
Adaptive Offloading Inference for Delivering Applications in Pervasive
Computing Environments

�

Xiaohui Gu
�
, Klara Nahrstedt, Alan Messer

�
, Ira Greenberg

�
, Dejan Milojicic

�

Abstract

Pervasive computing allows a user to access an ap-
plication on heterogeneous devices continuously and con-
sistently. However, it is challenging to deliver complex
applications on resource-constrained mobile devices, such
as cell phones and PDAs. Different approaches, such
as application-based or system-based adaptations, have
been proposed to address the problem. However, existing
solutions often require degrading application fidelity. We
believe that this problem can be overcome by dynamically
partitioning the application and offloading part of the appli-
cation execution to a powerful nearby surrogate. This will
enable pervasive application delivery to be realized without
significant fidelity degradation or expensive application
rewriting. Because pervasive computing environments are
highly dynamic, the runtime offloading system needs to
adapt to both application execution patterns and resource
fluctuations. Using the Fuzzy Control model, we have de-
veloped an offloading inference engine to adaptively solve
two key decision-making problems during runtime offload-
ing: (1) timely triggering of adaptive offloading, and (2)
intelligent selection of an application partitioning policy.
Extensive trace-driven evaluations show the effectiveness of
the offloading inference engine.

�
The work was supported by a NASA grant under contract number

NASA NAG 2-1406, an NSF grant under contract number 9870736,
9970139, and EIA 99-72884EQ. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF, NASA, or the U.S.
Government.�

Xiaohui Gu and Klara Nahrstedt are affiliated with Department of
Computer Science, University of Illinois at Urbana-Champaign. Email:�

xgu, klara � @ cs.uiuc.edu	
Alan Messer was affiliated with Hewlett Packard Laboratories when

much of the work was done. He is now affiliated with Samsung R&D Labs,
USA. Email: alan messer@yahoo.com.

Ira Greenberg was affiliated with Hewlett Packard Laboratories when
much of the work was done. Email: ibg@earthlink.net�

Dejan Milojicic is affiliated with Hewlett Packard Laboratories, Palo
Alto, CA. Email: dejan @ hpl.hp.com

1 Introduction

Computer systems have evolved from the era of the
mainframe, which is shared by many people, and the era
of the personal computer, which is used by one person,
to the era of pervasive computing where a single user
possesses multiple heterogeneous mobile devices ranging
from a laptop, to a personal digital assistant (PDA), to a
cell phone. To accommodate device diversity, platform-
independent language runtime systems, such as the Java
Virtual Machine [10], and the Common Language Runtime
in Microsoft .NET [2], have been developed and used for
pervasive computing. Unfortunately, these solutions are
often associated with high levels of resource.

Different approaches have been proposed to solve the
problem by using application-based or system-based adap-
tations [4, 12, 13, 8]. However, these approaches often
require degrading an application’s fidelity to adapt it to
resource-constrained mobile devices. Moreover, adaptation
efficiency is often limited by coarse-grained approaches.
However, it is expensive to rewrite an application according
to the capacity of each mobile device. Hence, a fine-grained
runtime offloading system, called adaptive infrastructure
for distributed execution (AIDE) [11], has been proposed
to solve the problem without modifying the application
or degrading its fidelity. The key idea is to dynamically
partition the application during runtime, and migrate part
of the application execution to a powerful nearby surrogate
device. In order to ensure efficient program execution un-
der runtime offloading, two key decision-making problems
must be addressed: (1) when to offload, and (2) what policy
to use to select objects to offload.

In this paper, we present the offloading inference engine
(OLIE), which makes intelligent offloading decisions to en-
able AIDE to deliver applications on resource-constrained
mobile devices with minimum overhead. We identify two
important decision-making problems solved by OLIE: (1)
timely triggering of adaptive offloading, and (2) intelligent
selection of an application partitioning policy. To solve the
first problem, OLIE decides when to trigger the offloading
action. If an offloading action is triggered, OLIE decides

the new level of memory utilization to employ on the mobile
device given the current resource conditions (e.g., wireless
network bandwidth) in the pervasive computing environ-
ment. To solve the second problem, OLIE selects a proper
application partitioning policy that decides which program
objects should be offloaded to the surrogate and which
program objects should be pulled back to the mobile device
during an offloading action. To achieve both flexibility and
stability, OLIE employs the Fuzzy Control model [9] for
making offloading decisions. The Fuzzy Control model
has previously been applied to coarse-grained application
adaptations. The novelty of our approach is to apply the
model to fine-grained application adaptation via runtime
offloading.

One of the critical resource constraints of a mobile
device is its strict memory limitation. In this paper, we
focus on relieving the memory constraint of a mobile device
by offloading application objects at runtime. This will allow
a memory-intensive application to be used on a mobile
device that otherwise would not be able to support the appli-
cation without rewriting or fidelity degradation. Although
runtime offloading can be used to relieve other types of
resource constraints, such as CPU and energy constraints,
these issues are outside the scope of this paper. Using
extensive trace-driven experiments, we show that OLIE
can effectively direct AIDE to support resource-intensive
applications on a mobile device in a pervasive computing
environment with minimum overhead.

This paper is organized as follows. Section 2 presents
the system architecture and model. Section 3 describes the
design and algorithms used by OLIE. Section 4 presents the
performance evaluations. Section 5 discusses related work.
The paper concludes in Section 6.

2 System Overview

In this section, we introduce the overall architecture of
the distributed runtime offloading system, which is illus-
trated in Figure 1. The user wants to access a memory-
intensive application on a resource-constrained mobile de-
vice, such as a PDA. The application might be a distributed
application such as a content retrieval/editing application
from a remote server or a local-area storage device, or sim-
ply a local application such as a graphic image editor. When
the application memory requirement reaches or approaches
the maximum memory capacity of the mobile device, an
offloading action is triggered. The program objects on the
mobile device are partitioned into two groups1. Some of
the program objects are offloaded to a powerful nearby
surrogate to reduce the memory requirement on the mobile

1Currently, we assume only a two-way cut between a mobile device
and a surrogate device.

Figure 1. Distributed dynamic offloading sys-
tem architecture.

device2. AIDE is responsible for properly transforming
method invocations to objects that were offloaded to the sur-
rogate into remote invocations [11]. OLIE does not require
any prior knowledge about an application’s execution or the
resources of the system and the network to make offloading
decisions. OLIE collects and analyzes all of the execution
and resource information it needs at runtime.

We now introduce the system models that are used to
describe the runtime execution and resource consumption
of the object-oriented application programs. Without loss
of generality, we use Java programs in the rest of the paper
as examples. Program execution information is represented
as a connected weighted execution graph, as illustrated in
Figure 2. Each node represents a Java class and is annotated
with the amount of memory occupied by the objects of that
class. We chose a class as the graph node because: (1)
classes represent a natural component unit for all object-
oriented programs, (2) classes enable more precise offload-
ing decisions than coarser component granules such as
JavaBeans, and (3) classes enable us to avoid manipulating
a large execution graph with finer granules such as objects.
(For example, a simple image-editing Java program that
we examined created 16,994 distinct objects during 174
seconds of execution.)

Each class is annotated with an AccessFreq field, which
represents how many times the methods or data fields of
the class have been accessed. Currently, OLIE’s offloading
decisions are centralized. An application’s execution graph
is maintained as a whole on either the mobile device or the
surrogate. After the first partitioning, the execution infor-
mation on the remote side will be periodically collected
and merged into the local execution graph. Hence, each
node is also annotated with a location field to describe the

2We assume that the surrogate can be discovered in the local environ-
ment by some discovery service such as the Jini lookup service[1].

2

InteractionFreq: 12

BandwidthRequirement: 1 KB

Class: A;

Memory: 5KB;

AccessFreq: 10;

Location: surrogate;

isNative: false;

Figure 2. Illustration of our application pro-
gram execution graph model.

class’s current location. Some classes must always execute
on the mobile device, such as classes that invoke device-
specific native methods. Thus, each node is also annotated
with an isNative field to indicate whether the class can be
migrated from the mobile device to the surrogate. Each
edge represents the interactions between two classes. It
is annotated with two fields, InteractionFreq and Band-
widthRequirement. The InteractionFreq field represents the
number of interactions between two adjacent classes. The
BandwidthRequirement field represents the total amount of
information transferred between two adjacent classes.

To make adaptive offloading decisions, OLIE monitors
the mobile device, the surrogate device, and the network.
The available memory on the mobile device is monitored
by tracking the amount of free space in the Java heap,
which is obtained from the Java Virtual Machine’s (JVM)
garbage collector. For simplicity, the wireless network
conditions, including bandwidth and delay, are estimated
by periodically invoking the ping system utility. Whenever
some significant changes happen (e.g., a big object is
created or deleted, or a large wireless bandwidth fluctuation
occurs), OLIE examines the current information about the
memory utilization and available wireless network band-
width to decide whether offloading should be triggered. If
an offloading action is triggered, OLIE determines the new
target memory utilization on the mobile device based on
the current system/network conditions. Next, OLIE refers
to the partitioning selection policy to decide which classes
should be offloaded to the surrogate and which classes
should be pulled back to the mobile device.

3 Design and Algorithms

In this section, we present the design details of OLIE.
Although runtime offloading allows a memory-intensive
application to be used on a mobile device, it also brings
some overhead, such as: (1) migration costs, and (2)
remote data access and function invocation delays caused
by wireless communication. Hence, the major goal of OLIE
is to make intelligent offloading decisions to relieve the

memory constraint with minimum overhead. There are two
major decision-making problems addressed by OLIE: (1)
timely triggering of adaptive offloading, and (2) intelligent
selection of an application partitioning policy.

3.1 Triggering of Adaptive Offloading

OLIE makes the offloading triggering decision based on
the Fuzzy Control model [9]. The Fuzzy Control model in-
cludes: (1) a generic fuzzy inference engine based on fuzzy
logic theory, and (2) decision-making rule specifications
provided by system or application developers. For example,
rules for making adaptive offloading triggering decisions
can be specified as follows.

if (AvailMem is low) and (AvailBW is high)
then NewMemSize � � low;
if (AvailMem is low) and (AvailBW is moderate)
then NewMemSize := average;

The AvailMem and AvailBW variables are input linguis-
tic variables that represent the current memory utilization
and available wireless network bandwidth, respectively.
The NewMemSize variable is the output linguistic variable
representing the new memory utilization on the mobile
device. Low, moderate, and high are linguistic values. The
mappings between the numerical value (e.g., 500 KB) of a
linguistic variable (e.g., available memory) and its linguistic
values (e.g., low) are defined by the membership functions.

Figure 3 (a) illustrates a sample membership function
for the linguistic variable AvailMem. In this example, if
the numerical value of the AvailMem variable is within
[0,800], the stochastic confidence that linguistic variable
AvailMem belongs to the set of linguistic value low is 100%.
If the numerical value of the AvailMem variable is within
[800,900], the stochastic confidence that linguistic variable
AvailMem belongs to the linguistic value low is the linear
decreasing function from 100% to 0%. The intersection
between different linguistic values (e.g., the values within
[850,900], which are between low and moderate) represents
uncertainty in stochastic confidence and the result can
belong to either linguistic value “low” or “moderate,” but
with different confidence probabilities.

Membership functions are part of the rule specifications
provided by the application developer. If the current
system and network conditions match any specified rule,
an offloading action is triggered. In comparison to simple
threshold-based offloading triggering, the Fuzzy Control
model allows OLIE to implement more expressive and
configurable triggering conditions.

3.2 Intelligent Partitioning Selection

Once an offloading action is triggered, OLIE refers to
its partitioning selection policies to decide which classes

3

0

1

800

850

900

1500
 4000

4150

4200

5500
 7500
 8000

Low
 Moderate
 High

Confidence

Available

Memory

(KB)

Figure 3. Illustration of a membership func-
tion for the linguistic variable AvailMem.

should be migrated to the surrogate and which classes
should be pulled back to the mobile device given the new
target memory utilization established by the triggering de-
cision. OLIE solves this problem by comprehensively con-
sidering various inter-class dependencies and interactions,
i.e., the interactionFreq and BandwidthRequirement fields
annotating each edge in the execution graph illustrated in
Figure 2.

OLIE first executes a coalescing process based on a
MINCUT heuristic algorithm [14] to find all possible 2-way
cuts of the execution graph. First, all the nodes that cannot
be migrated to the surrogate (i.e., nodes with their isNative
field set to true) are merged together into one node and
placed in the first partition set, which belongs to the mobile
device. The rest of the nodes form the second partition set,
which belongs to the surrogate. Second, starting from the
merged node, one of the neighbors of the first partition set
is selected according to some inter-class dependency and
interaction metrics, and merged into the first partition set.
During the above coalescing process, each merging step
generates a possible 2-way partitioning. This process is
repeated until the first partition set contains all the nodes.
OLIE then selects the 2-way partitioning that minimizes the
predefined metrics.

We have designed several policies to select among dif-
ferent 2-way partitionings. For example, we can use the
bandwidth requirement (

����� �
from � � to � �) as the metric.

In this case, we always merge into the first partition set
the neighbor node with the largest bandwidth requirement
in the second partition. This OLIE algorithm variation,
called OLIE MB, aims to minimize the wireless network
bandwidth requirement caused by runtime offloading. We
can also use the interactionFeq field in the execution graph
(� ��� �) as the selection metric. This algorithm, called
OLIE ML, tries to minimize the interaction delay caused
by remote data accesses and function invocations.

Finally, we consider a combined selection metric 	�
 =� � ���
�
�� ���
�
���
�� (where ��
 is the current memory size
of class k recorded in the execution graph). This algorithm,
called OLIE Combined, comprehensively considers the

� � : memory size for Java class � ;���
= ����� , ��� ,... � �"! : execution graph;	#�%$: the maximum memory size for a class node;

NewMemoryUtilization &('#) ;
while offloading service is on

while (no significant changes happen)
perform executions and update EG accordingly;
while (*�� � � CMT)

create a new node to represent class � ;
//make the adaptive offloading triggering decision
//set numerical values for all input linguistic variables
SetLingVar();
// map the numerical values to the linguistic values
fuzzify();
FuzzyInferencEngine();
// map the linguistic values to the numerical values
defuzzify();
if (NewMemoryUtilization +#+,'#))
then offloading is not triggered;
else //make the partitioning decision

merge all non-offloadable classes into a node N;
while (size(EG) � 1)

merge (N, one of its neighbors �.- �);
if (current cut is better) bestPos +/�.- � ;0#132�4 � 4 �6587:9<;>= �@?@ACBDA6ED�GF6A = �H��� ,..., �I= ACJLK�M ; J ! ;0#132�4 � 4 �6587 J6N8O�O ;QPSR K�A = �H�I= AQJLK�M ; J6T � ,..., � �"! ;

Figure 4. Decision-making algorithm used by
OLIE.

bandwidth requirement, interaction frequency, and mem-
ory size of the candidate neighbor during the coalescing
process. We define the comparison of any two combined
metrics 	
 and 	 ? as follows. 	
 U 	 ? if and only if 3:

V �XW
�D���
 ' �S��� ?� 9HRSY Z V<[W �

���
 '\� ��� ?
� 9<RDY Z V<] W �

? '\�

� 9<RDY ^`_ (1)

where V � (1 a i a 3) are nonnegative values such that]b�@c � V
� +) . Equation 1 states that we want to keep

the classes that are most active (i.e., that have the largest
interaction frequencies and bandwidth requirements) and
occupy the smallest amount of memory on the mobile
device, and offload the classes that are most inactive and
occupy the largest amount of memory to the surrogate. To
allow customization, we use V �>d)\ae�fahg3i to represent

3 j6kmlDn , o kpl�n , and q kpl�n represent the maximum values of the inter-
class bandwidth requirement, inter-class interaction frequency, and class
memory size, respectively.

4

the importance of the � 4�� metric in making the offloading
decision. These weights can be adaptively configured
according to application requirements and user preference.

3.3 Class Granularity Problem

As mentioned before, classes were selected as the exe-
cution graph nodes. In practice, we found that the memory
sizes of some classes are too large to be treated as single
nodes. For example, the string class in the JavaNote
application occupied 5.9MB during execution. If we offload
these “big classes,” they will cause large migration and
remote invocation overhead. If we do not offload them, we
cannot meet the memory constraint. Hence, if the memory
size of a class exceeds a certain threshold, we create a new
node in the execution graph to represent the class. All
the objects belonging to the “big class” are distributed into
two sets, each of which represents a node in the execution
graph. Thus, the “big class” is split to enable more precise
control of memory offloading. The complete decision-
making algorithm used by OLIE is illustrated in Figure 4.

4 Performance Evaluation

In this section, we evaluate the performance of the
dynamic offloading system under the direction of OLIE
using extensive trace-driven simulations.

Evaluation methodology. The application execution
traces are collected on a Linux desktop machine. The trace
file records method invocations, data field accesses, and
object creations and deletions by querying the instrumented
JVM. Without loss of generality, we use ChaiVM, HP’s
personal JVM for embedded and real-time systems, for our
experiments. The wireless network traces are collected
using the Ping system utility on an IBM Thinkpad with an
IEEE 802.11 WaveLAN network card.

The roaming scenario we selected for evaluation was
conducted in the Digital Computing Laboratory building
at the University of Illinois in Urbana-Champaign. The
network trace was obtained by having a person start in a
research lab on the second floor, enter an elevator and ride
it to the basement, and then exit the elevator and walk to
a stairway. The measured network bandwidth stays around
4.8Mbps until the person enters the elevator where it drops
to about 2.4Mbps. It then rises to about 3.6Mbps when
the person walks through the basement. Because the size
of the parameters used for function interactions and data
accesses is quite small (� 64 bytes in all execution traces),
we only measure the average round-trip time (RTT) for
small packets, which is about 2.4 ms on average.

The simulator is driven by the execution and network
traces described above. The simulator emulates a remote

function invocation overhead by stretching the total execu-
tion time by � $�$���� because the application execution is
delayed until the function on the remote site receives the
invocation message. However, the simulator emulates a
remote data access by stretching the total execution time
by � $�$ because the application execution has to wait until
the remote side receives the data request and then sends
the data back to the local side. The migration overhead is
simulated by increasing execution time using the equation,�	� A 9<; O�

������������������������� �"!#�$����%FLN8O>O�A � K R E R �@? RS= ?@A =LRD� B'& �GB�K)(.

For comparison, we also implemented two other com-
mon approaches to making offloading decisions, random
and least recently used (LRU). Unlike OLIE, which adap-
tively triggers offloading by comprehensively considering
both memory and wireless network conditions, random and
LRU adopt a simple fixed policy that triggers offloading
when the available memory is lower than 5% of total
memory and the new memory utilization constraint is less
than 80% of total memory. In all of our experiments, OLIE
uses the offloading triggering rules shown in Section 3.1.
The weights V � d) a �,a g i in Equation 1 are all set
as �] . Moreover, the random and LRU algorithms do not
consider the “big class” problem, while OLIE splits the
big class node into smaller ones with memory size smaller
than 500KB. For the application partitioning problem, the
random algorithm randomly selects some classes to keep
on the mobile device and migrates the rest of the classes
to the surrogate. The LRU algorithm offloads those classes
that are least recently used according to the AccessFreq field
of each class.

Results and analysis. Table 1 lists the descriptions of
three applications used in our experiments. DIA is a simple
Java image editor. For the execution trace, we opened a
180KB picture image and dragged it around. Biomer is
a graphical molecular editor that can be used to visualize
and edit the chemical structure of various molecules. For
the execution trace, we drew three complex molecules.
The application is both very memory intensive and CPU
intensive. JavaNote is a Java text editing program. Its
execution trace is extremely memory intensive because we
use JavaNote to read a very large text file (600KB). This
causes JavaNote to keep creating and deleting objects of the
string class. We set the maximum memory capacity of the
mobile device (i.e., the Java heap size) to 8MB for DIA and
Biomer, and to 7MB for JavaNote, according to their peak
memory requirements. 4

The first performance metric we use is the total offload-
ing overhead, which consists of migration overhead, remote
data access overhead, and remote function call overhead.

4Although the memory capacity of mobile devices will continue to
increase, the memory limitation will still exist when the user runs multiple
applications or multiple instances of the same application (e.g., multiple
editors).

5

Program Description Lifetime Peak Mem oversizing #classes #objects

DIA simple image editor 174 s 8,949 KB 11% (8MB) 100 16,994
memory intensive

graphical molecular
Biomer editor, both memory 261 s 10,668 KB 34% (8MB) 105 32,118

and cpu intensive
text editor, open a

JavaNote 600 KB file, extremely 268 s 7,972 KB 14% (7MB) 85 13,122
memory intensive

Table 1. Descriptions of the application suite used in our experiments

0

50

100

150

200

250

300

350

400

450

500

DIA
 Biomer
 JavaNote

O
ff

lo
ad

in
g

 O
ve

rh
ea

d
 (

se
co

n
d

)

Random

LRU

OLIE_MB

OLIE_ML

OLIE_Combined

4840
 4390

Figure 5. Total offloading overhead by the
five different offloading algorithms. Random
and LRU cause more than 4000 seconds of
overhead for JavaNote.

These overheads extend the total execution time of the
three applications. Figure 5 illustrates the total offloading
overheads of the three applications by random, LRU, and
the three variations of the OLIE algorithm, respectively.

The results show that the OLIE algorithms consistently
select classes more accurately, thereby achieving much
less overhead than the random and LRU policies. This
occurs because, unlike OLIE, both random and LRU do
not consider inter-class dependencies and cannot adaptively
trigger the offloading action according to fluctuations in
the wireless network. Moreover, random and LRU do not
solve the “big class” problem, which causes large migration
overhead during offloading. Compared to the other two
OLIE variations, OLIE Combined further reduces the of-
floading overhead, especially for the very memory-intensive
applications, Biomer and JavaNote. The performance
improvements by OLIE Combined can be as high as 66%
for DIA, 73% for Biomer, and 94% for JavaNote when
compared with random and LRU. This demonstrates that
the combined selection metric (Equation 1) very effectively
selects the proper application partitioning.

For a detailed analysis, Figure 6 shows the three different

0

20

40

60

80

100

120

Migration
 Remote Data

Access

Remote

Function Call

T
im

e
(s

ec
o

n
d

)
 Random

LRU

OLIE_MB

OLIE_ML

OLIE_Combined

Figure 6. Offloading overhead breakdowns
for the Biomer application by the five different
offloading algorithms.

offloading overheads (migration, remote data access, and
remote function call) for the Biomer application for the five
different offloading algorithms. The first four algorithms
achieve better or worse performance for the three different
overheads because they only consider partial inter-classes
depedencies/interactions. However, OLIE Combined uni-
formly achieves the lowest overheads for both migration
and remote interaction delay overhead, especially for the
latter. (Remote interactions consist of remote data ac-
cesses and remote function calls). The reason is that the
OLIE Combined algorithm comprehensively considers all
inter-class interactions (i.e., access frequency and band-
width requirements), which guides the offloading system
to properly split the application into two least-connected
partitions.

The second considered performance metric is the
average interaction delay, which is measured by� ��� A 9H; K�A�� R K R�� F6F6ACJCJ�� �
	�	 T ��� A 9<; K�A��:N � F K�� ;Q��
pR ? ?�� �
	�	�� [��� � � R K R�� F6F6AQJCJ6T��:N � F K�� ;>��
mR ? ? � .
This metric represents the average interaction time stretch
caused by remote data accesses and remote function calls.
For each remote data access, the interaction delay is the
time required to send the request to the remote site and
to receive the requested data from the remote site, which

6

0

50

100

150

200

250

DIA
 Biomer
 JavaNote

av
er

ag
e

in
te

ra
ct

io
n

 d
el

ay
 (

m
ic

ro
se

co
n

d
)

Random

LRU

OLIE_MB

OLIE_ML

OLIE_Combined

0
 0
 0
 0

457

Figure 7. Average interaction delay of the
three applications by the five different of-
floading algorithms. The random algorithm
causes more than 400 microseconds of inter-
action delay for the JavaNote application.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

DIA
 Biomer
 JavaNote

ba
nd

w
id

th
 r

eq
ui

re
m

en
t (

K
B

)

Random

LRU

OLIE_MB

OLIE_ML

OLIE_Combined

1,539,822
 1,580,720

Figure 8. Total network bandwidth require-
ments of the three traces by the five policies.
The random and LRU algorithms cause more
than 1,500MB of total network traffic for the
JavaNote application.

is close to the RTT of the wireless connection. For each
remote function call, the interaction delay is the time
required to send the function request and its parameters to
the remote site, which is close to half of the RTT for the
wireless connection.

The average interaction delay metric is very important
for interactive applications because they are sensitive to the
response time of each interaction. We do not want dynamic
offloading to significantly compromise the responsiveness
of the application. Figure 7 illustrates the average inter-
action delays for the five different offloading algorithms.
The results again show that OLIE Combined achieves the
best performance. The delay reduction can be as high as
95% for Biomer and 100% for DIA and JavaNote. The
reason for the delay reduction is that OLIE Combined
reduces remote data accesses and remote function calls to
the minimum, even zero during certain time periods, by

explicitly considering interactions between classes during
offloading.

The third performance metric is the total bandwidth
requirement, which is measured as the sum of the total size
of the migrated objects and the total size of the parameters
that are passed during remote interactions. Figure 8 shows
the bandwidth requirements for the five different offloading
algorithms. We observe that OLIE always requires much
less bandwidth than the other two approaches, and that
OLIE Combined always requires less bandwidth than the
other two OLIE variations.

5 Related Work

Recently, both application-based and system-based
adaptations have been proposed to overcome resource con-
straints and environmental changes (e.g., wireless network
fluctuations). The Odyssey project [12, 13] introduced an
application-aware adaptation service within the end host to
accommodate resource changes, such as wireless network
bandwidth fluctuations. Fox et. al. proposed an application-
based adaptation mechanism to meet client and network
variations, called distillation. However, both solutions
require modifying applications. The Puppeteer project [8]
supports adaptation without modifying applications. How-
ever, they assume that the application is already written in a
component-based fashion and has exported component in-
terfaces to the system. In the Gaia project [5], we proposed
a dynamic service composition and distribution framework
for delivering component-based applications in a pervasive
computing environment. To support application-specific
adaptation, application developers can use meta-level pro-
gramming tools for deploying their applications in perva-
sive computing environments [6, 16, 3].

One of the key differences between our dynamic of-
floading system and the above work is that pervasive ap-
plication delivery can be realized without modifying the
application or assuming that the application is developed in
a component-based fashion and exports interfaces to control
the components. Instead, a monolithic application that
was not designed for distributed execution is dynamically
partitioned at runtime based on its execution history and
system/network resource information.

Other closely related work includes application parti-
tioning under different contexts. The Coign [7] project
proposed a system to statically partition binary applications
built from COM components. Unlike Coign, our approach
performs dynamic runtime partitioning without any offline
profiling. Furthermore, we do not assume a component-
based application and enable mobile delivery for any ap-
plication, even a complex monolithic application. More
recently, Teodorescu et. al. [15] presented a system to
support mobile Java program deployment by partitioning

7

Java program execution between system nodes and mobile
devices. The system nodes prepare a Java application for
execution on a mobile device by generating device-specific
native code using a Just-In-Time compiler and a customized
Java runtime system. We believe that their approach is
complementary to our work. However, they did not address
the problem of runtime partitioning.

6 Conclusion

We have presented an adaptive offloading inference en-
gine (OLIE) for making intelligent decisions in the runtime
offloading system. OLIE directs the runtime offloading
system to efficiently enable pervasive application delivery
without degrading application fidelity or expensive applica-
tion rewriting. OLIE makes offloading decisions without
assuming any prior knowledge about the application’s exe-
cution or system/network conditions in pervasive comput-
ing environments.

The major contributions of this paper include: (1)
identifying two key decision-making problems for dynamic
offloading, namely timely triggering of adaptive offload-
ing and intelligent selection of an application partitioning
policy; (2) applying the Fuzzy Control model to OLIE to
achieve both flexibility and stability in making the adaptive
offloading decision; and (3) proposing three policies for
selecting application partitions that consider various inter-
class dependencies and interactions. Our extensive trace-
driven evaluations show that with OLIE, the runtime of-
floading system can effectively relieve memory constraints
for mobile devices with much lower overhead than other
common approaches.

Future research directions for the dynamic runtime of-
floading system include applying the idea to constraints on
other mobile device resources such as CPU and power.

7 Acknowledgment

We wish to thank T.J. Guili at Stanford University for
helping us collect execution traces. We also wish to thank
Deqing Chen at the University of Rochester for his helpful
discussions. Finally, we wish to thank the anonymous
reviewers for their helpful suggestions.

References

[1] The Jini Network Technology. See website at
http://wwws.sun.com/software/jini/.

[2] The .NET Common Language Runtime. See website at
http://msdn.microsoft.com/net.

[3] V. Adve, V. Vi Lam, and B. Ensink. Language and Com-
piler Support for Adaptive Distributed Applications. ACM

SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems (OM 2001), Snowbird, Utah, June 2001.

[4] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer.
Adapting to Network and Client Variation Using Active
Proxies: Lessons and Perspectives. IEEE Personal Commu-
nications, Special issue on adapting to network and client
variability, August 1998.

[5] X. Gu and K. Nahrstedt. Dynamic QoS-Aware Multime-
dia Service Configuration in Ubiquitous Computing Envi-
ronments. Proc. of 22nd IEEE International Conference
on Distributed Computing Systems (ICDCS 2002), Vienna,
Austria, July 2002.

[6] X. Gu, D. Wichadakul, and K. Nahrstedt. Visual QoS
Programming Environment for Ubiquitous Multimedia Ser-
vices. Proc. of IEEE International Conference on Multime-
dia and Expo 2001(ICME2001), Tokyo, Japan, August 2001.

[7] G. C. Hunt and M. L. Scott. The Coign Automatic Dis-
tributed Partitioning System. Proc. of the 3rd USENIX Sym-
posium on Operating System Design and Implementation
(OSDI’99), February 1999.

[8] E. Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based Adaptation for Mobile Computing. Proc.
of 3rd USENIX Symposium on Internet Technologies and
Systems, March 2001.

[9] B. Li and K. Nahrstedt. A Control-based Middleware Frame-
work for Quality of Service Adaptations. IEEE Journal of
Selected Areas in Communications, Special Issue on Service
Enabling Platforms, 17(9), September 1999.

[10] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, second edition, 1999.

[11] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen,
T.J. Guili, and X. Gu. Towards a Distributed Platform
for Resource-Constrained Devices. Proc. of IEEE 22nd
International Conference on Distributed Computing Systems
(ICDCS 2002), Vienna, Austria, July 2002.

[12] B. Noble. System Support for Mobile, Adaptive Applica-
tions. IEEE Personal Coomunications, 7(1), February 2000.

[13] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. Eric
Tilton, J. Flinn, and K. R. Walker. Agile Application-
Aware Adaptation for Mobility. Proc. of the 16th ACM
Symposium on Operating Systems Principles (SOSP), Saint-
Malo, France, October 1997.

[14] M. Stoer and F. Wagner. A simple min-cut algorithm.
Journal of the ACM, 44(4), pp.585-591, July 1997.

[15] R. Teodorescu and R. Pandey. Using JIT compilation
and configurable runtime systems for deployment of Java
programs on ubiquitous devices. Proc. of 3rd International
Conference on Ubiquitous Computing (Ubicomp 2001), At-
lanta, Georgia, September 2001.

[16] D. Wichadakul, X. Gu, and K. Nahrstedt. A Programming
Framework for Quality-Aware Ubiquitous Multimedia Ap-
plications. Proc. of ACM Multimedia 2002, Juan Les Pins,
France, December 2002.

8

