
Towards Secure DataFlow Processing in Open
Distributed Systems

Juan Du, Wei Wei, Xiaohui Gu, Ting Yu
Department of Computer Science

North Carolina State University
{jdu,wwei5}@ ncsu.edu, {gu,yu}@ csc.ncsu.edu

ABSTRACT
Open distributed systems such as service oriented architecture and
cloud computing have emerged as promising platforms to deliver
software as a service to users. However, for many security sen-
sitive applications such as critical data processing, trust manage-
ment poses significant challenges for migrating those critical ap-
plications into open distributed systems. In this paper, wepresent
the design and implementation of a new secure dataflow processing
system that aims at providing trustworthy continuous data process-
ing in multi-party open distributed systems. We identify a set of
major security attacks that can compromise the integrity ofdataflow
processing and provide effective protection mechanisms tocounter
those attacks. We have implemented a prototype of the secure
dataflow processing framework and tested it on the PlanetLabtestbed.
Our experimental results show that our protection schemes are ef-
fective and impose low performance impact for dataflow processing
in large-scale open distributed systems.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: General

General Terms
Security, Management, Verification

Keywords
Secure Data Processing, Secure Component Composition, Cloud
Computing, Service Oriented Architecture

1. INTRODUCTION
Internet has evolved into an important service delivery infras-

tructure instead of merely providing host connectivity. With rapid
adoption of the concepts of Software as a Service (SaaS) [2],Ser-
vice Oriented Architecture (SOA) [5,8], and Cloud Computing [1],
service oriented open distributed systems have emerged as cost-
effective platforms for users to access various software applications
as services via Internet. Users no longer need to maintain compli-
cated hardware and software infrastructures but can tap into the
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Figure 1: Dataflow processing in open distributed systems.

open distributed system to access various software services in an
on-demand fashion.

Many emerging applications, such as network traffic monitor-
ing for intrusion detection, sensor data analysis, and audio/video
surveillance, require sophisticated real-time processing over data-
flows [4,11,15,17]. Open distributed systems provide highly scal-
able and available infrastructures for running resource-intensive and
quality-sensitive dataflow applications.

An open distributed system supporting dataflow processing ap-
plications often consists of many domain-specific data processing
service providers, illustrated by Figure 1. Each service provider
provides a set of data processing components. A componentsi is a
self-contained software unit providing a certain dataflow process-
ing functionfi. Each component can have one or more input ports
for receiving input application data units (ADUs), denotedby di,
and one or more output ports to emit output ADUs. The composer
acts as a portal service provider, which interacts with dataflow ap-
plication users directly and is responsible for dynamically select-
ing and composing processing components based on user’s func-
tion and quality-of-service (QoS) requirements such as delay [13].
Users can push a stream of ADUs through the composer into the
open distributed system and acquire a set of desired data processing
functions such as correlation, filtering, or any other stream mining
services [16]. The composer sendssource ADUsreceived from the
user to the first-hop component. Each component emits intermedi-
ate result ADUs calledderived ADUs. Finally, the last-hop service
component reports the final results to the composer that can then
forward the final results to the user. Due to the natural redundancy
of open distributed systems, there often exist multiple candidate
composition plans for the same set of dataflow processing func-
tions. For example, the same processing function can be offered by
multiple service providers. The same dataflow processing applica-
tion can also be delivered by multiple dataflow topologies because
of exchangeable composition orders (e.g.,f1 → f2 = f2 → f1),
which is called polymorphic dataflow topology [12].

Previous work on distributed dataflow processing mainly focuses
on resource and performance management issues, such as select-
ing optimal dataflow composition based on the user’s quality-of-



service (QoS) requirements and load balancing objectives [4, 11,
13,15–17]. It usually assumes that all data processing components
are trustworthy. This assumption generally holds for small-scale
closed cluster systems, where data processing providers and users
are from the same security domain or from collaborative domains
with strong pre-existing trust. However, in open distributed sys-
tems consisting of multi-party service providers, we can nolonger
assume that all processing components are trustworthy. Forexam-
ple, dataflow processing components may include security holes
that can be exploited by attackers. Attackers can also pretend to be
a legitimate service provider to compromise dataflow processing.

Trust management for distributed systems has been studied un-
der different context, such as PeerReview [14] for distributed mes-
saging systems, the suite of security guards proposed by Srivatsa
and Liu for publish-subscribe systems [19], TVDc [7] for virtual-
ized datacenters, and hierarchical Byzantine fault-tolerant replica-
tion architecture proposed by Amir et. al. for systems that span
multiple wide area sites [6]. Different from previous work,our re-
search focuses on providing efficient yet scalable trust management
framework for processing dataflow applications in open distributed
systems. Remote attestation techniques [18, 20], ensure that a re-
mote software platform is running code that is not compromised
and altered by attackers, which can be used to protect credentials
of individual components and are complementary to our work.

We identify a set of major security attacks that can compromise
the integrity of dataflow processing in open distributed systems.
By examining the systems in different aspects including protocol
layer, communication layer and application layer, we consider the
following security threats, which, to the best of our knowledge,
have not been addressed by existing security management schemes:
1) ADU attackswhere a malicious component may alter input or
output ADUs. For example, in Figure 1, a malicious component
may alterd1 or dropd1. Other data handling attacks include drop-
ping output ADUs, substituting correct ADUs with fake ones,in-
jecting bogus ADUs, and replaying old ADUs; 2)dataflow topol-
ogy attackswhere a malicious component may change the topol-
ogy of a dataflow application. For example, components4 may
insert an additional hop to the topology by forwarding its output
ADUs to its colluders3; and 3) function integrity attackswhere
a malicious component may perform an arbitrary data processing
function instead of its advertised one. In composed dataflowap-
plications, there can be multiple malicious components providing
falsified dataflow processing functions concurrently.

As countermeasures to those attacks, we present a set ofdata-
centric and light-weightprotection schemes to achieve secure yet
scalable dataflow processing. By “data-centric", we mean that our
scheme focuses on protecting and verifying the authenticity of data
processing results because dataflow users are only concerned about
the correctness of final data processing results instead of the data
processing procedure. By “light-weight", we mean that our scheme
strives to impose minimum overhead since dataflow processing sys-
tems are often load-intensive. Specifically, we make the following
major contributions.

• We present aprovenance-based ADU protection schemethat
enforces processing components to provide “receipts” for each
input ADU they receive and keep “evidence” for each ADU
they produce. This protocol can effectively counter ADU at-
tacks in distributed dataflow processing.

• We describe acascading dataflow topology encryptionscheme
to protect both confidentiality and integrity of dataflow topolo-
gies. Our topology encryption scheme assures that each pro-
cessing component knows nothing about the whole dataflow
topology except its upstream and downstream components
and no one can change the topology without being detected.

• We present arandomized consistency checkscheme to achieve

scalable dataflow processing integrity verification. By ran-
domly duplicating a subset of ADUs and processing them us-
ing randomly selected functionally equivalent componentsor
dataflow topologies, we can detect malicious behavior through
result consistency check with high detection probability and
small overhead.

We conduct analytical study to quantify performance impactof
our secure dataflow processing schemes. We further implement a
prototype of the proposed secure dataflow processing systemand
test it on PlanetLab, a wide-area network testbed [3]. Our experi-
mental results show that the proposed scheme is effective and im-
poses low performance overhead to the distributed dataflow pro-
cessing system.

The rest of the paper is organized as follows. Section 2 presents
the design of our secure dataflow processing schemes. Section 3
presents the prototype implementation and experimental results.
Finally, the paper concludes in Section 4.

2. DESIGN AND ALGORITHMS
In this section, we present the design and algorithm detailsof

our secure dataflow processing system including the provenance-
based ADU protection scheme, the cascading dataflow topology
encryption scheme, and the randomized consistency check scheme
for detecting function integrity attacks. We assume that both the
composer and component service providers have public/private key
pairs bound to themselves. With their public/private key pairs, they
can encrypt, decrypt, and sign data. A party cannot forge others’
signatures or decrypt data encrypted using others’ public keys.

2.1 Overview
Our security protection schemes provide confidentiality and in-

tegrity for dataflow processing applications by imposing light-weight
processing on both composer and service components. The cascad-
ing dataflow topology encryption scheme requires the composer
to encrypt the existing processing topology to preserve confiden-
tiality. Each component needs to extract next-hop information by
decrypting the topology and generate an execution trace forthe
later verification of actual service topology. The components also
need to send a receipt packet to its upstream component as well
as generate a provenance evidence to prevent ADU altering and
dropping attacks as required by our provenance-based ADU pro-
tection scheme. Note that ADU data is encrypted with a shared
secret key between interactive components, which is encrypted us-
ing the receiving party’s public key and sent along with the ADU.
Moreover, the composer also performs randomized data attestation
to detect function integrity attack. We explain the detailsof the
security mechanisms in the following sections.

2.2 Provenance-based ADU Protection
A malicious component may drop an input ADU and claim that

the upstream component fails in sending the ADU. Similarly it
may also claim that it receives an intermediate ADUd′ from an
upstream component though that component actually sendsd. To
counter such attacks, our basic idea is to require each component
to send a “receipt" for each ADU it receives to its upstream com-
ponent. The receipt is used to resolve the dispute between two
interacting components. The receipt includes the sequencenumber
and session ID of the ADU for which the receipt acknowledges,
and the hash value of the received ADU. In order to achieve in-
tegrity and non-repudiation, the receipt message is signedwith the
downstream component’s private key. When an upstream compo-
nent receives a receipt, it can verify the receipt and make sure that
its downstream did receive what it sent before.

When an upstream component does not receive any receipt from
its downstream component, it will ask the composer to forward the
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Figure 2: Dataflow processing with carry-on data provenance
evidence.

ADU to its downstream component. If the composer does not re-
ceive a receipt from the downstream component, we can conclude
that the downstream component is either unreliable or untrustwor-
thy. Otherwise, after the composer receives the receipt, the com-
poser forwards it to the upstream component as evidence thatthe
downstream component receives its output ADU. However, if the
composer keeps receiving such requests from the same component,
it is reasonable for the composer to suspect that either the upstream
component or the downstream component is malicious, and either
one or both of them try to launch a denial-of-service attack and
keep the composer busy. In this case, the composer will mark those
two components suspicious and employ other components. If the
underlying communication channel guarantees in-order message
delivery, each component only needs to store the last receipt for
each session. Otherwise, the component needs to employ a sliding-
window mechanism to record possibly out-of-order receipts.

A malicious component may also drop output ADUs, substitute
correct ADUs, or inject bogus ADUs. To counter those attacks, we
require each component to create the hash values for both theinput
ADU it receives and the output ADU it generates to form a data
provenance evidence. The evidence can be either stored on differ-
ent distributed components ascached evidenceor carried with the
result ADU ascarry-on evidence. Compared to carry-on evidence,
cached evidence induces smaller overhead to the dataflow process-
ing system. However, the composer needs to dynamically request
evidence from distributed components to pinpoint malicious com-
ponents when the composer detects inconsistency among finaldata
processing results. In contrast, the carry-on evidence allows the
composer to perform immediate security diagnosis.

When the composer receives the final result ADU, it can ver-
ify the consistency between different components based on either
cached data provenance evidence or carry-on data provenance evi-
dence provided by different components. For example, let uscon-
sider a dataflowC → s1 → s2 → C, where C denotes the com-
poser, provisioning functionsf1 → f2. Let d denote the source
ADU received by the composite dataflow application. Figure 2
shows the dataflow processing with carry-on provenance evidence.
The input and output of the first hop component is(d, f1(d)). The
components1 signs this information and then encrypts it with the
composer’s public keykeyc to get [[d, f1(d)]sigs1

]keyc
. If every

component is honest, the input of one component should be equal
to the output of its preceding component. In addition, sinceeach
ADU has a sequence number and session ID, it can be uniquely
identified by each component and the composer. Thus, the mali-
cious component cannot launch a successful replay attack bysend-
ing old ADUs to legitimate components.

2.3 Dataflow Topology Protection
Our dataflow topology protection scheme has two objectives:

i) any component cannot change the dataflow topology; and ii)
each participating component only knows a minimum part of the
dataflow topology (e.g., its previous-hop and next-hop components).
We provide acascading topology encryption(CTE) scheme to achieve
the topology protection objectives. We would like to explain the
CTE scheme using an example. Let us consider a dataflow topol-
ogyΩ: C → s1 → s2 → s3 → C, whereC denotes the composer
andsi denotes theith data processing component. After applying

S1C S2

f1 f2

C sigc keys2s2 sigc keys1s1 sigcC C sigc keys2s2 sigcs1 sigc C sigcs2 sigc

C

Figure 3: Cascading dataflow topology encryption.

the CTE scheme, the encrypted dataflow topology{Ω}E becomes
C → [s1]sigc

→ [[s2]sigc
→ [[s3]sigc

→ [[C]sigc
]keys3

]keys2
]keys1

,
wheresigc denotes the signature of the composer andkeysi

de-
notes the public key of the componentsi. Figure 3 shows how
CTE scheme encrypts a two-hop dataflow topology. Our cascading
technology is similar to onion routing [10]. The differenceis we
also authenticate the topology to ensure that no one can change it.

To prevent malicious components from tampering the dataflow
topology, the composer signs each-hop in the dataflow topology
using its private key. Thus, it is impossible for malicious com-
ponents to forge any data processing hop. It is easy to see that our
CTE scheme only allows each component to know its previous-hop
and next-hop in the dataflow. For example, when the first-hop ser-
vice providers1 receives the topology informationΩ: [[s2]sigc

→
[[s3]sigc

→ [[C]sigc
]keys3

]keys2
]keys1

, it can only obtain the next-
hop component informations2 using its own private key. More-
over,s1 knows its previous hop in order to implement the receipt-
based communication protocol described in section 2.2. However,
s1 cannot acquire the third hops3 since the information is en-
crypted usings2’s public key that can only be decrypted bys2.

However, if multiple malicious components collude, our topol-
ogy protection scheme needs to integrate with the ADU protection
scheme and function attestation scheme to detect the malicious be-
havior. Let us consider two collusive malicious componentss1 and
s′1. The malicious components1 can forward its output ADU to it
colluders′1 who is not part of the dataflow. Afters′1 processes the
ADU, s′1 sends the ADU back tos1, and thens1 forwards it tos2.
In this case,s2 cannot detect that the dataflow has been changed
and thought the ADU was routed froms1 to itself directly as it
should be. However, the ADU received bys2 may be tampered by
eithers1 or s′1. In this case, this becomes a function attack, which
will be addressed in section 2.4. On the other hand, ifs′1 does
not send the ADU back tos1 but to s2, that means the dataflow
topology is changed tos1 → s′1 → s2. It can be detected when
the composer receives the final result ADU with carry-on evidence,
because the composer can check if the result ADU is processed
by the right set of components. However, if the final result ADU
does not contains carry-on evidence, the composer cannot verify
the composition integrity immediately. Although the composer can
acquire the cached evidence from all components on the dataflow
to verify the dataflow topology later, it is hard for the composer to
decide when to do so. Moreover it is time-consuming to receive all
the cached evidence from each component. In order to handle this
situation, we require that each ADU carries a trace that records all
service components where the ADU was processed. Considering
the original example, the output ADU froms2 will carry a trace:
[[s1]sigs1

]keyc
→ [s2]sigs2

. And whens3 receives the ADU from
s2, s3 will verify [s2]sigs2

usingkeys2
to make sure that the pre-

vious hop is same as it claims. Thus, the final result ADU will
include a trace:[[[s1]sigs1

]keyc
→ [s2]sigs2

]keyc
→ [s3]sigs3

, and
the composer can use the trace in the final result ADU to verifyif
the ADU has been processed as expected.

Although a malicious component cannot forge a dataflow pro-
cessing hop without the composer’s signatures, it can launch re-
play attacks by replacing the current encrypted dataflow topology
with an old one that was signed by the composer. To remedy this
problem, an unique session ID is attached to each hop and bothof
them are signed by the composer. For simplicity, session IDsare



not shown in the encrypted dataflow topology.
The cascading topology encryption scheme in this paper can be

extended to support graph-based service composition encryption
by transforming the graph-based service composition into atree-
based service composition. Thus, the linear encryption scheme can
be applied to each branch in the tree. Due to space limit, we only
focus on the linear composition topology case in this paper.

2.4 Randomized Dataflow Integrity Attestation
To achieve scalable function integrity attack detection inresource-

intensive dataflow processing, we propose a randomized consis-
tency check scheme. Suppose the system includesk components
{s1, s2, ..., sk} that provide the same functionf and the source
ADU set includesn data items{d1, ..., dn}. During a time period
T , the composer randomly duplicates each ADU with probability
pu into r (r ≤ k) copies and sends all ADUs (i.e., original ADUs
and duplicated ADUs) randomly to different functionally equiva-
lent components. Thus, the expected size of the testing dataset for
consistency checkl equals topu times the size of total source ADU
set. Note that malicious components can hardly predict whether a
duplicated ADU has been or will be processed by a truthful com-
ponent. Thus, if not all functionally equivalent components are
malicious and colluding, the composer can detect untruthful exe-
cution forf if the result ADUs are inconsistent for the duplicated
testing data set{d1

′, ..., dl
′}. The assumption here is that dataflow

processing components are input-deterministic, that is, given the
same input ADU or the same set of input ADUs, a truthful compo-
nent always produce the same output. Many dataflow processing
functions [9] fall into this category. The scheme achieves scalabil-
ity and limited overhead by only duplicating a subset of ADUsand
sending them to only a subset of the functionally equivalentcom-
ponents. Moreover, there is no communication overhead for leader
election among different functionally equivalent components that
is required by traditional Byzantine fault tolerance scheme.

When functionally equivalent components are not available, we
propose to explore polymorphic composition topologies (because
of the existence of exchangeable composition orders) to perform
randomized consistency check. Suppose the dataflow processing
application can be delivered throughw functionally equivalent data-
flow topologies{Ω1, ..., Ωw} if all service providers provide truth-
ful functions. Similar to the previous scheme, the composerran-
domly duplicates a subset of ADUs (say,{d1

′, ..., dl
′}) by dupli-

cating each ADU with probabilitypu into r (r ≤ w) copies and
route all ADUs including the duplicated ones randomly usingdif-
ferent composition topologies. Thus, the composer can still detect
function integrity attack via inconsistent results between two func-
tionally equivalent dataflow topologies.

We now quantify the function attack detection capability ofour
randomized consistency check scheme. We define detection prob-
ability Pd as1 − Pe, wherePe is the escaping rate denoting the
probability that malicious components can escape from being de-
tected within a time periodT because the final results of all testing
data items are consistent. There are two dimensions of factors that
affect the escaping rate.

First, a malicious component may not misbehave all the time.It
can escape if not cheating on any of the testing data. Supposea
malicious component misbehaves on a data item with a fixed prob-
ability pm. With x testing data a malicious component may receive
during a time periodT , the component gives false result on none
of the testing data items with a probability of(1 − pm)x. This
shows that increasing testing data set size reduces escaping rate
and helps expose those untruthful components that selectively mis-
behave. Second, whether malicious components collude witheach
other is another factor. Suppose out ofk components at mostm
are malicious, andr components are selected for redundancy. Also
supposem ≥ r. Otherwise, misbehavior can be detected no mat-

ter malicious components collude or not. If there is no collusion,
we can naturally assume different misbehaving components pro-
duce different results on the same input data. Thus, a malicious
component can escape from being detected if and only if it behaves
benignly on all testing data. The average number of testing data a
component receives isrl/k. Therefore, the average escaping rate
of a single malicious component is(1 − pm)rl/k. However, in the
worst case, where allm components are in collusion, a malicious
component may cheat on an ADU as long as it sees other malicious
component(s) receiving the same ADU cheated. We defineP as the
probability that malicious components are not detected on asingle
testing data, then escaping ratePe is (P )l, givenl testing dataset.

To computeP , we suppose for a single testing data, when having
i malicious ones out of the selectedr components, the probability
of malicious components not being detected isPi. If k − m ≥ r,
i ranges from 0 tor. Wheni = 0, obviously, malicious compo-
nents cannot be detected. Wheni = r, since malicious components
work in collusion, they can escape no matter they misbehave or not.
However, when0 < i < r, they need to behave benignly to escape.
Note that once any of thei malicious components first decides to
misbehave on a data item, the resti−1 malicious components have
no choice but to follow the decision. Thus,P equals to

P =

r
∑

i=0

Pi =

(

k−m
r

)
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r
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If k − m < r, i ranges fromr − (k − m) to r. Then,P equals to

P =

r
∑
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m
i

)(
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)
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The number of candidate componentsk, the size of testing dataset
l and the redundancy degreer denote the tradeoff between the over-
head and the escaping rate. Intuitively, the larger the duplicated
component number and testing data size, the more likely the com-
poser can catch function integrity attacks.

With redundant dataflow topologies, detecting function integrity
attack is equivalent to finding inconsistent results from the r se-
lected dataflow topologies. Similarly, the escaping rate innon-
collusion scenario is(1 − pm)rl/w. In the collusion scenario, sup-
pose there are at mostm dataflow topologies that contain malicious
components. When all malicious components collude, the escaping
rate is similar to the abovePe, except thatk is replaced withw.

3. EXPERIMENTAL EVALUATION

3.1 System Implementation
We have implemented a prototype of secure dataflow processing

system and tested it on the wide-area network testbed Planetlab [3].
Our experiments use more than 200 Planetlab hosts that are dis-
tributed all over the world. Each PlanetLab node representsone ser-
vice provider that offers one or more data processing components.
The composer is deployed at a pre-defined PlanetLab host, which
is responsible for composing dataflow applications and verifying
the integrity of the distributed dataflow processing. For simplicity,
we only deploy one composer in our experiment. However, our
design is readily applicable to large-scale open distributed systems
that may require multiple composers. Our dataflow processing sys-
tem closely follows the design of the IBM System S data stream
processing system [15], a commercial dataflow processing system.

For security protection, our dataflow processing system runs on
top of a public key infrastructure that is deployed in advance. The
composer and component providers know each other’s public keys
and use public/private key pairs to perform encryption, decryption,
signature, and verification. Same as many implementation inprac-
tice, when encrypting a message, the upstream component gener-



ates a temporary secret key to encrypt the message and then uses
the public key of a downstream service provider to encrypt the se-
cret key. After the receiver gets the message with the encrypted
key, it can first obtain the secret key using its private key and then
decrypt the message.

For comparison, we implement three alternative dataflow pro-
cessing schemes: i)insecure dataflow, ii) secure dataflow with
cached evidence, and iii) secure dataflow with carry-on evidence.
The insecure dataflow scheme does not provide any security pro-
tection and only considers the QoS and resource requirements of
dataflow users. In contrast, the two secure dataflow schemes in-
clude the protection mechanisms for ADU, dataflow topology,and
function integrity verification. The difference is that theformer
stores the data provenance evidence locally on different distributed
components, while the latter inserts the data provenance evidence
into processed ADUs. When the composer receives the final result
ADU, it contains all the data provenance evidence, which canbe
used for immediate security check.

To evaluate the performance and security of our schemes, we
use the following two metrics: i)dataflow processing delayand
attack detection probability. The dataflow processing delay is mea-
sured by the average per-ADU turnaround time (i.e., the duration
between the time when the first dataflow ADU enters the system
and the time when the last dataflow ADU leaves the system over
the total number of ADUs processed). We define attack detection
probability as the number of detected malicious componentsover
number of all malicious components.

3.2 Results and Analysis
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Figure 4: Dataflow process-
ing delay vs. number of
hops.
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Figure 5: Dataflow process-
ing delay vs. Data size.

Figure 4 shows dataflow processing delay versus the number of
hops in service composition for three different approachesgiven
that data sending rate is 15 ADUs per second and data size is 100
bytes. We observe that the overhead of security protection mech-
anism is about 20ms for both schemes, with the carry-on scheme
being a little more expensive, which, to a great extent, depends on
the computation ability of a specific PlanetLab host. Note that the
overhead showed here is less than the sum of the actual encryp-
tion/decryption processing delay at each service component. This
is because data processing time of consecutive ADUs has overlaps
due to the continuous processing nature of streams. We measure
the average per-hop processing time and the average per-hopen-
cryption/decryption time to be 100ms and 15ms respectively, which
means the per-hop overhead of security mechanism is about 15%.

Figure 5 shows dataflow processing delay as a function of ADU
data size, where the number of hops is 5 and data sending rate is
15 ADUs/sec. As we can see, the increment of ADU data size
dramatically increased the dataflow processing delay, no matter
which scheme is used. However, the overhead of enforcing security
mechanism shows negligible change with the increase of ADU data
size. Moreover, the percentage of the security overhead outof the

dataflow processing delay decreases as the size of ADU increases.
In addition, since the carry-on evidence in the third schemeis gen-
erated and transmitted in the form of hash, the dataflow processing
delay in the third scheme is very close to that in the second scheme.

0 10 20 30 40 50
0

100

200

300

400

% of malicious components among all nodesD
a

ta
flo

w
 d

e
la

y 
u

n
d

e
r 

d
ro

p
p

in
g

 a
tt

a
ck

 (
m

s)

 

 

Drop Prob = 0.1
Drop Prob = 0.3
Drop Prob = 0.5
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Figure 7: Dataflow process-
ing delay vs. number of
hops under dropping attack.

In order to counter ADU dropping attack, we develop the receipt-
based communication protocol described in Section 2.2. Figure 6
shows the protocol impact on the dataflow processing delay when
it is used to handle dropping attacks. In this experiment, weset the
number of service hops to be 10, data sending rate to be 15 ADUs
per second, and data size to be 100 bytes. The dataflow processing
delay increases as either of the two parameters (i.e., the percent-
age of malicious parties, drop probability) goes up. This isbe-
cause when either of the two parameters increases, the probability
of getting the composer involved to forward ADUs to downstream
components becomes higher. Figure 7 shows the protocol perfor-
mance impact when the number of service hops, the percentageof
malicious nodes, and dropping probability change, where the data
sending rate is 15 ADUs per second and data size is 100 bytes.

We now evaluate the efficiency of function integrity attestation
scheme. Both non-collusion and collusion scenarios are investi-
gated. In non-collusion scenario, we assume malicious components
act on their own and give results independently. While in collusion
scenario, the worst case is evaluated where all malicious compo-
nents serve the same function. Since detection probabilityis not
affected by the number of service hops, we use four hops for the
non-collusion scenario and one hop for the collusion scenario. In
all scenarios, the number of redundant componentsk equals to 5,
and run time is 30 seconds. Data size is 1KB and data rate is 10
ADUs per second. Obviously, whenr equals to 5, the scheme sends
attestation traffic to all functionally equivalent components.

Figure 8 and Figure 9 show the percentage of detected malicious
components in non-collusion scenario, given 10% and 30% mali-
cious components randomly distributed in the system respectively.
Each ADU has a duplication probabilitypu of 0.05 and 0.1 respec-
tively, which means the duplicated data setl being 0.05 or 0.1 times
of total ADUs. Redundancy degreer varies from 2 to 4. It is ob-
vious to note that even with small duplication probability,such as
0.1, malicious components can be captured well.

Figure 10 compares the percentage of detected malicious com-
ponents in collusion and non-collusion scenarios, given 1 to 5 ma-
licious components serving the same function respectively. Mali-
cious components always misbehave, and ADU duplication proba-
bility is fixed at 0.01. Overall, detection probabilities are higher in
non-collusion scenarios than in collusion ones. Detectionprobabil-
ity does not change with the number of malicious components in
non-collusion scenarios. This is because different malicious com-
ponents give different results and inconsistencies can be detected
as long as an ADU is duplicated. Note that in the non-collusion
scenario whenr equals to 3, the detection probability is less than 1.



This is because we only duplicate 1% of the ADUs for attestation
so that attestation traffic may not pass through a malicious compo-
nent in a short time. In the collusion scenario, detection probabili-
ties may decrease with number of malicious components, and more
redundancies generally produce higher detection probability.

Finally, we evaluate the performance impact of adopting redun-
dant dataflow topologies for function integrity attestation. Figure
11 shows the average dataflow processing delay of usingr dif-
ferent topologies, where the secure dataflow with cached evidence
scheme is used. Whenr equals to one, the scheme does not employ
any redundant components for consistency check. Our results show
that the cost of using two dataflow topologies is very low. With
the increase of redundant degree, more components get involved
to process the same set of ADUs. Dataflow processing delay is
affected by the extra delay of sub-optimal dataflow topologies.
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Figure 8: Non-collusion
detection probability under
10% malicious nodes.

0.01 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Malicous components misbehaving probability

D
e

te
ct

io
n

 p
ro

b
a

b
ili

ty

 

 

r=2, p
u
 = 0.05

r=2, p
u
 = 0.1

r=3, p
u
 = 0.05

r=3, p
u
 = 0.1

r=4, p
u
 = 0.05

r=4, p
u
 = 0.1

Figure 9: Non-collusion
detection probability under
30% malicious nodes.
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Figure 10: Collusion im-
pact.
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Figure 11: Randomized
consistency check overhead.

4. CONCLUSION
In this paper, we have presented the design and implementation

of a new security management framework to achieve trustworthy
distributed dataflow processing. To the best of our knowledge, our
work makes the first attempt to address the integrity of composed
dataflow application delivery in open distributed systems.We iden-
tify several major security threats. We then present a set ofscalable
countermeasures to protect the integrity of composed dataflow ap-
plication delivery including the dataflow topology, inter-component
communication, and dataflow processing functions. We have im-
plemented a prototype of the secure distributed dataflow processing
system and tested it on the wide-area network testbed PlanetLab.
Our initial experimental results show that the proposed security
management scheme can effectively detect malicious attacks and
impose low overhead to the distributed dataflow processing system.

5. ACKNOWLEDGMENT
This work was sponsored in part by U.S. Army Research Office

(ARO) under grant W911NF-08-1-0105 managed by NCSU Secure

Open Systems Initiative (SOSI), NCSU startup funding and NSF
IIS-0430166.

6. REFERENCES
[1] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/.
[2] Software as a Service.http://en.wikipedia.org/wiki/Software

as a Service.
[3] The PlanetLab.http://www.planet-lab.org/.
[4] Daniel J. Abadi and et al. The Design of the Borealis Stream

Processing Engine.Proc. of CIDR, 2005.
[5] G. Alonso amd F. Casati, H. Kuno, and V. Machiraju. Web

Services Concepts, Architectures and Applications Series:
Data-Centric Systems and Applications.Addison-Wesley
Professional, 2002.

[6] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch,
John Lane, Cristina Nita-Rotaru, Josh Olsen, and David
Zage. Steward: Scaling byzantine fault-tolerant systems to
wide area networks.Proc. of DSN, pages 159–173, 2006.

[7] Stefan Berger, Ramon Caceres, Dimitrios Pendarakis, Reiner
Sailer, Enriquillo Valdez, Ronald Perez, Wayne Schildhauer,
and Deepa Srinivasan. Tvdc: Managing security in the
trusted virtual datacenter.ACM SIGOPS Operating Systems
Review, 42(1):40–47, 2008.

[8] T. Erl. Service-Oriented Architecture (SOA): Concepts,
Technology, and Design.Prentice Hall, 2005.

[9] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
SPADE: the system s declarative stream processing engine.
Proc. of SIGMOD, April 2008.

[10] David Goldschlag, Michael Reed, and Paul Syverson. Onion
routing for anonymous and private internet connections.
Communications of the ACM, 42:39–41, 1999.

[11] The STREAM Group. STREAM: The Stanford Stream Data
Manager.IEEE Data Engineering Bulletin, 26(1):19-26,
2003.

[12] X. Gu and K. Nahrstedt. Distributed multimedia service
composition with statistical QoS assurances.IEEE
Transactions on Multimedia 8(1): 141-151, 2006.

[13] X. Gu, P. S. Yu, and K. Nahrstedt. Optimal Component
Composition for Scalable Stream Processing.Proc. of
ICDCS, 2005.

[14] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel.
Peerreview: Practical accountability for distributed systems.
Proc. of SOSP, 2007.

[15] N. Jain and et al. Design, Implementation, and Evaluation of
the Linear Road Benchmark on the Stream Processing Core.
Proc. of SIGMOD, 2006.

[16] K.-L.Wu, P. S. Yu, B. Gedik, Ki. Hildrum, C. C. Aggarwal,
E. Bouillet, W. Fan, D. George, X. Gu, G. Luo, and H. Wang.
Challenges and Experience in Prototyping a Multi-Modal
Stream Analytic and Monitoring Application on System S.
Proc. of VLDB, 1185-1196, 2007.

[17] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-Aware Operator
Placement for Stream-Processing Systems.Proc. of
ICDE’06, April 2006.

[18] Elaine Shi, Adrian Perrig, and Leendert Van Doorn. Bind: A
fine-grained attestation service for secure distributed
systems. InProceedings of SSP, pages 154–168, 2005.

[19] Mudhakar Srivatsa and Ling Liu. Securing publish-subscribe
overlay services with eventguard.Proc. of ACM CCS, 2005.

[20] Trusted computing group.
https://www.trustedcomputinggroup.org/home.


