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1 DETAILED PROOFS AND ADDITIONAL EX-
AMPLES

Proposition 1: Given an inconsistency graphG, let CG be a
minimum vertex cover ofG. Then the number of malicious
service providers is no less than|CG|.

Proof: We can prove Proposition 1 by contradiction.
Suppose the number of malicious service providers is less
than |CG|. Then the graph formed by malicious nodes
cannot cover the entire graph, which means there exists
one edge that is not incident to any of the malicious nodes.
Thus, the edge must be incident to two benign nodes.
Since two benign nodes always agree with each other,
this contradicts with the existence of an inconsistency link
between them.

Proposition 2: Given an integrated inconsistency graphG
and the upper bound of the number of malicious service
providersK, a nodep must be a malicious service provider
if and only if

|Np| + |CG′

p
| > K (1)

where|Np| is the neighbor size ofp, and|CG′

p
| is the size

of the minimum vertex cover of theresidual inconsistency
graph after removingp and its neighbors fromG.

Proof: We can prove Proposition 2 by contradiction.
Suppose there exists a benign service providerp that
satisfies|Np|+ |CG′

p
| > K. Sincep is inconsistent with its

neighbors, the neighbors must be malicious. Then the total
number of malicious service providers can be calculated by
adding the number ofp’s neighbors and the number of ma-
licious service providers in the residual graph. According
to Proposition 1, we can use the size of a minimum vertex
cover to serve as the lower bound number of malicious
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PinpointMaliciousSPs(G, Gi)
1. for everyK ∈ [|CG|, ⌊N/2⌋]
2. Ω = ∅, R = ∅
3. for every nodep in G
4. compute|Np| + |CG′

p
|

5. if (|Np| + |CG′

p
| > K)

6. Ω = Ω ∪ {p}
7. final malicious node setR = R ∪ Ω
8. if R = ∅
9. continue
10. else
11. for everyGi

12. computeMi

13. setΩi to the subset ofΩ appearing inGi

14. if (Ωi ∩ Mi 6= ∅)
15. R = R ∪ Mi

16.return all sets ofR

Fig. 1. Malicious service provider pinpointing algo-
rithm.

service providers in the residual graph|CG′

p
|. Since the total

number of malicious service providers is no more thanK,
|Np| + |CG′

p
| ≤ K, which contradicts with the assumption

|Np| + |CG′

p
| > K.

Figure 1 shows the pseudo-code of our integrated attes-
tation graph analysis algorithm, whereR is the final set of
malicious service providers.

For example, in Figure 2, the true malicious nodes are
{p7, p8, p9, p10}. If we setK = 4, the inconsistency graph
analysis returnsΩ = {p7}. Furthermore, by checking the
inconsistency graph of the functionf3, we can findΩ3 =
{p7} has overlap with the minority cliqueM3 = {p7, p10}.
We can then inferp10 to be malicious as well.

2 DETAILED RESULTS OF ANALYTICAL
STUDY ABOUT INT TEST.

We now present our analytical study results about IntTest.
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Fig. 2. Another example for integrated graph analysis
with four malicious nodes.

Proposition 3: Given an accurate upper bound of the
number of malicious service providersK, if malicious
service providers always collude together, IntTest has 0
false positive.

Proof: According to Proposition 2, any node identified
through inconsistency graph must be malicious. Therefore,
any node in the subset of malicious nodes identified through
inconsistency graph, e.g.,Ωi, must be malicious. If, for
all functions,Ωi ∩ Mi = ∅, our algorithm returns setΩ
as malicious set, which contains only malicious service
providers. Otherwise, there exists some functionfi such
that Ωi ∩ Mi 6= ∅. For anypb ∈ (Ωi ∩ Mi), pb must be
malicious because it belongs toΩi. Suppose our algorithm
has false positives, which means there exists a benign node
pg, wherepg ∈ Mi but pg /∈ Ωi. Sincepg ∈ Mi, pg must
be outside of the maximum clique. Thus, the maximum
clique must be formed by malicious nodes. This indicates
that malicious nodepb must disagree with at least one of the
malicious nodes in the maximum clique, which contradicts
with our assumption that attackers always collude together
as a single group.

Although our algorithm cannot guarantee zero false pos-
itive when there are multiple independent colluding groups,
it will be difficult for attackers to escape our detection with
multiple independent colluding groups since attackers will
have inconsistency links not only with benign nodes but
also with other groups of malicious nodes.

We now quantify the damage that collusive attackers can
make without being detected. We assume that collusive
attackers are intelligent in that they can select service
functions to attack together in order to maximize the
damage they can bring to the system. The damage is defined
as follows.
Definition 5: The Damage Degree, denoted byD, is the
number of the service functions on which malicious service
providers misbehave without being detected.

Since attackers can escape detection by forming the
majority in per-function consistency graphs, attackers can
select service functions that have less benign service
providers. Suppose there aren service functions,f1, ..., fn,
ranked in the ascending order of the number of benign
service providers participating in the function. The number
of benign and malicious service providers participating in
the functionfi aregi andbi, respectively. The total number
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(a) Aggressive attackers
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(b) Conservative attackers

Fig. 3. Malicious attackers pinpointing accuracy com-
parison with 40% service providers being malicious.

of malicious service providers areb, whereb = b1+...+bn.
Thus, in order to escape detection in per-function consis-
tency graphs, attackers need to take majority in all attacked
functions, which means they can attack up tok functions at
different time, wheregk ≤ b ≤ gk+1. That is, attackers can
only attack functionsf1, ..., fk. For functionsfk+1, ..., fn,
attackers cannot form a majority so that any misbehavior
on these functions will be detected by our algorithm.

However, attackers cannot form majority in all thek
functions at the same time. The number of functions that
attackers can attack simultaneously is significantly limited.
If b satisfies the following equation,

m∑

i=1

gi ≤ b ≤
m+1∑

i=1

gi, (2)

then attackers cannot attack more thanm functions at the
same time, which means the damage degreeD = m.

Moreover, a single attacker cannot participate in unlim-
ited number of service functions. By attacking functionfi,
the attacker may producegi inconsistency links with all
the benign service providers provisioningfi, wheregi is
the number of benign service providers in that function.
Suppose an attackerpb provides functionsfi, fi+1, ...fi+k.
In the global inconsistency graph, in order to escape de-
tection, every single attackerpb needs to limit the number
of inconsistency links. If attackers are too greedy to attack
more service functions or attack functions that they cannot
form the majority, they will get detected by our algorithm.

3 ADDITIONAL RESULTS AND OVERHEAD
COMPARISON

We show the results when the percentage of malicious
service providers to 40% and repeat the above two sets
of experiments. Figure 3(a) shows the comparison results
under the aggressive attack scenarios while Figure 3(b)
shows the comparison results under the conservative attack
scenarios. The results show that IntTest still achieves better
detection accuracy than the other alternatives. Note that
when there are a high percentage of malicious attackers,
majority voting based schemes fail to identify any attacker
(i.e., AD = 0), while IntTest can still detect all attackers
when the attackers try to compromise many service func-
tions.



3

# of providers Consistency graph Inconsistency graph
200 4.22± 0.018 ms 1.64± 0.001 ms
400 15.89± 0.013ms 6.52± 0.004 ms
600 35.29± 0.095 ms 15.11± 0.015 ms
800 62.62± 0.021 ms 26.18± 0.350 ms
1000 100.00± 0.434 ms 39.98± 0.179 ms

TABLE 1
Graph analysis time in IntTest.
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Fig. 4. Performance impact of IntTest to distributed
data processing services.

We also measure the computation overhead for the graph
analysis. Table 1 shows the graph analysis time for both
consistency graphs and inconsistency graph including both
the mean and standard deviation values, where the number
of service providers varies from 200 to 1000. The analysis
time for consistency graphs is the sum of per-function
analysis time. As the table shows, the total time for both
consistency and inconsistency graph analysis is less than
140 milliseconds given 1000 service providers and 2000
service components in the system. Note that we start
from a complete graph connected by consistency links
only and IntTest only triggers the graph analysis algorithm
when any new inconsistency links are captured by the
probabilistic attestation. Although the global inconsistency
graph analysis algorithm relies on the solution to the
minimum vertex cover problem, a known NP-hard problem,
we observe that the computation time is generally short. If
all malicious service providers collude, the inconsistency
graph will be bipartite because there are only edges between
the benign and the malicious service providers. In this
case, the minimum vertex cover is equivalent to the max-
imum matching problem that can be solved in polynomial
time [1]. We can also employ approximation algorithms [2]
if the inconsistency graph analysis overhead becomes the
bottleneck in our system.

We now evaluate the impact of our integrity attestation
scheme on the data processing delay, an important perfor-
mance metric for data processing systems. The data pro-
cessing delay is measured as the average tuple turnaround
time, which is the duration between the time when the
first data tuple enters the system and the time when the
last data tuple leaves the system over the total number
of tuples processed. Figure 4(a) shows the average per-
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Fig. 5. Sampled sensitivity study results.

tuple processing delay under different data rate. The results
show that IntTest imposes little overhead to the dataflow
processing delay. Note that the processing delay is lower
under higher data rate. This is because the turnaround
time is smaller when more data are sent into the system
before the system reaches its maximum capacity. Figure
4(b) shows the average per-tuple processing delay under
different numbers of service hops. The results show that
our scheme only imposes about tens of microseconds
extra delay. As the overhead of our attestation scheme is
kept low, we also expect the network traffic impact to
co-located applications to be low as well. Additionally,
we can leverage VM resource capping mechanisms (e.g.
cgroup in KVM) to isolate the performance impact to other
applications. Note that our experiments are conducted in a
production cluster system with high speed networks. Thus,
the processing delay does not increase too much when we
increase the number of service hops.

We now evaluate the impact of various system parameters
on the effectiveness of our algorithm. Figure 5(a) shows
the time to detect each malicious service provider under
different attestation probabilityPu. With higher attestation
probability, IntTest has more opportunities to capture the
sneaky occasional misbehavior of attackers. Thus, with
a higher attestation probability, we can detect malicious
service providers earlier. However, the system overhead,
in terms of attestation traffic, would increase accordingly
since IntTest performs attestation on more data. Figure 5(b)
shows the detection rate under different misbehaving prob-
abilities, where attestation probability is fixed at 0.2. The
more frequently malicious service providers misbehave, the
more opportunities are given to our scheme to capture
the misbehavior. Therefore, it takes less time to detect
malicious service providers with a higher misbehaving
probability.
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4 LIMITATION DISCUSSION

Although our experimental results have shown that
IntTest can achieve better scalability and higher detection
accuracy than the state-of-the-art schemes (i.e., major-
ity voting, consistency graph analysis only scheme [38]),
IntTest still has a set of limitations that require further study.

Malicious service providers may still escape detection
if they can manage to satisfy three conditions: 1) only
attacking a limited number of service functions, 2) taking
majority in all the attacked services, and 3) having less
inconsistency links than benign service providers. However,
IntTest makes it difficult for attackers to attack popular
service functions since popular service functions often
attract many different service providers for profit. The
attackers can hardly take majority in those popular service
functions. Moreover, service provisioning in SaaS clouds
is not free, which involves registering services, paying
resources and hosting fees, and passing the service hosting
verification. Malicious attackers have to pay a high cost
to take majority in popular services. In contrast, attacking
unpopular services will have much smaller impact since
only a few users rely on them. More importantly, the
popularity of different service functions is only available
to the portal node of the cloud. It is difficult, if not
totally impossible, for individual service providers to guess
the popularity of different service functions. Thus, it is
highly possible that the attackers will try to compromise
a randomly selected service and fail to take the majority,
and thus expose themselves.

Let us assume that attackers can infer the popularity of
different services from some side channels and only attack
those unpopular services where they can take majority.
Under those circumstances, it is more effective to apply
challenge-based approaches (e.g., [3]–[6]) that rely on the
portal or a trusted entity to redundantly compute results
for verification. However, the portal node or a trusted
entity may not have the required software or sufficient
resources to redundantly computeall service functions.
Thus, the benefit of our approach is to reduce the reliance
on the challenge-based verification. Our approach can be
combined with the challenge-based scheme. For example,
we can use IntTest as the default attestation scheme and
dynamically invoke the challenge-based verification only
when the system cannot make the pinpointing decision or
encounter conflicting pinpointing results.

The current prototype of the IntTest system does not sup-
port non-deterministic service functions where the service
might return different results for the same input. We can
use a user-defined distance function to partially alleviate
the problem: as long as the distance between two results
based on the distance function is within a certain threshold,
we say two results are consistent. We can also leverage
the techniques proposed in [39] to attest non-deterministic
services.

5 RELATED WORK

Remote attestation techniques often use a challenge-
response paradigm to ensure that a remote software plat-
form truthful executes a program that is not compromised
or altered by attackers. Attestation can be performed at
system-level or application-level. System-level attestation
techniques [3]–[11] require a trusted entity (e.g., trusted
hardware or secure kernel) to co-exist with the remote
attested platform. For example, SWATT [7] computes a
checksum of the memory whenever receiving a challenge.
BIND provides a fine-grained code attestation scheme for
distributed systems [10]. Alam et al. proposed a set of
specification and verification schemes for attesting the
behavior of business processes [12]. However, in SaaS
clouds, it is often impractical to assume the existence of
a trusted entity at the remote third-party service provider
site. In contrast, our approach does not require any trusted
entity to be deployed on the remote attested service provider
site.

Application-level auditing schemes have been proposed
under different distributed computing contexts such as peer-
to-peer systems [13], volunteer computing systems [11],
publish-subscribe systems [14], cloud storage systems [15],
distributed web applications [16], and database sys-
tems [17]. Such schemes either construct integrity evi-
dence through cryptographical transformation of applica-
tion data [13], [15] or rely on emulation [16], [18] to
detect deviation from expected execution results. Generally
speaking, an auditor needs to challenge the untrusted party
periodically. Auditors could be trusted parties [16], or
a group of untrusted auditors [13], [19]. For example,
Manrose et al. proposed a remote attestation technique
that focuses on detecting misbehaviors of skipping com-
putations for lower resource expenditure [11]. The worker
nodes have to provide execution proofs with the help of
compiler techniques. Thus, the verifier needs to know the
internal workflow of the computation performed on the
worker nodes for detecting cheating behaviors. Belenkiy
et al. proposed an application-level verification approach
that relies on the trusted entity (the boss) to redundantly
compute results for verifying result correctness [18]. In
comparison, IntTest supports black-box service integrity
attestation in cloud systems, which does not require any in-
ternal knowledge about the third-party services. Moreover,
our approach supports integrity attestations for large-scale
SaaS cloud systems where the portal nodes do not have the
software or sufficient resources to redundantly compute the
results returned by different services.

Previous work has studied the problem of verifying the
correctness of remote computations. Golle and Miranov
proposed “uncheatable computations” [20] that allows the
user to perform a small amount of local computation to
verify the correctness of outsourced computations. In [21],
the authors conducted a survey on result-checking and
self-correcting programs for software correctness verifica-
tion. However, result-checking is often limited to specific
arithmetic functions. It is challenging to design a result-
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checker for general computations. Gennaro et al. explored a
cryptographic approach to verifying the computations that
are outsourced to untrusted devices [22]. In comparison,
IntTest does not require the remote service provisioning site
or the portal node to perform any extra computation such
as proof checking. However, IntTest can be combined with
the above techniques when it cannot make the pinpointing
decision or encounter conflicting pinpointing results.

Trust management in multi-party systems has been stud-
ied under different application contexts [8], [14], [23]–[25].
Generally, users or components of a distributed system,
are evaluated according to some trust metrics. Higher trust
scores are assigned to users or components who follow
the rules honestly. In contrast, our approach evaluates
different service providers by actively attesting them rather
than performing passive monitoring on some pre-defined
trust metrics. Qing et al. proposed a compromised core
algorithm using inconsistency graphs to identify malicious
nodes in sensor networks [26]. In contrast, IntTest employs
both consistency and inconsistency relationships to pinpoint
malicious service providers. Moreover, unlike sensor net-
works, SOA systems consist of distributed service providers
offering diversified service functions.

Byzantine fault tolerance (BFT) techniques [19], [27]–
[30] can pinpoint malicious nodes among replicated ser-
vices given no more than one third of total replicas being
faulty. However, the goal of BFT is to achieve consis-
tency in replicated systems such as quorum systems and
distributed database systems. In contrast, IntTest aims at
pinpointing all malicious service providers in an SaaS cloud
system that consists of different services. BFT requires all
replicas communicate with each other all the time via a
certain agreement protocol, which is impractical for large-
scale cloud systems due to scalability and deployment chal-
lenges. In contrast, IntTest performs probabilistic replay-
based attestation and employs comprehensive attestation
graph analysis to achieve both scalability and high detection
accuracy.

Our work is also related to Sybil defense tech-
niques [31]–[34] that leverage social networks among the
users constructed by observing social interactions among
users, and rely on the quotient cut to expose sybil identi-
ties. In contrast, our approach does not assume any prior
knowledge about third-party service providers and actively
attests service providers using probabilistic data replay.
Our pinpointing scheme provides integrated graph analysis
algorithms (i.e., clique discovery in the consistency graph
and minimum vertex cover in the inconsistency graph) for
better accuracy. Moreover, different from open distributed
systems such as peer-to-peer networks where anyone can
join for free or little cost, SaaS cloud systems often impose
a certain cost for each service provider to provide a service.
Thus, it can be prohibitively expensive for attackers to
launch Sybil attacks in SaaS clouds. Service providers
cannot easily forge identities in SaaS clouds since they need
to provide certificates for hosting a certain service and must
be authenticated and approved by the cloud system.

Security protection for cloud systems has recently re-

ceived much attention [15], [35]–[37]. Ristenpart et. al.
explored the security holes of existing deployed cloud
systems, and identified that current cloud deployments are
vulnerable to a cross-VM side channel attack [35]. Erway
et al. presented a dynamic provable data possession (PDP)
framework for cloud storage systems [36]. In comparison,
our work focuses on assuring distributed service integrity
for SaaS clouds.
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