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Abstract—Software-as-a-Service (SaaS) cloud systems enable application service providers to deliver their applications via
massive cloud computing infrastructures. However, due to their sharing nature, SaaS clouds are vulnerable to malicious attacks.
In this paper, we present IntTest, a scalable and effective service integrity attestation framework for Saa$S clouds. IntTest provides
a novel integrated attestation graph analysis scheme that can provide stronger attacker pinpointing power than previous schemes.
Moreover, IntTest can automatically enhance result quality by replacing bad results produced by malicious attackers with good
results produced by benign service providers. We have implemented a prototype of the IntTest system and tested it on a
production cloud computing infrastructure using IBM System S stream processing applications. Our experimental results show
that IntTest can achieve higher attacker pinpointing accuracy than existing approaches. IntTest does not require any special
hardware or secure kernel support and imposes little performance impact to the application, which makes it practical for large-
scale cloud systems.

Index Terms—Distributed Service Integrity Attestation, Cloud Computing, Secure Distributed Data Processing

O

1 INTRODUCTION

Cloud computing has emerged as a cost-effective re-
source leasing paradigm, which obviates the need for
users maintain complex physical computing infrastructure
by themselves. Software-as-a-Service (SaaS) clouds (e.g,
Amazon Web Service [1], Google AppEngine [2]) builds @
upon the concepts of Software as a Service (SaaS) [3] Data Storage
and Service Oriented Architecture (SOA) [4], [5], which

enable application service providers (ASPs) to deIive'rrthq:ig. 1. Service integrity attack in cloud-based data

applications via the massive cloud computing infrastrrectu processing. S; denotes different service component
In particular, our work focuses on data stream processiQgq 1717 denotes virtual machines.

services [6]-[8] that are considered to be one class ofrkille
applications for clouds with many real world applications
in security surveillance, scientific computing, and busine
intelligence.

problem has not been properly addressed. Moreover, service

However, cloud computing infrastructures are ofteffit€0rity is the most prevalent problem, which needs to
shared by ASPs from different security domains, whicﬁe addressed no matter whether public or private data are
make them vulnerable to malicious attacks [9], [10]. Fdirocessed by the cloud system. _
example, attackers can pretend to be legitimate servicelthough previous work has provided various software
providers to provide fake service components and tifegrity attestation solutions [9], [17]-[19], [19]-[F3
service components provided by benign service providéﬂz,ose techniques often require special trusFeq hardware or
may include security holes that can be exploited by a¥€cure kernel support, which makes them difficult to be de-
tackers. Our work focuses on service integrity attacks thg{oyed on large-scale cloud computing infrastructurea- Tr
cause the user to receive untruthful data processing sesufiitional Byzantine fault tolerance (BFT) techniques [24],
illustrated by Figure 1. Although confidentiality and pri{25] can detect arbitrary misbehaviors using full time
vacy protection problems have been extensively studied Bpiority voting over all replicas, which however incur high

previous research [11]-[16], the service integrity attésh overhead to the cloud system. A detailed discussion of
the related work can be found in section 5 of the online
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plication modifications. IntTest builds upon our previoug_1otation meaning_
Di service provider

work RunTest [26] and AdapTest [27] but can provid T, Service funciion

stronger malicious attf';l_cker pinpointing power than RuhTes—, service component
and AdapTest. Specifically, both RunText and AdapTest g, application data tuple
as well as traditional majority voting schemes need to P. attestation probability
assume that benign service providers take majority in " number of copies for a tuple
K Max number of malicious service providers

every service function. However, in large-scale multi-tenan

. . C minimum vertex cover of graph G
cloud systems, multiple malicious attackers may launch g grap

. . . . N, the neighbor set of node p
pollu_dmg attacks on c_ertaln targeted service functions t o the residual graph of G
invalidate the assumption. To address the challenge, $htT Q0 the set of malicious service providers identified
takes aholistic approach by systematically examining both by the global inconsistency graph
consistency andinconsistency relationships among different M; the set of malicious service providers identified
service providers within thentire cloud system. IntTest ex- by consistency graph in service functign
amines both per-function consistency graphs and the global TABLE 1
inconsistency graph. The per-function consistency graph Notations.

analysis can limit the scope of damage caused by colluding

attackers while the global inconsistency graph analysis ca

effectively expose those attackers that try to compromiggesents our system model. Section 3 presents the design
many service functions. Hence, IntTest can still pinpoifetajls. Section 4 provides an analytical study about the
malicious attackers even if they become majority for somgtTest system. Section 5 presents the experimental sesult

service functions. Section 6 sumarizes the limitations of our approach. Bmall
By taking an integrated approach, IntTest can not onfife paper concludes in Section 7.

pinpoint attackers more efficiently but also can suppress ag
gressive attackers and limit the scope of the damage caused
by colluding attacks. Moreover, IntTest provideesult 2 PRELIMINARY
auto-correction that can automatically replace corrupted
data processing results produced by malicious attackerdn this section, we first introduce the software-as-a-
with good results produced by benign service providers.Service (Saas) cloud system model. We then describe our
Specifically, this paper makes the following contribuProblem formulation including the service integrity akac
tions: model and our key assumptions. Table 1 summarizes all the
« We provide a scalable and efficient distributed servidetations used in this paper.
integrity attestation framework for large-scale cloud
computing infrastructures.
« We F|f))resegzlnt a novel integrated service integrity a?—'l SaaS Cloud System Model
testation scheme that can achieve higher pinpointingSaaS cloud builds upon the concepts of Software as
accuracy than previous techniques. a Service (SaaS) [3] and Service Oriented Architecture
« We describe a result auto-correction technique that cé®OA) [4], [5], which allows application service providers
automatically correct the corrupted results produced gfSPs) to deliver their applications via large-scale cloud
malicious attackers. computing infrastructures. For example, both Amazon Web
« We conduct both analytical study and experiment&lervice (AWS) and Google AppEngine provide a set of
evaluation to quantify the accuracy and overhead application services supporting enterprise applicatiomd
the integrated service integrity attestation scheme. big data processing. A distributed application service can
We have implemented a prototype of the IntTest systelbe dynamically composed from individual service com-
and tested it on NCSU's virtual computing lab (VCL) [28]ponents provided by different ASPg;) [31], [32]. For
a production cloud computing infrastructure that operatexample, a disaster assistance claim processing applica-
in a similar way as the Amazon elastic compute cloutibn [33] consists of voice-over-IP (VolP) analysis com-
(EC2) [29]. The benchmark applications we use to evalugtenent, email analysis component, community discovery
IntTest are distributed data stream processing serviaes pgtomponent, clustering and join components. Our work
vided by the IBM System S stream processing platform [8lpcuses on data processing services [6], [8], [34], [35]
[30], an industry strength data stream processing systewhich have become increasingly popular with applications
Experimental results show that IntTest can achieve madre many real world usage domains such as business in-
accurate pinpointing than existing schemes (e.g. RunTest|igence, security surveillance, and scientific compgtti
AdapTest, full time majority voting) under strategicallyEach service component, denoteddpyprovides a specific
colluding attacks. IntTest is scalable, and can reduce tHata processing function, denoted lfy such as sorting,
attestation overhead by more than one order of magfiitering, correlation, or data mining utilities. Each siesy
tude compared to the traditional full time majority votingcomponent can have one or more input ports for receiving
scheme. input data tuples, denoted hj, and one or more output
The rest of the paper is organized as follows. Sectiongdrts to emit output tuples.



In a large-scale SaaS cloud, the same service function

f
can be provided by different ASPs. Thofanctionally- 1. J°p‘;‘

equivalent service components exist because: i) service % | © benign service
providers may create replicated service components for portal © NGZN oy, provider
load balancing and fault tolerance purposes; and ii) popula f(d1)==f(d1.)?Ni | ° pmrz'v'fé‘;‘:s service
services may attract different service providers for profit 4 "o o N

To support automatic service composition, we can deploy 0N

a set ofportal nodes [31], [32] that serve as the gateway . i

for the user to access the composed services in the S&ig 2- Replay-based consistency check.

cloud. The portal node can aggregate different service

components into composite services based on the userg, 4 large-scale cloud system, we need to consider

requirements. For security protection, the portal node c@pyging attack scenarios where multiple malicious attac
perform authentication on users to prevent malicious USIS collude or multiple service sites are simultaneously
from disturbing normal service provisioning. compromised and controlled by a single malicious attacker.
Different from other open distributed systems sucr_l Ritackers couldsporadically collude, which means an

peer-to-peer networks and volunteer computing enviroGgacker can collude with an arbitrary subset of its coltede
ments, Saas cloud systems possess a set of unique featyfesy time. We assume that malicious nodes have no
First, third-party ASPs typically do not want to reveal thgnqjedge of other nodes except those they interact with
internal implementation details of their software SersiC&yirectly. However, attackers can communicate with their
for intellectual property protection. Thu_s, it is difficulteyuders in an arbitrary way. Attackers can also change
to only rely on challenge-based attestation schemes [2Q]eir attacking and colluding strategies arbitrarily.

[36], [37] where the verifier is assumed to have certain aAgsymptions. We first assume that the total number of

knowledge about the software implementation or haygajicious service components is less than the total number
access to the software source code. Second, both the C'BP‘Benign ones in the entire cloud system. Without this

infrastructure provider and third-party service provilerygg,mption, it would be very hard, if not totally impossible
are autonomous entities. It is impractical to impose amyr any attack detection scheme to work when comparable
special hardware or secure kernel support on individugloyng truth processing results are not available. However

service provisioning sites. Third, for privacy protectiongigerent from RunTest, AdapTest, or any previous majority
only portal nodes have global information about whiclsting schemes, IntTest does not assume benign service

_service functions are provided by which se_rvic_:g prOVideE%mponents have to be the majority for every service
in the SaaS cloud. Neither cloud users nor individual AS'?&nction, which will greatly enhance our pinpointing power

have the global knowledge about the SaaS cloud such agy |imit the scope of service functions that can be com-
the number of ASPs and the identifiers of the ASPs Oﬁer"’tﬂomised by malicious attackers.

a specific service function. Second, we assume that the data processing services are
input-deterministic, that is, given the same input, a benig
2.2 Problem Formulation service component always produces the same or similar

_ output (based on a user defined similarity function). Many
G|.ven.an SaaS 9'9”d syste_zm, the.goal of INtTest &5 stream processing functions fall into this catego}y [8
to pinpoint any malicious service provider that offers alye can also easily extend our attestation framework to sup-

untruthful S(la)rlwcke gunctlon.hl_nLTzst treats all ServicaTeo .4 stateful data processing services [38], which however
ponents as black-boxes, which does not require any special side the scope of this paper.

hardware or secure kernel support on the cloud platform.-l-hird’ we also assume that the result inconsistency

We now describe our attack model and our key assumptio§ ,seq by hardware or software faults can be marked by

as follows. L fault detection schemes [39] and are excluded from our
Attack model. A malicious attacker can pretend to b&ygjicious attack detection.

a legitimate service provider or take control of vulnerable
service providers to provide untruthful service function% DESIGN AND ALGORITHMS

Malicious attackers can be stealthy, which means they can . . , ,
misbehave on a selective subset of input data or servicd? this section, we first present the basis of the IntTest

functions while pretending to be benign service providefyStem: probabilistic replay-based consistency check and
on other input data or functions. The stealthy behavidi® integrity attestation graph model. We then describe
makes detection more challenging due to the fO||OWiI:§'e integrated service integrity attestatlon scheme inidet
reasons: 1) the detection scheme needs to be hidden frofKt: We present the result auto-correction scheme.

the attackers to prevent attackers from gaining knowledge . ]

on the set of data processing results that will be verifiettl Baseline Attestation Scheme

and therefore easily escaping detection; 2) the detectionn order to detect service integrity attack and pin-
scheme needs to be scalable while being able to captpmnt malicious service providers, our algorithm re-
misbehavior that may be both unpredictable and occasiorl@s on replay-based consistency check to derive the



consistency/inconsistency relationships between servive say thatp; andp) are inconsistent. Otherwise, we say
providers. For example, Figure 2 shows the consistenthyat p; and p; are consistent with regard to functiofy.
check scheme for attesting three service provigers,, For example, let us consider two different credit score
and p; that offer the same service functigh The portal service providerg, andp). Suppose the distance function
sends the original input dat@ to p; and gets back the is defined as two credit score difference is no more than
result f(d;). Next, the portal sendg;, a duplicate off; to 10. If p; outputs 500 andy; outputs 505 for the same
ps and gets back the resyltd; ). The portal then comparesperson, we sayp; and p; are consistent. However, if
f(dy) and f(d}) to see whethep; andps are consistent. p; outputs 500 ang) outputs 550 for the same person,
The intuition behind our approach is that if two serviceve would considerp; and p) to be inconsistent. We
providers disagree with each other on the processing resaluate both intermediate and final data processing sesult
of the same input, at least one of them should be malicioumtween functionally equivalent service providers toderi
Note that we do not send an input data item and ithe consistency/inconsistency relationships. For exampl
duplicates (i.e., attestation data) concurrently. Infteee if data processing involves a sub-query to a database, we
replay the attestation data on different service provideesaluate both the final data processing result along with
after receiving the processing result of the original datdhe intermediate sub-query result. Note that although we do
Thus, the malicious attackers cannot avoid the risk of beimgt attest all service providers at the same time, all servic
detected when they produce false results on the originabviders will be covered by the randomized probabilistic
data. Although the replay scheme may cause delay inatiestation over a period of time.
single tuple processing, we can overlap the attestation andwith replay-based consistency check, we can test func-
normal processing of consecutive tuples in the data stre@@hally equivalent service providers and obtain their -con
to hide the attestation delay from the user. sistency and inconsistency relationships. We employ both
If two service providers always give consistent output rehe consistency graph and inconsistency graph to aggre-
sults on all input data, there exists consistency relatigns gate pair-wise attestation results for further analysise T
between them. Otherwise, if they give different outputs agraphs reflect the consistency/inconsistency relatigusshi
at least one input data, there is inconsistency relatipnskicross multiple service providers over a period of time.
between them. We do not limit the consistency relationshigefore introducing the attestation graphs, we first define
to equality function since two benign service providersonsistency links and inconsistency links.
may produce similar but not exactly the same results. For

example, the credit scores for the same person may va§finition 2: A consistency link exists between two
by a small difference when obtained from different credf€"vice providers who always give consistent output for

bureaus. We allow the user to define a distance functionft® Same input data during attestation. Awonsistency
quantify the biggest tolerable result difference. link exists between two service providers who give at least

o _ one inconsistent output for the same input data during
Definition 1: For two output results;; andrs, which come  attestation.

from two functionally equivalent service providers respec

tively, Result Consistency is defined as either; = 2, O \we then construct consistency graphs for each function
the distance between andr, according to user-definedy, canture consistency relationships among the service
distance functionD(ry, ) falls within a threshold. providers provisioning the same function. Figure 3(a) show

For scalability, we proposeandomized probabilistic at- the consistency graphs for two functions. Note that two
testation, an attestation technique that randomly replayss@rvice providers that are consistent for one function are
subset of input data for attestation. For composite datafléwt necessarily consistent for another function. This & th
processing services consisting of multiple service hop€ason why we confine consistency graphs within individual
each service hop is composed of a set of functionalfynCtionS-
equivalent service providers. Specifically, for an incorrb

ing tuole d... th al decide t ‘ ntearit efinition 3: A per-functionconsistency graph is an undi-
Ing tuple d;, the portal may decide o perform INegnty,q .o q graph, with all the attested service providers that
attestation with probabilityp,. If the portal decides to

. . provide the same service function as the vertices and
perform attestation od;, the portal first sendg; to a pre-

defined service path; — po... — p; providing functions consistency links as the edges.
f1 — fa2... — fi. After receiving the processing result for We use a global inconsistency graph to capture incon-
d;, the portal replays the duplicate(s) @f on alternative sistency relationships among all service providers. Two
service path(s) such ag — p5... — pj, wherep provides service providers are said to be inconsistent as long as
the same functiorf; asp;. The portal may perform datathey disagree in any function. Thus, we can derive more
replay on multiple service providers to perform concurrembmprehensive inconsistency relationships by integgatin
attestation. inconsistency links across functions. Figure 3(b) shows
After receiving the attestation results, the portal coman example of the global inconsistency graph. Note that
pares each intermediate result between pairs of functipnadervice providemps provides both functiong; and fs. In
equivalent service providegs andp!. If p; andp; receive the inconsistency graph, there is a single npgewith its
the same input data but produce different output resultiks reflecting inconsistency relationships in both fuocs
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Fig. 3. Attestation graphs. However, strategically colluding attackers can try to
take majority in a specific service function to escape
the detection. Thus, it is insufficient to examine the per-

f1and f. function consistency graph only. We need to integrate the

Definition 4: The global inconsistency graph is an undi- consistency graph analysis with the inconsistency graph

rected graph, with all the attested service providers in tﬁgalyss to achieve more robust integrity attestation.

system as the vertex set and inconsistency links as the>teP 2: Inconsistency graph analysisGiven an incon-
edges. sistency graph containing only the inconsistency linksreh

may exist different possible combinations of the benign
The portal node is responsible for constructing and maifode set and the malicious node set. However, if we assume
taining both per-function consistency graphs and the glol@at the total number of malicious service providers in the
inconsistency graph. In order to generate these graphs, fifole system is no more thaki, we can pinpoint a subset
portal maintains counters for the number of consistengy truly malicious service providers. Intuitively, givewa
results and counters for the total number of attestatioa d%rvice providers connected by an inconsistency link, we
between each pair of service providers. The portal updaies say that at least one of them is malicious since any
the counters each time when it receives attestation resuf{§o benign service providers should always agree with
At any time, if the counter for consistency results has th&ch other. Thus, we can derive the lower bound about
same value with that for the total attestation data, thereﬂs;e number of malicious service providers by examining
a consistency link between this pair of service providergae minimum vertex cover of the inconsistency graph. The
Otherwise, there is an inconsistency link between them.minimum vertex cover of a graph is a minimum set of
vertices such that each edge of the graph is incident to at
least one vertex in the set. For example, in Figure 3(b),
p2 and p; form the minimum vertex cover. We present
We now present our integrated attestation graph analysig propositions as part of our approach. The proofs for
algorithm. these propositions can be found in section 1 of the online
Step 1: Consistency graph analysiswe first examine supplementary material.
per-function consistency graphs to pinpoint suspicious s
vice providers. The consistency links in per-function ésns
tency graphs can tell which set of service providers ke
consistent with each other on a specific service functi
Given any service function, since benign service providerswe now define the residual inconsistency graph for a
always keep consistent with each other, benign serviggdep, as follows.
providers will form a clique in terms of consistency links.
For example, in Figure 3(a)y, ps andp are benign ser- Definition 5: The residual inconsistency graph of nodep;
vice providers and they always form a consistency cliqus. the inconsistency graph after removing the npdend
In our previous work [26], we have developed a cliqued!l of links adjacent tq;.
based algorithm to pinpoint malicious service providefrs. |

we assume that the number of benign service provid Faph after removing the nodg,. Based on the lower
is larger than that of the malicious ones, a benign nogg, \nq of the number of malicious service providers and

Wi"_ always stay in a clique formed by. all benign nodespgfinjtion 5, we have the following proposition for pin-
which has size larger thark /2|, wherek is the number of pointing a subset of malicious nodes.

service providers provisioning the service function. Thus

we can pinpointsuspicious nodes by identifying nodes Proposition 2: Given an integrated inconsistency gragh
that are outside of all cliques of size larger thpry2|. and the upper bound of the number of malicious service
For example, in Figure 3(ayp. andps are identified as providersK, a nodep must be a malicious service provider
suspicious because they are excluded from the clique ibaind only if

size 3. INp| +|Car | > K (1)

3.2 Integrated Attestation Scheme

%roposition 1: Given an inconsistency gragh, letC be a
inimum vertex cover ofz. Then the number of malicious
%érvice providers is no less thafi|.

For example, Figure 4 shows the residual inconsistency



where|N,| is the neighbor size of, and|Cg | is the size " =

of the minimum vertex cover of theesidual inconsistency P pe pe
graph after removing and its neighbors frond.. A ng &7
For example, in Figure 3(b), suppose we know the <&—& ©po ¢
number of malicious service providers is no more than 2. ° P
Let us examine the malicious nogefirst. After we remove
p2 and its neighborg, p3, andp, from the inconsistency e malicious service provider o malicious service provider
graph, the residual inconsistency graph will be a graph _ o.sistency link ~—- inconsistency link
without any link. Thus, its minimum vertex cover is 0.
Sincep, has three neighbors, we haget+ 0 > 2. Thus,
pe is malicious. Let us now check out the benign ngde Fig. 5. Isolated benign service providers in the global
After removingp; and its two neighborg, and ps, the inconsistency graph.
residual inconsistency graph will be a graph without any

o benign service provider o benign service provider

(a) Consistency graphs. (b) Inconsistency graph.

link and its minimum vertex cover should be 0. Singe f1 f2

has two neighbors, Equation 1 does not hold. We will not

pinpointp; as malicious in this step. by ps P4 5
Note that benign service providers that do not serve same I % o

functions with malicious ones will be isolated nodes in 5 B 7§ ¢

the inconsistency graph, since they will not be involved
in any inconsistency links. For example, in Figure 5,

. . St h. i st h
nodespa, ps, ps and p; are isolated nodes since they are consisiency graphs neonsisiency grap
not associated with any inconsistency links in the global © PeMan service provider — consistency link

malicious service provider --- inconsistency link

inconsistency graph. Thus, we can remove these nodes from’
the inconsistency graph without affecting the computatigrig. 6. An example for integrated graph analysis with
of the minimum vertex cover. two malicious nodes.

We now describe how to estimate the upper bound of the
number of malicious service providefs. Let N denote
the total number of service providers in the system. SinggaphG, given a particular upper bound of the number of
we assume that the total number of malicious serviggalicious nodeds. We examine per-function consistency
providers is less than that of benign ones, the number @faphs one by one. Le®; denote the subset d that
malicious service providers should be no more thaif2|. serves functionf;. If Q; N M; # 0, we add nodes in\;
According proposition 1, the number of malicious servicto the identified malicious node set. The idea is that since
providers should be no less than the size of the minimutine majority of nodes serving functiofy have successfully
vertex coverlCg| of the global inconsistency graph. Thusexcluded malicious nodes if2;, we could trust their
K is first bounded by its lower bounf’;| and upper decision on proposing/; as malicious nodes. Pseudo-code
bound| N/2|. We then use an iterative algorithm to tighterof our algorithm can be found in section 1 of the online
the bound of K. We start from the lower bound ok, supplemental material.
and compute the set of malicious nodes, as described byor example, Figure 6 shows both the per-function
Proposition 2, denoted b§2. Then we gradually increaseconsistency graphs and the global inconsistency graph. If
K by one each time. For each specific value i6f we the upper bound of the malicious nodés is set to 4,
can get a set of malicious nodes. With a largér the the inconsistency graph analysis will capture the maligiou
number of nodes that can satigfy,|+|Cq: | > K becomes nodepy but will miss the malicious nodgs. The reason is
less, which causes the s@tto be reduced. Whefl = (), thatps only has three neighbors and the minimum vertex
we stop increasingk, since any largerK cannot give cover for the residual inconsistency graph after remowing
more malicious nodes. Intuitively, wheld is large, fewer and its three neighbors is 1. Note that we will not pinpoint
nodes may satisfy Equation 1. Thus, we may only identifgny benign node as malicious according to Proposition
a small subset of malicious nodes. In contrast, whén 2. For example, the benign noge has two neighbors
is small, more nodes may satisfy Equation 1, which mand the minimum vertex cover for the residual graph after
mistakenly pinpoint benign nodes as malicious. To avoig@movingp; and its two neighborgs and py will be 0
false positives, we want to pick a large enou§h which since the residual graph does not include any link. However,
can pinpoint a set of true malicious service providers. by checking the consistency graph of functigin, we

Step 3: Combining consistency and inconsistency find Q; = {py} has overlap with the minority clique
graph analysis results.Let G; be the consistency graphM; = {ps, pe}. We then inferps should be malicious too.
generated for service functiof;, and G be the global  Note that even if we have an accurate estimation of the
inconsistency graph. Let/; denote the list of suspiciousnumber of malicious nodes, the inconsistency graph analy-
nodes by analyzing per function consistency grépt(i.e., sis scheme may not identifgll malicious nodes. However,
nodes belonging to minority cliques), atiddenotes the list our integrated algorithm can pinpoint more malicious nodes
of suspicious nodes by analyzing the global inconsistenttyan the inconsistency graph only algorithm. An example



Although our algorithm cannot guarantee zero false posi-
tives when there are multiple independent colluding groups
it will be difficult for attackers to escape our detectionwit
multiple independent colluding groups since attackers wil
have inconsistency links not only with benign nodes but
also with other groups of malicious nodes. Additionally; ou
approach limits the damage colluding attackers can cause if
they can evade detection in two ways. First, our algorithm
limits the number of functions which can be simultaneously
attacked. Second, our approach ensures a single attacker
cannot participate in compromising an unlimited number
of service functions without being detected.

O Benign node @ Suspicious node

Fig. 7. Automatic data correction using attestation data
processing results. 5 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of

the IntTest system. We first describe our experimental setup

showing how our algorithm can pinpoint more maliciougye then present and analyze the experimental results.
nodes than the inconsistency graph only algorithm can be

found in section 1 of the online supplemental material. 51 Experiment Setup

We have implemented a prototype of the IntTest system
and tested it using the NCSU’s virtual computing lab

IntTest can not only pinpoint malicious service providerg/CL) [28], a production cloud infrastructure operating in
but also automatically correct corrupted data processiagsimilar way as Amazon EC2 [29]. We add portal nodes
results to improve the result quality of the cloud datimto VCL and deploy IBM System S stream processing
processing service, illustrated by Figure 7. Without ouniddleware [8], [30] to provide distributed data stream
attestation scheme, once an original data item is manjgrocessing service. System S is an industry-strength high
ulated by any malicious node, the processing result of thigrformance stream processing platform that can analyze
data item can be corrupted, which will result in degradeglassive volumes of continuous data streams and scale to
result quality. IntTest leverages the attestation datataad hundreds of processing elements (PEs) for each application
malicious node pinpointing results to detect and corregi our experiments, we used 10 VCL nodes which run
compromised data processing results. 64bit CentOS 5.2. Each node runs multiple virtual machines

Specifically, after the portal node receives the regt)  (VMs) on top of Xen 3.0.3.
of the original datad, the portal node checks whether the The dataflow processing application we use in our ex-
datad has been processed by any malicious node thgériments is adapted from the sample applications provided
has been pinpointed by our algorithm. We label the resy{y System S. This application takes stock information as
f(d) as "suspicious result” il has been processed by anynput, performs windowed aggregation on the input stream
pinpointed malicious node. Next, the portal node checkgcording to the specified company name and then performs
whetherd has been chosen for attestationdlfs selected calculations on the stock data. We use a trusted portal node
for attestation, we check whether the attestation copy ®f accept the input stream, perform comprehensive integrit
d only traverses good nodes. If it is true, we will use thattestation on the PEs and analyze the attestation results.
result of the attestation data to replge). For example, in The portal node constructs one consistency graph for each
Figure 7, the original datd is processed by the pinpointedservice function and one global inconsistency graph across
malicious nodesg while one of its attestation daid’ is all service providers in the system.
only processed by benign nodes. The portal node will useFor comparison, we have also implemented three alterna-
the attestation data resyfitd”) to replace the original result tive integrity attestation schemes: 1) thell-Time Majority

3.3 Result Auto-Correction

that can be corrupted #s cheated on. \oting (FTMV) scheme, which employall functionally-
equivalent service providers at all time for attestatiod an
4 SECURITY ANALYSIS determines malicious service providers through majority

voting on the processing results; 2) tRart-Time Majority

We now present a summary of the results of our ange .. : .
. . . . ting (PTMV) scheme, which employall functionally-
lytical study about IntTest. Additional details along with equi\?al(ent sezvice providers over F; gubset of inpu}t/ data

proof of the proposition presented in this section can L?e ; . L : .
; ! ; . or attestation and determines malicious service progider
found in section 2 of the online supplemental material.

using majority voting; and 3) th&kunTest scheme [26],
Proposition 3. Given an accurate upper bound of thevhich pinpoints malicious service providers by analyzing
number of malicious service providel®, if malicious only per-function consistency graphs, labeling thoseiserv
service providers always collude together, IntTest hae zegroviders that are outside of all cliques of size larger than
false positive. |k/2] as malicious, wherég: is the number of service
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Fig. 8. Malicious attackers pinpointing accuracy com-

parison with 20% service providers being malicious.
set of experiments, we have 10 service functions and 30

service providers. The number of service providers in each

providers that take participate in this service functiontéd service function randomly ranges in [1,8]. Each benign
that AdapTest [27] uses the same attacker pinpointing algggrvice provider provides two randomly selected service
rithm as RunTest. Thus, AdapTest has the same detectfgActions. The data rate of the input stream is 300 tuples
accuracy as RunTest but with less attestation overhead.per second. We set 20% of service providers as malicious.
Three major metrics for evaluating our scheme dee After the portal receives the processing result of a new
tection rate, false alarm rate, and attestation overhead. data tuple, it randomly decides whether to perform data
We calculate the detection rate, denoted Ay, as the attestation. Each tuple has 0.2 probability of gettingsate
number of pinpointed malicious service providers ovdf-€., attestation probability’, = 0.2), and two attestation
the total number of malicious service providers that ha@ata replicas are used (i.e., number of total data copies
misbehaved at least once during the experiment. Durifitfluding the original data = 3). Each experiment is re-
runtime, the detection rate should start from zero am¢ated three times. We report the average detection rate and
increase as more malicious service providers are detectiédse alarm rate achieved by different schemes. Note that
false alarm rated r is defined asV;,/(Ny, + Ni»,), where RunTest can achieve the same detection accuracy results
Ny, denotes false alarms corresponding to the numbas the majority voting based schemes after the randomized
of benign service providers that are incorrectly identifieBrobabilistic attestation covers all attested service/iplers
as malicious;N;,, denotes true negatives corresponding t@nd discovers the majority clique [26]. In contrast, IntTes
the number of benign service providers that are correc@mprehensively examines both per-function consistency
identified as benign. The attestation overhead is evalua@@phs and the global inconsistency graph to make the
by both the number of duplicated data tuples that aféal pinpointing decision. We observe that IntTest can
redundantly processed for service integrity attestatioh aachieve much higher detection rate and lower false alarm
the extra dataflow processing time incurred by the integritte than other alternatives. Moreover, IntTest can aehiev
attestation. better detection accuracy when malicious service prosider
We assume that the colluding attackers know our attedftack more functions. We also observe that when malicious
tation scheme and take the best strategy while evaluati#fjVice providers attack aggressively, our scheme castdete
the IntTest system. According to the security analysis #i€m even though they attack a low percentage of service
Section 4, in order to escape detection, the best practfe@ctions.
for attackers is to attack as a colluding group. Colluding Figure 8(b) shows the malicious service provider de-
attackers can take different strategies. They roayser- tection accuracy results under thenservative attack sce-
vatively attack by first attacking those service functiongiarios. All the other experiment parameters are kept the
with less number of service providers where they casame as the previous experiments. The results show that
easily take majority, assuming they know the number dfitTest can consistently achieve higher detection rate and
participating service providers for each service functiotower false alarm rate than the other alternatives. In the
Alternatively, they mayaggressively attack by attacking conservative attack scenario, as shown by Figure 8(b), the
service functions randomly, assuming they do not know tii@lse alarm rate of IntTest first increases when a small
number of participating service providers. We investigatgercentage of service functions are attacked and then drops
the impact of these attack strategies on our scheme in teri@szero quickly with more service functions are attacked.
of both detection rate and false alarm rate. This is because when attackers only attack a few service
functions where they can take majority, they can hide
themselves from our detection scheme while tricking our
algorithm into labeling benign service providers as mali-
We first investigate the accuracy of our scheme in piious. However, if they attack more service functions, they
pointing malicious service providers. Figure 8(a) comparean be detected since they incur more inconsistency links
our scheme with the other alternative schemes (i.e., FTMWjth benign service providers in the global inconsistency
PTMV, RunTest) when malicious service providaggres- graph. Note that majority voting based schemes can also
sively attack different number of service functions. In thisletect malicious attackers if attackers fail to take majori

5.2 Results and Analysis



correction scheme. We compare the result quality without
auto-correction and with auto-correction, and also invest
gate the impact of the attestation probability. Figure 10(a
and Figure 10 show the result quality under non-colluding
attacks with 20% malicious nodes and colluding attacks
with 40% malicious nodes respectively. We vary the attes-
08 "oz s ooy O tation probability from 0.2 to 0.4. In both scenarios, IrgfTe
can achieve significant result quality improvement without
incurring any extra overhead other than the attestation-ove
head. IntTest can achieve higher result quality improvemen
Fig. 10. Result quality detection and auto-correction ynder higher node misbehaving probability. This is because

[l without auto-correction
[Iwith auto-correction, Pu=0.2
[with auto-correction, Pu=0.4,
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performance under non-colluding attacks. IntTest can detect the malicious nodes earlier so that it can
correct more compromised data using the attestation data.
3z 0 Figure 11 compares the overhead of the four schemes in
%g’gw terms of the percentage of attestation traffic compared to
Selde the original data traffic (i.e., the total number of duplezht
o %3 Ly data tuples used for attestation over the number of original
E2 J data tuples). The data rate is 300 tuples per second. Each
0 R . experiment run processes 20,000 dgta tupI(_es. IntTest and
(Pu=0.2, r=3) RunTest save more than half attestation traffic than PTMV,
) ) . and incur an order of magnitude less attestation overhead
Fig. 11. Attestation overhead comparison. than FTMV. Additional overhead analysis details are avail-

able in section 3 of the online supplemental material.

in the attacked service fl_mctlon. However, r_najonty vot|n% LIMITATION DISCUSSION
based schemes have high false alarms since attacks can .
always trick the schemes to label benign service providersAlthough we have shown that IntTest can achieve better

as malicious as long as attackers can take majority in eat¢fi@bility and higher detection accuracy than existing
individual service function. schemes, IntTest still has a set of limitations that require
The results of increasing the percentage of maucio&grther_study. Adeta|lgd limitation discussion can be fdun
service providers to 40% can be found in section 3 of tHB Section 4 of the online supplementary material. We now
online supplemental material. proyu;ie a summary of the I|r_n|tat|ons of our approfach._ First,
We now show one example of detection time compariscmal'c'ous attackers can still escape the detection if they

results during the above experiments, shown by Figure (gﬂy attack a few service functions, take majority in all the

In this case, malicious service providers use a small pro%qmpromlsed service functions, and have less inconsigtenc

ability (0.2) to misbehave on an incoming data tuple. Fé'lnks Fhaln ?er_ngrrl] serwcek prowders.dHowekve_r, (Ijr);f'!'es,lt can
probabilistic attestation schemes such as IntTest, PTI\/I"QJfECt'Vey Imit the attack scope and make it difficult to

and RunTest, the attestation probability is set at a smalfack popular service functions. Second, IntTest needs to
sume the attested services are input deterministic where

number (0.2) too. For IntTest and RunTest, two attestati@? : | : o
data replicas are used = 3). Here, the attackers may enign services will return the same or similar results

attack different service functions with different subsét Odefmed by a distance function for the same input. Thus,

their colluders. As expected, the FTMV scheme needs tHiTest cannot support those service functions whosetsesul

least time to detect malicious service providers becausdY significantly based on some random numbers or time-

it attests all service components all the time. AIthougﬁtamps'

PTMV has the same attestation probability with IntTest

and RunTest, it has shorter detection time since it usés CONCLUSION

all service components for each attestation data. IntTestin this paper, we have presented the design and imple-

can achieve shorter detection time than RunTest. Similarigentation of IntTest, a novel integrated service integrity

previous experiments, IntTest achieves the highest detectattestation framework for multi-tenant software-as-asse

rate among all algorithms. RunTest, FTMV and PTM\¢loud systems. IntTest employs randomized replay-based

cannot achieve 100% detection rate since they cannot det@siisistency check to verify the integrity of distributed

those attackers that only misbehave in service functiogsrvice components without imposing high overhead to the

where they can take the majority. cloud infrastructure. IntTest performs integrated arialys
We also conducted sensitivity study to evaluate thever both consistency and inconsistency attestation graph

impact of various system parameters on the effectivenaespinpoint colluding attackers more efficiently than exist

of our algorithm. Those results can be found in Sectionifg techniques. Furthermore, IntTest provides result -auto

of the online supplementary material. correction to automatically correct compromised resuits t
We now evaluate the effectiveness of our result autonprove the result quality. We have implemented IntTest
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and tested it on a commercial data stream processiag E. Shi, A. Perrig, and L. V. Doorn, “Bind: A fine-grainedtestation
platform running inside a production virtualized cloud

computing infrastructure. Our experimental results showl]
that IntTest can achieve higher pinpointing accuracy than
existing alternative schemes. IntTest is light-weightjolh [22]
imposes low performance impact to the data processi[}g]
processing services running inside the cloud computing
infrastructure.
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