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1 DETAILED RESULTS OF ANALYTICAL
STUDY

Without compression, a distributed monitoring sys-
tem needs to configure all the monitoring agents to
periodically report their collected attribute values to
the management node. Let 𝑁 denote the number of
worker nodes in the distributed system, 𝑇 denote
the monitoring interval in seconds, and 𝑆 denote
the message size for reporting the attribute value in
bytes. We can calculate the total size of these attribute
updates without compression in bytes per second,
𝑈𝑜𝑟𝑖𝑔 , as follows:

𝑈𝑜𝑟𝑖𝑔 =
1

𝑇
⋅𝑁 ⋅ 𝑆 (2)

With compression, part of the attribute updates can
be suppressed if their values can be inferred by their
reference values within the error bound. We use 𝑈𝑠

to denote the total size of these suppressed attribute
update cost in bytes per second. We first analyze the
temporal correlation scheme that uses the last value
prediction to suppress the attribute updates.

Lemma 1. Let 𝑝1 denote the percentage of nodes whose
attribute values can be inferred from its last value. The
compression ratio achieved by the temporal correlation
algorithm (𝐶𝑅𝑡) is 𝑝1.

Proof: Since 𝑝1 denotes the percentage of nodes
whose attribute values can be inferred from its last
value, (𝑝1 ⋅𝑁) nodes do not need to send the attribute
updates. Hence, we derive 𝑈𝑠, the total size of the
suppressed attribute updates in bytes per second for
the temporal correlation scheme as follows:

𝑈𝑠 =
1

𝑇
⋅ 𝑝1 ⋅𝑁 ⋅ 𝑆

Thus, we can calculate 𝐶𝑅𝑡 as follows:

𝐶𝑅𝑡 =
𝑈𝑠

𝑈𝑜𝑟𝑖𝑔
= 𝑝1

We then study the spatial correlation scheme that
uses the clustering algorithm to group all the moni-
tored nodes in the current system image into different
clusters.

Lemma 2. Assume all the 𝑁 monitored nodes can be
clustered into 𝑚 groups. Let 𝑝2 denote the percentage
of nodes whose attribute values can be predicted by its
cluster head. The compression ratio achieved by the spatial
correlation algorithm (𝐶𝑅𝑠) is 𝑝2 ⋅ 𝑁−𝑚

𝑁 .

Proof: For 𝑚 nodes (i.e., cluster heads), we need
to send their unsuppressed attribute updates. For the
other (𝑁 −𝑚) nodes (i.e., cluster members), since 𝑝2
denotes the percentage of nodes whose attribute val-
ues can be predicted by their cluster heads, 𝑝2 ⋅(𝑁−𝑚)
nodes do not need to send the attribute updates. Thus,
we derive 𝑈𝑠, the total size of the suppressed attribute
updates in bytes per second for the spatial correlation
scheme as follows:

𝑈𝑠 =
1

𝑇
⋅ 𝑝2 ⋅ (𝑁 −𝑚) ⋅ 𝑆

Hence, we can calculate 𝐶𝑅𝑠 as follows:

𝐶𝑅𝑠 =
𝑈𝑠

𝑈𝑜𝑟𝑖𝑔
= 𝑝2 ⋅ 𝑁 −𝑚

𝑁

Now we consider the integrated approach that com-
bines the temporal and spatial correlation schemes.

Lemma 3. Let 𝑝1 denote the percentage of nodes whose
attribute values can be inferred based on the temporal
correlation scheme. Let 𝑝′2 denote the percentage of cluster
members whose attribute values cannot be inferred by
the temporal correlation scheme but can be inferred by
the cluster heads. The compression ratio achieved by the
integrated approach (𝐶𝑅𝑡+𝑠) is 𝑝1 + 𝑝′2

𝑁−𝑚
𝑁 .

Proof: For 𝑚 nodes (i.e., cluster heads), (𝑝1 ⋅𝑚) of
them do not need to send the attribute updates since
their values can be inferred based on the temporal
correlation scheme. For the other (𝑁 −𝑚) nodes (i.e.,
cluster members), 𝑝1 of their values can be inferred
by the temporal scheme and 𝑝′2 of their values can be
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inferred by the cluster heads. Hence, there is totally
(𝑝1+𝑝′2) ⋅ (𝑁 −𝑚) nodes do not need to send their at-
tribute updates. We can derive 𝑈𝑠, the total size of the
suppressed attribute updates in bytes per second for
the integrated “temporal+spatial” correlation scheme
as follows:

𝑈𝑠 =
1

𝑇
(𝑝1 ⋅𝑚+ (𝑝1 + 𝑝′2) ⋅ (𝑁 −𝑚)) ⋅ 𝑆

Thus, we can calculate 𝐶𝑅𝑡+𝑠 as follows:

𝐶𝑅𝑡+𝑠 =
𝑈𝑠

𝑈𝑜𝑟𝑖𝑔
= 𝑝1 + 𝑝′2

𝑁 −𝑚

𝑁

Next, we analyze the neighbor search algorithm and
RCM. We put their analysis together since they only
differ in the reference block search patterns. For these
two schemes, we always use the temporal correlation
scheme first to check whether the current attribute
value can be inferred by the last value. We also
need to take the training overhead into account since
no compression can be achieved during the training
phase.

Lemma 4. Let 𝑝1 denote the percentage of nodes that can
be inferred by the temporal correlation scheme, 𝑝4 denote
the percentage of nodes whose attribute values cannot be
inferred by the temporal correlation scheme but can be
inferred by its reference block value. Let 𝐼 denote the
number of reference images in one training round, 𝑅 denote
the number of training rounds, and 𝐿 denote the number of
images in one compression phase. The average compression
ratio achieved by RCM (𝐶𝑅𝑅𝐶𝑀 ) is 𝐿⋅(𝑝1+𝑝4)

𝐼+𝑅−1+𝐿 . When
𝐼 +𝑅 ≪ 𝐿, 𝐶𝑅′

𝑅𝐶𝑀 = 𝑝1 + 𝑝4.

Proof: Let us consider a period that contains one
training phase and one compression phase of RCM.
The training phase has (𝐼 + 𝑅 − 1) system images.
During the training phase, we need to send complete
and unsuppressed attribute updates for the optimal
reference block search algorithm. The compression
phase has 𝐿 system images. For the 𝑁 nodes in one
image, 𝑝1 of their values can be inferred by the tem-
poral scheme and 𝑝4 of their values can be inferred by
the reference block values. The total number of nodes
that do not need to send their attribute updates during
the compression phase are 𝐿 ⋅ (𝑝1+ 𝑝4) ⋅𝑁 . Hence, we
can derive 𝑈𝑠, the total size of the suppressed attribute
updates in bytes per second for RCM as follows:

𝑈𝑠 =
𝐿 ⋅ (𝑝1 + 𝑝4) ⋅𝑁 ⋅ 𝑆
(𝐼 +𝑅− 1 + 𝐿) ⋅ 𝑇

Thus, we can calculate 𝐶𝑅𝑅𝐶𝑀 as follows:

𝐶𝑅𝑅𝐶𝑀 =
𝑈𝑠

𝑈𝑜𝑟𝑖𝑔
=

𝐿 ⋅ (𝑝1 + 𝑝4)

𝐼 +𝑅− 1 + 𝐿

When 𝐼 + 𝑅 ≪ 𝐿, 𝐶𝑅𝑅𝐶𝑀 can be approximated as:
𝐶𝑅′

𝑅𝐶𝑀 = 𝑝1 + 𝑝4.

After we have analyzed different compression
schemes individually, now we compare the com-
pression capability of RCM with the most power-
ful correlation-based scheme: the integrated “tempo-
ral+spatial” correlation scheme.

Proposition 1. The compression ratio of RCM is larger
than the compression ratio of the integrated tempo-
ral+spatial correlation scheme (i.e., 𝐶𝑅𝑅𝐶𝑀 > 𝐶𝑅𝑡+𝑠)
if each search path in the RCM’s reference block search
algorithm always covers the corresponding cluster head.

Proof: Based on Lemma 3, we have 𝐶𝑅𝑡+𝑠 = 𝑝1+
𝑝′2

𝑁−𝑚
𝑁 . Now we further analyze 𝑝′2.

The spatial correlation scheme uses 𝑘-medoid clus-
tering to form 𝑚 clusters among 𝑁 nodes in the
current image. 𝑝′2 is defined as the percentage of
cluster members whose attribute values cannot be
inferred by the temporal correlation scheme but can
be inferred by 𝑚 cluster heads.

Let 𝑃𝑏𝐼 denote the percentage of nodes whose at-
tribute values can be inferred by the best reference
block value obtained by RCM in the current system
image. For each node, if the search path in the RCM’s
reference block search algorithm covers the cluster
head for this node, RCM achieves no lower compres-
sion ratio than the spatial correlation scheme, that is,
𝑃𝑏𝐼 is no smaller than 𝑝′2:

𝑃𝑏𝐼 ≥ 𝑝′2 (3)

In RCM, the compression phase is much larger
than the training phase. According to Lemma 4, if
𝐼 +𝑅 ≪ 𝐿, the “zero compression” impact caused by
the training phase will be negligible. Thus, 𝐶𝑅𝑅𝐶𝑀

can be approximated by 𝑝1 + 𝑝4. Now we further
analyze 𝑝4.

We define 𝑃𝑏𝑖 as the percentage of nodes whose
attribute values can be inferred by the best reference
block found by RCM in the 𝑖′th reference image.
Since RCM picks the reference block that achieves
the highest compression ratio among 𝐼 best reference
blocks as the final reference block, we can derive the
following relation between 𝑝4 and 𝑃𝑏𝑖 (𝑖 = 1, 2, ..., 𝐼):

𝑝4 ≥ 𝑚𝑎𝑥(𝑃𝑏1 , 𝑃𝑏2 , ...., 𝑃𝑏𝐼 ) (4)

By concatenating inequality (4) and (3), we can get
𝑝4 ≥ 𝑝′2. Based on Lemma 3 and Lemma 4, we can
derive the following relation:

𝐶𝑅′
𝑅𝐶𝑀 = 𝑝1+𝑝4 ≥ 𝑝1+𝑝′2 > 𝑝1+𝑝′2

𝑁 −𝑚

𝑁
= 𝐶𝑅𝑡+𝑠

(5)
Hence, the compression ratio achieved by RCM

is larger than the integrated temporal+spatial cor-
relation scheme if every search path in the RCM’s
reference block search algorithm always covers the
corresponding cluster head. The intuition behind
this analytical result is that RCM always employs a
broader search range (i.e., 𝐼 recent system images)
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than the temporal+spatial correlation scheme that
only searches the current image.

Furthermore, we compare the compression capabil-
ity of RCM with the neighbor search algorithm.

Proposition 2. The compression ratio of RCM is larger
than the compression ratio of the neighbor search scheme
(i.e., 𝐶𝑅𝑅𝐶𝑀 > 𝐶𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟).

Proof: Let 𝑝3 denote the percentage of nodes
whose attribute values cannot be inferred by the
temporal correlation scheme but can be inferred by its
reference block value found by the neighbor search
algorithm. Since the neighbor search algorithm uses
the same online training process as RCM and only
differs in the reference block search algorithm, we
can leverage Lemma 4 to calculate 𝐶𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. Since
𝐼 , 𝑅 and 𝐿 are all constant, 𝐶𝑅𝑅𝐶𝑀/𝐶𝑅𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 =
(𝑝1+𝑝4)/(𝑝1+𝑝3). Now we only need to prove 𝑝4 > 𝑝3.

Let 𝑁3 denote the number of nodes whose attribute
values cannot be inferred by the temporal correlation
scheme but can be inferred by its reference block
value found by the neighbor search algorithm. Let 𝑁4

denote the number of nodes whose attribute values
cannot be inferred by the temporal correlation scheme
but can be inferred by its reference block value found
by RCM. Thus, we have 𝑁3 = 𝑁 ⋅ 𝑝3 and 𝑁4 = 𝑁 ⋅ 𝑝4.
Intuitively, the probability of finding the best reference
block for the current block can be increased by apply-
ing a broader search range to the reference images.
Therefore, 𝑁3 and 𝑁4 are proportional to the number
of candidate blocks examined by the neighbor search
algorithm and RCM.

The neighbor search algorithm examines eight sur-
rounding blocks in 𝐼 reference images in each training
window. Hence, 𝑁3 follows the following propor-
tional relation:

𝑁3 ∝ 𝐼 ⋅ 8, (𝐼 ≥ 1) (6)

RCM’s reference block search algorithm checks
eight neighboring blocks in each large diamond search
and four neighboring blocks in the final small di-
amond search. Let 𝑙𝑖 denote the number of large
diamond searches for the 𝑖′th reference image (𝑙𝑖 ≥ 1).
Thus, 𝑁4 follows the following proportional relation:

𝑁4 ∝
𝐼∑

𝑖=1

(8 ⋅ 𝑙𝑖 + 4), (𝐼 ≥ 1, 𝑙𝑖 ≥ 1) (7)

Comparing Equation (6) and (7), 𝑁4 is larger than
𝑁3 even if there is only one large diamond search
round (i.e., 𝑙𝑖 = 1). Hence, RCM can achieve higher
compression ratio than the neighbor search algorithm.

We now analyze the training cost of different com-
pression algorithms. The training overhead of the
neighbor search algorithm and RCM is mainly caused
by the optimal reference block search algorithm. The

neighbor search algorithm checks eight immediate
surrounding blocks in each of the 𝐼 reference images
for each block in the training image. Thus, the training
cost is 𝑂(8𝑁𝑏𝐼) where 𝑁𝑏 denotes the number of
blocks in one system image. 𝐼 is typically a small
constant (e.g., 𝐼 = 3 in our experiments). Hence,
𝑂(8𝑁𝑏𝐼) can be simplified as 𝑂(𝑁𝑏).

The RCM’s reference block search algorithm checks
eight neighboring blocks in each LDSP and four
neighboring blocks in the final SDSP in each of the
𝐼 reference images. In the worst case, this search
path might cover all blocks in one system image.
Thus, the training cost of RCM’s reference block
search algorithm in the worst case is 𝑂(𝑁2

𝑏 ). However,
RCM’s reference block search algorithm can have sub-
linear training cost under the condition that the large
diamond search terminates after only a few rounds.
Such condition can be satisfied when the current block
has strong temporal and spatial correlations with its
neighboring blocks. Thus, the search algorithm can
stop at one neighboring block that is not far away
from the current block and thus avoid exploring more
farther blocks. Furthermore, several parameters can
also affect this condition. For example, by using a
large block size 𝑏 we can reduce the number of search
steps. The search process may also terminate early
under a loose error bound 𝑒𝑖.

The spatial correlation algorithm uses the 𝑘-
medoids clustering to group 𝑁 monitored nodes into
different groups. Its training cost is 𝑂(𝑁3) in the worst
case [1], which is significantly higher than RCM’s
reference block search algorithm.

2 DETAILS OF THE TRACE DATA COLLEC-
TION

The VCL monitoring traces were collected by the pro-
duction VCL system using the IBM Tivoli monitoring
software [2]. The traces contain various performance
attributes collected on 400 VCL nodes from Oct. 18th,
2010 to Nov. 3rd, 2010. The sampling interval is 5
minutes. In our experiments, we test our algorithms
on the IP statistics attribute (datagrams/sec) and the
windows NT processor attribute (DPC queued/sec).

The PlanetLab data traces were collected by our
distributed monitoring system [3], [4] deployed on 500
PlanetLab nodes. The monitoring agent on each node
collected various system-level attributes (i.e., intra-
node attributes) that are supported by the Planet-
Lab CoMon monitoring tool [5] (e.g., CPU load, free
memory, available CPU etc.) at a sampling interval of
10 seconds. Each monitoring agent also periodically
pinged other nodes in the system to collect inter-node
attributes such as network delay and bandwidth. We
collected a set of intra-node attributes containing 400
nodes from Jan. 29th, 2009 to Feb. 3rd, 2009. We
collected three sets of inter-node attributes containing
more than 400 nodes from Sep. 21st, 2009 to Sep. 23rd,
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Fig. 12. Compression ratio comparison for the VCL NT
Processor trace.
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Fig. 13. Compression ratio comparison for the Planet-
Lab CPU load trace.

2009, from Oct. 4th, 2009 to Oct. 6th, 2009 and from
Nov. 5th, 2009 to Nov. 9th, 2009, respectively.

We got a small sample of real application work-
load trace data collected on a Google cluster [6]. The
dataset contains normalized CPU and memory usage
attributes for more than 30,000 different jobs, with a
sampling interval of 5 minutes. We selected a subset
of these jobs (i.e., 1296 jobs) that have larger variations
in the raw data. We also assume that those jobs are
executed on different hosts.

To test with inter-node attributes, we also used real
Internet traffic matrices collected by previous research
work from a transit network [7]. In this dataset, one
traffic matrix was computed per 15 minutes for a
period of four months.

3 ADDITIONAL EXPERIMENTAL RESULTS

3.1 Compression Comparison Without Host Fail-
ures
Fig. 12 shows the compression results of the NT
processor attribute (DPC Queued/sec). The results are
consistent with the results of the IP statistics trace
described in Fig. 9 of the main paper.

We then present the results of monitoring intra-
node attributes on the PlanetLab. Each monitoring
attribute is sampled every 10 seconds and the whole
trace lasts about six days. Fig. 13 shows the average
compression results and the continuously sampled
compression ratio values under the tight error bound
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Fig. 14. Compression ratio comparison for the Planet-
Lab free memory trace.
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Fig. 15. Compression ratio comparison for the Google
cluster CPU trace.

(0.01) for the PlanetLab CPU load attribute trace.
Fig. 14 shows the average compression results and the
continuously sampled compression ratio results for
the PlanetLab free memory attribute trace. Different
from the VCL datasets, the PlanetLab monitoring data
are more stable with smaller CV. Thus, we can see
that the PlanetLab monitoring data are much easier
to compress with up to 70%-80% compression ratios.
This is also the reason why the performance of all
compression approaches are close. However, RCM
and the temporal+spatial correlation algorithms still
perform slightly better than the temporal correlation
algorithm. We will show later that RCM has much
lower overhead than the temporal+spatial correlation
algorithm. Furthermore, RCM remains the best under
tight error bounds (e.g., 0.01).

Next, we present the compression results for the
memory and CPU usage datasets collected on a
Google cluster. Google normalizes the original data
using some secrete linear function for privacy pro-
tection. However, the normalized data preserve the
statistical changing pattern of the original data. Fig. 15
shows the compression results for the CPU trace.
Fig. 16 shows the compression results for the mem-
ory trace. Again, we observe that RCM consistently
outperforms all the other algorithms.

Now we present the compression results for a
PlanetLab inter-node delay dataset in Fig. 17. The
size of this dataset (92GB) is much bigger than the
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Fig. 16. Compression ratio comparison for the Google
cluster memory trace.
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Fig. 17. Compression ratio comparison for the Planet-
Lab inter-node delay trace.

other datasets. We observe that this dataset has the
lowest CV and thus is easy to compress. RCM can
achieve 88% compression ratio under a tight 0.01 error
bound. We do not use the temporal+spatial correlation
approach for this dataset since it is impractical to
apply this approach due to its prohibitive overhead.
In our experiment, the spatial correlation algorithm
took six minutes while RCM only spent around 500
milliseconds for one training round, which is more
than two orders of magnitude faster.

Finally, we present the compression results for an-
other inter-node attribute trace, the Internet traffic
matrices. The results are shown in Fig. 18. Again, we
observe that the RCM consistently outperforms the
other algorithms over different error bound settings.
In Fig. 18(b), the fluctuating compression ratio curve
of RCM indicates that RCM can dynamically discover
the best reference blocks to maintain high compres-
sion ratios.

3.2 Compression Comparison With Host Failures
Fig. 19 shows the compression comparison results for
the Google cluster memory usage trace with 10% and
30% host failures. We have similar observations to the
Google cluster CPU usage trace described in Fig. 10
of the main paper.

We show the compression results for the first Plan-
etLab inter-node delay dataset in Fig. 20. Compared
to the results of two intra-node Google cluster traces,
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Fig. 18. Compression ratio comparison for the traffic
matrices trace.
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Fig. 19. Compression ratio comparison for the Google
cluster memory trace under host failures.

we observe that the compression ratio improvement
made by the backup reference blocks are less signif-
icant. The reason is that this data trace has less vari-
ations. As a result, attribute values are compressed
by the last value prediction approach most of time.
Our experiment statistics show that approximately
90% of the compression ratio is contributed by the last
value prediction approach on average. Hence, the host
failures have little impact to the compression ratio and
the backup reference blocks are rarely used to replace
any failed reference block.

3.3 Sensitivity Studies

We conduct sensitivity experiments to study the im-
pact of different parameters (e.g., block size, training
interval, the number of reference images, the number
of training rounds) on the compression performance
of RCM and the neighbor search algorithm. Table 3
shows the summarized results of all the intra-node
attributes datasets. Table 4 shows the summarized
results of all the inter-node attributes datasets. We
report the average compression ratio results for all
the datasets we tested. The optimal setting of each
parameter setting is highlighted in bold.

First, block size 𝑏 decides the granularity of the
search algorithms. A larger block size can reduce the
number of search steps and thus decrease the compu-
tational overhead. However, with coarser granularity,
it will lead to less accurate block matching. In contrast,
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Fig. 20. Compression ratio comparison for the Planet-
Lab inter-node delay trace under host failures.

TABLE 3
Sensitivity study summarization of all the intra-node

attribute datasets.

Error bound 0.01 0.05
Algorithms Neighbor RCM Neighbor RCM
𝑏=2 11.14 17.74 24.18 31.33
𝑏=4 12.97 20.28 28.30 34.02
𝑏=6 12.46 18.84 27.12 32.67

30 images 9.66 15.50 21.25 25.56
100 images 12.27 19.74 26.89 32.39
300 images 13.03 20.15 28.36 34.08
3000 images 9.38 15.11 24.53 29.65

𝐼=5, 𝑅=5 12.87 20.29 28.06 33.85
𝐼=3, 𝑅=3 12.61 19.60 27.75 33.57
𝐼=1, 𝑅=1 12.35 18.88 27.41 33.23

𝑀 = 𝐾 12.87 20.07 28.06 33.79
𝑀 < 𝐾 12.35 19.74 27.17 33.10
𝑀 ≪ 𝐾 11.34 19.73 26.42 33.08

a smaller block size performs fine-grained search but
has limited search range. It is also less robust to
noises in the data (e.g., some transient similarities).
We observe that RCM achieves the best compression
performance when 𝑏 is equal to 4.

Second, we evaluate the impact of training interval.
We find that the length of training interval cannot
be either too small or too large. On the one hand,
a too small training interval exacerbates the “zero-
compression”impact caused by the training phase. On
the other hand, a too large training interval degrades
the reference block effectiveness. We observe that a
moderate length of training interval (i.e., 300 images)
achieves the best compression performance.

Third, we test different combinations of the number
of reference images 𝐼 and the number of training
rounds 𝑅 in one training phase. Our results show that
having more reference images and training rounds
only brings marginal compression performance gains.

Fourth, we study the effect of different system im-
age organizations for all the intra-node attributes. For
a system image consisting of 𝑁 nodes, we organize
the image using different combinations of 𝑀 and 𝐾
(𝑀 ⋅ 𝐾 = 𝑁 ). We observe that the neighbor search

TABLE 4
Sensitivity study summarization of all the inter-node

attribute datasets.

Error bound 0.01 0.05
Algorithms Neighbor RCM Neighbor RCM
𝑏=2 39.42 45.49 46.08 52.98
𝑏=4 45.99 52.12 53.95 57.60
𝑏=6 44.11 48.33 51.70 55.29

30 images 34.03 40.09 40.46 43.20
100 images 43.23 51.12 51.14 54.72
300 images 45.99 52.12 53.95 57.60
3000 images 33.11 39.09 46.64 50.11

𝐼=5, 𝑅=5 45.99 52.12 53.95 57.60
𝐼=3, 𝑅=3 45.05 50.29 53.38 57.02
𝐼=1, 𝑅=1 44.11 48.46 52.80 56.44

TABLE 5
System overhead comparison for compressing an

intra-node Google cluster CPU usage trace containing
1296 hosts.

Algorithm Memory Training Compression
RCM (q=3) 8 MB 32±2.7 ms 86±12.5 𝜇s
RCM (q=2) 8 MB 32±2.0 ms 77±4.1 𝜇s
RCM (q=1) 8 MB 31±2.6 ms 72±16.2 𝜇s
RCM (q=0) 8 MB 26±3.3 ms 63±7.0 𝜇s
Neighbor 8 MB 14±1.0 ms 57±0.5 𝜇s
Spatial 12 MB 198±17.0 ms 64±2.0 𝜇s

algorithm achieves the highest compression ratio for
square-shape images. In contrast, RCM is not sensitive
to different image shapes since it has a more flexible
search pattern than the neighbor search algorithm.

3.4 Overhead Measurements
Our overhead measurements were collected by run-
ning the trace-driven compression experiments on
a desktop machine with Intel Core Duo CPU 2.4
GHz and 4GB RAM. Table 5 shows the results for
compressing an intra-node Google cluster CPU usage
trace that contains 1296 hosts. Table 6 shows the
results for compressing a PlanetLab inter-node delay
trace that contains 464 hosts. These two traces are the
largest intra-node and inter-node attribute data traces
that we have collected. For RCM and the neighbor
search schemes, the training overhead includes the
time of searching the best reference blocks during one
training phase. For the spatial scheme, the training
overhead includes the time of performing 𝑘-medoids
clustering during one training phase. For all the
schemes, the compression overhead includes the time
of performing compression for one system image.
We have several observations: 1) Both RCM and the
neighbor search scheme have much lower training
overhead than the spatial scheme. Specifically, RCM
is several orders of magnitude faster than the spa-
tial scheme for the PlanetLab inter-node monitoring
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TABLE 6
System overhead comparison for compressing a

PlanetLab inter-node delay trace containing 464 hosts.

Algorithm Memory Training Compression
RCM (q=3) 34 MB 0.530±0.027 s 8.8±0.2 ms
RCM (q=2) 34 MB 0.527±0.013 s 8.3±0.4 ms
RCM (q=1) 34 MB 0.525±0.012 s 7.7±0.3 ms
RCM (q=0) 34 MB 0.510±0.019 s 7.2±0.1 ms
Neighbor 26 MB 0.474±0.019 s 6.7±0.5 ms
Spatial 40 MB 300±17.0 s 6.8±0.6 ms

data that collects about 212K samples per ten sec-
onds. Thus, RCM is more scalable than the previous
correlation-based schemes; 2) RCM incurs slightly
more overhead than the neighbor search algorithm
since it searches more candidate reference blocks; and
3) The backup reference blocks (i.e., when 𝑞 > 0) only
introduce little extra training and compression over-
head. We also observe that the memory consumption
for all the schemes are small. We can see that RCM is
light-weight, which makes it suitable for performing
online monitoring data compression for large-scale
hosting infrastructures.

The overhead of RCM is linear to the number
of the attributes being tracked. For example, if we
monitor 600 intra-node attributes, the training phase
will take about 18 seconds while the compression
will take about 42 milliseconds. If we monitor 10
inter-node attributes, the training phase will cost about
5 seconds while the compression will spend about
70 milliseconds. Note that those computation time
results are measured using our currently unoptimized
implementation of RCM and a low-end desktop PC.
We can further accelerate the training time and com-
pression time by optimizing the implementation of
RCM and using more powerful server machines.

4 ADDITIONAL RELATED WORK

Distributed system monitoring have been extensively
studied before. A major challenge of building large-
scale distributed monitoring systems is the scalability
concern. Some approaches employ specific monitor-
ing structure to achieve scalable distributed moni-
toring, such as the peer-to-peer structure used by
Astrolabe [8] and the hierarchical structure used by
SDIMS [9], Mercury [10] and Ganglia [11]. Other ap-
proaches trade information coverage or precision for
lower monitoring cost. InfoEye [3] achieves minimum
monitoring overhead at the cost of losing information
coverage since only a subset of monitored attributes
that satisfy the latest statistical conditions will be
pushed to the management node. STAR [12] proposes
a self-tuning algorithm that adaptively sets precision
constraints to bound the numerical error in query
results. In contrast, we solve the scalability problem
by applying online data compression techniques on

live monitoring streams to reduce the monitoring cost.
RCM does not enforce any specific structure to the
monitored infrastructure, which makes it easier to be
deployed in different hosting infrastructures. RCM
can achieve fine-grained and complete monitoring
with only negligible information precision loss within
a pre-defined error bound.

Compression techniques have been extensively
studied in video coding applications [13]. RCM is
inspired by the video compression technique that
encodes large video data at the source, transmits
the compressed video data for lower communication
cost, and then decodes the compressed data at the
receiver to reconstruct the original data. However,
our work addresses a set of new challenges since our
source data are distributed on different hosts that can
experience transient or persistent failures. Offline data
compression has also been well studied. For example,
LZW and Deflate algorithm are widely used by data
compression tools such as gzip. VPC3 [14] is an
offline trace compression algorithm for large log files.
Different from those offline compression schemes that
can only be applied after the data have been reported
to the management node, RCM performs online com-
pression over live monitoring data streams during
monitoring runtime. Thus, RCM can reduce the end-
system resource and network bandwidth consump-
tion on both worker nodes and management nodes.
Flight data recorder [15] is an online system call
tracing tool with system call compression support. In
contrast, our work focuses on the online compression
of dynamic system attributes.
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