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Abstract—Large-scale hosting infrastructures have become the fundamental platforms for many real world systems such as
cloud computing infrastructures, enterprise data centers, and massive data processing systems. However, it is a challenging
task to achieve both scalability and high precision while monitoring a large number of intra-node and inter-node attributes (e.g.,
CPU usage, free memory, free disk, inter-node network delay). In this paper, we present the design and implementation of a
Resilient self-Compressive Monitoring (RCM) system for large-scale hosting infrastructures. RCM achieves scalable distributed
monitoring by performing online data compression to reduce remote data collection cost. RCM provides failure resilience to
achieve robust monitoring for dynamic distributed systems where host and network failures are common. We have conducted
extensive experiments using a set of real monitoring data from NCSU’s virtual computing lab (VCL), PlanetLab, a Google cluster,
and real Internet traffic matrices. The experimental results show that RCM can achieve up to 200% higher compression ratio and
several orders of magnitude less overhead than the existing approaches.
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1 INTRODUCTION

LARGE-SCALE distributed hosting infrastructures
have become the fundamental platforms for many

real world production systems such as enterprise
data centers, cloud systems [1], and massive data
processing systems [2]–[4]. A production hosting in-
frastructure typically consists of i) a large number of
distributed worker nodes that execute different appli-
cation tasks; and ii) a set of management nodes that
provide various configuration and optimization ser-
vices. As the complexity and scale of those distributed
systems continue to grow, it has become imperative to
provide automatic system management support [5].
Among those system management modules, system
monitoring serves as one of the fundamental building
blocks. A distributed monitoring system typically de-
ploys monitoring agents on distributed worker nodes
and configures those agents to continuously collect
various metrics and periodically report sampled met-
ric values to management nodes, which is illustrated
by Fig. 1.

To achieve efficiency and accuracy, the system man-
agement node often desires to obtain complete and
fine-grained information about all hosts and network
connections within the hosting infrastructure. For ex-
ample, our previous work [6], [7] has shown that
fine-grained monitoring data can help significantly
improve the resource utilization of the hosing in-
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Fig. 1. Distributed monitoring system.

frastructure. Fig. 2 shows the service level objective
(SLO) violation rate of a dynamic resource scaling
system [7] under different monitoring granularities
(i.e., 1 second v.s. 1 minute monitoring interval) for the
RUBiS online auction benchmark application [8]. We
can see that fine-grained monitoring can reduce the
SLO violation rate from 17.4% to 4.3%. If we allow
a tight approximation error (0.05) in the distributed
monitoring system, we observe that the SLO rate is
almost unaffected. This implies that fine-grained mon-
itoring with a tight error bound is effective for system
management. Similarly, online performance anomaly
detection and prediction systems [9]–[11] also depend
on fine-grained monitoring data to achieve high accu-
racy.

However, it is a challenging task to deploy fine-
grained monitoring for large-scale hosting infras-
tructures due to the scalability concern. A produc-
tion hosting infrastructure often comprises thousands
of physical hosts and many more virtual machines
(VMs), each of which can be associated with hundreds
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Fig. 2. A case study for
fine-grained monitoring.
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of dynamic metrics [12], [13]. For example, the IBM
Tivoli monitoring system [13] can collect over 600
metrics on a single host. Hence, most production
hosting infrastructures [12], [14] typically use a long
update interval (e.g., every five minutes) to avoid
excessive monitoring overhead. Fig. 3 shows the CPU
usage of a dual-core 2.4 GHz server that monitors
different numbers of worker nodes. Here, we assume
that each worker node reports 90 intra-node attributes
and 10 inter-node attributes at one second sampling
interval to the management server. The size of each
attribute is 8 bytes. We use the web workload gen-
erator httperf [15] to emulate different monitoring
workloads. Fig. 3 shows that the management node is
almost overloaded when the number of worker nodes
becomes large (e.g., 500). Thus, without reducing the
monitoring traffic to the management node, it is im-
practical to apply fine-grained monitoring to large-
scale hosting infrastructures.

Previous work has identified the scalability chal-
lenge of fine-grained monitoring and proposed var-
ious solutions: 1) employing decentralized architec-
tures such as hierarchical aggregation [16] or peer-
to-peer structure [17], [18] to distribute monitoring
workload or 2) trading off information coverage [19]
or precision [20] for lower monitoring cost. To address
the problem, one promising approach is to perform
online data compression to reduce the monitoring
traffic from the distributed worker nodes to the man-
agement node. Recent work [11], [21] has proposed
to exploit temporal and/or spatial correlations for
data compression. However, only exploring temporal
correlation has limited compression power while dis-
covering spatial correlation is often costly due to the
expensive clustering operation [21].

In this paper, we present the design and imple-
mentation of a Resilient, self-Compressive Monitoring
system (RCM) for large-scale hosting infrastructures.
Our goal is to alleviate the bottleneck on the manage-
ment node by reducing the monitoring traffic from
distributed worker nodes to the management node.
To achieve this goal, RCM takes a novel image-based
approach. We model snapshots of dynamic monitor-

ing attributes as a sequence of system images. Each
image is partitioned into a set of blocks. RCM then
performs online reference block search to find the
optimal reference block for each system image block.
During runtime, RCM suppresses the remote updates
on those attributes whose values can be inferred by
their reference block values within a pre-defined error
bound. Furthermore, host failures are common in
large-scale distributed systems [22]. For example, in
our past study about PlanetLab host failures [23], we
observed both transient and persistent host failures
that lasted from five minutes to two days. Those host
failures can be caused by either network failures or
host crashes. Thus, the online compression scheme
also needs to be failure-resilient in order to handle
those host failures. RCM achieves failure-oblivious
compression by maintaining a few backup reference
blocks and dynamically switching to one backup ref-
erence block if the original reference block fails.

Specifically, this paper makes the following contri-
butions:

∙ We present a fast and efficient reference block
search algorithm that uses a dual-diamond search
pattern to find the optimal or near-optimal refer-
ence block with low overhead.

∙ We introduce light-weight failure management
mechanisms to achieve resilient online dis-
tributed monitoring data compression.

∙ We conduct an analytical study to quantify the
advantage of our image-based compression ap-
proach over previous correlation-based compres-
sion schemes.

∙ We have implemented a prototype of RCM and
conducted extensive experiments using real sys-
tem monitoring data collected on PlanetLab [24],
NCSU’s virtual computing lab (VCL) [14], a
Google cluster [25], and real Internet traffic ma-
trices [26].

Our experimental results show that RCM can
achieve up to 95% compression ratio under a range of
tight error bounds (e.g., 0.01-0.1). RCM can improve
the compression ratio by up to 200% compared to the
simple temporal correlation based approach but still
maintain a low overhead. Under host failures, RCM
can achieve similar compression performance to the
non-failure case with little extra cost.

The rest of the paper is organized as follows.
Section 2 gives a preliminary introduction about the
distributed monitoring system model and the problem
formulation. Section 3 describes the design details of
RCM. Section 4 presents the experimental evaluation.
Section 5 compares our work with related work. Fi-
nally, the paper concludes in Section 6.

2 PRELIMINARY

In this section, we first introduce the distributed mon-
itoring system model. We then describe the problem
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TABLE 1
Notations.

Notation Description
𝑁 number of worker nodes
𝑣𝑖 the 𝑖′th worker node
𝐴 set of all intra-node attributes
𝐷 set of all inter-node attributes
𝑎𝑡𝑖,𝑘 intra-node attribute 𝑎𝑘 on node 𝑖 at time 𝑡

𝑑𝑡𝑖,𝑗,𝑘 inter-node attribute 𝑑𝑘 between node 𝑖 and 𝑗 at
time 𝑡

𝑏 block size
𝑒𝑖 error bound for attribute 𝑖

𝑇 monitoring interval
𝐶𝑅 compression ratio
𝑈𝑜𝑟𝑖𝑔 the number of uncompressed attribute updates in

bytes per second
𝑈𝑠 the number of suppressed attribute updates in

bytes per second
𝑁𝑏 number of blocks in one system image
𝐼 number of reference images
𝑅 number of training rounds
𝐿 number of images in one compression phase
𝑞 number of backup reference blocks
𝑆 size of each monitoring data update in bytes

formulation. Table 1 summarizes all the notations
used in this paper.

2.1 Monitoring System Model
We consider a large-scale distributed hosting infras-
tructure that consists of 𝑁 worker nodes, denoted
by {𝑣1, . . . 𝑣𝑁}. RCM installs monitoring agents on all
worker nodes and configures those monitoring agents
to report their local attribute values to the manage-
ment node using a certain sampling rate (e.g., every
10 seconds). We classify distributed system attributes
into two categories: 1) intra-node attributes that con-
tain information relating to each node (e.g. CPU load,
memory usage, disk I/O statistics), and 2) inter-node
attributes that denote measurements between differ-
ent nodes (e.g. network delay and bandwidth).

On each worker node, the monitoring agent period-
ically samples each intra-node attribute to form a time
series {𝑎1𝑖,𝑘,. . . , 𝑎𝑡𝑖,𝑘,. . .,𝑎𝑡+𝑚

𝑖,𝑘 }, where 𝑎𝑡𝑖,𝑘 denotes the
sampled value for the intra-node attribute 𝑎𝑘 collected
on node 𝑣𝑖 at time 𝑡. Similarly, the monitoring agent
periodically samples each inter-node attribute to form
a time series {𝑑1𝑖,𝑗,𝑘, . . . , 𝑑𝑡𝑖,𝑗,𝑘, . . . , 𝑑𝑡+𝑚

𝑖,𝑗,𝑘 } where 𝑑𝑡𝑖,𝑗,𝑘
denotes the inter-node attribute 𝑑𝑘 between node 𝑖
and 𝑗 at time 𝑡.

2.2 Problem Formulation
The goal of the RCM system is to achieve fine-
grained monitoring with low cost. The basic idea is
to suppress the update of the attribute value from a
worker node to the management node at time 𝑡 if
the management node can infer the worker node’s
attribute value using a known reference value. Let
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Fig. 4. System image of an inter-node attribute for a
distributed system of 𝑁 nodes.
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Fig. 5. System image of an intra-node attribute for a
distributed system of 𝑁 nodes.

𝑎𝑖 denote one real attribute value and 𝑎′𝑖 denote its
reference value. RCM allows the user to specify an
error bound 𝑒𝑖 (𝑒𝑖 ≥ 0). If ∣𝑎𝑖 − 𝑎′𝑖∣/𝑎𝑖 ≤ 𝑒𝑖, RCM can
suppress the update of this attribute value from the
worker node and restore the value on the manage-
ment node using its reference value within the error
bound 𝑒𝑖. In general, more attribute value updates
can be suppressed under a larger error bound 𝑒𝑖.
The error bound is typically application-dependent,
which can be configured by the application or the
system management modules. If different applications
and system management modules have different error
bound requirements, RCM will use the lowest error
bound to meet the precision requirements of all ap-
plications and system management modules.

To quantify the effectiveness of the online compres-
sion algorithm, we define the compression ratio (CR)
as follows:

𝐶𝑅 =
𝑈𝑠

𝑈𝑜𝑟𝑖𝑔
(0 ≤ 𝐶𝑅 ≤ 1) (1)

where 𝑈𝑠 is the number of attribute values whose
updates are suppressed by RCM in bytes per second
and 𝑈𝑜𝑟𝑖𝑔 is the number of original attribute updates
without using any compression in bytes per second.
The larger the compression ratio, the more monitoring
cost reduction can be achieved. To maximize the
compression ratio, RCM needs to find the optimal
reference value for each attribute. However, the chal-
lenge here is how to discover the optimal reference
values for all the monitored attributes using a light-
weight online compression algorithm.

We propose a novel image-based approach to scal-
able online monitoring data compression. We model
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snapshots of dynamic monitoring attributes collected
on distributed worker nodes in the hosting infrastruc-
ture as a sequence of system images.

For monitoring an inter-node attribute 𝑑𝑘 (e.g.,
network delay) of a distributed system consisting of
𝑁 nodes, the system image at time 𝑡 is an 𝑁 × 𝑁
square matrix: the element at 𝑖′th row and 𝑗′th column
denotes the attribute value between node 𝑖 and node
𝑗, illustrated by Fig. 4. Note that we only need to build
half image to reduce the monitoring traffic if 𝑑𝑖,𝑗,𝑘 and
𝑑𝑗,𝑖,𝑘 have very similar values. We choose to build the
complete image to make our model generic, which
can support those asymmetric inter-node attributes as
well.

For monitoring an intra-node attribute 𝑎𝑘 (e.g., CPU
load) of a distributed system consisting of 𝑁 nodes,
the system image at time 𝑡 is an 𝑀 × 𝐾 matrix
(𝑀 ⋅𝐾 = 𝑁 ) where each element denotes the attribute
value of one particular node, illustrated by Fig. 5. We
conducted experiments to study how to pick 𝑀 and
𝐾. Our results show that it is optimal to make 𝑀 and
𝐾 similar, as we will show in Section 4.

We further partition the system image into a set
of small blocks, each of which contains 𝑏× 𝑏 attribute
values (e.g., 𝑏 = 2). We perform reference value search
at the block level for efficiency. We strive to find the
optimal reference block for each block using the fast
reference block search algorithm that will be described
in the next section.

The compression scheme provided by RCM differs
from the traditional compression techniques in the
following major aspects. First, RCM needs to handle
decentralized monitoring data that are located on
different geographically dispersed hosts. This requires
all the monitoring agents and the management node
to perform compression together in a coordinated
way. Second, RCM deals with dynamic live monitor-
ing data, which requires an adaptive online training
algorithm to maintain good performance. Third, dis-
tributed hosts may experience transient or persistent
failures, which requires the compression algorithm to
be failure resilient.

3 SYSTEM DESIGN

In this section, we first provide an overview of RCM.
We then describe the optimal reference block search
algorithm. Next, we present the failure-resilient online
compression scheme. Finally, we present the analyt-
ical study to compare RCM with other alternative
schemes.

3.1 Overview
RCM performs online compression over distributed
monitoring data, which is illustrated by Fig. 6. The
runtime operation of RCM alternates between two
phases: the training phase and the compression phase.
During the training phase, all worker nodes send
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Fig. 6. RCM distributed monitoring architecture.

complete monitoring data to the management node.
RCM then builds a sequence of system images using
the uncompressed monitoring data. For each system
image block, RCM finds the optimal reference based
on the compression ratio metric. The management
node stores the optimal reference block information
(i.e., image index and block position) locally and also
sends corresponding reference block information to
different worker nodes.

After the training phase is done, RCM starts to
perform compression using the reference block in-
formation derived during the training phase. Each
worker node compares the current attribute value
with its reference value. If the difference is within the
pre-defined error bound, the worker node suppresses
the attribute update for reducing the monitoring data
traffic. If the management node does not receive the
attribute update from a worker node, it will use the
attribute’s reference value to restore the suppressed
attribute update.

RCM on the management node reconstructs all
the monitoring data and delivers the complete mon-
itoring information to different system management
modules. If the error bound is set to be zero, RCM
achieves lossless compression; If the error bound is
set to be non-zero, RCM provides lossy compression
but assures that the approximation error is within
the pre-defined bound. RCM does not require any
explicit synchronization between the worker nodes
and the management node. When the worker node
sends attribute updates to the management node, the
message is denoted by a tuple {timestamp, a set of
attribute values}. The worker node can send values of
different attributes through different communication
ports. Thus, on the management node side, we can
find out which attributes are omitted due to com-
pression and infer which sampled values of those
attributes are missing by checking the gap between
different timestamps.

There are several design trade-offs in RCM. First,
we need to decide a proper training interval. Intu-
itively, frequent training helps to maintain a high
compression ratio, especially for highly dynamic dis-
tributed systems where the optimal reference block



5

Training 

window 1 Training 

window 3

Training 

window 2

: Training image block : Candidate reference blocks

(3,1)(1,2) (1,2) (2,3) (3,1)(3,1)

Majority voting

predict predictpredict

Fig. 7. Online training phase.

might change from time to time. However, too fre-
quent training also significantly lowers the overall
compression ratio because we cannot perform any
compression during the training phase (i.e., the “zero
compression” effect). Hence, we typically use a mod-
erate training interval for a balanced trade-off. Second,
RCM can also support the threshold-driven training,
which triggers the training phase whenever the com-
pression ratio drops below a pre-defined threshold.
However, we find it difficult to decide an appropriate
compression ratio threshold for unseen live moni-
toring data streams. Furthermore, this scheme might
frequently trigger the training if the compression ratio
keeps fluctuating around the threshold.

3.2 Online Reference Block Search
One key step in our online compression scheme is
to find a good reference block for each system image
block. If an attribute value in the current block can
be inferred from the corresponding attribute value
of its reference block within the error bound, the
monitoring agent on the worker node does not need to
report the current attribute value to the management
node.

As mentioned in the previous subsection, RCM
employs a training phase to search the optimal ref-
erence block. The training phase consists of 𝑅 (e.g.,
𝑅 = 3) training windows, illustrated by Fig. 7. In
each training window, RCM on the management node
examines 𝐼 (e.g., 𝐼 = 3) consecutive system images.
We denote those 𝐼 images as the reference images. The
last reference image in the training window is called
the training image. Each block is represented by a
coordinate (image index, block position) where the image
index denotes which reference image in the training
window and the block position denotes the block se-
quence number inside one system image. The training
phase determines a mapping from the coordinate of
each training image block to the coordinate of the
reference block. For each block in the training image,
RCM checks a number of candidate blocks in all the
reference images to select the best reference block. The
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Fig. 8. RCM’s reference block search algorithm.

best reference block is defined as the block that can
give the highest compression ratio. RCM repeats this
process for 𝑅 consecutive training windows and use
the majority voting to decide the best reference block
for each training image block in the training image.
Fig. 7 shows an example of the online training phase.
The best reference blocks for the current training
image block (3,1) during three training windows are
block (1,2), (1,2), and (2,3). Using the majority voting,
we choose the block (1,2) as the best reference block
for the block (3,1). If multiple reference blocks have
the same frequency of being the best reference block,
we break the tie by selecting the reference block that
achieves the highest average compression ratio. Note
that RCM only uses the coordinate mappings found
during the training phase to perform compression.

Ideally, we want to find the optimal reference block
that can achieve the highest compression ratio. How-
ever, exhaustively searching all reference blocks will
inevitably incur long training time. Thus, for practical-
ity, we want to adopt some fast reference block search
algorithms to find near-optimal reference blocks with
low overhead. RCM provides a fast reference block
search algorithm inspired by a video coding tech-
nique [27]. The basic idea is to gradually increase
the search range and terminate the search process
immediately when little compression performance im-
provement can be achieved. This search strategy can
achieve good tradeoff between the search coverage
and the search overhead.

Specifically, our reference block search algorithm
uses a dual-diamond search pattern, illustrated by
Fig. 8. The first pattern, called large diamond search
pattern (LDSP), comprises eight blocks surrounding
the center block to compose a diamond shape. In
Fig. 8, blocks (i,4), (i,10), (i,12), (i,16), (i,20), (i,24),
(i,26) and (i,32) form one LDSP with block (i,18) as
the center. Blocks (i,2), (i,8), (i,10), (i,14), (i,18), (i,22),
(i,24) and (i,30) form another LDSP with block (i,16)
as the center. Note that some blocks are overlapped
between different LDSPs. The second pattern, called
small diamond search pattern (SDSP), consists of four
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blocks surrounding the center block. In Fig. 8, blocks
(i,9), (i,15), (i,17) and (i,23) compose one SDSP with
block (i,16) as the center. LDSP is repeatedly used until
the best reference block occurs at the center block. We
then switch the search pattern from LDSP to SDSP.
Among the four blocks in the SDSP and the center
block, the block yielding the highest compression
ratio is selected as the final reference block. We now
describe the major reference block search steps in
details as follows. We use the search conducted in the
reference image 𝑖 (1 ≤ 𝑖 ≤ 𝐼) for the training image
block (I,18) as an example.

Step 1): The initial LDSP is centered at the co-located
block in the reference image 𝑖 (i.e., block (i,18) in
Fig. 8). The center block and the eight neighboring
blocks are tested individually by checking the com-
pression ratio that can be achieved when using each of
them as the reference block. If the block that achieves
the highest compression ratio is located at the center
position, we go to Step 3; Otherwise, we go to Step
2. In Fig. 8, the best block of the initial LDSP is block
(i,16). Thus, our search proceeds to Step 2.

Step 2): The neighboring block achieving the highest
compression ratio in the previous search step (i.e.,
block (i,16) in Fig. 8) is re-positioned as the center
block to form a new LDSP. If the eight neighbor-
ing blocks in this new LDSP do not achieve higher
compression ratio than the center block, we go to
Step 3. This indicates that we want to terminate
the broad search since little compression performance
improvement can be achieved. Otherwise, we repeat
Step 2 to explore more blocks. In Fig. 8, the best block
of the second LDSP is center block (i,16) itself. Thus,
our search proceeds to Step 3.

Step 3): Switch the search pattern from LDSP to
SDSP. The best block found in this step is the final
reference block. In Fig. 8, the final reference block is
block (i,9).

For each training window, the same search process
is conducted on all the 𝐼 consecutive system images
independently. We then compare the best reference
blocks of all reference images and choose the one that
has the highest compression ratio as the final best
reference block. If multiple candidates have the same
compression ratio, we break the tie by choosing the
best reference block in the image that is closest to the
training image in time.

As illustrated by Fig. 8, the search path is formed
by the movement of center blocks of successive LDSPs
and the movement of the center block of the last LDSP
to the final reference block of the SDSP. The blocks
along this search path are the candidate reference
blocks found in successive diamond search rounds.
The compression ratio values obtained by these can-
didate reference blocks should continuously increase.
We also observe that candidate blocks can partially
overlap between neighboring search steps. Our algo-
rithm will mark those blocks that have been examined

in previous search rounds to avoid repetitive searches.
During the reference block search, RCM excludes

the co-located block in the (𝐼 − 1)′𝑡ℎ reference image.
The reason is that RCM always uses the last value
prediction by default, which checks whether the val-
ues of the current block at time 𝑡 can be predicted
by the values of itself at time 𝑡− 1. For better failure
resilience, RCM can be configured to exclude those
co-located blocks in other reference images as well.
The reason is that distributed hosts might experience
transient failures. The availability of the affected host
might change frequently. Thus, it is unreliable to use
any of those recent co-located blocks as the reference
block since they might be unavailable too.

At first glance, RCM is similar to a mixture of
the temporal and spatial correlation schemes. How-
ever, RCM is more effective than these traditional
correlation-based approaches because RCM applies
a broader search range. We will formally quantify
the search range comparison between RCM and
correlation-based schemes in Section 3.4. More impor-
tantly, RCM has much lower overhead than previous
spatial correlation-based scheme, which will be shown
in Section 4.

3.3 Failure Resilience

The failed hosts that serve as reference blocks will
affect the compression performance since RCM can-
not use those reference blocks anymore. However,
it is a non-trivial task to distinguish a temporary
unavailable node from a healthy node that suppresses
the value update for reducing the monitoring cost.
Thus, the management node cannot directly rely on
the monitoring data to detect the host failures. One
simple solution is to require each host to send heart-
beat messages periodically, which however will incur
extra monitoring overhead. Instead, RCM leverages
the inter-node attribute monitoring to detect host
failures. Specifically, to monitor inter-node attributes
such as network delays and bandwidth, each moni-
toring agent needs to ping all the other hosts with a
pre-defined sampling interval. If the monitoring agent
on host 𝐴 does not get the response from another host
𝐵 at time 𝑡, it will fill in a NULL value in its inter-node
attribute report to indicate the host failure 𝐵 at time 𝑡.
The management node can thus detect the host failure
𝐵 when it aggregates the inter-node attribute reports
from all the monitoring agents. If there is no inter-
node attribute monitoring, RCM can either require
each host to send periodical heartbeat messages or
rely on existing failure detection schemes (e.g., [28])
to check host liveness.

To achieve fast failure recovery, RCM maintains a
few additional reference blocks as backups. Specifi-
cally, we denote 𝑞 as the number of backup reference
blocks supported by RCM, which is a configurable
parameter in our system. We describe how to get 𝑞
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backup reference blocks under two different condi-
tions.

1) 𝑞 ≤ (𝐼−1). By running the reference block search
algorithm on each of the 𝐼 reference system images,
RCM can find 𝐼 reference blocks for each block in
the training image. We rank the 𝐼 candidate reference
blocks in the descending order of their compression
ratios. Since 𝑞 ≤ (𝐼 − 1), we can choose the first
one as the primary reference block and the remaining
𝑞 blocks in the ranked list as the backup reference
blocks. If there are 𝑅 training rounds, we will get 𝑅
ranked lists. We then perform the majority voting for
(𝑞+1) times. Each majority voting chooses one block
from 𝑅 blocks that appear at the same position in 𝑅
ranked lists. Hence, we can obtain the final (𝑞 + 1)
reference blocks.

2) 𝑞 > (𝐼 − 1). We use the same algorithm as above
to get 𝐼 candidate reference blocks ranked using the
compression ratio metric. We still choose the first one
as the primary reference block and the remaining
𝐼 − 1 reference blocks as the backup reference blocks.
However, since 𝑞 > (𝐼 − 1), we need to find addi-
tional (𝑞 − 𝐼 + 1) backup reference blocks. Since we
have used up all 𝐼 reference blocks found during the
training phase, RCM has to assign a random block in
a random reference image as an additional backup
reference block. By assigning a random block, we
avoid excessive extra overhead of having to search
good backup reference blocks again so that we achieve
good tradeoff between reliability and cost.

Our failure resilience management scheme intro-
duces little extra overhead since the backup reference
block search algorithm is performed as a byproduct of
the optimal reference block search algorithm. During
the compression phase, the management node can
quickly replace the failed reference block with one of
its live backups. As mentioned above, we sort all the
backups in the decreasing order of their compression
ratios and pick the first live backup when the primary
reference block fails. If all the backup reference blocks
for an attribute fail by chance, RCM stops performing
compression on the attribute and will wait until the
next training phase to find a set of new reference
blocks.

3.4 Analytical Study

We now present our analytical study to formally com-
pare RCM with a set of common alternative schemes:
1) the temporal correlation algorithm that suppresses
the monitoring updates if the last attribute value can
be used to predict the current attribute value within
the error bound; 2) the spatial correlation algorithm
that uses the 𝑘-medoids clustering algorithm [29] to
group all monitored nodes into different groups. We
elect one node in the group (i.e. the cluster head, usu-
ally the medoid of each cluster) as the representative
node. Other cluster members do not need to send

their updates if the difference between their values
and the cluster head is within the error bound; 3) the
temporal+spatial correlation algorithm developed by
the InfoTrack system [21] that leverages both temporal
and spatial correlations among attribute values to
suppress distributed monitoring traffic; and 4) the
neighbor search algorithm that performs a similar
reference block search as RCM but its search range
is limited to eight immediate neighbor blocks (i.e.,
upleft, up, upright, right, downright, down, downleft,
and left) in the reference image.

The details about the analytical study, including the
compression ratio and overhead comparisons among
different approaches, can be found in Section 1 of
the online supplemental material. Here, we provide a
summary of our analytical results: RCM can achieve
higher compression ratio than the other alternative
schemes. RCM typically has sub-linear overhead,
which is significantly lower than the overhead of the
spatial correlation algorithm.

4 SYSTEM EVALUATION

In this section, we first describe our system implemen-
tation followed by the data trace descriptions. We then
present and analyze our experimental results.

4.1 System Implementation

We have implemented a prototype of the RCM system
and conducted extensive experiments using several
monitoring traces collected on real-world distributed
systems. All the trace-driven compression experi-
ments were conducted on a desktop machine with
Intel Core Duo CPU 2.4 GHz and 4GB RAM. For
comparison, we also implemented several alternative
compression algorithms that have been discussed in
Section 3.4.

For RCM and the neighbor search algorithm, we
configure the length of each compression phase to
be 300 system images for the following two reasons:
1) This value is not too small so that the “zero-
compression” impact caused by the training phase can
become negligible; and 2) This value is not too large
so that it can make the training frequent enough to
maintain good compression performance. For consis-
tency, the spatial correlation and the temporal+spatial
correlation approaches also use the same interval to
perform clustering periodically. The number of ref-
erence images 𝐼 and the number of training rounds
𝑅 in RCM are both set to be 3. The block size 𝑏
is set to be 4. We found those parameter settings
work well for all the datasets we tested. We also
conducted sensitivity studies to show how the choices
of different parameter values affect the performance
of RCM.
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TABLE 2
Statistics of the monitoring traces.

ID Description System
image
dimen-
sion

Total
data
size

Coefficient
of
variation
(CV)

D1 VCL IP statistics 20x20 18MB 1.53
(Datagrams/sec)

D2 VCL processor 20x20 36MB 1.33
(DPC queued/sec)

D3 PlanetLab CPU (%) 20x20 195MB 0.30
D4 PlanetLab memory

(MB)
20x20 261MB 0.39

D5 Google CPU 36x36 86MB 0.68
(normalized)

D6 Google memory 36x36 86MB 0.59
(normalized)

D7 PlanetLab delay (ms) 464x464 92GB 0.22
D8 PlanetLab delay (ms) 466x466 82GB 0.25
D9 PlanetLab delay (ms) 438x438 106GB 0.18
D10 Traffic matrices

(Kbps)
23x23 126MB 0.41

4.2 Trace Data Collection and Statistics

We have collected several real-world distributed sys-
tem monitoring data traces to evaluate the RCM
system. Table 2 summarizes the characteristics of dif-
ferent traces. For intra-node attributes (i.e., D1-D6), a
system image of dimension 𝑁 × 𝑁 means that we
are monitoring 𝑁2 nodes. For inter-node attributes
(i.e., D7-D10), a system image of dimension 𝑁 × 𝑁
means that we are monitoring 𝑁 nodes. Data size
is the total file size of each monitoring data trace.
The coefficient of variation (CV) is defined as the
ratio of the standard deviation 𝜎 to the mean 𝜇 (i.e.,
𝐶𝑉 = 𝜎/𝜇). For example, in Table 2, the CV of
the VCL IP statistics dataset (D1) is 1.53. It means
that the standard deviation of D1 is 1.53 times of
the mean of D1, which indicates that this dataset is
highly fluctuating. We can use CV as a normalized
measure of data variability across different datasets.
Generally speaking, the dataset with a smaller CV
will have lower variations than other datasets. In
Table 2, the dataset with the lowest variation is the
third PlanetLab delay trace (D9) that has a CV value
of 0.18.

More details on our trace data collection can be
found in Section 2 of the online supplemental ma-
terial.

4.3 Results and Analysis

We first compare RCM with the other alternative
compression schemes under no host failures. We then
present the compression results of RCM under host
failures. We also compare RCM with an offline com-
pression scheme gzip. Next, we conduct sensitivity
studies to show how the choices of various parameter
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Fig. 9. Compression ratio comparison for the VCL IP
Statistics trace.

values affect the performance of RCM. Finally, we
measure the overhead of RCM.

4.3.1 Compression Comparison Without Host Fail-
ures

Summary of results. We conducted experiments on
eight datasets described in Table 2 (i.e., D1-D7 and
D10). Our experimental results show that RCM can
achieve average compression ratio of 28.2%-48.8%
under a range of tight error bounds (0.01-0.1) for these
datasets. RCM consistently outperforms the other al-
ternative compression schemes. RCM can improve the
compression ratio by 24%, 18% and 46% on average
compared to the neighbor search algorithm, the tem-
proal+spatial correlation algorithm, and the temporal
correlation algorithm, respectively.

Here, we present the detailed compression compar-
ison results of the VCL IP statistics dataset. The results
of the other datasets can be found in Section 3.1 of the
online supplemental material.

Fig. 9(a) shows the average compression ratio
achieved by different schemes under various error
bounds for the VCL IP statistics attribute (data-
grams/sec). Fig. 9(b) shows the continuously sampled
compression ratio values under a fixed error bound
(0.01). The attribute is sampled every five minutes
and the whole trace lasts about 16 days. According
to the statistics, this dataset is highly dynamic. We
observe that RCM significantly outperforms all the
other schemes under different error bounds. RCM
can achieve more than 200% higher compression ratio
over the temporal correlation scheme under tight er-
ror bounds (e.g., 0.01). We also observe that the neigh-
bor search scheme is slightly worse than the tem-
poral+spatial correlation scheme. The reason is that
the neighbor search algorithm has a smaller reference
block search range than the spatial+temporal correla-
tion scheme. However, the neighbor search scheme
still has the advantage over the temporal+spatial
scheme since its computational overhead is much
smaller. The compression ratio fluctuation of RCM
shown in Fig. 9(b) indicates the dynamic properties
of this dataset. It shows that RCM can explore the
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Fig. 10. Compression ratio comparison for the Google
cluster CPU trace under host failures.

changing compressibility of the monitoring data to
achieve highest possible compression ratio through-
out the monitoring time.

RCM achieves varied compression ratios across dif-
ferent datasets. This indicates that the optimal com-
pression performance depends on the dynamic input
data behavior. The monitoring data with low varia-
tions are usually easier to be compressed than other
data with high variations. Despite this, RCM con-
sistently outperforms the other alternative schemes
for all the datasets we tested. The fundamental rea-
son is that RCM strives to explore a broader search
range than temporal and spatial correlation schemes
to search the best reference blocks so that the chance
of successful compression is greatly increased.

4.3.2 Compression Comparison With Host Failures

Summary of results. We conducted experiments on
three datasets described in Table 2 (i.e., D5, D6 and
D7) under certain percentage of host failures. Our
experimental results show that RCM with additional
backup reference blocks can tolerate host failures and
achieve similar compression ratios to the case where
there is no host failure. Furthermore, RCM can achieve
better compression performance as the number of
backup reference blocks increases.

Here, we present the experimental results of the
Google cluster CPU usage trace in details. The results
of the other datasets can be found in Section 3.2 of
the online supplemental material.

Fig. 10 shows the compression results for the
Google cluster CPU usage trace under 10% and 30%
host failures. We compare the overall compression
ratio achieved by RCM with different numbers of
backup reference blocks (i.e., 𝑞 = 0 to 3). We also show
the compression result of the original non-failure trace
under the same experiment settings. We have several
interesting observations: 1) RCM without any backup
reference block only has 10%-20% compression ratio
loss compared to the non-failure case. It reflects that
RCM inherently has some failure resilience capability;
2) RCM with one backup reference block can achieve
similar compression ratio to the non-failure case. It
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Fig. 11. Compression ratio comparison with gzip.

indicates that one backup reference block is already
very effective in most cases; 3) RCM can achieve
better compression performance when the number
of backup reference blocks increases. The reason is
that RCM will continue to check next available ref-
erence block for both host failures and compression
failures (i.e., one reference block fails to provide
reference values within a pre-defined error bound).
Thus, examining more backup reference blocks will
increase the probability of successful compression;
and 4) RCM with more than one backup reference
block can achieve even higher compression ratio than
the non-failure case. The reason is that our backup
reference blocks not only covers host failures but also
compression failures. If a host failure coincides with
a compression failure, more backup reference blocks
will increase the chance of successful compression.

The performance of RCM with failure resilience
support depends on the quality of the backup blocks.
Recall that we rank multiple candidate blocks in the
descending order of the compression ratio that can
be achieved. We choose the top one as the primary
reference block and the remaining ones as the back-
ups. If the differences between the primary reference
block and those backup reference blocks are small, the
chance of successful compression using the backup
reference block is similar to that of using the primary
reference block. Thus, RCM with backup reference
blocks can achieve similar performance as the no fail-
ure case on those data traces that have low attribute
value variations.

4.3.3 Compression Comparison With gzip

We compare RCM with gzip, a widely-used file com-
pression program that is based on a combination of
Lempel-Ziv [30] and Huffman coding [31] algorithms.
Fig. 11 shows the comparison results for a subset of
the datasets described in Table 2. We also test with
two more PlanetLab inter-node delay datasets (D8 and
D9) that were collected in a similar way with dataset
D7 but at different time. For each dataset, we run
gzip offline and compare the compressed file size
with its original size to get the compression ratio.
We set the error bound to be zero for RCM since
gzip is a lossless compression scheme. We observe
that RCM can achieve similar compression ratios as
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gzip for the PlanetLab inter-node delay datasets
that have low attribute value variations. We want to
emphasize that RCM performs online compression
over live monitoring data streams while gzip can
only perform offline compression after the monitoring
data have been sent to the management node. Thus,
RCM can alleviate the processing bottleneck on the
management node, which cannot be achieved by any
offline data compression scheme.

4.3.4 Sensitivity Studies
We conduct sensitivity experiments to study the im-
pact of different parameters (e.g., block size, training
interval, number of reference images, number of train-
ing rounds, system image size) on the compression
performance of RCM and the neighbor search algo-
rithm.

Summary of results. We have the following major
observations: 1) The block size has noticeable impact
on the compression performance. RCM achieves the
highest compression ratio when the block size is equal
to four for all the datasets in our experiments; 2)
The training interval has significant influence on the
compression performance. We find that a moderate
length of training interval (e.g., 300 system images)
can achieve the highest compression ratio; 3) The
number of reference images and the number of train-
ing rounds have little impact to the performance
of RCM; and 4) The system image size affects the
neighbor search algorithm only. The neighbor search
algorithm achieves the highest compression ratio for
square-shape images. In contrast, RCM is not sensitive
to different image sizes.

More detailed results can be found in Section 3.3 of
the online supplemental material.

4.3.5 Overhead Measurements
Our overhead measurements were collected by run-
ning several trace-driven compression experiments on
a desktop machine with Intel Core Duo CPU 2.4
GHz and 4GB RAM. We report the training time, the
compression time, and the memory usage.

Summary of results. Our results show that RCM
has much lower training overhead than the spatial
correlation scheme. Specifically, RCM incurs approxi-
mately 30 milliseconds of training time for the Google
cluster CPU usage dataset containing 1296 hosts,
which saves more than 80% training time compared to
the spatial correlation scheme. The compression time
for RCM is less than 90 microseconds, which is similar
to the other approaches. For more challenging and
larger datasets (e.g., the PlanetLab inter-node delay
dataset consisting of 464 hosts), RCM can still keep
the training time within 1 second, which is several
orders of magnitude smaller than the training time of
the spatial correlation scheme. The compression time
for RCM is less than 10 milliseconds. Furthermore,
we also find that the backup reference blocks only

introduce little extra training and compression over-
head. Finally, the memory usage of RCM is only tens
of megabytes.

More detailed overhead statistics and their com-
parisons among different compression schemes can
be found in Section 3.4 of the online supplemental
material.

5 RELATED WORK

Correlations among distributed data sources can of-
ten be exploited for data compression. Correlation-
based approaches have been studied under different
contexts such as sensor network monitoring [32]–
[34], distributed event tracking [35], and resource
discovery [36]. Several previous work [11], [20] has
proposed to leverage correlation patterns to reduce
the monitoring cost. InfoTrack [21] explores both
spatial and temporal correlations to compress the
live monitoring streams in a large-scale distributed
system. However, we find that the temporal corre-
lation scheme has limited compression ratio while
the spatial correlation scheme is often costly due to
the expensive clustering operations. In contrast, RCM
uses light-weight, image-based reference block search
algorithms to enable a broader search range so that
the compression ratio can be significantly improved
without imposing too much overhead. Zhang et al.
proposes to leverage spatial and temporal correlations
to infer missing values from other received values
in Internet traffic monitoring systems [37]. In com-
parison, RCM addresses an orthogonal problem of
reducing the monitoring cost of known values.

In our previous work OLIC [38], we presented an
initial design and implementation of an image-based
online compressive monitoring system to reducing
the distributed monitoring cost. RCM extends OLIC
by adding failure resilience support to achieve ro-
bust monitoring under host failures. Furthermore, we
theoretically prove that RCM outperforms previous
correlation-based schemes in terms of higher com-
pression ratio and lower compression overhead.

More discussions on the related work can be found
in Section 4 of the online supplemental material.

6 CONCLUSIONS

In this paper, we have presented RCM, a novel image-
based resilient self-compressive monitoring system
for large-scale hosting infrastructures. RCM models
snapshots of the monitored distributed system using
a sequence of system images and applies light-weight
online reference block search algorithms to compress
distributed monitoring data. RCM is failure resilient,
which can tolerate host and network failures that are
common in real-world hosting infrastructures. To the
best of our knowledge, we make the first attempt to
adopt an image-based approach to achieving efficient
and robust distributed monitoring traffic reduction.
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We have implemented the RCM system and con-
ducted extensive experiments using a wide range of
real-system monitoring data collected on PlanetLab,
VCL, a Google cluster, and real Internet traffic matri-
ces. Our prototype implementation shows that RCM
is practical and efficient, which can achieve higher
compression ratio with lower overhead than previous
compression schemes.
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