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ABSTRACT

Open distributed systems such as service oriented artini¢eand
cloud computing have emerged as promising platforms taeieli
software as a service to users. However, for many secunty se
sitive applications such as critical data processing.t tmesnage-
ment poses significant challenges for migrating thosecatitp-
plications into open distributed systems. In this paperpvesent
the design and implementation of a new secure dataflow Bices
system that aims at providing trustworthy continuous dabagss- 3
ing in multi-party open distributed systems. We identifyea of User Composer

major security attacks that can compromise the integritiatéiflow

processing and provide effective protection mechanisnesuoter Figure 1: Dataflow processing in open distributed systems.
those attacks. We have implemented a prototype of the secure

dataflow processing framework and tested it on the Plandgdsitbed.  open distributed system to access various software seriican
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Our experimental results show that our protection schemesfa on-demand fashion.
fective and impose low performance impact for dataflow pseirey Many emerging applications, such as network traffic monitor
in large-scale open distributed systems. ing for intrusion detection, sensor data analysis, andcdvdieo

surveillance, require sophisticated real-time processier data-

: : : flows [4, 11, 15, 17]. Open distributed systems provide hyigiaial-
CateQOrles and SUbJeCt Descnptors able and available infrastructures for running resounterisive and
H.4 [Information Systems Applications: General quality-sensitive dataflow applications.

An open distributed system supporting dataflow processng a
plications often consists of many domain-specific data gssing
General Terms service providers, illustrated by Figure 1. Each serviaaviger
Security, Management, Verification provides a set of data processing components. A companéna
self-contained software unit providing a certain dataflowcpss-
ing function f;. Each component can have one or more input ports

KeyWOI’dS for receiving input application data units (ADUs), denotsdd;,
Secure Data Processing, Secure Component Compositiond Clo and one or more output ports to emit output ADUs. The composer
Computing, Service Oriented Architecture acts as a portal service provider, which interacts withfiateap-
plication users directly and is responsible for dynamycaklect-
ing and composing processing components based on usecs fun
1. lNTRODUCTI_ON ) ) ] ] tion and quality-of-service (QoS) requirements such aayddi3].
Internet has evolved into an important service deliveryaisf Users can push a stream of ADUs through the composer into the
tructure instead of merely providing host connectivity. tifiapid open distributed system and acquire a set of desired datagsing
adoption of the concepts of Software as a Service (SaaSp@},  functions such as correlation, filtering, or any other streaining
vice Oriented Architecture (SOA) [5, 8], and Cloud Compgtjfi], services [16]. The composer serstairce ADUseceived from the
service oriented open distributed systems have emergedsas ¢ yser to the first-hop component. Each component emits irigirm
effective platforms for users to access various softwapticgtions ate result ADUs callederived ADUs Finally, the last-hop service
as services via Internet. Users no longer need to maintanplzo component reports the final results to the composer thattezm t
cated hardware and software infrastructures but can tapting forward the final results to the user. Due to the natural rddooy

of open distributed systems, there often exist multipledadate
composition plans for the same set of dataflow processing-fun
tions. For example, the same processing function can beedffey
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service (QoS) requirements and load balancing objectide$1],
13,15-17]. It usually assumes that all data processing ooeis
are trustworthy. This assumption generally holds for srecidlle
closed cluster systems, where data processing providdrasars
are from the same security domain or from collaborative dosa
with strong pre-existing trust. However, in open distréaisys-
tems consisting of multi-party service providers, we catamger
assume that all processing components are trustworthyexzon-
ple, dataflow processing components may include securigsho
that can be exploited by attackers. Attackers can alsornmtdtebe
a legitimate service provider to compromise dataflow prsicgs

Trust management for distributed systems has been studied u
der different context, such as PeerReview [14] for distadumes-
saging systems, the suite of security guards proposed bgitSai
and Liu for publish-subscribe systems [19], TVDc [7] fortuial-
ized datacenters, and hierarchical Byzantine fault-éoiereplica-
tion architecture proposed by Amir et. al. for systems tipains
multiple wide area sites [6]. Different from previous wodur re-
search focuses on providing efficient yet scalable trustagament
framework for processing dataflow applications in operritisted
systems. Remote attestation techniques [18, 20], ensate tte-
mote software platform is running code that is not compreuhis
and altered by attackers, which can be used to protect diatien
of individual components and are complementary to our work.

We identify a set of major security attacks that can compsemi
the integrity of dataflow processing in open distributedtesyss.
By examining the systems in different aspects includingqaral
layer, communication layer and application layer, we cdeisthe
following security threats, which, to the best of our knodge,
have not been addressed by existing security managememesh
1) ADU attackswhere a malicious component may alter input or
output ADUs. For example, in Figure 1, a malicious component
may alterd; or dropd;. Other data handling attacks include drop-
ping output ADUs, substituting correct ADUs with fake onis,
jecting bogus ADUs, and replaying old ADUs; @xtaflow topol-
ogy attackswhere a malicious component may change the topol-
ogy of a dataflow application. For example, componenmay
insert an additional hop to the topology by forwarding itspo
ADUs to its colluderss; and 3)function integrity attacksvhere
a malicious component may perform an arbitrary data praogss
function instead of its advertised one. In composed datafipw
plications, there can be multiple malicious componentyiding
falsified dataflow processing functions concurrently.

As countermeasures to those attacks, we present a settaf
centric andlight-weightprotection schemes to achieve secure yet
scalable dataflow processing. By “data-centric”, we meahdhr
scheme focuses on protecting and verifying the authepti€idata
processing results because dataflow users are only codcaooet
the correctness of final data processing results insteddeodiata
processing procedure. By “light-weight", we mean that @inesne
strives to impose minimum overhead since dataflow procgssis-
tems are often load-intensive. Specifically, we make thieviohg
major contributions.

e We present @rovenance-based ADU protection schethmat
enforces processing components to provide “receipts’dohe
input ADU they receive and keep “evidence” for each ADU
they produce. This protocol can effectively counter ADU at-
tacks in distributed dataflow processing.

We describe aascading dataflow topology encryptischeme

to protect both confidentiality and integrity of dataflow b
gies. Our topology encryption scheme assures that each pro-
cessing component knows nothing about the whole dataflow
topology except its upstream and downstream components
and no one can change the topology without being detected.

e We present aandomized consistency chesttheme to achieve

scalable dataflow processing integrity verification. By-ran
domly duplicating a subset of ADUs and processing them us-
ing randomly selected functionally equivalent components
dataflow topologies, we can detect malicious behavior tjinou
result consistency check with high detection probabilitd a
small overhead.

We conduct analytical study to quantify performance imysct
our secure dataflow processing schemes. We further impleanen
prototype of the proposed secure dataflow processing syatem
test it on PlanetLab, a wide-area network testbed [3]. Opeex
mental results show that the proposed scheme is effectiyénan
poses low performance overhead to the distributed dataftow p
cessing system.

The rest of the paper is organized as follows. Section 2 ptese
the design of our secure dataflow processing schemes. Sé&ctio
presents the prototype implementation and experimensalltee
Finally, the paper concludes in Section 4.

2. DESIGN AND ALGORITHMS

In this section, we present the design and algorithm detdils
our secure dataflow processing system including the promena
based ADU protection scheme, the cascading dataflow topolog
encryption scheme, and the randomized consistency chekns
for detecting function integrity attacks. We assume thah libe
composer and component service providers have publiaterkey
pairs bound to themselves. With their public/private keypahey
can encrypt, decrypt, and sign data. A party cannot forgersth
signatures or decrypt data encrypted using others’ publis k

2.1 Overview

Our security protection schemes provide confidentiality &m
tegrity for dataflow processing applications by imposigiptiweight
processing on both composer and service components. Ttadeas
ing dataflow topology encryption scheme requires the coepos
to encrypt the existing processing topology to preservdiden-
tiality. Each component needs to extract next-hop inforomalby
decrypting the topology and generate an execution tracehfor
later verification of actual service topology. The compdaeaiso
need to send a receipt packet to its upstream component &s wel
as generate a provenance evidence to prevent ADU alteridg an
dropping attacks as required by our provenance-based ABY pr
tection scheme. Note that ADU data is encrypted with a shared
secret key between interactive components, which is eteaiyys-
ing the receiving party’s public key and sent along with tHelA
Moreover, the composer also performs randomized dataatites
to detect function integrity attack. We explain the detaighe
security mechanisms in the following sections.

2.2 Provenance-based ADU Protection

A malicious component may drop an input ADU and claim that
the upstream component fails in sending the ADU. Similatly i
may also claim that it receives an intermediate ABUfrom an
upstream component though that component actually sénds
counter such attacks, our basic idea is to require each awenpo
to send a “receipt” for each ADU it receives to its upstream-co
ponent. The receipt is used to resolve the dispute between tw
interacting components. The receipt includes the sequamntéder
and session ID of the ADU for which the receipt acknowledges,
and the hash value of the received ADU. In order to achieve in-
tegrity and non-repudiation, the receipt message is sigrituthe
downstream component’s private key. When an upstream compo
nent receives a receipt, it can verify the receipt and make that
its downstream did receive what it sent before.

When an upstream component does not receive any receipt from
its downstream component, it will ask the composer to fodithe
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Figure 2: Dataflow processing with carry-on data provenance
evidence.

ADU to its downstream component. If the composer does not re-

ceive a receipt from the downstream component, we can cdeclu
that the downstream component is either unreliable or stviar-
thy. Otherwise, after the composer receives the receiptctm-
poser forwards it to the upstream component as evidencehbat
downstream component receives its output ADU. Howevehef t
composer keeps receiving such requests from the same cemtpon
it is reasonable for the composer to suspect that eithertsieaam
component or the downstream component is malicious, ahdreit
one or both of them try to launch a denial-of-service attactt a
keep the composer busy. In this case, the composer will rhadet
two components suspicious and employ other componente f t
underlying communication channel guarantees in-ordersatgs
delivery, each component only needs to store the last refmip
each session. Otherwise, the component needs to emplajiraysli
window mechanism to record possibly out-of-order receipts

A malicious component may also drop output ADUs, substitute
correct ADUSs, or inject bogus ADUs. To counter those attaaks
require each component to create the hash values for boihghe
ADU it receives and the output ADU it generates to form a data
provenance evidence. The evidence can be either storedfer di
ent distributed components aached evidencer carried with the
result ADU ascarry-on evidenceCompared to carry-on evidence,
cached evidence induces smaller overhead to the datafl@esso
ing system. However, the composer needs to dynamicallyestqu
evidence from distributed components to pinpoint malisioam-
ponents when the composer detects inconsistency amongléitzal
processing results. In contrast, the carry-on evideneevalithe
composer to perform immediate security diagnosis.

When the composer receives the final result ADU, it can ver-
ify the consistency between different components basedtbare
cached data provenance evidence or carry-on data proveesaic
dence provided by different components. For example, lebas
sider a dataflon” — s; — so — C, where C denotes the com-
poser, provisioning functiong; — f». Letd denote the source
ADU received by the composite dataflow application. Figure 2
shows the dataflow processing with carry-on provenancesacil
The input and output of the first hop componentdsfi(d)). The
components; signs this information and then encrypts it with the
composer’s public keyey. to get[[d, f1(d)]sig,, Jkey.- If every
component is honest, the input of one component should b& equ
to the output of its preceding component. In addition, sieaeh
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Figure 3: Cascading dataflow topology encryption.

the CTE scheme, the encrypted dataflow topol¢@y = becomes
C — [s1]sig. = [[s2]sige = [[s3]sige = [[Clsigelreysy lkeye, Jkeys, »
wheresig. denotes the signature of the composer &agl,, de-
notes the public key of the componesit Figure 3 shows how
CTE scheme encrypts a two-hop dataflow topology. Our casgadi
technology is similar to onion routing [10]. The differenisewe
also authenticate the topology to ensure that no one camehan

To prevent malicious components from tampering the dataflow
topology, the composer signs each-hop in the dataflow tggolo
using its private key. Thus, it is impossible for maliciousre
ponents to forge any data processing hop. It is easy to seeuha
CTE scheme only allows each component to know its previays-h
and next-hop in the dataflow. For example, when the first-leop s
vice providers; receives the topology informatid®: [[s2]sig. —
([s3]sige = [[Clsige|keyay lkeys, Ikeys, » it CAN ONly obtain the next-
hop component informatioss using its own private key. More-
over, s; knows its previous hop in order to implement the receipt-
based communication protocol described in section 2.2. ddewy
s1 cannot acquire the third hops since the information is en-
crypted usings2’s public key that can only be decrypted by.

However, if multiple malicious components collude, ourdbp
ogy protection scheme needs to integrate with the ADU ptiatec
scheme and function attestation scheme to detect the maibe-
havior. Let us consider two collusive malicious componentand
s1. The malicious componentl can forward its output ADU to it
colluders; who is not part of the dataflow. Afte#; processes the
ADU, s} sends the ADU back ts;, and thens; forwards it tos,.
In this case;s2 cannot detect that the dataflow has been changed
and thought the ADU was routed from to itself directly as it
should be. However, the ADU received by may be tampered by
eithers; or s}. In this case, this becomes a function attack, which
will be addressed in section 2.4. On the other hand; itloes
not send the ADU back te; but to sz, that means the dataflow
topology is changed t8; — s} — s2. It can be detected when
the composer receives the final result ADU with carry-on enik,
because the composer can check if the result ADU is processed
by the right set of components. However, if the final resultltAD
does not contains carry-on evidence, the composer canniff ve
the composition integrity immediately. Although the cormpocan
acquire the cached evidence from all components on the datafl
to verify the dataflow topology later, it is hard for the corspoto
decide when to do so. Moreover it is time-consuming to recell/
the cached evidence from each component. In order to hamidle t

ADU has a sequence number and session ID, it can be uniquelysituation, we require that each ADU carries a trace thatrdscall
identified by each component and the composer. Thus, the mali service components where the ADU was processed. Consgiderin

cious component cannot launch a successful replay attaskrny-
ing old ADUs to legitimate components.

2.3 Dataflow Topology Protection

Our dataflow topology protection scheme has two objectives: include a tracef[[s1]sig., Jkey. — [52]sig.

the original example, the output ADU from: will carry a trace:
[[51]sigs, Jkeye — [52]sigs, - And whens; receives the ADU from
s2, s3 Will verify [s2]sig,, usingkey,, to make sure that the pre-
vious hop is same as it claims. Thus, the final result ADU will
lkey. — [83]sig,,, and

i) any component cannot change the dataflow topology; and ii) the composer can use the trace in the final result ADU o vrify

each participating component only knows a minimum part ef th
dataflow topology (e.qg., its previous-hop and next-hop camepts).
We provide acascading topology encryptig@TE) scheme to achieve
the topology protection objectives. We would like to expléie

the ADU has been processed as expected.

Although a malicious component cannot forge a dataflow pro-
cessing hop without the composer’s signatures, it can tauec
play attacks by replacing the current encrypted dataflowltmy

CTE scheme using an example. Let us consider a dataflow topol-with an old one that was signed by the composer. To remedy this

ogyQ: C — s1 — s2 — s3 — C, whereC' denotes the composer
ands; denotes théth data processing component. After applying

problem, an unique session ID is attached to each hop ancbboth
them are signed by the composer. For simplicity, sessioralies



not shown in the encrypted dataflow topology.

The cascading topology encryption scheme in this paper ean b
extended to support graph-based service composition jtiamny
by transforming the graph-based service composition irntiee:
based service composition. Thus, the linear encryptioareetcan
be applied to each branch in the tree. Due to space limit, Wwe on
focus on the linear composition topology case in this paper.

2.4 Randomized Dataflow Integrity Attestation

To achieve scalable function integrity attack detectioreBource-
intensive dataflow processing, we propose a randomizedszons
tency check scheme. Suppose the system inclikdesmponents
{s1, s2, ..., s } that provide the same functiofi and the source
ADU set includes: data items{d, ..., d, }. During a time period
T, the composer randomly duplicates each ADU with probabilit
py intor (r < k) copies and sends all ADUs (i.e., original ADUs
and duplicated ADUs) randomly to different functionallyvé-
lent components. Thus, the expected size of the testingséafar
consistency checkequals tg,, times the size of total source ADU
set. Note that malicious components can hardly predict lneret
duplicated ADU has been or will be processed by a truthful-com
ponent. Thus, if not all functionally equivalent comporseate
malicious and colluding, the composer can detect untruta-
cution for f if the result ADUs are inconsistent for the duplicated
testing data sefd’, ..., d;’}. The assumption here is that dataflow
processing components are input-deterministic, thatiigngthe
same input ADU or the same set of input ADUs, a truthful compo-
nent always produce the same output. Many dataflow progessin
functions [9] fall into this category. The scheme achiewabil-
ity and limited overhead by only duplicating a subset of ACdds!
sending them to only a subset of the functionally equivatamh-
ponents. Moreover, there is no communication overheaceéatdr
election among different functionally equivalent compuatsethat
is required by traditional Byzantine fault tolerance sckem

When functionally equivalent components are not availalvk
propose to explore polymorphic composition topologiexéose
of the existence of exchangeable composition orders) tioiper
randomized consistency check. Suppose the dataflow pingess
application can be delivered throughfunctionally equivalent data-
flow topologies{€, ..., Q. } if all service providers provide truth-
ful functions. Similar to the previous scheme, the compaagar
domly duplicates a subset of ADUs (sdyii’, ..., d;'}) by dupli-
cating each ADU with probability,, into r» (r < w) copies and
route all ADUs including the duplicated ones randomly ugiifg
ferent composition topologies. Thus, the composer calrdstieéct
function integrity attack via inconsistent results betwéso func-
tionally equivalent dataflow topologies.

We now quantify the function attack detection capabilityoaf
randomized consistency check scheme. We define detectibn pr
ability P; as1 — P., whereP. is the escaping rate denoting the
probability that malicious components can escape fromgbda
tected within a time periof’ because the final results of all testing
data items are consistent. There are two dimensions ofrfatttat
affect the escaping rate.

First, a malicious component may not misbehave all the titne.
can escape if not cheating on any of the testing data. Suppose
malicious component misbehaves on a data item with a fixelg- pro
ability p.,,. With z testing data a malicious component may receive
during a time period’, the component gives false result on none
of the testing data items with a probability 6f — p.,)®. This
shows that increasing testing data set size reduces egcegim
and helps expose those untruthful components that sedfctivis-
behave. Second, whether malicious components colludeeaith
other is another factor. Suppose outko€omponents at most.
are malicious, and components are selected for redundancy. Also
supposen > r. Otherwise, misbehavior can be detected no mat-

ter malicious components collude or not. If there is no cidn,
we can naturally assume different misbehaving componemts p
duce different results on the same input data. Thus, a roakci
component can escape from being detected if and only if ivbeh
benignly on all testing data. The average number of testitg d
component receives id/k. Therefore, the average escaping rate
of a single malicious component ($ — p,,)""/*. However, in the
worst case, where ath components are in collusion, a malicious
component may cheat on an ADU as long as it sees other maiciou
component(s) receiving the same ADU cheated. We détiae the
probability that malicious components are not detected single
testing data, then escaping rdteis (P), given! testing dataset.

To computeP, we suppose for a single testing data, when having
1 malicious ones out of the selectedomponents, the probability
of malicious components not being detected®js If k — m > r,
i ranges from 0 te.. Wheni = 0, obviously, malicious compo-
nents cannot be detected. Whes r, since malicious components
work in collusion, they can escape no matter they misbeheneto
However, wher) < i < r, they need to behave benignly to escape.
Note that once any of themalicious components first decides to
misbehave on a data item, the réstl malicious components have
no choice but to follow the decision. ThuB,equals to

S el B N [ ) I ()
PRl L Ty

If Kk —m < r,iranges fromr — (k — m) tor. Then,P equals to
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The number of candidate componehishe size of testing dataset
[ and the redundancy degredenote the tradeoff between the over-
head and the escaping rate. Intuitively, the larger theicaigd
component humber and testing data size, the more likelydhre c
poser can catch function integrity attacks.

With redundant dataflow topologies, detecting functioedgmnity
attack is equivalent to finding inconsistent results frorm sthse-
lected dataflow topologies. Similarly, the escaping rat@dm-
collusion scenario i§1 — p.,)""/*. In the collusion scenario, sup-
pose there are at most dataflow topologies that contain malicious
components. When all malicious components collude, thephsg
rate is similar to the abovE., except thak is replaced withw.

3. EXPERIMENTAL EVALUATION

3.1 System Implementation

We have implemented a prototype of secure dataflow proggssin
system and tested it on the wide-area network testbed Ribrjaj.
Our experiments use more than 200 Planetlab hosts that sre di
tributed all over the world. Each PlanetLab node represamgser-
vice provider that offers one or more data processing comiusn
The composer is deployed at a pre-defined PlanetLab hosthwhi
is responsible for composing dataflow applications andfyieg
the integrity of the distributed dataflow processing. Fanicity,
we only deploy one composer in our experiment. However, our
design is readily applicable to large-scale open disteithslystems
that may require multiple composers. Our dataflow procgssis-
tem closely follows the design of the IBM System S data stream
processing system [15], a commercial dataflow processisigsy

For security protection, our dataflow processing systers om
top of a public key infrastructure that is deployed in adwarithe
composer and component providers know each other’s pubjis k
and use public/private key pairs to perform encryptionygeton,
signature, and verification. Same as many implementati@naa-
tice, when encrypting a message, the upstream componeet-gen

@)

(1 —pm) + 2

i=r—k+m



ates a temporary secret key to encrypt the message and then us
the public key of a downstream service provider to encryptsis
cret key. After the receiver gets the message with the etedyp
key, it can first obtain the secret key using its private key t#en
decrypt the message.

For comparison, we implement three alternative dataflow pro
cessing schemes: ipsecure dataflowii) secure dataflow with
cached evidengeand iii) secure dataflow with carry-on evidence
The insecure dataflow scheme does not provide any secudty pr
tection and only considers the QoS and resource requirsnoént
dataflow users. In contrast, the two secure dataflow schemes i
clude the protection mechanisms for ADU, dataflow topolemgd
function integrity verification. The difference is that thermer
stores the data provenance evidence locally on differettilolited
components, while the latter inserts the data provenanicerse
into processed ADUs. When the composer receives the finatres
ADU, it contains all the data provenance evidence, whichlman
used for immediate security check.

To evaluate the performance and security of our schemes, we
use the following two metrics: iylataflow processing delagnd
attack detection probabilityThe dataflow processing delay is mea-
sured by the average per-ADU turnaround time (i.e., thetdura
between the time when the first dataflow ADU enters the system
and the time when the last dataflow ADU leaves the system over
the total number of ADUs processed). We define attack detecti
probability as the number of detected malicious componewes
number of all malicious components.

3.2 Results and Analysis
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ing delay vs. number of ingdelay vs. Data size.
hops.

dataflow processing delay decreases as the size of ADU s&sea
In addition, since the carry-on evidence in the third schengen-
erated and transmitted in the form of hash, the dataflow psicg
delay in the third scheme is very close to that in the secohedrse.
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ing delay under dropping ing delay vs. number of
attack. hops under dropping attack.

In order to counter ADU dropping attack, we develop the rateei
based communication protocol described in Section 2.2urEig
shows the protocol impact on the dataflow processing delanwh
itis used to handle dropping attacks. In this experimentsetehe
number of service hops to be 10, data sending rate to be 15 ADUs
per second, and data size to be 100 bytes. The dataflow pirngess
delay increases as either of the two parameters (i.e., toeme
age of malicious parties, drop probability) goes up. Thibas
cause when either of the two parameters increases, theljliba
of getting the composer involved to forward ADUs to downaitne
components becomes higher. Figure 7 shows the protocalrperf
mance impact when the number of service hops, the perceofage
malicious nodes, and dropping probability change, whesedtita
sending rate is 15 ADUs per second and data size is 100 bytes.

We now evaluate the efficiency of function integrity attéista
scheme. Both non-collusion and collusion scenarios arestiwv
gated. In non-collusion scenario, we assume malicious coemts
act on their own and give results independently. While itusibn
scenario, the worst case is evaluated where all malicioogpoe
nents serve the same function. Since detection probalkslinot
affected by the number of service hops, we use four hops ér th
non-collusion scenario and one hop for the collusion séendn
all scenarios, the number of redundant componérgguals to 5,
and run time is 30 seconds. Data size is 1KB and data rate is 10

Figure 4 shows dataflow processing delay versus the number of ADUs per second. Obviously, wherequals to 5, the scheme sends

hops in service composition for three different approadfiesn
that data sending rate is 15 ADUs per second and data siz€®is 10
bytes. We observe that the overhead of security protectiechm
anism is about 20ms for both schemes, with the carry-on sehem
being a little more expensive, which, to a great extent, dép®n
the computation ability of a specific PlanetLab host. Noa the
overhead showed here is less than the sum of the actual encryp
tion/decryption processing delay at each service comgorigns
is because data processing time of consecutive ADUs hakapsger
due to the continuous processing nature of streams. We meeasu
the average per-hop processing time and the average pesrhop
cryption/decryption time to be 100ms and 15ms respectivéijch
means the per-hop overhead of security mechanism is ab&tt 15
Figure 5 shows dataflow processing delay as a function of ADU
data size, where the number of hops is 5 and data sendingsrate i
15 ADUs/sec. As we can see, the increment of ADU data size
dramatically increased the dataflow processing delay, ntiema
which scheme is used. However, the overhead of enforcingisgc
mechanism shows negligible change with the increase of A&ta d
size. Moreover, the percentage of the security overheadfabe

attestation traffic to all functionally equivalent compatse

Figure 8 and Figure 9 show the percentage of detected madicio
components in non-collusion scenario, given 10% and 30%- mal
cious components randomly distributed in the system reispéc
Each ADU has a duplication probabilipy, of 0.05 and 0.1 respec-
tively, which means the duplicated dataskeeing 0.05 or 0.1 times
of total ADUs. Redundancy degreevaries from 2 to 4. It is ob-

vious to note that even with small duplication probabilgych as

0.1, malicious components can be captured well.

Figure 10 compares the percentage of detected malicious com
ponents in collusion and non-collusion scenarios, givem3 ma-
licious components serving the same function respectividigli-
cious components always misbehave, and ADU duplicatioharo
bility is fixed at 0.01. Overall, detection probabilitieedrigher in
non-collusion scenarios than in collusion ones. Detegiiobabil-
ity does not change with the number of malicious components i
non-collusion scenarios. This is because different nigicom-
ponents give different results and inconsistencies canebected
as long as an ADU is duplicated. Note that in the non-collusio

scenario whem equals to 3, the detection probability is less than 1.



This is because we only duplicate 1% of the ADUs for attestati
so that attestation traffic may not pass through a maliciongpo-
nent in a short time. In the collusion scenario, detectiambabili-
ties may decrease with number of malicious components, &nd m
redundancies generally produce higher detection prdababil

Finally, we evaluate the performance impact of adoptingined
dant dataflow topologies for function integrity attestatid=igure
11 shows the average dataflow processing delay of usidg-
ferent topologies, where the secure dataflow with cachetkace
scheme is used. Wherequals to one, the scheme does not employ
any redundant components for consistency check. Our seshiiv
that the cost of using two dataflow topologies is very low. Wit
the increase of redundant degree, more components gevéavol
to process the same set of ADUs. Dataflow processing delay is
affected by the extra delay of sub-optimal dataflow topasgi
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Figure 8: Non-collusion
detection probability under
10% malicious nodes.

Figure 9:  Non-collusion
detection probability under
30% malicious nodes.
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Figure 10: Collusion im-
pact.

Figure 11: Randomized
consistency check overhead.

4. CONCLUSION

In this paper, we have presented the design and implemamtati
of a new security management framework to achieve trushyort
distributed dataflow processing. To the best of our knowdeagr
work makes the first attempt to address the integrity of caado
dataflow application delivery in open distributed systelfis.iden-
tify several major security threats. We then present a setalfible
countermeasures to protect the integrity of composed duataip-
plication delivery including the dataflow topology, intesmponent
communication, and dataflow processing functions. We hawe i
plemented a prototype of the secure distributed dataflosgasing
system and tested it on the wide-area network testbed Rkinet
Our initial experimental results show that the proposedisgc
management scheme can effectively detect malicious attack
impose low overhead to the distributed dataflow processistges.
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