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1 DETAILED PROOFS AND ADDITIONAL EX- PinpointMaliciousSRE7, G;)

AMPLES 1. for everyK € [|Cq/, [IN/2]]
2. Q=0,R=0
Proposition 1: Given an inconsistency grah letC; bea | 3- for every node in G
minimum vertex cover ofs. Then the number of malicious| 4 compute{Ny| + [Cg |
service providers is no less thafig|. 5. if (|Np| +|Cer | > K)
. . 6. Q=QuU{p}
Proof: We can prove Proposition 1 by contradiction. 7. final malicious node sek — R U

Suppose the number of malicious service providers is Ies% if R=0
than |C¢|. Then the graph formed by malicious nodeps 9:

. . . continue
cannot cover the entire graph, which means there existsy  else
one edge that is not incident to any of the malicious nodes11 for everyG;
Thus, the edge must be incident to two benign nodesl2 computéM-
. )

Since two benign nodes always agree with each other13 set(); to the subset of) appearing inG;
this contradicts with the existence of an inconsistendy lir] 14: if (Q_zm M; # 0) ’
between them. U 15. R=RUM,;

Proposition 2. Given an integrated inconsistency grapgh | 16.return all sets ofz
and the upper bound of the number of malicious servigce

ﬁrgxgiﬁ[;’ifa nodep must be a malicious service prowderFig 1. Malicious service provider pinpointing algo-

rithm.

[Np| +1Ca, | > K 1)

where|N, | is the neighbor size of, and|CG%| is the size
of the minimum vertex cover of theesidual inconsistency service providers in the residual gramb |. Since the total

graph after removing and its neighbors frond-. number of malicious service providers is no more tian
Proof: We can prove Proposition 2 by contradiction|n,, | + |Ceq; | < K, which contradicts with the assumption
Suppose there exists a benign service provigethat |N,|+ |CG’ | > K. O

satisfies| Ny,| + |Cc; | > K. Sincep is inconsistent with its  Figure 1shows the pseudo-code of our integrated attes-
neighbors, the neighbors must be malicious. Then the totation graph analysis algorithm, whefeis the final set of
number of malicious service providers can be calculated byalicious service providers.

adding the number af's neighbors and the number of ma- For example, in Figure 2, the true malicious nodes are
licious service providers in the residual graph. Accordingy,, ps, pg, p10}. If we setK = 4, the inconsistency graph

to Proposition 1, we can use the size of a minimum vertemalysis return§) = {p;}. Furthermore, by checking the
cover to serve as the lower bound number of maliciougconsistency graph of the functiofs, we can findQ; =

{p7} has overlap with the minority cliqu&/s = {p7, p10}.
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We now present our analytical study results about IntTest.
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Fig. 3. Malicious attackers pinpointing accuracy com-
Fig. 2. Another example for integrated graph analysis parison with 40% service providers being malicious.
with four malicious nodes.

N . of malicious service providers abewhereb = by +...+b,,.
Proposition 3. Given an accurate upper bound of therhs in order to escape detection in per-function consis-
number of malicious service providers’, if malicious tency graphs, attackers need to take majority in all atcke
service p_r_owders always collude together, IntTest has(nctions, which means they can attack ugttunctions at
false positive. - . different time, wheregy, < b < g,41. That is, attackers can

Proc_)f: Accprdmg to Proposition 2, any r_10de |dentn‘|ecbn|y attack functionsfi, ..., f. For functionsfy 1, ..., f,
through inconsistency graph must be malicious. Therefotgisckers cannot form a majority so that any misbehavior
any node in the subset of malicious nodes identified through these functions will be detected by our algorithm.
inconsistency graph, e.g2;, must be malicious. If, for  ovever, attackers cannot form majority in all the

all functions, ; N M; = 0, our algorithm returns sef  f,nctions at the same time. The number of functions that

as malicious set, which contains only malicious servicgackers can attack simultaneously is significantly kit
providers. Otherwise, there exists some functfinsuch |t ¢ satisfies the following equation

that Q, N M; # 0. For anyp, € (; N M;), p, must be

malicious because it belongs . Suppose our algorithm i jlase

has false positives, which means there exists a benign node Z gisbs Z Yis (2)

pg, Wherep, € M; butp, ¢ Q;. Sincep, € M;, p, must =t =t

be outside of the maximum clique. Thus, the maximufhen attackers cannot attack more tharfunctions at the

clique must be formed by malicious nodes. This indicat&g&me time, which means the damage dedvee m.

that malicious nodg, must disagree with at least one of the Moreover, a single attacker cannot participate in unlim-

malicious nodes in the maximum clique, which contradicited number of service functions. By attacking functifn

with our assumption that attackers always collude togeth&e attacker may producg inconsistency links with all

as a single group. ] the benign service providers provisionitfg whereg; is
Although our algorithm cannot guarantee zero false po#e number of benign service providers in that function.

itive when there are multiple independent colluding groupSuppose an attackey, provides functions;, fi+1, ... fitx-

it will be difficult for attackers to escape our detectiontwit In the global inconsistency graph, in order to escape de-

multiple independent colluding groups since attackers wiection, every single attackey needs to limit the number

have inconsistency links not only with benign nodes b@f inconsistency links. If attackers are too greedy to &ttac

also with other groups of malicious nodes. more service functions or attack functions that they cannot
We now quantify the damage that collusive attackers c&fm the majority, they will get detected by our algorithm.

make without being detected. We assume that collusive

attackers are intelligent in that they can select servi

functions to attack together in order to maximize th ADDITIONAL RESULTS AND OVERHEAD

damage they can bring to the system. The damage is defife@MPARISON

as follows. We show the results when the percentage of malicious
Definition 5: The Damage Degree, denoted byD, is the service providers to 40% and repeat the above two sets
number of the service functions on which malicious serviasf experiments. Figure 3(a) shows the comparison results
providers misbehave without being detected. under the aggressive attack scenarios while Figure 3(b)

Since attackers can escape detection by forming thkows the comparison results under the conservative attack
majority in per-function consistency graphs, attackens cacenarios. The results show that IntTest still achievetebet
select service functions that have less benign servidetection accuracy than the other alternatives. Note that
providers. Suppose there areservice functionsfy, ..., f,,, when there are a high percentage of malicious attackers,
ranked in the ascending order of the number of benignajority voting based schemes fail to identify any attacker
service providers participating in the function. The numbéi.e., Ap = 0), while IntTest can still detect all attackers
of benign and malicious service providers participating iwhen the attackers try to compromise many service func-
the functionf; areg; andb;, respectively. The total numbertions.
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Fig. 5. Sampled sensitivity study results.

Fig. 4. Performance impact of IntTest to distributed

data processing services. _ _
tuple processing delay under different data rate. The tesul

show that IntTest imposes little overhead to the dataflow

We also measure the computation overhead for the grarbrlﬁ)cessipg delay. Note that _thg processing delay is lower
analysis. Table 1 shows the graph analysis time for bolﬂll?der higher data rate. This is because.the turnaround
consistency graphs and inconsistency graph including b%'lrﬁ‘e is smaller when more ‘?'ata are sent into the sy_stem
the mean and standard deviation values, where the num Fore the system reaches its maximum (_:apacny. Figure
of service providers varies from 200 to 1000. The analysi ) shows the average per-tuple processing delay under
time for consistency graphs is the sum of per-functio ifferent numbers of service hops. The results show that

analysis time. As the table shows, the total time for boff!f sghtlemernIz |mpoies dab]?ut tens of .mlcroiecond.s
consistency and inconsistency graph analysis is less t ral elay. As It € over eah ot our a};[estaf;!on_ scheme Is
140 milliseconds given 1000 service providers and 20 pt low, we also expect the network traffic impact to

service components in the system. Note that we St&(E-Iocated applications to be low as well. Additionally,

from a complete graph connected by consistency link& €an leverage VM resource capping mechanisms (e.g.

only and IntTest only triggers the graph analysis algorithfﬁgrouIO in KVM) to isolate the performance impact to other

when any new inconsistency links are captured by tI)"aw(pplications. Note that our experiments are conducted in a
probabilistic attestation. Although the global inconsisty production cluster system with high speed networks. Thus,

graph analysis algorithm relies on the solution to th_tgIe pracessing delay does npt increase too much when we
minimum vertex cover problem, a known NP-hard problenjl',1Crease the number of service hops.
we observe that the computation time is generally short. If We now evaluate the impact of various system parameters
all malicious service providers collude, the inconsisten®n the effectiveness of our algorithm. Figure 5(a) shows
graph will be bipartite because there are only edges betweRa time to detect each malicious service provider under
the benign and the malicious service providers. In thififferent attestation probability?,. With higher attestation
case, the minimum vertex cover is equivalent to the magrobability, IntTest has more opportunities to capture the
imum matching problem that can be solved in polynomigheaky occasional misbehavior of attackers. Thus, with
time [1]. We can also employ approximation algorithms [24 higher attestation probability, we can detect malicious
if the inconsistency graph analysis overhead becomes #&vice providers earlier. However, the system overhead,
bottleneck in our system. in terms of attestation traffic, would increase accordingly
We now evaluate the impact of our integrity attestatiosince IntTest performs attestation on more data. Figure 5(b
scheme on the data processing delay, an important perfeltows the detection rate under different misbehaving prob-
mance metric for data processing systems. The data pafilities, where attestation probability is fixed at 0.2.eTh
cessing delay is measured as the average tuple turnaroorate frequently malicious service providers mishehawe, th
time, which is the duration between the time when theore opportunities are given to our scheme to capture
first data tuple enters the system and the time when ttiee misbehavior. Therefore, it takes less time to detect
last data tuple leaves the system over the total numbmalicious service providers with a higher misbehaving
of tuples processed. Figure 4(a) shows the average pembability.



4 LIMITATION DISCUSSION 5 RELATED WORK

Remote attestation techniques often use a challenge-
response paradigm to ensure that a remote software plat-
Although our experimental results have shown thddrm truthful executes a program that is not compromised
IntTest can achieve better scalability and higher detactior altered by attackers. Attestation can be performed at
accuracy than the state-of-the-art schemes (i.e., majsystem-level or application-level. System-level attiésita
ity voting, consistency graph analysis only scheme [38fechniques [3]-[11] require a trusted entity (e.g., trdste
IntTest still has a set of limitations that require furthierdy.  hardware or secure kernel) to co-exist with the remote

Malicious service providers may still escape detectigiftested platform. For example, SWATT [7] computes a
if they can manage to satisfy three conditions: 1) on ecksum_of the memory whenever receiving a challenge.
attacking a limited number of service functions, 2) taking/ND Provides a fine-grained code attestation scheme for
majority in all the attacked services, and 3) having ledistributed systems [10]. Alam et al. proposed a set of

inconsistency links than benign service providers. HowevéPecification and verification schemes for attesting the
IntTest makes it difficult for attackers to attack populap€havior of business processes [12]. However, in SaaS
service functions since popular service functions oftdfiouds, it is often impractical to assume the existence of
attract many different service providers for profit. Th@& trusted entity at the remote third-party service provider

attackers can hardly take majority in those popular serviSd€: [N contrast, our approach does not require any trusted
functions. Moreover, service provisioning in SaaS clouddity to be deployed on the remote attested service provide

is not free, which involves registering services, payinﬁ'te'

resources and hosting fees, and passing the service hostingPplication-level auditing schemes have been proposed
verification. Malicious attackers have to pay a high costnder different distributed computing contexts such as-pee
to take majority in popular services. In contrast, attagkirfO-Peer systems [13], volunteer computing systems [11],
unpopular services will have much smaller impact sinddblish-subscribe systems [14], cloud storage systen]s [15
only a few users rely on them. More importantly, thé&listributed web applications [16], and database sys-
popularity of different service functions is only availabl ttms [17]. Such schemes either construct integrity evi-
to the portal node of the cloud. It is difficult, if notd_ence through cryptographical transfor_manon of applica-
totally impossible, for individual service providers toggs tion data [13], [15] or rely on emulation [16], [18] to
the popularity of different service functions. Thus, it isdetect_deviation fr_om expected execution results. Gelyeral
highly possible that the attackers will try to compromis&P€aking, an auditor needs to challenge the untrusted party

a randomly selected service and fail to take the majorifjeriodically. Auditors could be trusted parties [16], or
and thus expose themselves. a group of untrusted auditors [13], [19]. For example,

Manrose et al. proposed a remote attestation technique

_Let us assume that attackers can infer the popularity @f; focuses on detecting misbehaviors of skipping com-
different services from some side channels and only attagKiations for lower resource expenditure [11]. The worker

those unpopular services where they can take majorif,ges have to provide execution proofs with the help of

Under those circumstances, it is more effective t0 applympiler techniques. Thus, the verifier needs to know the
challenge-based approaches (e.g., [3]-[6]) that rely en thyerma| workflow of the computation performed on the
portal or a trusted entity to redundantly compute resulig,yer nodes for detecting cheating behaviors. Belenkiy
for verification. However, the portal node or a trusted; 5 proposed an application-level verification approach
entity may not have the required software or sufficieqfa¢ relies on the trusted entity (the boss) to redundantly
resources to redundantly compual service functions. compyte results for verifying result correctness [18]. In

Thus, the benefit of our approach is to reduce the relian&@mparison, IntTest supports black-box service integrity

on the challenge-based verification. Our approach can Bfestation in cloud systems, which does not require any in-

combined with the challenge-based scheme. For exampl&y | knowledge about the third-party services. Moreover
we can use IntTest as the default attestation scheme &l approach supports integrity attestations for largeesc
dynamically invoke the challenge-based verification onl¥,,g cloud systems where the portal nodes do not have the

when the system cannot make the pinpointing decision gb¢are or sufficient resources to redundantly compute the
encounter conflicting pinpointing results. results returned by different services.

The current prototype of the IntTest system does not sup-Previous work has studied the problem of verifying the
port non-deterministic service functions where the servicorrectness of remote computations. Golle and Miranov
might return different results for the same input. We caproposed “uncheatable computations” [20] that allows the
use a user-defined distance function to partially alleviateser to perform a small amount of local computation to
the problem: as long as the distance between two resultsify the correctness of outsourced computations. In,[21]
based on the distance function is within a certain threshottie authors conducted a survey on result-checking and
we say two results are consistent. We can also leveragpdf-correcting programs for software correctness verific
the techniques proposed in [39] to attest non-determénistion. However, result-checking is often limited to specific
services. arithmetic functions. It is challenging to design a result-



checker for general computations. Gennaro et al. exploredeived much attention [15], [35]-[37]. Ristenpart et. al.
cryptographic approach to verifying the computations thatplored the security holes of existing deployed cloud
are outsourced to untrusted devices [22]. In comparis®ystems, and identified that current cloud deployments are
IntTest does not require the remote service provisionitgg sivulnerable to a cross-VM side channel attack [35]. Erway
or the portal node to perform any extra computation sua al. presented a dynamic provable data possession (PDP)
as proof checking. However, IntTest can be combined wiframework for cloud storage systems [36]. In comparison,
the above techniques when it cannot make the pinpointiogr work focuses on assuring distributed service integrity
decision or encounter conflicting pinpointing results. for SaaS clouds.

Trust management in multi-party systems has been stud-
ied under different application contexts [8], [14], [2325].
Generally, users or components of a distributed systeJTD?,EFERENCES
are evaluated according to some trust metrics. Higher trggt G. Bancerek, “Konig's theoremJournal of Formalized Mathemat-
scores are assigned to users or components who follgw ics Vol 2, pp. 2-3, 1990.

h | h v h | C. H. Papadimitriou and K. Steiglit2ZCombinatorial Optimization:
the rules honestly. In contrast, our approach evalua Algorithms and Complexity, unabridged ed. Englewood Cliffs, New

different service providers by actively attesting thermheat Jersey, U.S.A.: Dover Publications, May 1998.
than performing passive monitoring on some pre-definéd J. Garay and L. Huelsbergen, “Software integrity prote using

trust tri . t al d ised timed executable agents,” iRroceedings of ACM Symposium on
fust metrics. ng et al. proposed a compromised core Information, Computer and Communications Security (ASACCS),

algorithm using inconsistency graphs to identify maligou  Taiwan, Mar. 2006.
nodes in sensor networks [26]. In contrast, IntTest emploVé T. Garfinkel, B. Pfaff, and et. al., “Terra: A virtual made-based

both ist di ist lati hips to o platform for trusted computing,” ifProceedings of the 19th ACM
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malicious service providers. Moreover, unlike sensor ngs] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Desigml a
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faulty. However, the goal of BFT is to achieve consisf] A. Seshadri, A. Perrig, L. V. Doorn, and P. Khosla, “Sw&bftware-
tency in replicated systems such as quorum systems and based attestation for embedded devices,"IHEE Symposium on

P . Security and Privacy, May 2004.
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