ClearCausal1 and
evaluated it using a set of real world performance bugs
injected in a set of microservice benchmark applications.
Our results show that ClearCausal can accurately pinpoint
the root cause service and function in all buggy runs with
much higher accuracy than other alternative solutions.
ClearCausal effectively ranks the root cause service as
the top candidate and the root cause function in the top
two for all the tested bugs. ClearCausal is light-weight,
which imposes less than 3% overhead to the application.

The rest of the paper is structured as follows. Section II
provides the system background. Section III presents the sys-
tem design. Section IV describes our experimental evaluation.
Section V compares our work with related work. Section VI
concludes this paper.

II. BACKGROUND

In this section, we discuss the preliminary components that
support ClearCausal.

A. Data Collection

To achieve fine-grained root cause analysis, we perform
cross-layer data collection for each microservice from both in-

1ClearCausal is released as open source software at https://github.com/
NCSU-DANCE-Research-Group/ClearCausal.

frastructure layer (e.g., CPU usage, memory usage, disk usage,
network bandwidth) and application performance layer (e.g.,
service and function execution time). In order to extract fine-
grained function and performance metrics (e.g., response time
time series, function execution time series), we leverage the
trace data provided by open-source tools [18], [19]. Querying
the tools with a certain start time and end time returns all the
traces that are produced during the time window. Each trace
consists of multiple spans that offer timing information of each
operation performed as a request executes within a service.

B. Anomaly Detection

Microservice environments deal with the challenge of
rapidly changing workloads. As such, the system metrics
and spans are also dynamic time series data. However, the
fluctuations over extended periods is a problem for our causal
analysis computations. We observe that the noise can lead to
misleading MI calculation results.

Our anomaly detection leverages an unsupervised machine
learning method called self-organizing map (SOM) [20]. We
chose SOM for its robustness of handling many noisy metrics
from a large number of microservices, which also supports
real-time online anomaly detection. SOM projects each multi-
dimensional input data onto a reduced two-dimensional map
of neurons. We identify anomalies based on the algorithm
proposed by Dean et al. [16]. We empirically determine
the neighborhood size threshold to detect anomalies as 85
percentile, the same percentile used in the original work. We
also filter out transient anomalies close to the training data
mean.

III. SYSTEM DESIGN

In this section, we present the design of the primary
components of the ClearCausal system.

A. Root Cause Service Inference

We now describe our causal inference algorithm to localize
the root cause services among a large number of inter-
dependent microservices. Intuitively, the root cause service of-
ten exhibits the causal relationships with the symptom service
where the performance alert is detected. As aforementioned,
we calculate the Granger causality using mutual information
(MI) to capture both non-linear and linear causality. For vari-
ables X1 and X2, if previous values of X1 give information to
predict future values of X2 better than just previous values of
X2, then X1 ”Granger-causes” X2. MI calculates how much
information a variable provides about another. For two random
variables X1 and X2, the MI formula is outlined in Equation 1.

MI(X1;X2) =
∑

x1∈X1

∑
x2∈X2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
(1)

where p(x1) and p(x2) are the marginal probability mass
functions of X1 and X2, respectively, and p(x, y) is the joint
probability mass function of X and Y .

2

https://github.com/NCSU-DANCE-Research-Group/ClearCausal
https://github.com/NCSU-DANCE-Research-Group/ClearCausal


(a) Before anomaly alignment.

(b) After anomaly alignment.

Fig. 1 An example of the anomaly alignment algorithm. We
require a minimum number of consecutive anomalous samples to
avoid misalignment due to noise.

We further observe that the anomalies of the root cause ser-
vice and the performance anomalies are not always perfectly
aligned due to clock drift or latent data collection in distributed
systems. To accommodate such a challenge, we propose an
anomaly alignment algorithm to align the anomalies of the
failure service and the anomalies of all candidate root cause
services before calculating the MI scores. Specifically, after
obtaining the anomaly detection result streams, ClearCausal
finds the first segment of continuous anomalies in each time
series. We then align the start time of the anomaly segments
of the two time series to compute a shift length. We then shift
the second time series based on the derived shift length to
obtain two aligned anomaly time series. For example, Figure 1
shows two anomaly time series before and after alignments,
where “1” means the sample is an anomaly, while “0” means
it is not an anomaly. We can see that the anomalies from the
original time series A and B do not align. After the anomaly
continuity check (e.g., at least three continuous anomalies), we
identify the start time of the first continuous anomaly segment
in time series A is at index 5 and the start time of the first
continuous anomaly segment in time series B is at index 6.
We can compute the time shift between time series A and time
series B is one. So we can align the two time series by shifting
the time series B to the left by one.

To localize the root cause in a distributed microservice
application consisting of many inter-dependent microservices,
we propose to combine the service dependency graph and
inter-service causal analysis to achieve high accuracy. To
identify the root cause service, we first search the dependency
graph from the symptom service to add child nodes at each
iteration to the set of root cause service candidates. Next, we
compute the causal score between the symptom service and
each candidate service. We only consider those candidates
whose causal scores are higher than a pre-defined threshold
(e.g., 0.5). We then rank all the candidates based on the causal
scores. In some rare cases where there are multiple candidates
having the same causal scores, we break ties considering
whether it is a leaf node (i.e., the leaf nodes rank higher than
non leaf nodes since the leaf nodes is not affected by other
services, its call count (i.e., higher call counts rank higher
since they are more likely have impact), and the anomaly start
time (i.e., the earlier anomaly ranks higher).

B. Root Cause Function Identification

To help the developer to fix the performance bugs, we
strive to not only localize the root cause service but also
the buggy function that triggers the performance problem.
ClearCausal does so by analyzing which function contributes
to the anomaly of the root cause service. Specifically, we com-
pare the execution time of the functions within the root cause
service to the anomalous metrics (e.g., CPU consumption) of
the root cause service. We perform causality calculation using
a similar algorithm as root cause service localization. In the
root cause function analysis, we break ties by prioritizing the
function with the earliest change point in execution time.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe our evaluation methodology.
Next, we compare our system with a set of alternative schemes.

A. Evaluation Methodology

1) Evaluation microservice applications: We evaluate our
system on three microservice benchmark applications: Online
Boutique [21], Social Network [22], and Media Service [22].

2) Experiment Setup: Data collection. We use Open-
Telemetry [19] to collect the span duration of the microser-
vices. We use Jaeger [18] to manage the traces, and retrieve the
service dependency graph with its internal API. We employ
Prometheus [23] to store and query the system metrics of pods,
including CPU utilization ratio, active memory usage, network
traffic transmitted and received in bytes, and disk read and
write in bytes, using non-overlapping moving window of 30
seconds.

Dynamic workload generation. We use Locust [24] to
deliver dynamic workloads emulating workloads in real world
applications using 10 simulated workers. After a random wait
time, each worker performs a random web service task such as
visiting the listing pages or adding items to the shopping cart
before performing the next task. Each second, Locust records
the average response time. Upon detecting the response time
change point, we obtain the traces in the window of twelve
minute before the change point to two minutes after the change
point for analysis.

Anomaly Detection We use the Python sklearn-som pack-
age [25] to implement the SOM models of size 32 by 32.

For each performance bug, we repeat the experiment three
times and record the average and standard deviation.

B. Alternative Methods

Alternative correlation analysis We evaluated our system
with different alternative analysis tools.

• Pearson correlation [7]: The Pearson correlation coeffi-
cient is a measure of the linear relationship between two
continuous variables. Most previous root cause analysis
work [8]–[11], [26] adopts the Pearson correlation as the
major root cause analysis method.

• Spearman’s rank correlation [27]: Spearman’s rank
correlation coefficient is a non-parametric measure of the
strength and direction of association between two ranked

3



TABLE I Summary of the bugs that we use in our experiments.

Bug ID Symptom Microservice Description
1 Infinite loop OnlineBoutique The email service encounters an infinite loop when sending the confirmation email.
2 Memory leak SocialNetwork GetFollowers in the social graph service does not release the allocated memory.
3 Memory leak MediaMicroservices UploadMovieReview in the movie review service does not release the allocated memory.
4 Infinite loop MediaMicroservices The user review service falls in an infinite loop when uploading new user reviews.
5 Infinite loop SocialNetwork The post storage service encounters an infinite loop when storing new posts.
6 Data corruption (HDFS-5438) SocialNetwork The corrupted data stream (text service) affects the loop stride, causing system hanging.
7 Data corruption (Hadoop-8614) MediaMicroservices The corrupted data stream (review storage service) returns an error code, causing the system to hang.
8 Timeout (Flume-1819) SocialNetwork Timeout is missing in the user mention service, leading to system hanging.
9 Timeout (HDFS-10223) MediaMicroservices Timeout is set incorrectly in the rate system, causing system hanging.
10 Timeout (HDFS-4176) OnlineBoutique Timeout is missing in the payment service when charging the credit card.

TABLE II Summary of root cause service results.

Bug
ID

Number of
Candidate
Services

Root Cause Service
Rank False Positives

Pearson
correlation

Spearman
correlation

Kendall
correlation Microscope MI

correlation ClearCausal Pearson
correlation

Spearman
correlation

Kendall
correlation Microscope MI

correlation ClearCausal

1 47 Email service 5 1 1 2 1 1 4 0 0 1 0 0
2 60 Social graph service 2 11 15 1 10 1 1 10 14 0 9 0
3 66 Movie review service 1 1 1 1 2 1 0 0 0 0 1 0
4 66 User review service 2 5 6 1 24 1 1 4 5 0 23 0
5 60 Post storage service 1 1 1 1 1 1 0 0 0 0 0 0
6 60 Text service 1 10 10 1 1 1 0 9 9 0 0 0
7 66 Review storage service 20 2 3 1 4 1 19 1 2 0 3 0
8 60 User mention service 1 3 3 1 1 1 0 2 2 0 0 0
9 66 Rating service 33 5 5 5 3 1 32 4 4 4 2 0
10 47 Payment service 31 1 1 5 1 1 30 0 0 4 0 0

Average 9.7 4.0 4.6 1.9 4.8 1 8.7 3.0 3.6 0.9 3.8 0

TABLE III Summary of root cause function results. “X” means failure to detect the root cause function.

Bug
ID

Number of
Candidate
Functions

Root Cause Function
Rank False Positives

Pearson
correlation

Spearman
correlation

Kendall
correlation Microscope MI

correlation ClearCausal Pearson
correlation

Spearman
correlation

Kendall
correlation Microscope MI

correlation ClearCausal

1 757 SendOrderConfirmation X X X X 2 1 X X X X 1 0
2 661 GetFollowers X X X X X 1 X X X X X 0
3 644 UploadMovieReview 2 2 2 X X 1 1 1 1 X X 0
4 644 UploadUserReview X X X X X 1 X X X X X 0
5 661 StorePost 2 2 2 X 4 2 1 1 1 X 3 1
6 661 ComposeText 3 X X X 3 1 2 X X X 2 0
7 644 StoreReview X X X X X 2 X X X X X 1
8 661 ComposeUserMentions 2 X X X 2 1 1 X X X 1 1
9 644 UploadRating X X X X X 2 X X X X X 1
10 757 Charge X 1 1 X 1 1 X 0 0 X 0 0

Average X X X X X 1.3 X X X X X 0.4

variables. It is based on the ranks of the data rather than
the actual values.

• Kendall rank correlation [28]: Kendall rank correlation
is a non-parametric measure of the strength and direction
of association between two ranked variables.

• Microscope [10]: Microscope detects the root cause
service by using Pearson and service dependency infor-
mation. However, Microscope cannot perform root cause
analysis at the function level.

Evaluation metrics In our evaluation, Rank refers to the
rank of the actual root cause service or function given by the
analysis method in question. We also define the number of
false positives (FP) as the services/functions ranked above or
tied with the actual root cause service/function.

C. Result Analysis

In this section, we analyze the results of the experiments.
We first analyze the results of all ten performance bugs before
analyzing the result of the infinite loop case study in the Online
Boutique application.

Table I summarizes all ten performance bugs evaluated in
the experiment. We evaluate four different types of bugs,
including infinite loop, memory leak, data corruption, and
timeout. Each type is evaluated in at least two different
microservice applications.

Table II depicts the root cause service result summary. Each
row in the table includes the rank of the root cause service
and the number of false positives for the six algorithms: MI,
Pearson, Spearman, Kendall, Microscope, and our ClearCausal
algorithm. The tables show that Pearson, Spearman, and
Kendall all suffer from a high number of false positives and
often fail to rank the root cause service as the first service.
MI performs better in most bug cases. However, MI can
sometimes produce high false positives (e.g., bug #4) since
it is sensitive to data noises. Under those circumstances,
we observe that ClearCausal achieves robust analysis by
employing anomaly detection and alignment over the raw
monitoring data. Although Microscope has better results than
those pure correlation methods, it still yields quite a few
false alarms. Moreover, Microscope often produces similar
correlation probabilities for top ranked services, which makes
the developer less confident about the ranking. In contrast,
ClearCausal is the only solution that successfully ranks the
root cause service as the first one in all of the ten bugs.

Table III shows the summary of the root cause function
results. If an algorithm fails to detect the root cause service
in the previous step, it is unable to proceed to detect the root
cause function in the final step. In this case, we use ”X” to
indicate the failure of detecting the root cause function. We
can see MI fails to detect five bugs, Pearson fails to detect six
bugs, and Spearman and Kendall both fail to detect seven bugs.

4



Microscope does not detect any root cause function since it
only supports service level root cause analysis. In contrast, our
ClearCausal algorithm can successfully detect the root cause
function and rank the root cause functions within the top two
in all of the ten cases.

1) Online Boutique application: We now examine the re-
sults of the online boutique application (bug #1). For one
background service, the recommendation service, we induce
a CPU hog at the same time as the root cause injection.
This presents a case where another service exhibits coinciding
symptoms but is not actually the underlying performance
issue. Thus, we expect an effective system to identify the
recommendation service as problematic but not as the root
cause (email service).

Root Cause Service Analysis We discuss the results of the
six tested algorithms using four representative services: the
email service (the root cause service), the recommendation
service (the CPU hog service), kube-proxy (a Kubernetes
component), and the checkout service (a service dependent
on the root cause).

The root cause service, email service, ranks the first for two
different algorithms: MI and ClearCausal. The results show
that those algorithms can successfully identify the root cause
service, while the remaining four algorithms, Pearson, Spear-
man, Kendall, and Microscope fail to do so. Nevertheless,
only ClearCausal shows a large difference in correlation value
between the email service and the second rank service, which
indicates strong confidence in the root cause service.

MI ranks the recommendation service as the second, while
Pearson ranks the same service as the first, which meets our
high rank expectation of the recommendation service due to
the CPU hog symptom. However, because the recommenda-
tion service is not ranked as one of the priority candidate
services according to subsection III-A, its score is set to 0 in
Microscope and ClearCausal.

Kube-proxy, a Kubernetes component, is a network proxy
running in each node. With a lot of network traffic during the
experiment, we expect this service to be active. Both Spearman
and Kendall rank it as the first. However, because this service
is not in the same namespace as the Online Boutique, it is
reset to 0 in Microscope and ClearCausal.

The checkout service is the caller of the email service. At
the end of the checkout process, the checkout service will call
the email service to send an confirmation email to the buyer.
We expect an intelligent algorithm to not be confused by this
service. ClearCausal assigns it a very low correlation value to
indicate its low probability of being the root cause service.

Root Cause Function Analysis The root cause function for
the infinite loop bug in Online Boutique is SendOrderConfir-
mation. In the source code of the email service, there are a total
of eight functions but only four functions were active during
the experiment. We discuss the result of the root cause function
analysis after three runs, assuming each algorithm successfully
detects the root cause service. We do not include Microscope
as it only performs root cause service analysis. With Pearson,
Spearman, Kendall, and MI, the root cause function is not

TABLE IV Overhead measurements of ClearCausal analysis
components, given a sampling interval of 30s.

ClearCausal Module Execution Time (µs)
Service anomaly detection 2.28 ± 0.03 per sample
Service anomaly alignment 0.12 ± 0.02 per sample
Root cause service analysis total 31.19 ± 0.60 per sample
Function anomaly detection 2.24 ± 0.14 per sample
Function anomaly alignment 0.14 ± 0.04 per sample
Root cause function analysis total 41.64 ± 1.09 per sample

TABLE V Overhead measurements of Jaeger. Each experiment is
repeated ten times and we report both mean and standard deviation
values.

Metric Overhead (%)
Response Time 2.75 ± 0.013
CPU utilization 0.25 ± 0.032

listed as the first candidate but second, fourth, fourth, and
second, respectively. ClearCausal successfully determines the
root cause function as the first candidate. The difference
between the first rank and the second rank is also the largest
with ClearCausal, which again strengthens our confidence in
the result. Here, ClearCausal reports the maximum 1.0 score
difference while the other algorithms report differences of less
than 0.1.

2) Overhead Analysis: ClearCausal is fast and suitable for
online analysis as shown in Table IV, and is lightweight as
shown in Table V. We observe that ClearCausal incurs less
than 1% CPU load to the microservice application and incurs
an average response time increase of 2.75% when the tracing is
triggered using a sampling rate of 1%. In addition, ClearCausal
requires a limited amount of memory to run. During our
experiments, the average and maximum memory usage are
123.92 MB and 235 MB, respectively.

V. RELATED WORK

Microservice performance root cause analysis Micro-
scope [10] and MicroRCA [8] use Pearson correlation-based
scores as they reason about their dependency graphs. Whereas,
ClearCausal shows that applying correlations over raw data
directly shows poor accuracy in microservices under dynamic
and fluctuating workloads.

Seer [12] processes remote procedure call (RPC) traces
with neural architectures to learn conditions for quality of
service (QoS) violations. Seer learns from traces annotated
with violation labels. Whereas, we do not depend on labeled
training data. Sage [14] also operates on RPC-level traces,
using causal bayesian networks and unsupervised autoencoders
to find culprit services. Sage still relies on historical QoS
violation training data and so cannot debug previously unseen
QoS violations. In contrast, ClearCausal leverages anomaly
detection and causal inference methods to help debug both
previously seen or unseen performance problems.

ClearCausal not only provides the root cause service but also
provides the root cause function, which is not often localized
by the related work. We generally use stronger causality
measures with MI than the correlation-based approaches to
help us minimize false positives.

5



Causality analysis PerfSig [6] is a multi-modality perfor-
mance tool that can identify root cause functions for per-
formance bugs using MI. However, PerfSig cannot provide
cross-layer causal analysis or consider service dependency
relationships. In contrast, ClearCausal provides cross-layer
causal inference, which can localize both root cause services
and functions. CauseInfer [29] is a black-box cause inference
system that monitors TCP request latency to provide hints for
distributed systems bugs. In contrast, ClearCausal leverages
MI causal inference and service dependencies to improve the
root cause analysis accuracy.

Compared to the causal analysis research, ClearCausal takes
a lightweight, non-intrusive approach that finds root causes
at the function-level. ClearCausal employs Granger causality
with MI to identify dynamic dependency relationships among
numerous service nodes.

VI. CONCLUSION

In this paper, we present ClearCausal, a new dependency-
aware cross-layer causal analysis framework to achieve fine-
grained performance debugging for microservice applications.
ClearCausal combines anomaly detection, information theory
based causal analysis, and dependency graphs to pinpoint root
cause services and functions when a performance problem is
detected. We have developed a prototype of ClearCausal and
evaluated it over ten performance bugs in three benchmark
microservice applications. The results show that ClearCausal
accurately identifies the root cause services for all tested per-
formance anomalies with much fewer false positives compared
to traditional correlation methods. Furthermore, ClearCausal
can successfully rank the root cause functions within the top
two candidates among a large number of functions, which
can greatly expedite the debugging process for the developer.
ClearCausal is lightweight, which imposes less than 1% CPU
overhead and 2.75% performance overhead on average to the
micro-service application.

REFERENCES

[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,” Ieee
Software, vol. 33, no. 3, pp. 42–52, 2016.

[2] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[3] A. Kharpal, “Microsoft users hit with global cloud outage that impacted
products like teams and outlook,” Jan 2023. [Online]. Available:
https://www.cnbc.com/2023/01/25/microsoft- investigating-teams-and-
outlook-outage-as-users-report-issues.html

[4] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Proceedings of the 25th Sympo-
sium on Operating Systems Principles, 2015, pp. 378–393.

[5] S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki, “Mining causality of
network events in log data,” IEEE Transactions on Network and Service
Management, vol. 15, no. 1, pp. 53–67, 2017.

[6] J. He, Y. Lin, X. Gu, C.-C. M. Yeh, and Z. Zhuang, “Perfsig: Extracting
performance bug signatures via multi-modality causal analysis,” in
2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022, pp. 1669–1680.

[7] K. Pearson, “Notes on the history of correlation,” Biometrika, vol. 13,
no. 1, pp. 25–45, 1920.

[8] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause lo-
calization of performance issues in microservices,” in NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2020, pp. 1–9.

[9] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
Proceedings of The Web Conference 2020, 2020, pp. 246–258.

[10] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,” in International
Conference on Service-Oriented Computing. Springer, 2018, pp. 3–20.

[11] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[12] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the twenty-fourth international conference on architectural support for
programming languages and operating systems, 2019, pp. 19–33.

[13] Q. Wang, L. Shwartz, G. Y. Grabarnik, V. Arya, and K. Shanmugam,
“Detecting causal structure on cloud application microservices using
granger causality models,” in 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD). IEEE, 2021, pp. 558–565.

[14] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
135–151.

[15] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“Prepare: Predictive performance anomaly prevention for virtualized
cloud systems,” in 2012 IEEE 32nd International Conference on Dis-
tributed Computing Systems. IEEE, 2012, pp. 285–294.

[16] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud sys-
tems,” in Proceedings of the 9th international conference on Autonomic
computing, 2012, pp. 191–200.

[17] J. T. Lizier, “Jidt: An information-theoretic toolkit for studying the
dynamics of complex systems,” Frontiers in Robotics and AI, vol. 1,
p. 11, 2014.

[18] T. J. Authors, “Jaeger: open source, end-to-end distributed tracing,”
2023. [Online]. Available: https://www.jaegertracing.io/

[19] T. O. Authors, “Opentelemetry,” 2023. [Online]. Available: https:
//opentelemetry.io/

[20] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no.
1-3, pp. 1–6, 1998.

[21] O. B. Authors, “Googlecloudplatform/microservices-demo: Sample
cloud-first application with 10 microservices showcasing kubernetes,
istio, and grpc.” 2023. [Online]. Available: https://github.com/
GoogleCloudPlatform/microservices-demo

[22] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 3–18.

[23] P. Authors, “Prometheus - monitoring system & time series database,”
2023. [Online]. Available: https://prometheus.io/

[24] L. Authors, “Locust - a modern load testing framework,” 2023.
[Online]. Available: https://locust.io/

[25] “Sklearn-som,” 2023. [Online]. Available: https://pypi.org/project/
sklearn-som/

[26] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 41, no. 1, pp. 93–104, 2013.

[27] C. Spearman, “The proof and measurement of association between two
things.” 1961.

[28] H. Abdi, “The kendall rank correlation coefficient,” Encyclopedia of
Measurement and Statistics. Sage, Thousand Oaks, CA, pp. 508–510,
2007.

[29] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems,” in IEEE INFOCOM 2014-IEEE Conference
on Computer Communications. IEEE, 2014, pp. 1887–1895.

6

https://www.cnbc.com/2023/01/25/microsoft-investigating-teams-and-outlook-outage-as-users-report-issues.html
https://www.cnbc.com/2023/01/25/microsoft-investigating-teams-and-outlook-outage-as-users-report-issues.html
https://www.jaegertracing.io/
https://opentelemetry.io/
https://opentelemetry.io/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://prometheus.io/
https://locust.io/
https://pypi.org/project/sklearn-som/
https://pypi.org/project/sklearn-som/

	Introduction
	Contribution

	Background
	Data Collection
	Anomaly Detection

	System Design
	Root Cause Service Inference
	Root Cause Function Identification

	Experimental Evaluation
	Evaluation Methodology
	Evaluation microservice applications
	Experiment Setup

	Alternative Methods
	Result Analysis
	Online Boutique application
	Overhead Analysis


	Related Work
	Conclusion
	References

