
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 1

PerfCompass: Online Performance Anomaly
Fault Localization and Inference in
Infrastructure-as-a-Service Clouds

Daniel J. Dean, Member, IEEE, Hiep Nguyen, Member, IEEE,

Peipei Wang, Member, IEEE,Xiaohui Gu, Senior Member, IEEE, Anca Sailer, Senior Member, IEEE,

Andrzej Kochut, Senior Member, IEEE,

Abstract—Infrastructure-as-a-service clouds are becoming widely adopted. However, resource sharing and multi-tenancy have made

performance anomalies a top concern for users. Timely debugging those anomalies is paramount for minimizing the performance

penalty for users. Unfortunately, this debugging often takes a long time due to the inherent complexity and sharing nature of cloud

infrastructures. When an application experiences a performance anomaly, it is important to distinguish between faults with a global

impact and faults with a local impact as the diagnosis and recovery steps for faults with a global impact or local impact are quite

different. In this paper, we present PerfCompass, an online performance anomaly fault debugging tool that can quantify whether a

production-run performance anomaly has a global impact or local impact. PerfCompass can use this information to suggest the root

cause as either an external fault (e.g., environment-based) or an internal fault (e.g., software bugs). Furthermore, PerfCompass can

identify top affected system calls to provide useful diagnostic hints for detailed performance debugging. PerfCompass does not require

source code or runtime application instrumentation, which makes it practical for production systems. We have tested PerfCompass by

running five common open source systems (e.g., Apache, MySQL, Tomcat, Hadoop, Cassandra) inside a virtualized cloud testbed.

Our experiments use a range of common infrastructure sharing issues and real software bugs. The results show that PerfCompass

accurately classifies 23 out of the 24 tested cases without calibration and achieves 100% accuracy with calibration. PerfCompass

provides useful diagnosis hints within several minutes and imposes negligible runtime overhead to the production system during normal

execution time.

Index Terms—Reliability, availability, and serviceability; Debugging aids; Distributed debugging; Performance

✦

1 INTRODUCTION

Infrastructure-as-a-service (IaaS) clouds [5] provide cost-

efficient access to computing resources by leasing those re-

sources to users in a pay-as-you-go manner. Although multi-

tenant shared hosting has many benefits, the complexity of

virtualized infrastructures along with resource sharing causes

IaaS clouds to be prone to performance anomalies (e.g., ser-

vice outages [6], service level objective violations). When a

performance anomaly occurs, it is important to identify the

root cause and correct the performance anomaly quickly in

order to avoid significant financial penalties for both the cloud

service provider and the cloud user.

However, it is challenging to diagnose performance anoma-

lies in a production cloud infrastructure is a challenging

task. Due to the multi-tenancy and resource sharing nature

of IaaS clouds, it is often difficult to identify the root cause

of a production-run performance anomaly. On one hand, a

performance anomaly fault can have a global impact, affect-

ing almost all the executing threads of an application when

• Daniel J. Dean, Hiep Nguyen, Peipei Wang, and Xiaohui Gu are with the

Department of Computer Science, North Carolina State University, Raleigh,

NC, 27603.

E-mail: {djdean2,pwang7,hcnguye3}@ncsu.edu,gu@csc.ncsu.edu

• Anca Sailer and Andrzej Kochut are with the IBM T.J. Watson Research

Center.

the fault is triggered. For example, a VM with insufficient

resources (e.g., insufficient memory) will cause all executing

threads of an application to be affected. On the other hand, a

fault can also have a local impact, affecting only a subset of the

executing threads of an application right after the fault is trig-

gered. For example, an infinite loop bug reading from a socket

will only directly affect the threads executing the infinite

loop directly (e.g., increasing the frequency of sys_read).

External faults such as interference from other co-located

applications or improper resource allocation typically have a

global impact on the system. As identified by previous work,

both external environment issues [54] and internal software

bugs [32] are major problems existing in the cloud. It is critical

to identify whether a fault has a global or local impact on the

system as the steps taken to diagnose and correct those two

different kinds of faults are quite different. When we find a

fault has a global impact we can try a simple fix first such as

alerting the infrastructure management system to migrate the

application to a different host. If the fault has a local impact,

however, the cause is likely to be an internal software bug,

requiring the application developer to diagnose and fix it.

Although previous work [52], [39], [37], [23], [16], [15],

[4], [12], [27], [38], [35] has studied the online fault local-

ization problem under different computing contexts, existing

approaches can only provide coarse-grained fault localization,

that is, identifying faulty application components. However,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 2

Physical host

Application + VM

Linux kernel

tracing module

PerfCompass

PerfCompass

Xen/KVM hypervisor

System

call trace

P
e

rf
o

rm
a

n
c
e

 a
n

o
m

a
ly

 a
le

rt

Global and local impact

differentiation

Fault onset time identification

Execution unit extraction

Affected system call ranking

Fig. 1. PerfCompass overview.

they cannot distinguish between faults with a global or local

impact since both global and local faults may manifest simi-

larly at the application component level (e.g., increased CPU

usage). Additionally, tools such as Fay [22] and DARC [47]

can help developers debug the root cause of performance

anomalies. However, these tools are difficult to adapt to a

production cloud environments due to the large overhead they

impart or application instrumentation they require. A detailed

discussion of related work can be found in Section 5.

In this paper, we present PerfCompass, an online fine-

grained performance anomaly fault localization and inference

tool designed to differentiate faults with a global impact from

faults with a local impact and provide diagnostic hints for

either cloud system administrators or cloud users. Figure 1

illustrates the overall structure of the PerfCompass system.

PerfCompass employs lightweight kernel-level system call

tracing to continuously record system calls from the mon-

itored application. PerfCompass performs fault localization

and inference using four steps. First, we segment the large

raw system call traces into groups of closely related system

calls which we call execution units. Next, we process these

execution units to extract a set of fine-grained fault features

(e.g., which threads are affected by the fault, how quickly

the fault manifests in different threads). Third, we use these

fine-grained fault features to differentiate between faults with

a global impact and faults with a local impact. PerfCompass

then provides diagnostic hints by suggesting the root cause of

the fault as being an external environment issue or internal

software bug. Lastly, PerfCompass identifies the top affected

system calls and provides ranks for those affected system calls.

Knowing what system calls are affected by the fault allows

developers to identify which subsystems (e.g., network, I/O,

CPU) are affected and gives hints on how to perform further

diagnosis on the fault.

In this paper, we make the following contributions:

• We develop a novel fine-grained fault feature extraction

algorithm that can identify which threads are affected by

the fault and how quickly the fault manifests in different

threads.

• We describe how external environment issues typically

have a global impact on the system while internal soft-

ware bugs can have a global or local impact on the

system. We show how to use this information to localize

performance anomalies as external or internal.

• We present a system call ranking algorithm which iden-

tifies the top affected system calls and provides ranks for

those affected system calls. This system call ranking is

useful for system administrators or users to gain insight

about the root cause of the performance anomaly.

• We describe a robust execution unit extraction scheme

that can properly split a large raw system call trace into

fine-grained groups of closely related system calls for

different kinds of applications.

• We have implemented PerfCompass and conducted an ex-

perimental study using five open source systems (Apache,

MySQL, Tomcat, Cassandra, and Hadoop). The results

show that PerfCompass can correctly localize 23 out of

the 24 tested faults (17 common environment issues and

7 real software bugs) without calibration and achieve

100% accuracy with calibration. Furthermore, PerfCom-

pass provides useful hints for both external and internal

faults. Our approach is lightweight, imparting an average

of 2.1% runtime overhead to the tested server applica-

tions.

The rest of the paper is organized as follows. Section 2

discusses the preliminaries of our system. Section 3 describes

the design of the PerfCompass system. Section 4 presents our

experimental evaluation. Section 5 compares our work with

related work. Section 6 discusses the limitations of our system

along with our future work. Finally, the paper concludes in

Section 7.

2 PRELIMINARIES

In this section, we first describe our system model for IaaS

clouds. We then describe our problem formulation followed

by the key assumptions we make.

2.1 System Model

IaaS clouds are comprised of several physical hosts connected

by networks. These physical hosts use virtualization technol-

ogy (e.g., KVM [29], Xen [14]) to run several different virtual

machines (VMs), which are then leased to end users. We

instrument each VM with a lightweight kernel tracing tool

called the Linux Trace Toolkit Next Generation (LTTng) [20]

which continuously monitors the system calls generated by

each application running on that VM.

The collected system call traces are then stored on a globally

accessible NFS server. PerfCompass is decoupled from the

VMs it monitors and only needs access to the system call

trace of a monitored VM to perform its runtime analysis.

Thus, PerfCompass can be encapsulated in special analysis

VMs which could be dynamically placed on lightly loaded

hosts to use the residual resources in the IaaS cloud for fault

localization.

PerfCompass is triggered when an alarm is raised by an

online performance anomaly detection tool [18], [46]. Fault

localization is performed on the faulty components identified

by existing online component-level fault localization tools

(e.g., [16], [35]).

Table 1 shows the various terms we have defined and is

intended as a reference to help avoid any ambiguity while

discussing how each item is used.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 3

Term Definition

si The type of system call (e.g.,
sys write)

ti The timestamp of system call si

λ An execution unit (closely related
system calls)

σ The fault onset time (how fast a
fault effects a thread)

τ The fault impact factor (percentage
of affected threads over total
threads)

Ω The fault onset time dispersion
(fault onset time standard deviation
among all affected threads)

k The moving average window
length

C The system call frequency count

T The time interval of start of
execution unit to system call si

W The buffered window of recent
system calls

α The fault onset time threshold

β The fault onset time dispersion
threshold

δ The external fault impact factor
threshold

∆ The internal fault impact factor
threshold

Θ The threshold for system call
execution time and system call
frequency outlier detection

TABLE 1
Notations.

2.2 Problem Formulation and Key Assumptions

The goal of PerfCompass is to provide two key pieces of

information: 1) the performance anomaly impact results; and

2) performance anomaly root cause hints. Specifically, Perf-

Compass first quantifies the impact of a detected fault as either

global or local, suggests the cause as external or internal, and

then identifies the system calls which are most affected by the

fault.

PerfCompass is designed specifically for performance

anomalies which typically provide little information (e.g., no

error messages, limited stack trace) for debugging. However,

our work focuses on the anomalies which are caused by either

infrastructure sharing issues or software bugs. Performance

anomalies due to an application misconfiguration have been

studied before [11] and are beyond the scope of this work.

PerfCompass targets multi-threaded or multi-processed

server applications which are prone to performance anomalies.

We observe that most modern server applications are multi-

threaded or multi-processed in order to utilize the multi-core

processors efficiently.

PerfCompass aims at providing fast online fault debugging

and root cause inference within the production cloud infras-

tructure. Thus, PerfCompass needs to be light-weight with-

out imposing high overhead to the production system. Note

that PerfCompass is not designed to support detailed soft-

ware debugging such as localizing root cause buggy functions,

which require application knowledge and developer involve-

ment. However, we believe that PerfCompass can avoid un-

necessary software debugging effort by quantifying the fault

impact as global or local, suggesting the root cause as either

external or internal, and providing runtime fault debugging

hints.

3 SYSTEM DESIGN

In this section, we present the design details of the PerfCom-

pass system. We begin with an overview of our system. We

then describe each component of PerfCompass. Lastly, we

describe two enhancements which can help improve the fault

localization accuracy.

3.1 System Overview

PerfCompass performs fault localization and inference using

four components: 1) execution unit extraction; 2) fault onset

time identification; 3) fault differentiation; and 4) affected sys-

tem call ranking. PerfCompass first quantifies the fault impact

as either global or local. PerfCompass next suggests root cause

of the fault as either external or internal. Finally, PerfCompass

identifies the system calls affected by the fault and ranks them

in order to provide debugging clues to developers and system

administrators.

Kernel-level system call tracing allows us to monitor appli-

cation behavior without imparting significant overhead. How-

ever, the system call tracing tool typically produces a single

large system call trace for each application. It is infeasible to

perform fine-grained fault localization using the raw system

call trace directly. Hence, PerfCompass first employs an exe-

cution unit extraction component to segment the raw system

call traces into fine-grained groups of closely related system

calls called execution units.

Next, we analyze the different extracted execution units to

answer the following two questions: 1) which threads are af-

fected by the fault? and 2) how quickly are they affected by the

fault? To do this, we first compute a fault onset time metric to

quantify how quickly a thread is affected by the fault. We then

extract a fault impact factor metric, which computes the per-

centage of threads affected by the fault. We also extract a fault

onset time dispersion metric, which quantifies the differences

among the fault onset time values of the affected threads.

Third, we use the fault features to determine whether the

fault has a global impact on the system or a local impact on the

system. Intuitively we observe that external faults have global

impact on the system while internal faults can have either a

global or local impact. The reason is that an external fault,

such as an insufficient CPU allocation, will directly affect all

running threads regardless of what code they are executing.

In contrast, only those threads executing the buggy code are

directly affected by an internal fault with other threads being

affected indirectly due to shared resources or inter-thread com-

munication. Depending on the application logic, this means the

fault could have a global or local impact on the system. We

use this observation to suggest the root cause of the fault as

either external or internal.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 4

Lastly, PerfCompass identifies any system calls showing a

significant increase in either execution time or frequency, pro-

viding a ranked list of these affected system calls based on the

observed increase. Those top affected system calls can provide

important hints about both external and internal faults. For

example, when a co-located VM causes disk contention, I/O

related system calls (e.g., sys_read, sys_write) will

be more affected the other types of system calls. Similarly,

when an internal bug causes an infinite loop in a blocking I/O

function, we would expect to see an increase in the frequency

of blocking I/O related system calls (e.g., sys_futex,

sys_write).

We now discuss each component in detail in the following

subsections.

3.2 Execution Unit Extraction

PerfCompass uses LTTng to collect system calls (denoted by

si) issued by the monitored application from the guest OS.

Each system call entry consists of 1) {timestamp 1, pro-

cess/thread ID, system call name} and 2) {timestamp 2, pro-

cess/thread ID, sys_exit}. We derive the system call exe-

cution time by computing the difference between timestamp 1

and timestamp 2.

We buffer a window (e.g., W = 1.5 minutes) of recent sys-

tem calls in the kernel buffer. Older system call data are written

into a NFS server in case longer trace-data are needed for

fault localization. When a performance anomaly is detected,

PerfCompass is triggered to perform online fault localization

and inference using the buffered trace. Typically, the buffered

data is sufficient for PerfCompass to perform fault localization

as most faults manifest within a short period of time. However,

if the buffered data are insufficient, PerfCompass can retrieve

additional trace data from the remote NFS server.

The kernel tracing tool produces a single stream of system

calls generated by all threads and processes for each appli-

cation. In order to perform fine-grained fault localization, we

need to segment this large raw trace into execution units. We

first group system calls based on thread IDs. The rationale for

doing this is that different threads are typically assigned with

different tasks (e.g., logging, request processing). Therefore,

the system calls generated by the individual threads are likely

to be related to each other, though not necessarily from the

same code block.

When processing the thread-based execution units, we found

that system calls separated by relatively large time gaps were

being grouped together into the same execution unit. These

time gaps are problematic, as they give skewed fault onset time

values, leading to incorrect fault localization results. Specifi-

cally, grouping two contiguous system calls with a large time

gap into one execution unit causes us to derive an inflated fault

onset time value for that execution unit. When exploring this

issue, we found that a large time gap between two contiguous

system calls can be caused by two reasons: 1) thread reuse,

and 2) non-deterministic thread scheduling. For example, we

observed that some server systems (e.g., Apache web server)

use a pre-allocated thread pool in which the threads are reused

W
in

d
o
w

 2

sys_write (100 ms)

sys_read (5 ms)

E
x

ec
u
ti

o
n

 u
n

it
 i

t0
t1

t4

t6

t7

sys_write (18 ms)

sys_write (22 ms)

t8

W
in

d
o
w

 3

Fault onset time: t7 – t0

sys_write (20 ms)

sys_read (8 ms)

W
in

d
o

w
 1

t2

t3

sys_poll (6 ms)

t5

Moving average of sys_write in window 1 = 20 ms

Moving average of sys_write in window 2 = 19 ms

Moving average of sys_write in window 3 = 60 ms

Time (t)

t0

t1

t2

t3

t4

t5

t6

t7
t8

Fig. 2. Fault onset time calculation for one execution unit.

The moving average for each system call type is calcu-
lated separately. The moving average of sys_write in-

creases from 20ms in window 1 to 19ms in window 2 to

60ms in window 3. The time elapsed from the start of the
execution unit λ1 (t0) to the currently processed system

call (e.g.,sys_write in the current window (t7)) is defined
as the fault onset time (σ).

for different tasks to avoid the overhead of dynamically cre-

ating new threads. We also found a context switch, invoked

by the CPU scheduler, could occur between two contiguous

system calls in the same application, causing a large time gap.

To address this problem, we further divide each per-thread

execution unit based on the time gaps between two contigu-

ous system calls to mitigate the inaccuracies caused by thread

recycling or the CPU scheduler. Specifically, if the time gap

between two contiguous system calls s1 and s2 is larger than

a certain threshold, we say the current execution unit λ1 ends

at s1 and a new execution unit λ2 begins at s2. This ensures

that each execution unit does not contain two system calls

separated by a gap larger than the threshold. However, setting

a proper threshold is a challenging task. In this work, we use

the fault onset time threshold as the time gap threshold. The

fault onset time threshold determines whether the fault has

a direct or indirect impact on the execution unit. Hence, our

approach ensures that each execution unit does not contain

two contiguous system calls which are separated by a time

gap larger than fault onset time threshold.

3.3 Fault Onset Time Identification

In order to distinguish between faults with a global and local

impact, we need to analyze the execution units to identify

which threads are affected by the fault and how quickly they

are affected. We carefully chose a simple and fast outlier detec-

tion algorithm to make PerfCompass practical for online mas-

sive system call analysis. We also explored using a clustering

algorithm. However we found this yields little accuracy gain

with much higher computation overhead. To detect whether

a thread is affected by the fault, we first analyze the system

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 5

call execution time of the execution units in that thread. When

calculating system call execution time, it is important to note

that different system call types have different execution time.

As a result, it is necessary to distinguish different types of

system calls (e.g., sys_write, sys_gettimeofday) and

compute the execution time for each system call type sepa-

rately.

We search for outlier system call execution time to detect

whether the fault affects an execution unit. We use the standard

criteria (i.e., > mean + 2 × standard deviation) to detect

outliers. If any system call type is identified as an outlier, we

infer that this execution unit is affected by the fault.

System call execution time is inherently fluctuating. For ex-

ample, the execution time of sys_write can depend on both

the number of bytes to be written as well as any blocking disk

activity. These fluctuations can lead to the incorrect detection

of spurious outliers. To avoid this, we use a k-length mov-

ing average filter to de-noise the system call execution time.

Specifically, we compute an average value for a sliding win-

dow of k consecutive execution time samples. It is important

to set k appropriately as too large of a value will over-smooth

the execution time. We found a value of k = 5 works well for

all the systems we tested. We have also conducted a sensitivity

study on this parameter, which we present in Section 1.1 of

the online supplementary material.

Performance anomalies do not always manifest as changes

in system call execution time. For example, if a performance

anomaly is caused by an infinite loop, we might observe an in-

crease in the number of system calls generated within the loop

when the bug is trigged, compared to the normal execution.

As a result, we also include changes in system call frequency

as part of the fault impact. We maintain a frequency count for

each system call type. When a system call si is invoked, we

increase the frequency count C for si by 1. Next, we compute

the time interval T between the start time of the execution unit

and the timestamp of si. We then compute the frequency using

C/T . We compute frequency in this way because each execu-

tion unit represents some individual portion of the application

with a certain system call generation rate. Finally, we de-noise

and apply outlier detection over the system call frequency in

a similar way as we do for the system call execution time.

If a thread consists of multiple execution units, we only

consider the first execution unit affected by the fault. We

also mark the thread containing the affected execution unit

as affected by the fault.

When an execution unit is affected by the fault, we define a

fault onset time metric to quantify how fast the fault affects the

execution unit and the thread containing it. We compute the

fault onset time using the time interval between the start time

of the execution unit and the timestamp of the currently pro-

cessed system call in the first moving average window where

either a system call execution time or system call frequency

outlier is detected. The rationale for this is we want to identify

how long it takes the fault to show any effect on the execution

unit.

Figure 2 shows a simple example for calculating the fault

onset time. Suppose we set the moving average length k = 2.

The first moving average execution time for sys_write in

the first window is 20 ms. The second moving average exe-

cution time of sys_write in the second window is 19 ms.

However, in the third window, the moving average execution

time significantly increases to 60 ms. Hence, we infer that

this execution unit λ1 is affected by the fault during the third

window. The time elapsed from the start of λ1 (t0) to the

currently processed system call (e.g., sys_write in the third

window) (t7) is defined as the fault onset time (σ). Specifically,

the fault onset time σ1 for λ1 is (t7-t0).

3.4 Fault Differentiation Schemes

Our fault differentiation scheme extracts and analyzes two fea-

tures to determine whether a fault has a global or local impact.

We first quantify the fault impact on each thread using the fault

onset time to infer whether the thread is affected by the fault

directly or indirectly. If the fault onset time of the affected

thread is smaller than a pre-defined fault onset time threshold,

we say this thread is affected by the fault directly. Otherwise,

we say this thread is affected indirectly. We will describe how

to set the fault onset time threshold properly in Section 3.6. We

then define a fault impact factor to compute the percentage of

threads affected by the fault directly. If the fault impact factor

is close to 100% (e.g., >90%), we infer that the fault has a

global impact and may be an external fault or internal fault. In

this case, we suggest the fault is an external fault because the

steps taken to fix an external fault are simple. If the simple

fixes are ineffective, the problem is internal. However, if the

fault impact factor is significantly less than 100% (e.g., 80%),

we infer that the fault has a local impact and is thus an internal

fault.

We can use the fault impact factor (τ) alone to correctly

localize most faults as either external or internal. However, we

found there are borderline cases where it is not clear whether

the fault impact was global or local (e.g., τ ∈ [80%,90%]).

To correctly localize those borderline cases, we compute a

fault onset time dispersion metric to quantify the differences

among the fault onset time values of different affected threads.

We use the standard deviation of the fault onset time durations

among all the affected threads to compute the fault onset time

dispersion. A small fault onset time dispersion means that all

threads are affected at roughly the same time, indicating an

external fault. In contrast, a large fault onset time dispersion

means the threads of the system are affected at different times,

indicating an internal fault.

3.5 Affected System Call Ranking

In addition to distinguishing between external and inter-

nal faults, PerfCompass identifies the top affected system

call types to provide hints for performance anomaly de-

bugging. For example, in the Apache external memory

cap case, we found an increase in the execution time of

sys_mmap_pgoff, indicating a memory related problem.

In the Hadoop infinite read bug, we found an increase in

the frequency of sys_read, a direct result of the bug itself.

Knowing which system calls are affected and which system

calls are not affected can be helpful for both administrators

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 6

and developers to understand the root cause of a performance

anomaly.

We rank each system call type based on the increase per-

centage of either the system call execution time or system

call frequency. Our ranking algorithm only considers those

system calls in the first affected execution unit in each affected

thread in order to identify those system calls which are directly

affected by the fault. Processing each thread in its entirety

runs the risk of identifying system calls affected indirectly

by the fault. For example, when a memory cap of a VM

has been set too low, it is likely we will see memory related

system calls (e.g.,sys_mmap_pgoff) are affected initially.

However, once the machine starts swapping due to lack of

memory, we may start to see scheduling-based system calls are

more affected (e.g., sys_sched_getaffinity). We use

the maximum observed system call execution time percentage

increase and system call frequency percentage increase, for

each system call type, among all threads, to provide an ex-

ecution time rank and a frequency rank for each system call

type.

Finally, we output both ranked lists in order to provide

useful clues for system administrators or software developers

to further diagnose external or internal faults. For example,

knowing that blocking network I/O based system calls are

heavily affected by an external fault could indicate a network

contention problem. Alternatively, in the case of an internal

fault, knowing blocking network I/O related system calls are

affected could help developers localize the buggy segment of

code (e.g., portions of the code performing blocking network

I/O operations).

3.6 Fault Localization Enhancement

Unlike CPU and memory related problems, external disk I/O

or network faults do not always affect all execution units. For

example, disk contention only directly affects those execution

units performing disk I/O operations. When the fault impact

factor indicates a borderline case (i.e., ∆ ≤ τ ≤ δ) and when

our system call ranking scheme indicates mainly disk I/O or

network related system calls are affected, PerfCompass trig-

gers a filtering mode to achieve more precise fault localization.

Figure 3 describes our fault localization algorithm, enhanced

with the filtering mode. As shown, PerfCompass first filters

non-disk I/O and non-network related system calls and then re-

computes the fault impact factor τ . We found that the filtering

scheme gives more precise diagnosis for external disk I/O or

network faults.

During our experiments, we found that the fault onset time

threshold for distinguishing between direct and indirect impact

varied from application to application. The reason is that the

threads of different applications interact with the kernel and

between each other in different ways. Although we found set-

ting a static fault onset threshold (e.g., 0.5 sec) gave correct

fault localization results for 23 out of 24 faults we tested, we

incorrectly localized one fault. To further improve the accuracy

of PerfCompass, we have developed calibration scheme using

offline profiling. We run the application under a simple exter-

nal fault (i.e., an overly low CPU cap) recording the observed

Inputs:

α: Fault onset time threshold

β : Fault onset time dispersion threshold

δ : External fault impact factor threshold (90%)

∆: Internal fault impact factor threshold (80%)

FaultLocalization(α,β)

1. Calculate fault onset time σ for each thread

2. Compute fault impact factor τ using α
3. Rank affected system calls

4. if τ > δ
5. return “external fault”

6. else if τ < ∆

7. return “internal fault”

8. else { /* borderline cases */

9. if top ranked system calls are I/O related

10. Filter non-I/O related system calls

11. Recompute τ
12. if τ > δ
13. return “external fault”

14. else if fault onset time dispersion Ω > β
15. return “internal fault”

16. else

17. return “external fault”

18.}

Fig. 3. PerfCompass external and internal fault localiza-

tion algorithm.

fault onset time values. We then use the largest fault onset time

value among all the affected threads as the fault onset time

threshold for the whole application. We conducted several ex-

periments on calibrating PerfCompass this way using different

application workload intensities, mixes, and different appli-

cation versions. We observe that although the raw calibrated

values obtained may slightly vary, the accuracy of our fault

localization scheme is not affected by the variations. We can

also calibrate the fault onset time dispersion for distinguishing

between external and internal faults in a similar way.

4 EVALUATION

We evaluate PerfCompass using real system performance

anomalies caused by different external and internal faults. We

first describe our experiment setup followed by the results.

Next, we show the overhead imparted by our system. Finally,

we discuss the limitations of our system.

4.1 Experiment Setup

We evaluated PerfCompass using five commonly used server

systems: Apache [7], MySQL [34], Tomcat [10], Cassan-

dra [8], and Hadoop [9]. Table 2 and 3 list all the external and

internal faults we tested, respectively. Each of the 17 external

faults represents a common multi-tenancy or environment is-

sue such as interference from other co-located applications,

insufficient resource allocation, or network packet loss. We

also tested 7 internal faults which are real software bugs found

in real world bug repositories (e.g., Bugzilla) by searching for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 7

System

name

Fault

ID

Fault description

Apache 1 CPU cap problem: improperly setting the VM’s
CPU cap to too low causes insufficient CPU
allocation.

2 Memory cap problem: improperly setting the VM’s
memory cap to too low causes insufficient memory
allocation.

3 I/O interference problem: a co-located VM causes
a disk contention interference problem by running a
disk intensive Hadoop job.

4 Packet loss problem: using the tc command causes
the network to randomly drop 10% of the packets.

MySQL 6 I/O interference problem: a co-located VM causes
a disk contention interference problem by running a
disk intensive Hadoop job.

7 CPU cap problem: improperly setting the VM’s
CPU cap to too low causes insufficient CPU
allocation.

8 Memory cap problem: improperly setting the VM’s
memory cap to too low causes insufficient memory
allocation.

9 Packet loss problem: using the tc command causes
the network to randomly drop 10% of the packets.

Tomcat 12 Packet loss problem: using the tc command causes
the network to randomly drop 10% of the packets.

13 CPU cap problem: improperly setting the VM’s
CPU cap to too low causes insufficient CPU
allocation.

14 Memory cap problem: improperly setting the VM’s
memory cap to too low causes insufficient memory
allocation.

Cassandra 16 CPU cap problem: improperly setting the VM’s
CPU cap to too low causes insufficient CPU
allocation.

17 Packet loss problem: using the tc command causes
the network to randomly drop 10% of the packets.

18 I/O interference problem: a co-located VM causes
a disk contention interference problem by running a
disk intensive Hadoop job.

Hadoop 20 CPU cap problem: improperly setting the VM’s
CPU cap to too low causes insufficient CPU
allocation.

21 Packet loss problem: using the tc command causes
the network to randomly drop 10% of the packets.

22 I/O interference problem: a co-located VM causes
a disk contention interference problem by running a
disk intensive Hadoop job.

TABLE 2

Descriptions of the 17 external faults we tested.

performance related terms such as slowdown, hangs, and 100%

CPU usage. We then follow the instructions given in the bug

reports to reproduce the bugs.

Six of these seven internal software bugs are bugs which

cause the system to hang and one bug causes a degradation

in performance. We choose these bugs to evaluate PerfCom-

pass in order to demonstrate that our tool is capable of han-

dling bugs causing both a slowdown and system hang. We

choose more bugs causing the system to hang because recent

work [26], [53] has identified that those bugs are both diffi-

cult to debug and cause of a significant portion of problems

in the cloud. Although previous work [43] has shown that

performance anomalies can occur as the result of multiple

bugs interacting with each other, we have evaluated our system

using bugs in isolation. We discuss this further in Section 6.

System

name

Fault

ID

Fault description (type)

Apache 5 Flag setting bug (hang): deleting a port Apache
is listening to and then restarting the server causes
Apache to attempt to make a blocking call on a
socket when a flag preventing blocking calls has
not been cleared. The code does not check for this
condition and continuously re-tries the call (#37680).

MySQL 10 Deadlock bug (hang): a MySQL deadlock bug that
occurs when each of the two connections locks
one table and tries to lock the other table. If one
connection tries to execute a INSERT DELAYED

command on the other while the other is sleeping,
the system will become deadlocked (#54332).

11 Data flushing bug (slowdown): truncating a table
causes a 5x slowdown in table insertions due to a
bug with the InnoDB storage engine for big datasets.
InnoDB fails to mark truncated data as deleted and
constantly allocates new blocks (#65615).

Tomcat 15 Infinite wait bug (hang): A counter value is not
updated correctly causing the request processing
threads of Tomcat to hang (#53173).

Cassandra 19 Infinite loop bug (hang): trying to alter a table
when the table includes collections causes it to hang,
consuming 100% CPU due to an internal problem
with the way Cassandra locks tables for updating
(#5064).

Hadoop 23 Infinite read bug (hang): HDFS does not check
for an overflow of an internal content length field
causing HDFS transfers larger than 2GB to try to
repeatedly read from an input stream until job time
out (#HDFS-3318).

24 Thread shutdown bug (hang): when the
AppLogAggregator thread dies unexpectedly
(e.g. due to a crash), the task waits for an atomic
variable to be set indicating thread shutdown is
complete. As the thread has died already, the
variable will never be set and the job will hang
indefinitely (# MAPREDUCE-3738).

TABLE 3
Descriptions of the 7 internal faults we tested.

We use Apache 2.2.22, MySQL 5.5.29, Tomcat 7.0.28, Cas-

sandra 1.2.0-beta, and Hadoop 2.0.0-alpha for evaluating the

external faults of those systems. For each internal fault, we

used the version specified in the bug report. For all faults,

PerfCompass is triggered when a performance anomaly is de-

tected (e.g., response time > 100 ms, progress score is 0),

using the past 1.5 minutes of collected system call trace data

for analysis. The accuracy of PerfCompass is not affected by

the length of the history data as long as the data cover the

fault manifestation. Our experiments show that 1.5 minutes is

sufficient for all the faults we tested.

In order to evaluate PerfCompass under dynamic workloads

with realistic time variations, we use the following workloads

during our experiments.

• Apache - We employ a benchmark tool [1] to send re-

quests to the Apache server at different intensity levels

following the per-minute workload intensity observed in a

NASA web server trace starting at 1995-07-01:00.00 [3].

• MySQL - We use a open source MySQL benchmark tool

called “Sysbench” [2]. We use the oltp test in complex

mode.

• Tomcat - We randomly request different example servlets

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 8

and JSPs included in Tomcat following the same work-

load intensity observed in the NASA web server trace [3]

as Apache.

• Cassandra - We use a simple workload which creates a

table and inserts various entries into the table.

• Hadoop - We use the Pi calculation sample application

with 16 map and 16 reduce tasks.

PerfCompass has six parameters which need to be config-

ured in order to achieve optimal results. They are the fault

onset time threshold (α), the fault onset time dispersion thresh-

old (β), the window size for calculating the moving average

(k), the threshold for outlier detection (Θ), external fault im-

pact factor threshold (δ), and the internal fault impact factor

threshold (∆). k, Θ, δ , and ∆ are not sensitive and as a result,

we use the same settings for different applications. We found

that different α and β values are needed for each application

to obtain optimal results.

During our experiments, the default parameter setting in

PerfCompass is as follows: 1) k is 5; 2) Θ is mean + (2 ×
standard deviation); and 3) δ and ∆ for differentiating external

and internal faults are 90% and 80%, respectively. These set-

tings are configurable and we have not attempted to calibrate

or tune them to any system. We found those default settings

work well for all the systems and faults we tested.

We obtained calibrated α and β values for each system

using a simple external CPU cap fault (i.e., setting an overly

low CPU cap) with different workload intensity levels from

those used in the fault localization experiments1. We inten-

tionally configure this way in order to evaluate whether our

calibration requires the same workload as the production-run

failure. Our results show that changing the workload intensity

does not affect our fault localization results. The derived α
are 60 ms for Apache and Tomcat, 300 ms for MySQL, and

400 ms for Cassandra and Hadoop. The calibrated β values

are 7 ms for Apache, 17 ms for MySQL, 5 ms for Tomcat, 28

ms for Cassandra, and 39 ms for Hadoop.

We repeat each fault injection three times and report the

mean and standard deviation of the fault impact factor values

over all 3 runs.

We conducted our experiments on two different virtualized

clusters. The Apache and MySQL experiments were conducted

on a cluster where each host has a dual-core Xeon 3.0GHz

CPU and 4GB memory, and runs 64bit CentOS 5.2 with Xen

3.0.3. The Tomcat, Cassandra, and Hadoop experiments were

conducted on a cluster where each node is equipped with a

quad-core Xeon 2.53Ghz CPU along with 8GB memory with

KVM 1.0. In both cases, each trace was collected on a guest

VM using LTTng 2.0.1 running 32-bit Ubuntu 12.04 kernel

version 3.2.0.

4.2 Online Fault Localization Results

We now present our online fault localization and inference

results. We begin by presenting our external and internal fault

1. We used a static 1 second time segmentation gap threshold to segment
each trace during calibration. We also tested other static time segmentation
gap threshold values (e.g., 0.5 sec, 1.5 sec) and found it did not affect our
calibration results.

differentiation results. We then present our top affected system

call ranking results followed by a sensitivity study on the key

parameters of our system.

4.2.1 Fault Differentiation Results

Figures 4 shows the fault impact factor and fault onset time

dispersion results using the calibrated fault onset time thresh-

old values. As shown in Figure 4(a), the impact factors of all

the external faults are greater than 90%, indicating them as ex-

ternal with no further analysis required. Similarly, 4 out of 7 of

the internal faults are below the 80%, correctly indicating each

case as internal. There are three borderline cases which require

to use our fault onset time dispersion metric. Fault 15 is an

internal Tomcat bug with an impact factor of 83%. Figure 4(b)

shows the fault onset time dispersion values for the borderline

cases we tested, normalized using the calibrated fault onset

time dispersion threshold values. We observe that the fault

onset time dispersion value of the internal case is significantly

larger than the fault onset time dispersion threshold (i.e., 2×)

for Tomcat, indicating it is an internal fault. Faults 23 and 24

have fault impact factors of about 80%, which makes them

borderline cases as well. As shown in Figure 4(b), the fault

onset time dispersion values for the two internal Hadoop cases

are significantly higher than the fault onset time dispersion

threshold (i.e., 2.3×,2.2×) for Hadoop, correctly indicating

both of them as internal bugs.

We also evaluated PerfCompass using a static 0.5 second

fault onset time threshold. Due to space limitations, we dis-

cuss those results in Section 1.4 of the online supplementary

material.

Setting a fault impact factor threshold of 90% would have

allowed PerfCompass to correctly localize each fault as ei-

ther external or internal without using our fault impact factor

dispersion metric, thus reducing the overhead of PerfCompass.

However, setting a relatively high fault impact factor threshold

(e.g., 90%) would likely over-fit our scheme to our experimen-

tal data. This may increase the probability that PerfCompass

would incorrectly localize an external fault as an internal fault

for systems we have not tested. In addition, we want to avoid

setting a hard threshold for distinguishing between internal and

external faults (e.g., 90% being external and 89% being inter-

nal). As a result, we decided to use a conservative fault impact

factor threshold and employ a hybrid two tier scheme to better

capture the multi-dimensional difference between external and

internal faults.

4.2.2 System Call Ranking Results

Tables 4 and 5 show the top three affected system calls iden-

tified by our ranking scheme for the external faults and in-

ternal faults, respectively. We consider both execution time

and frequency changes while identifying top affected sys-

tem calls. For example, “Time:sys_write (1)” means that

sys_write is the highest ranked system call whose exe-

cution time increase is the largest. The last column in each

table shows our inference results. For the external faults, this

column describes how the affected system calls indicate which

subsystems are most affected by the faults. For the internal

faults, our system call ranking results give hints that may help

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 9

1
(e

xt
er

na
l)

2
(e

xt
er

na
l)

3
(e

xt
er

na
l)

4
(e

xt
er

na
l)

5
(in

te
rn

al
)

6
(e

xt
er

na
l)

7
(e

xt
er

na
l)

8
(e

xt
er

na
l)

9
(e

xt
er

na
l)

10
 (i

nt
er

na
l)

11
 (i

nt
er

na
l)

12
 (e

xt
er

na
l)

13
 (e

xt
er

na
l)

14
 (e

xt
er

na
l)

15
 (i

nt
er

na
l)

16
 (e

xt
er

na
l)

17
 (e

xt
er

na
l)

18
 (e

xt
er

na
l)

19
 (i

nt
er

na
l)

20
 (e

xt
er

na
l)

21
 (e

xt
er

na
l)

22
 (e

xt
er

na
l)

23
 (i

nt
er

na
l)

24
 (i

nt
er

na
l)

0

20

40

60

80

100

Apache MySQL Tomcat Cassandra Hadoop

 Fault ID

F
au

lt
 i

m
p

ac
t

fa
ct

o
r

(%
)

(a) The computed τ values.

13
 (e

xt
er

na
l)

15
 (i

nt
er

na
l)

20
 (e

xt
er

na
l)

23
 (i

nt
er

na
l)

24
 (i

nt
er

na
l)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 Tomcat Hadoop

N
o

rm
al

iz
ed

 o
n

se
t

ti
m

e
d

is
p

er
si

o
n

Fault ID

(b) The normalized Ω values for the borderline cases.

Fig. 4. The computed fault impact factor (τ) and normalized fault onset time dispersion (Ω) values using calibrated
fault onset time threshold (α).

developers localize the buggy function. Note that PerfCompass

is designed to be a light-weight online fault inference tool

that focuses on providing useful clues for diagnosing both

external and internal faults. Thus, we do not intend to use

PerfCompass to pinpoint the exact root cause of a performance

anomaly (e.g., buggy function name). We discuss this further

in section 6. Due to space limitations, we only discuss a subset

of our results in detail. We first discuss a subset external faults

followed by a subset of internal faults.

Fault 8: This external fault is due to an incorrectly set exter-

nal memory cap. The indicator of this fault is the sys_fsync

system call. MySQL tries to keep as much of the database

in physical memory as possible, flushing to disk only when

necessary. The low amount of physical memory causes the

system to use the disk more frequently, which can require addi-

tional memory to disk synchronization using the sys_fsync

system call.

Fault 18: This is an external fault due to disk con-

tention. We can see the execution time of sys_futex and

sys_write are affected, indicating a blocking I/O problem.

In turn, this indicates external disk contention.

Fault 21: This is an external fault due to packet loss.

The increase in the execution time of sys_futex and

sys_socketcall indicates a blocking network I/O prob-

lem. The execution time increase is a result of the dropped

packets being re-transmitted.

Fault 5: Fault 5 is an internal CPU hog bug that occurs

as a result of an infinite loop in which Apache attempts to

make a blocking call on a socket. However, a flag preventing

it from successfully making the call has not been cleared. The

return value of the call is not checked correctly resulting in

Apache re-trying the blocking call continuously. We found an

increase in the frequency and execution time of the sys_ipc

system call, which is a result of Apache repeatedly attempting

to make the blocking call.

Fault 10: This internal fault is a deadlock bug caused

by attempting to execute the INSERT DELAYED statement

on a locked table. The thread attempting to execute the IN-

SERT DELAYED statement tries to continuously access the

locked table. We found an increase in the execution time of the

sys_select and sys_futex system calls. sys_select

is used to allow a program to monitor multiple file descriptors.

Its execution time increase is due to the deadlocked function

attempting to perform an I/O operation. Similarly, the execu-

tion time increase we observe with the sys_futex system

call is a result of system trying unsuccessfully to acquire a

lock on the already locked table. We also see an increase

in the frequency of the sys_stat64 system call, which is

commonly used to first ensure a file exists before performing

a requested I/O operation. This frequency increase is due to

the repeated I/O attempts.

Fault 15: This is an internal fault caused by an incorrectly

updated atomic counter value that is used to keep track of

how many requests are being processed. This causes all other

threads to hang indefinitely as the system incorrectly believes

it cannot handle any more requests. Here we see an increase

in both execution time and frequency of the sys_futex

system call. This indicates a shared variable is being checked

repeatedly.

Fault 23: This is an internal bug with HDFS where the

system does not correctly check a header field. This causes

HDFS to continuously attempt to read from a socket, waiting

for the content that does not exist. This process continues until

the job times out. Here, each of system calls affected is a

result of the bug. The frequency increase of the I/O system

calls, sys_close, sys_read, and sys_stat64 are re-

sults of an infinite loop continuously attempting to read. We

also see an increase in the execution time of the sys_futex,

sys_socketcall, and sys_epoll_wait system calls as

results of the read operations in the infinite loop.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 10

System

Name

Fault

ID

Top affected system calls (rank) Fault hints

Apache 1 Time:sys_waitpid(1),sys_mmap_pgoff(2),sys_socketcall(3)
Frequency:None

Execution time increase of sys_waidpid indicates
a CPU contention problem.

2 Time:sys_clone(1),sys_mmap_pgoff(2),sys_socketcall(3)
Frequency:None

Execution time increase of sys_mmap_pgoff

and sys_clone indicates a memory allocation
problem.

3 Time:sys_select(1),sys_fcntl64(2),sys_socketcall(3)
Frequency:sys_fcntl64(1)

Increase in frequency of sys_fcntl64 along
with increase in execution time of sys_select

indicates a disk contention problem.
4 Time:sys_socketcall(1),sys_open(2),sys_close(3)

Frequency:None
sys_socketcall is used for network I/O.
sys_open and sys_close also related to sending
data over the network. This indicates a non-blocking
network I/O problem.

MySQL 6 Time:sys_futex(1),sys_read(2)
Frequency:None

Increase in execution time of sys_futex and
sys_read indicates blocking I/O problem.

7 Time:sys_futex(1)
Frequency:None

sys_futex affected by itself indicates issue related
to locking. Indicates possible CPU contention or
memory problem. Lack of any other system calls
being affected indicates a CPU contention problem.

8 Time:sys_futex(1),sys_fsync(2),sys_socketcall(3)
Frequency:None

sys_fsync used to flushes buffer cache data
to disk, which can occur when low on memory.
Indicates a memory related problem.

9 Time:sys_futex(1),sys_socketcall(2)
Frequency:None

Increase in execution time of sys_futex and
sys_socketcall indicates a blocking network
I/O problem.

Tomcat 12 Time:sys_futex(1),sys_socketcall(2)
Frequency:sys_stat64(1),sys_futex(2)

sys_socketcall and sys_futex execution
time increase indicates a blocking network I/O
problem.

13 Time:sys_futex(1),sys_sched_getaffinity(2),sys_write(3)
Frequency:sys_futex(1)

Execution time and frequency increase of
sys_futex along with execution time increase
of sys_sched_getaffinity indicates a CPU
contention problem.

14 Time:sys_futex(1),sys_socketcall(2), sys_stat64(3)
Frequency:sys_sched_yield(1)

Increase in frequency of sys_sched_yield

indicates increase in frequency of context switching,
indicates a memory problem.

Cassandra 16 Time:sys_futex(1),sys_poll(2),sys_socketcall(3)
Frequency:sys_close(1),sys_unlink(2),sys_futex(3)

Increase in execution time of sys_futex and
sys_poll indicates a CPU contention problem.

17 Time:sys_futex(1),sys_socketcall(2),sys_sched_getaffinity(3)
Frequency:sys_close(1),sys_futex(2),sys_sched_yield(3)

Increase in execution time of sys_socketcall

and sys_futex indicates a blocking network I/O
problem.

18 Time:sys_futex(1),sys_poll(2),sys_write(3)
Frequency:sys_close(1),sys_futex(2)

Increase in execution time of sys_futex and
sys_write indicates a blocking I/O problem. This
indicates a disk contention problem.

Hadoop 20 Time:sys_futex(1),sys_socketcall(2),sys_epoll_wait(3)
Frequency:sys_close(1),sys_open(2)

Increase in execution time of sys_epoll_wait

and sys_futex indicates a CPU contention
problem.

21 Time:sys_futex(1),sys_socketcall(2),sys_read(3)
Frequency:sys_close(1),sys_read(2)

sys_futex and sys_socketcall execution
time increase indicates a blocking network I/O
problem.

22 Time:sys_futex(1),sys_epoll_wait(2),sys_read(3)
Frequency:sys_close(1),sys_read(2)

Increase in execution time and frequency of
sys_read indicates a disk contention problem.

TABLE 4

System call ranking results for the external faults we tested.

4.2.3 Filtering Mode

We now show the calibrated impact factor values with and

without filtering mode enabled in Figure 5. The cases shown

are external cases with highly ranked I/O related system calls.

As shown, PerfCompass is still able to correctly quantify the

global vs. local impact of most faults without filtering mode

enabled. However, case 17 can be considered a borderline case

as a result of the error bars of the average impact factor. When

we apply filtering mode to that case, however, we find the

impact factor increases substantially from 91+/-6.7% to 99+/-

0.6%. Although this is the only case which shows a significant

benefit from filtering mode, we believe this mode can be useful

in allowing developers more flexibility when defining the fault

impact factor threshold value.

4.2.4 Sensitivity Study

We conducted a sensitivity study in order to determine how

different configuration parameters affect PerfCompass which

we include in Section 1.1 of the online supplemental material

due to space limitations.

4.3 PerfCompass Overhead

We evaluated the overhead imposed by PerfCompass during

normal application execution which we present in Section 1.2

of the online supplemental material due to space limitations.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 11

System

Name

Fault

ID

Top affected system calls (rank) Fault hints

Apache 5 Time:sys_ipc(1),sys_close(2),sys_waitpid(3)
Frequency:sys_ipc(1), sys_open (2)

Frequency increase of sys_ipc indicates
significant increase in inter-thread signalling.
Hints: blocking operation (e.g., blocking socket call)

in an infinite loop.

MySQL 10 Time: sys_select(1),sys_futex(2),sys_fsync(3)
Frequency:sys_stat64(1), sys_open(2),sys_read(3)

Increase in execution time of sys_futex and
frequency of I/O related system calls indicate
repeated attempts to acquire lock and perform
I/O.Hints: possible deadlocked I/O functions.

11 Time:sys_futex(1),sys_select(2),sys_socketcall(3)
Frequency:None

Execution time increase of sys_select and
sys_futex indicate increase of writing and
reading to disk. Hints: possible problem with data

flushing functions.

Tomcat 15 Time:sys_futex(1),sys_close(2),sys_pipe(3)
Frequency:sys_close(1),sys_open(2),sys_futex(3)

Increase in execution time and frequency of
sys_futex indicates issue with locking operations.
Hints: shared variable checking functions.

Cassandra 19 Time:sys_futex(1),sys_fstat64(2),sys_stat64(3)
Frequency:sys_close(1),sys_lstat64(2),sys_unlink(3)

Increase in execution time of sys_futex,
sys_fstat64, and sys_stat64 along with
frequency increase of sys_close indicates
significant increase in I/O operations. Hints: I/O

functions using locking operations in an infinite

loop.

Hadoop 23 Time:sys_futex(1),sys_socketcall(2),sys_epoll_wait(3)
Frequency:sys_close(1), sys_read(2), sys_stat64(3)

Increase in execution time of sys_futex,
sys_socketcall, and sys_epoll_wait.

along with increase in frequency of sys_close,
sys_read, and sys_stat64 indicates issue
with network I/O operation. Hints: I/O operation

involving functions reading over the network.

24 Time:sys_futex(1),sys_socketcall(2),sys_epoll_wait(3)
Frequency:sys_close(1),sys_stat64(2),sys_rt_sigaction(3)

Increase of sys_futex and sys_epoll_wait

indicates issue with locking operations. Hints: shared

variable checking functions.

TABLE 5
System call ranking results for the internal faults we tested.

3
(e

xt
er

na
l)

4
(e

xt
er

na
l)

6
(e

xt
er

na
l)

9
(e

xt
er

na
l)

12
 (e

xt
er

na
l)

17
 (e

xt
er

na
l)

18
 (e

xt
er

na
l)

21
 (e

xt
er

na
l)

22
 (e

xt
er

na
l)

0

20

40

60

80

100

 Without filtering With filtering

Fault ID

F
au

lt
 i

m
p

ac
t

F
ac

to
r

(%
)

Fig. 5. The filtering mode effect using calibrated fault on-

set time thresholds for different faults where the filtering
mode is triggered.

5 RELATED WORK

In our previous work [19], we presented a preliminary version

of PerfCompass. This paper extends our previous work in

several major aspects. First, we provide a system call ranking

scheme to extract useful hints about both external and internal

faults. Second, we designed a robust execution unit extraction

scheme that makes PerfCompass work well for different types

of server systems and faults. Third, we performed a more

thorough evaluation by extending our test cases from 16 faults

to 24 faults.

Previous work has proposed to develop performance debug-

ging tools using system event traces such as system system call

traces and hardware performance counters. Fournier et al. [24]

collected system level event traces and built a state transition

model to analyze the blocking behavior on multi-core sys-

tems. Ding et al. [21] used system calls and command line

options to build normal application signatures for diagnosing

previously known problems. Shen et al. [41] construct change

profiles to detect system anomaly symptoms by checking per-

formance deviation between reference and target executions.

DeepDive [36] first clusters low-level metrics to identify po-

tential interference in virtualized environments. Potential inter-

ferences are then confirmed or denied by comparing the VM

performance in isolation with that in production. Abhishek et

al. [40] uses Auto-Regressive model to detect time-invariant

relationships from monitoring data, and analyzes broken in-

variants during runtime to localize the fault. Lan et al. [31]

use principle component analysis and independent component

analysis along with outlier detection to automatically find

faulty components in large-scale systems. In contrast, our work

focuses on distinguishing faults with a globally direct impact

from faults with a locally direct impact, which is critical for ef-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 12

ficiently diagnosing performance anomalies in shared hosting

infrastructures. Moreover, our approach does not assume any

prior knowledge about the diagnosed problem. Thus, we can

diagnose emergent production problems that are previously

unseen.

Fay [22] uses probes, which are kernel drivers or DLLs,

along with hotpatching to collect and summarize detailed user-

mode and kernel level traces without modifying the underlying

system. Although Fay is able to effectively determine perfor-

mance problems, it does so through a combination of user

space and kernel level tracing, imparting up to 280% overhead

in the process. In contrast, our approach relies on only kernel

level events, imparting 0.8-3.3% overhead in doing so. Thus,

our approach is more suitable for diagnosing production-run

problems within the large-scale hosting infrastructure.

Magpie [13] instruments middleware and packet transfer

points in order to generate a series of low level network events.

They then group these events together into requests via a series

of temporal joins and finally cluster together requests based

on behavior. DARC [47] identifies functions that are the main

latency contributors to peaks in a OSProf profile. S2E [17]

uses selective symbolic execution and dynamic binary instru-

mentation to perform in-vivo multi-path analysis for finding

bugs and profiling performance. The above approaches require

instrumentations to the application or the middleware, which

is difficult to be deployed in the production hosting infras-

tructure. In contrast, PerfCompass is designed to run in the

production hosting infrastructure without any application or

middleware instrumentation.

Researchers also proposed white-box approach to analyzing

performance bugs. Jin et al. [28] present a study of 109 real

world performance bugs in 5 different systems. By manually

checking the patches of known problems, they are able to

then build an efficiency rule-based checker which was able

to identify previously unknown performance problems in de-

ployed software. CloudDiag [33] automatically identifies and

ranks anomalous function calls using robust principle compo-

nent analysis along with white-box instrumentation to provide

fine-grained performance debugging information to develop-

ers. However, it is difficult to obtain the source code access

for production systems running inside the virtualized hosting

infrastructures. Thus, PerfCompass strives to perform online

performance anomaly localization and inference without re-

quiring source code.

Previous work has analyzed RPC messages to identify

faulty components. For example, Aguilera et al. [4] analyze

RPC traces to infer causal paths for debugging. Similarly,

WAP5 [38] links logical messages between different compo-

nents in distributed systems in order to identify causal paths for

debugging. In contrast, PerfCompass uses system call traces

to achieve fine-grained fault localization within each faulty

component identifying whether the fault comes from the envi-

ronment or the component software itself and extracting hints

about the fault. Previous black-box fault localization schemes

cannot provide that type of fine-grained diagnosis.

The idea of tracing distributed systems and networks for

debugging has been well studied [52], [39], [37], [23], [16],

[15], [12], [27]. These systems perform network level tracing

in order to infer paths or dependency information for diagnos-

ing large-scale distributed systems. In comparison, our work

focuses on fine-grained root cause inference within a single

server, which is complementary to those network tracing ap-

proaches.

Much work has been done to diagnose configuration prob-

lems. X-ray [11] uses Pin to dynamically instrument binaries

to track the information flow in order to estimate the cost

and the likelihood that a block was executed due to each

potential root cause (e.g., configuration option). Autobash [44]

proposed to use the pattern of success and failure of known

predicates to diagnose misconfigurations. Chronus [51] peri-

odically checkpoints disk state and automatically searches for

configuration changes that may have caused the misconfigura-

tions. PeerPresure [49] and Strider [50] identify differences in

configuration states across several different machines to diag-

nose misconfigurations on an affected machine. Our work is

complementary to the above work by focusing on performance

anomalies caused by environment issues or internal software

bugs.

Record and replay techniques [42], [25], [30] are useful for

system performance diagnosis. TRANSPLAY [45] uses partial

checkpointing and deterministic record-replaying to capture

minimum amount of data necessary to reexecute just the last

few moments of the application before it encountered a failure.

Triage [48] leverages checkpoint-replay to perform just-in-

time problem diagnosis by repeatedly replaying a failure mo-

ment on the production site. X-ray [11] leverages record and

replay technique to offload the heavy analysis on the replay

computer. However, production site application recording and

replay faces deployment challenges (e.g., requiring sensitive

inputs) and cannot support online diagnosis. In comparison,

PerfCompass does not require application record and replay

to achieve easy deployment for production systems.

6 DISCUSSION AND FUTURE WORK

PerfCompass assumes that internal faults will only affect a

subset of threads when they are triggered. Although this as-

sumption is true for most cases, it might not hold for the

memory leak bug because the system will not be affected by

the bug until thrashing is triggered. Once thrashing occurs,

the memory leak can cause a global impact to the system.

Fortunately, memory leak bugs can be easily detected by mon-

itoring system level metrics (e.g., memory consumption, CPU

usage) using existing online black-box detection and diagnosis

tools [18], [46].

Although PerfCompass can hint at the possible root cause

of different problems based on the top affected system calls,

we do not claim our approach to be free of false positives or

intend to obviate the need for developers. Instead, we believe

that those hints provided by PerfCompass should be combined

with developer knowledge to make production run anomaly

debugging easier.

Each external environment issue or internal software bug

we have used to evaluate PerfCompass was triggered in iso-

lation. It will be interesting to study the impact of concurrent

faults, which however, is beyond the scope of this paper and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 13

will be part of our future work. We have conducted a set of

initial experiments to understand the behavior of PerfCom-

pass under concurrent faults. First, we ran an experiment to

examine the combined effect of an external CPU cap fault

and an internal infinite loop bug. We found that 100% of the

threads were affected, causing PerfCompass to first localize the

issue to be external and thereby trigger external fault handling

mechanisms (e.g., live VM migration). Additionally, we found

that CPU related system calls were ranked high which gives

guidance on where to migrate to. After migration is complete

and the external issue is no longer present, the infinite loop

bug is then correctly localized as internal. Second, we ran an

experiment to evaluate PerfCompass using concurrent CPU

and memory contention faults. Specifically, we triggered an

overly low CPU fault and an overly low memory fault concur-

rently. PerfCompass calculates a fault impact factor of 100%,

correctly indicating an external issue. Also, we found system

calls related to memory were ranked the highest because the

memory cap fault has the dominating impact in this case.

7 CONCLUSIONS

In this paper, we have presented PerfCompass, a novel online

performance anomaly fault localization and inference tool for

production cloud infrastructures. PerfCompass can efficiently

distinguish between external and internal faults without re-

quiring source code or runtime instrumentation. PerfCompass

extracts fine-grained fault features from kernel-level system

call traces and uses those fault features to perform online fault

localization. PerfCompass can also provide useful hints about

both external and internal faults by identifying top affected

system calls. By focusing on kernel-level system call events,

PerfCompass can be applied to different programs written in

C/C++ or Java. We have implemented PerfCompass and eval-

uated it using a variety of commonly used open source server

systems including Apache, MySQL, Tomcat, Cassandra, and

Hadoop. We tested PerfCompass using 24 real cloud faults

consisting of common environment issues in the shared cloud

infrastructure and real performance bugs. Our results show that

our fault differentiation scheme can achieve 100% fault local-

ization accuracy and provide useful fault hints. PerfCompass

is light-weight, which makes it practical for use in production

cloud infrastructures.

REFERENCES

[1] Funkload. http://funkload.nuxeo.org/.
[2] SysBench: a system performance benchmark.

http://sysbench.sourceforge.net/.
[3] The IRCache Project. http://www.ircache.net/.
[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-

tacharoen. Performance debugging for distributed systems of black
boxes. In SIGOPS, 2003.

[5] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.
[6] Amazon elastic compute cloud service outage. http://money.cnn.com/

2011/04/21/technology/amazon server outage/.
[7] Apache. http://httpd.apache.org/.
[8] Apache Cassandra. http://cassandra.apache.org/.
[9] Apache Hadoop. http://hadoop.apache.org/.
[10] Apache Tomcat. http://tomcat.apache.org/.
[11] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause

diagnosis of performance anomalies in production software. In OSDI,
2012.

[12] P. Bahl, P. Barham, R. Black, R. Chandra, M. Goldszmidt, R. Isaacs,
S. Kandula, L. Li, J. MacCormick, D. A. Maltz, R. Mortier, M. Wawr-
zoniak, and M. Zhang. Discovering dependencies for network manage-
ment. In Hotnets, 2006.

[13] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for
request extraction and workload modelling. In OSDI, 2004.

[14] P. Barham, B. Dragovic, K. Fraser, S. H, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP, 2003.

[15] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit: Transactional
profiling for multi-tier applications. In SIGOPS, 2007.

[16] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic internet services. In DSN,
2002.

[17] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo
multi-path analysis of software systems. In ASPLOS, 2011.

[18] D. Dean, H. Nguyen, and X. Gu. UBL: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems. In
ICAC, 2012.

[19] Daniel J. Dean, Hiep Nguyen, Peipei Wang, and Xiaohui Gu. Perf-
Compass: Toward runtime performance anomaly fault localization for
infrastructure-as-a-service clouds. In HotCloud, 2014.

[20] M. Desnoyers and M. R. Dagenais. The LTTng tracer: A low impact
performance and behavior monitor for gnu/linux. In Linux Symposium,
2006.

[21] X. Ding, H. Huang, Y. Ruan, A. Shaikh, and X. Zhang. Automatic
software fault diagnosis by exploiting application signatures. In LISA,
2008.

[22] Ú. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay: Extensible
distributed tracing from kernels to clusters. In SOSP, 2011.

[23] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace:
A pervasive network tracing framework. In NSDI, 2007.

[24] P. Fournier and M. R. Dagenais. Analyzing blocking to debug perfor-
mance problems on multi-core systems. In SIGOPS, 2010.

[25] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday:
Global comprehension for distributed replay. In NSDI, 2007.

[26] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat
Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J Eliazar, Agung
Laksono, Jeffrey F Lukman, Vincentius Martin, et al. What bugs live in
the cloud?: A study of 3000+ issues in cloud systems. In SoCC, 2014.

[27] A. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann, C. Papadopoulos,
and J. Bannister. Experiences with a continuous network tracing infras-
tructure. In SIGCOMM workshop on mining network data, 2005.

[28] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In PLDI, 2012.

[29] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
kvm: the linux virtual machine monitor. In Proceedings of the Linux

Symposium, 2007.

[30] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight application
execution replay on commodity multiprocessor operating systems. In
SIGMETRICS, 2010.

[31] Zhiling Lan, Ziming Zheng, and Yawei Li. Toward automated anomaly
identification in large-scale systems. Parallel and Distributed Systems,

IEEE Transactions on, 2010.

[32] Kaituo Li, Pallavi Joshi, Aarti Gupta, and Malay K Ganai. Reprolite:
A lightweight tool to quickly reproduce hard system bugs. In SoCC.
ACM, 2014.

[33] Haibo Mi, Huaimin Wang, Yangfan Zhou, M.R. Lyu, and Hua Cai.
Toward fine-grained, unsupervised, scalable performance diagnosis for
production cloud computing systems. Parallel and Distributed Systems,

IEEE Transactions on, 2013.

[34] MySQL. http://www.mysql.com/.

[35] H. Nguyen, Z. Shen, Y. Tan, and X. Gu. Fchain: Toward black-box
online fault localization for cloud systems. In ICDCS, 2013.

[36] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini.
Deepdive: Transparently identifying and managing performance inter-
ference in virtualized environments. In USENIX ATC, 2013.

[37] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat. Pip: Detecting the unexpected in distributed systems. In
NSDI, 2006.

[38] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat.
WAP5: black-box performance debugging for wide-area systems. In
WWW, 2006.

[39] R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diagnosing perfor-
mance changes by comparing request flows. In NSDI, 2011.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 14

[40] A. B. Sharma, H. Chen, M. Ding, K. Yoshihira, and G. Jiang. Fault
detection and localization in distributed systems using invariant rela-
tionships. In DSN, 2013.

[41] K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven performance
anomaly identification. In SIGMETRICS, 2009.

[42] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flashback: A
light-weight rollback and deterministic replay extension for software
debugging. In USENIX ATC, 2004.

[43] Christopher Stewart, Kai Shen, Arun Iyengar, and Jian Yin. Entomo-
model: Understanding and avoiding performance anomaly manifesta-
tions. In MASCOTS, 2010.

[44] Y. Y. Su, M. Attariyan, and J. Flinn. Autobash: improving configuration
management with operating system causality analysis. In SOSP, 2007.

[45] D. Subhraveti and J. Nieh. Record and transplay: partial checkpointing
for replay debugging across heterogeneous systems. In SIGMETRICS,
2011.

[46] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan. Pre-
pare: Predictive performance anomaly prevention for virtualized cloud
systems. In ICDCS, 2012.

[47] A. Traeger, I. Deras, and E. Zadok. DARC: Dynamic analysis of root
causes of latency distributions. In SIGMETRICS, 2008.

[48] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: diagnosing
production run failures at the user’s site. In SOSP, 2007.

[49] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y. M. Wang. Automatic
misconfiguration troubleshooting with peerpressure. In OSDI, 2004.

[50] Y. M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,
and Z. Zhang. Strider: A black-box, state-based approach to change and
configuration management and support. In LISA, 2003.

[51] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debugging as
search: Finding the needle in the haystack. In OSDI, 2004.

[52] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan, S. Kandula, and
C. Kim. Profiling network performance for multi-tier data center appli-
cations. In NSDI, 2011.

[53] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, and Michael Stumm. Simple testing
can prevent most critical failures: An analysis of production failures in
distributed data-intensive systems. In OSDI, 2014.

[54] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. Cpi2: Cpu performance isolation for shared compute
clusters. In EuroSys, 2013.

Daniel J. Dean is a PhD student in the Depart-
ment of Computer Science at North Carolina
State University. He received a BS and MS in
computer science from Stony Brook University,
New York in 2007 and 2009 respectively. He has
interned with NEC Labs America in the summer
of 2012 and IBM Research in the summer of
2013. Daniel is a student member of the IEEE.

Hiep Nguyen is a software engineer at Mi-
crosoft. He received his PhD from North Car-
olina State University in 2014 and a BS from
Hanoi University of Technology, Vietnam in
2008. He has interned with NEC Labs America,
Microsoft.

Peipei Wang is a first year Computer Science
Phd student at North Carolina State University.
Peipei got her master’s degree in Computer Sci-
ence and bachelor’s degree in Software Engi-
neering from Xi’an Jiaotong University, China.
Peipei was a summer intern at Morgan Stanley
IT Department in 2012. Her research interest
is solving system diagnosis problems in cloud
computing and big data.

Xiaohui Gu is an associate professor in the De-
partment of Computer Science at the North Car-
olina State University. She received her PhD de-
gree in 2004 and MS degree in 2001 from the
Department of Computer Science, University of
Illinois at Urbana-Champaign. She received her
BS degree in computer science from Peking Uni-
versity, Beijing, China in 1999. She was a re-
search staff member at IBM T. J. Watson Re-
search Center, Hawthorne, New York, between
2004 and 2007. She received ILLIAC fellowship,

David J. Kuck Best Master Thesis Award, and Saburo Muroga Fellow-
ship from University of Illinois at Urbana-Champaign. She also received
the IBM Invention Achievement Awards in 2004, 2006, and 2007. She
has filed nine patents, and has published more than 60 research papers
in international journals and major peer-reviewed conference proceed-
ings. She is a recipient of NSF Career Award, four IBM Faculty Awards
2008, 2009, 2010, 2011, and two Google Research Awards 2009, 2011,
best paper awards from ICDCS 2012 and CNSM 2010, and NCSU Fac-
ulty Research and Professional Development Award. She is a Senior
Member of IEEE.

Anca Sailer Dr. Sailer received her Ph.D. in
Computer Science from UPMC Sorbonne Uni-
versits, France, in 2000. She was a Research
Member at Bell Labs from 2001 to 2003 where
she specialized in Internet services traffic engi-
neering and monitoring. In 2003 Dr. Sailer joined
IBM where she is currently a Research Staff
Member and IBM Master Inventor in the Service
Research Group. She was the architect lead for
the automation of the IBM Smart Cloud Enter-
prise Business Support Services which earned

her in 2013 the IBM Outstanding Technical Achievement Award. Dr.
Sailer holds over two dozen patents, has co-authored numerous pub-
lications in IEEE and ACM refereed journals and conferences, and co-
edited two books, one on multicast and one on problem determination
technologies. Her research interests include cloud computing business
and operation management, self-healing technologies, and data mining.
She is a Senior Member of IEEE.

Andrzej Kochut is a Research Staff Member
and Manager at the IBM T. J. Watson Research
Center. His research interests are in computer
systems, networking, stochastic modeling and
performance evaluation with recent focus on vir-
tualization and cloud computing. Dr. Kochut is
an active author and member of program com-
mittees of IEEE and ACM conferences and was
also recognized with two Best Paper Awards. Dr.
Kochut received his Ph.D. in Computer Science
from the University of Maryland, College Park in

2005.

