
RDE: Replay DEbugging for Diagnosing Production Site Failures

Peipei Wang

North Carolina State University

pwang7@ncsu.edu

Hiep Nguyen*

Google Inc.

hiepnguyen@google.com

Xiaohui Gu

North Carolina State University

gu@csc.ncsu.edu

Shan Lu

University of Chicago

shanlu@cs.uchicago.edu

Abstract—Online service failures in production computing
environments are notoriously difficult to debug. One of the key
challenges is to allow the developer to replay the failure execution
within an interactive debugging tool such as GDB. Previous work
has proposed in-situ approaches to inferring the production-run
failure path within the production environment. However, those
tools may sometimes suggest failure execution paths that are
infeasible to reach by any program inputs. Moreover, production
site often does not record or provide failure-triggering inputs due
to the user privacy concern. In this paper, we present RDE, a
Replay DEbug system that can replay a production-site failure at
the development site within an interactive debugging environment
without requiring user inputs. RDE takes an inferred production
failure path as input and performs execution synthesis using a new
guided symbolic execution technique. RDE can tolerate imprecise
or inaccurate failure path information by navigating the symbolic
execution along a set of selected paths. RDE synthesizes an input
from the selected symbolic execution path which can be fed to
a debugging tool to replay the failure. We have implemented an
initial prototype of RDE and tested it with a set of coreutils bugs.
The results show that RDE can successfully replay all the tested
bugs within GDB.

I. INTRODUCTION

Production systems that provide online interactive services

typically require high reliability and availability. However,

it is a great challenge to release a bug-free system due to

the scale and complexity of the modern software. Despite

extensive software testing and analysis, many failures still

occur during the production run. To diagnose a production-

run failure, software developers desire to be able to replay the

failure at their site and use interactive debugging tools (e.g.,

GDB [2]) to understand what happened during the production

run. Unfortunately, offline production-run failure debugging

remains challenging, especially for those non-crashing failures

(e.g., incorrect or unexpected results).

Much effort has been conducted to reduce the recording

overhead while maintaining debug determinism [30] in which

the replay exhibits the same failure symptom and includes

the same root cause. Researchers have proposed different

techniques, ranging from complete execution recording [14],

[15], [17], [27] to partial record-replay [3], [8], [18], [19], [24],

[28], [31], [32], in order to achieve debug determinism. How-

ever, production infrastructures are often reluctant to adopt

these approaches due to the recording overhead, deployment

complexity, and privacy concerns. Particularly, the original

user input that triggered the production site failure is generally

*This work has been done while the author was a PhD candidate at North
Carolina State University.

���������	
��

�

���������	
���
�
�

�
	�����	
��	�����
��
�
��
	
��
�

�����
�������
�
��
�
����
��
�

���������	
��	�
����	��

�������

������

�	��

�

�����	��

���

Fig. 1: Overview of RDE.

not provided to developers because it may contain sensitive

user information [7].

In our previous work, we have presented Insight [23], an

in-situ failure path inference tool that discovers the execution

path of a production-site failure immediately after a failure

is detected without requiring any intrusive system recording.

Although Insight can infer high fidelity failure paths, providing

valuable information for understanding the failure, it does not

offer any explicit support for reproducing the failure at the

development site. Moreover, Insight intentionally skips the

constraint checking during the failure path inference in order to

achieve fast path search. As a result, Insight might occasionally

generate infeasible paths which cannot be replayed in an

interactive debugger.

In this paper, we introduce RDE, a Replay DEbugging

system that can synthesize the production failure execution

and replay the execution within an interactive debugging

tool, shown by Figure 1. To protect private and confidential

information, a failure report on the production site usually do

not collect user information which makes bug replaying on

the development site difficult. One key challenge to replay

the production site failure at the development site is to handle

unavailable user input and production environment information

(e.g., settings from a configuration file). Figure 1 shows our ap-

proach to handle this cross-site system diagnosis problem. We

leverage the failure execution path inferred on the production

site by Insight. This path does not contain any user-specified

2016 IEEE 35th Symposium on Reliable Distributed Systems

1060-9857/16 $31.00 © 2016 IEEE

DOI 10.1109/SRDS.2016.48

327

information. RDE takes the failure execution path discovered

by Insight as the input to synthesize the failure-triggering user

input and the production environment data to reproduce the

production-site failure execution at the development site. So

RDE achieves practicality without requiring any user input or

intrusive system recording.

To synthesize the user input and the environment infor-

mation, RDE leverages symbolic execution [6], [9], [16] to

execute the program symbolically along the failure execution

path discovered by Insight. During the symbolic execution,

RDE collects a set of path constraints that the symbolic input

must satisfy in order to cause the program to follow the

path. RDE then uses a Satisfiability Modulo Theories (SMT)

solver [12], [13] to infer concrete values for the input and

environment data by solving the path constraints. Symbolic

execution suffers from the “state space explosion” prob-

lem because the execution tree grows exponentially [4] and

computing satisfiability over a constraint set at each branch

point is CPU-intensive. In order to perform efficient path

search, RDE first identifies which branches have deterministic

condition values (i.e., non-flippable branches) according to

the annotation provided by Insight1. During the symbolic

execution, RDE skips exploring non-flippable branches and

uses them as anchor points to narrow down the search scope.

As mentioned before, the execution path inferred by in-

situ tools may be infeasible because of skipping the constraint

check. However, developers cannot run an infeasible execution

path in an interactive debugging tool because the constraint

solver cannot find any solution that can satisfy the constraints

of an infeasible path. To address this problem, RDE proposes a

new guided symbolic execution exploration scheme that find a

feasible execution path that can reproduce the production-site

failure and be replayed for debugging purposes.

We have implemented a prototype of the RDE system

and evaluated it using a set of real software bugs found

in online bug repositories. The results show that RDE can

successfully reproduce the failure executions that exhibit the

same failure symptom and cover the root causes for all

the tested software bugs. Specifically, this paper makes the

following contributions:

• We propose a new failure reproduction approach that

can reproduce a production-site failure execution at the

development site with the information collected by an

in-situ failure path inference tool. By combining Insight

with RDE, it provides a complete solution for cross-site

system diagnosis.

• We present a guided symbolic execution exploration

scheme that can synthesize the failure-triggering user

inputs and environment data to reproduce a complete

execution of a production-site failure.

1Insight [23] decides which branches are non-flippable based on the runtime
console logs, system call traces, and interaction results with the production
environment.

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
	�

�
�

��������

����

�����������������

����������������

�����������

�����

 �!������!���"�������

� �

�
		

�
	�

�
	�

#������������������

��"� !����

��"�

��"�

!����

!����

$��"���!���"�������

Fig. 2: Annotated branches in the path discovered by Insight.

• We evaluate RDE using five coreutils bugs and show that

our approach is feasible for reproducing failure execu-

tions without requiring failure-triggering user inputs.

The rest of the paper is organized as follows. Section II

presents the design of the RDE system. Section III describes

the implementation of RDE. Section IV presents our exper-

imental results. Section V compares our work with related

work. Section VI discusses the limitation and the future work.

Finally, the paper concludes in Section VII.

II. SYSTEM DESIGN

In this section, we first give an overview about the in-situ

failure path inference tool Insight. We then describe our sym-

bolic execution scheme for synthesizing missing production-

site information (e.g., user inputs, environment data). After

that, we describe how we handle the infeasible path problem.

Next, we describe how developers can use RDE for debugging

production-site failures.

A. In-Situ Failure Path Inference Overview

When a failure is detected in a production system, Insight

dynamically creates a shadow component of the production

server and performs failure path inference on the shadow

component.

Insight infers the execution path of a failed service request

on the production site immediately after a failure is detected.

By inferring the failure path on the production site, Insight

leverages both environment data (e.g., input logs, configuration

files, states of interacting components) and runtime outputs

(e.g., console logs, system calls) to reduce the failure path

search scope. Insight performs binary-based failure path search

328

by replaying a recent input and matching the outputs from the

replayed execution with those of the failed production run.

If the replayed execution produces a mismatched console log

message or system call, Insight rolls back the replay process

to the previous branch point and flips its condition values to

search a different path.

During the path inference process, depending on whether

the environment data was changed or not after the failure

occurred, Insight operates in two modes: concrete mode and

exploration mode. Correspondingly, the recorded branch points

are annotated with either concrete or explored shown by

Figure 2. Concrete branches indicate that the environment

data which influence branch conditions was unchanged before

and after the failure. Thus, Insight does not need to infer

the condition values of those branches using exploration.

The explored branches indicate that the environment was

changed after the failure occurred. Insight has to infer their

condition values by exploring different paths and selecting

the matched path based on recorded console logs and system

calls. Therefore, we mark concrete branches as non-flippable

since their condition values are exact and explored branches

as flippable since their condition values come from runtime

inference and maybe inaccurate.

We also rely on console log messages to determine whether

a branch is flippable. Production systems often produce con-

sole log messages for debugging production-run failures. Since

console log messages are inserted by software developers for

recording operations considered to be important, they often can

provide useful clues about program execution. Thus, we mark

all the branches right before the logging statements as non-

flippable on the inferred path in addition to those we annotated

in the previous step.

The failure path discovered by Insight consists of an ordered

list of branch points associated with their condition values

and annotations indicating whether they are flippable or non-

flippable branches.

B. Production-Site Data Synthesis

The goal of RDE is to be able to reproduce production

failures at the development site. RDE relies on the failure

path produced by Insight, called inferred path, to achieve

practical symbolic execution for real programs with reduced

scope. RDE performs symbolic execution along the inferred

path to compute path constraints and synthesize the production

site data (e.g., user inputs, environment data) by solving all the

path constraints. Our approach is based on the premise that any

input that satisfies the path constraints will lead the program

to reach the failure point. We compute path constraints from

the point where the input is first received by the program to

the point where the failure is detected (i.e., an error message

is produced). These constraints are then fed into an SMT

solver [12], [13] to compute concrete values for the input.

To compute path constraints, the symbolic execution engine

first makes the input of the program symbolic. It then executes

the program along the path provided by Insight while keeping

track of instructions on symbolic operands. When executing

an instruction, if at least one of its operands is symbolic,

the instruction is executed symbolically. Moreover, when the

symbolic execution engine encounters a branch instruction

where the branch condition depends on at least one symbolic

variable (i.e., symbolic branch), it adds a new path constraint.

Symbolic execution also generates path constraints when exe-

cuting indirect call or jump if the target operand is symbolic.

Similarly, constraints are also generated when load and store

instructions are executed on a symbolic address operand.

Symbolic execution maintains symbolic states when execut-

ing the program. Each symbolic state consists of a register

file, stack, heap, program counter, and path constraints on

the input that cause the execution to reach a given point in

the program. RDE performs symbolic execution along the

inferred path provided by Insight and uses the recorded value

to determine the branch condition at each branch instruction.

However, branch condition value cannot be determined if it is

not recorded in the inferred path (e.g., flippable branches or

external library functions2) and the current path constraints are

not enough to compute a definite concrete value for the branch

condition. When the symbolic execution engine encounters

a symbolic branch where the branch condition cannot be

determined, it forks two symbolic states to follow both branch

directions.

RDE finishes executing the program when there is one

symbolic state reaching the end of the inferred path. The path

constraints of the symbolic state contain all the predicates that

the input and environment data must satisfy. RDE then uses

the SMT solver to solve the path constraints and extract ap-

propriate inputs and environment data. The current prototype

of RDE uses an SMT solver called STP [13].

C. Infeasible Path Handling

The inferred path produced by Insight might be infeasible

due to missing constraint check. The STP solver would not find

any possible solution that satisfies all the path constraints if

we follow the inferred path strictly. Under those circumstances,

RDE uses the inferred path as guidance to find a similar but

feasible execution path. To make sure the reproduced path still

covers the root cause, RDE first annotates all branches in the

inferred path to identify which branch is flippable and which

branch is not. It then uses those annotated branches to perform

guided symbolic execution exploration.

During the symbolic execution, RDE uses the recorded

value for the non-flippable branch to determine the branch

condition. For the flippable branch, RDE does not follow the

2Insight does not record the branches that belong to external libraries
(e.g. libc) to avoid the mismatch between the execution environment of the
production site and that of the development site (e.g., libc vs. ulibc).

329

inferred path strictly. Instead, RDE performs normal symbolic

execution for the flippable branch by forking two symbolic

states corresponding to two possible branch condition values.

However, the symbolic state corresponding to the recorded

value of the flippable branch in the inferred path has a higher

priority of being executed first compared to the other state.

Given an annotated path, RDE uses symbolic execution

exploration to find a feasible path that must go through all

the non-flippable branches in the path. Those branches are

used as intermediate goals during the exploration.

To start the guided symbolic execution, RDE initializes

the input as symbolic. It then executes the program using

this initialized symbolic input. During the exploration, RDE

intercepts conditional branch instructions and checks whether

the branch is non-flippable. If the branch is non-flippable, RDE

uses the recorded branch condition value in the inferred path

to determine the direction of the execution. For the flippable

branches on the inferred path, RDE performs normal symbolic

execution by forking symbolic states to follow possible branch

condition values.

At any time, the symbolic execution engine may be execut-

ing a large number of symbolic states. One question for RDE

is which state needs to be executed first in order to reach the

failure point. RDE maintains the information about which non-

flippable branches each symbolic state already matched and

which next non-flippable branch (i.e., the next goal) that the

symbolic state needs to match. Among the candidate symbolic

states that may be executed, RDE selects a state that matches

the maximum number of non-flippable branches. If there are

multiple ones, RDE chooses a state randomly to avoid getting

stuck in an infinite loop or going too deep into an irrelevant

path.

We now describe how RDE handles infeasible path using the

simple example shown by Figure 2. Suppose the inferred input

path is B1 → B2 → B3 → B4 → B5 → B7 → B8 → B9 →
B10 which is an infeasible path because the condition of B7 is

the false instead of the true. Let us call the first state created

at the beginning of the symbolic execution the RootState and

the set of candidate states curStateSet. The symbolic execution

selects new states from the curStateSet and visits them one by

one until the curStateSet is empty.

RDE first reads the inferred path and finds that B4, B5, and

B7 are flippable branches and B1, B2, B3, B8, B9, and B10

are non-flippable branches. The symbolic execution begins

with the RootState since the RootState is the only element in

the curStateSet. The first branch RDE encounters is B1. Since

B1 is a non-flippable branch, only one state is created for B1

and added to the curStateSet. The RootState is removed from

the curStateSet. Because of the same reason, the state for B1

is selected to be the next state to visit. Similarly, states for B2

and B3 are created, added into the curStateSet, and selected

to be next state in turn, separately. The symbolic execution

then encounters B4 and starts path exploration. It creates state

void foo (int a)

1: if a >= 2 then

2: //do something

3: if a <= 2 then

4: //do something

Fig. 3: Simple code example to illustrate input synthesis.

S1 for true condition value and state S2 for false condition

value, and add both of them into the curStateSet. RDE selects

S1 as the next state to visit because on the inferred path

B4 is annotated with true condition value and thus S1 has

a priority than S2. Similarly, states S3 and S4 for B5 and S5

and S6 are added to the curStateSet. The symbolic execution

selects S3 and S5 because they have the false condition values

annotated on the input path while the other states S2 and S4

have true condition value. However, the constraint solver gets

an empty set through solving condition constraints. Therefore,

RDE realizes that S5 is an invalid state and terminates it

immediately. RDE then selects from the remaining states in

the curStateSet according to its search strategy. In the end,

symbolic execution follows a feasible path although its input

execution path is infeasible.

D. Replay Debugging

Once the symbolic execution finishes executing a complete

path, RDE solves the path constraints to generate concrete

values for all the required program inputs and uses them to

replay the failure execution. To illustrate the input synthesis,

consider the code snippet in Figure 3. If the symbolic ex-

ecution follows path 1 → 2 → 3 → 4, the corresponding

constraint is (a ≥ 2) ∧ (a ≤ 2). A concrete value of a that

satisfies the path constraints is 2. To perform replay, we use

a driver which reads the synthesized input and passes it to

the program during the replay. More specifically, the driver

intercepts access to symbolic variables and replaces them with

concrete values. Developers can run the buggy program with

the synthesized input and attach it with a debugger (e.g. GDB)

to perform debugging. They can also rerun the program with

the synthesized input after fixing the bug to ensure that the

program patch is correct.

III. IMPLEMENTATION

The current prototype of RDE is built on top of KLEE [6],

a symbolic execution engine for C programs. The first imple-

mentation challenge is the path alignment which needs to map

the branch instructions in the binary to the branch representa-

tions in KLEE. Since KLEE works on the LLVM bitcode [21],

RDE has to map branches on the inferred binary path (i.e.,

conditional jump instructions such as JE, JL) to correspond-

ing branches in the LLVM bitcode (i.e., br). For each branch

330

���������	����
��	�����
������
��������	
����
���
������
������
���
�����������

	����
��
�������
���	���������
 �
����	!���
"�

	��
�#
����������������
��$����
���	%�����	 ����	!��%
"�

��$��&����%���%���������������������������'���(�)���*� �)+
��
��$��������%�%��������,
�,������
������)��,�,
�� �	
"�

��$'������'%�����������������������������
�����(�)����������
�)
��$'�������$�'&��$����������������
�����(�)$�� &�
"�

Fig. 4: The binary branch and its corresponding LLVM branch.

TABLE I: Real system failures used in our experiments. All the failures have one error log message produced during the failure run.

System

name
LOC

Failure path length Num. of

console

log msgs

Num. of

system

calls

Failure description Root cause function
Num. of

functions

Num. of

branches

mkdir (5.92) 400 2 42 2 202 Input failure. The program rejects a valid
input ending with “/.”.

mkdir dir parent

rmdir (4.5.1) 200 2 23 3 198 Input failure. The program does not handle
a valid input with trailing slashes at the end
when using with the “-p” option.

remove parents

ln (4.5.1) 600 2 43 2 186 Option failure. The program does not handle
option “target-directory” correctly.

do link

touch (7.6) 500 1 7 1 188 Input failure. The program rejects a valid
input with leap second.

main

cp (6.10) 1900 13 116 2 199 Input failure. The program rejects a valid
input if the destination of the copy command
is already present in the system.

copy internal

on the inferred path, RDE needs to translate it into the corre-

sponding LLVM branch and its condition value in the LLVM

bitcode of the program. We perform the branch mapping based

on the semantics of the branch instruction and the basic code

block layout information of both the binary and the LLVM

bitcode. We assume that both the binary and the LLVM bit-

code are compiled using the same compiler (e.g., Clang [1]),

thus having similar basic code block layout.

All the branch instructions in the binary are conditional

jump instructions which jump to a target branch or go to the

next instruction depending on the EFLAGS register value. Dur-

ing the in-situ failure path inference, Insight interprets a branch

instruction with a true condition value if the execution jumps

to the target of the branch, otherwise, it assigns a false con-

dition value for the branch. In addition to the branch value,

Insight also records the branch target address (i.e., the loca-

tion of basic code block corresponding to the true condition

value) and the next instruction address (i.e., the location of

the basic code block corresponding to the false condition

value).

Using the branch value and the basic code block layout in-

formation, RDE determines the corresponding branch and its

condition value in the LLVM bitcode. Similar to the condi-

tional jump instruction in the binary, each conditional branch

instruction in the LLVM bitcode is also associated with two

basic blocks corresponding to the true and false condi-

tion values. RDE identifies the order of these basic blocks

and leverages the basic code block order of a branch in the

inferred binary path to determine the branch value for the cor-

responding LLVM branch. Figure 4 shows an example of a

binary branch and the corresponding LLVM branch. In this

example, the basic code block address corresponding to the

true condition value of the binary branch is greater than the

basic code block address corresponding to the false condi-

tion value. Thus, if the condition value of the binary branch is

true, the condition value of the LLVM branch is also true

because the basic block if.then37 is after the basic block

if.then35.

For the input replay, we use KLEE’s driver that can re-

place symbolic inputs with synthesized values recorded in the

trace. This is done through a custom library which intercepts

the function called klee_make_symbolic and returns the

value read from the log file. Developers simply need to link

the buggy program with our custom library before attaching

it to an interactive debugging environment such as GDB.

IV. SYSTEM EVALUATION

In this section, we present the experimental evaluation for

the RDE system. We first describe our evaluation methodology.

Next, we present our experimental results along with bug case

studies.

A. Evaluation Methodology

We evaluate RDE using real software bugs in GNU core-

utils. Table I shows the list of failures we use in our exper-

iments. We report the number of function calls and branch

points contained in the original failure execution path of each

failure. Each failure contains one error message. We detect

331

failures by intercepting error messages: console log messages

containing error and are written into stderr.

We evaluate the precision and efficiency of RDE using the

following metrics: 1) Call path difference which is measured

by the string edit distance between the original failure call

path and the call path reproduced by RDE and denotes the

deviation of the call path discovered by RDE from the original

call path of the failed production run; 2) Branch difference

which is also measured by the string edit distance and denotes

the deviation at the branch level between the path reproduced

by RDE and the original failure path. This metric is a more

fine-grained comparison than the call path difference metric.

We also show the branch difference between Insight and RDE

to show the precision improvement of RDE; 3) Number of

explored paths which defines the number of paths that RDE

traverses before synthesizing the input; and 4) Overhead which

evaluates the time taken by RDE to perform path alignment

and input synthesis.

We also evaluate the effectiveness of RDE when it is given

an infeasible path. As we mentioned before, Insight may out-

put an infeasible path under certain circumstances [23]. In the

experiment setup, we provide two types of inputs to the Insight

failure path inference engine: original input and alternative in-

put. Original input denotes the original failure-triggering input

which is provided to Insight for the path inference. Alterna-

tive input denotes a different input but of the same type as the

original input which does not trigger the failure.

We use alternative inputs which cause Insight to output in-

feasible execution paths, to examine whether RDE could find

similar but feasible execution paths. The alternative inputs of

the five coreutils programs are defined as follows. 1) mkdir

failure: a valid directory path that does not end with “/.”; 2)

rmdir failure: a valid directory path without any trailing slash

at the end; 3) ln failure: ln command without the “target-

directory” option; 4) touch failure: an input that does not

specify a leap second; and 5) cp failure: a destination input

which does not exist.

Our experiments were conducted on a computer cluster in

our lab. Each cluster node is equipped with a quad-core Xeon

2.53GHz processor, 8GB memory, and is connected to Giga-

byte network. Each host runs a 64-bit Ubuntu version 10.04

with LLVM version 3.1. We repeated each experiment five

times and report the mean and standard deviation values.

B. Results and Analysis

In this section, we first summarize the failure path accu-

racy, and then present the number of explored paths and the

results of RDE overhead evaluation. Table II summaries the

execution reproduction results for five real software bugs. We

observe that RDE can always reproduce a feasible execution

path for all five tested bugs and output the exact failure execu-

tion path for four out of five cases under missing inputs. We

also manually examine those failure executions with different

TABLE II: Summary of RDE failure reproduction results. Original
input is the original failure-triggering input. Alternative input is a
different input but of the same type as the original input which does
not trigger the failure.

Failure
name

Inferred path
setting

Inferred
path
feasibility

RDE
Call path

difference
Branch

difference
Feasible

path?

mkdir
(5.92)

Original input Feasible 0 0 Yes
Alternative input Infeasible 0 0 Yes

rmdir
(4.5.1)

Original input Feasible 0 0 Yes
Alternative input Feasible 0 0 Yes

ln
(4.5.1)

Original input Feasible 0 0 Yes
Alternative input Feasible 0 0 Yes

touch
(7.6)

Original input Feasible 0 0 Yes
Alternative input Feasible 0 0 Yes

cp
(6.10)

Original input Feasible 0 0 Yes
Alternative input Infeasible 2 (8.3%) 34 (17.1%) Yes

mkdir rmdir ln touch cp
0

50

100

150

200

250

N
um

be
r

of
 e

xp
lo

re
d

pa
th

s

 RDE - Inferred path with original input
 RDE - Inferred path with alternative input

Fig. 5: Number of explored paths.

users and our initial results show that those execution paths

reproduced in RDE are useful for debugging as they cover the

root cause functions and branches. Furthermore, it shows that

RDE is effective even if the input execution path is an infea-

sible path. RDE could discover a feasible execution path from

the infeasible one and synthesize the failure-triggering input.

Developers can then take the synthesized input to feed into an

interactive development environment for further debugging.

Number of explored paths. We next show the number of

execution paths explored by RDE before being able to syn-

thesize the input. Note that Insight only records the branches

inside the user source code. It does not record the branches

belonging to external libraries (e.g. libc) to avoid mismatches

between different library implementations (e.g., libc vs. ulibc,

libc-2.10 vs. libc-2.11). Thus, RDE still needs to explore

branches inside external libraries even if the path discovered

by Insight is the same as the original failure path. Figure 5

shows that RDE can explore hundreds of execution paths

within seconds. We will discuss the time overhead in detail

later in this section. We also observe that the input provided

to RDE also causes impact on the number of explored paths.

An infeasible input path makes RDE explore a larger number

of execution paths.

RDE overhead. We now evaluate the overhead of RDE. We

measure the time taken for RDE to perform path alignment

332

TABLE III: RDE overhead. Original input is the original failure-
triggering input. Alternative input is a different input but of the same
type as the original input which does not trigger the failure.

Failure name Inferred path setting Path alignment Input synthesis

mkdir (5.92)
Original input 0.9 ± 0.1 s 2.3 ± 0.4 s
Alternative input 0.9 ± 0.2 s 2.4 ± 0.3 s

rmdir (4.5.1)
Original input 0.8 ± 0.1 s 1.8 ± 0.2 s
Alternative input 0.8 ± 0.1 s 1.8 ± 0.3 s

ln (4.5.1)
Original input 1.0 ± 0.1 s 3.2 ± 0.4 s
Alternative input 1.0 ± 0.1 s 3.3 ± 0.5 s

touch (7.6)
Original input 1.1 ± 0.1 s 2.1 ± 0.3 s
Alternative input 1.2 ± 0.2 s 2.2 ± 0.3 s

cp (6.10)
Original input 1.1 ± 0.1 s 3.8 ± 0.4 s
Alternative input 1.1 ± 0.1 s 3.9 ± 0.3 s

(see Section III for the details) and time taken for RDE to syn-

thesize the input. Table III shows the time overhead of RDE

for each failure. As the table shows, RDE takes about 1 second

to perform path alignment and less then 4 seconds to synthe-

size inputs which are significantly faster than performing test

generation using symbolic execution. Symbolic execution re-

quires up to 6 hours to explore a program with 1.3 KLOC [9].

This improvement is achieved by RDE because it performs

guided symbolic execution to narrow down the search scope.

C. Case Studies

rmdir failure is an example of bug reproduction in RDE

given feasible path. This failure is caused by incorrect handling

of the special character ‘/’ in the directory path name. Figure 6

shows a subgraph of the call graph for the rmdir failure.

The input execution path to RDE presented by the sequence

of line number of rmdir source code file is: 217, 219, 228,

230, ..., 103, 104, 108, 109, 110, ..., 116, 118, There are two

external interactions with the filesystem via system calls at line

116 and line 217. By solving the path constraints, RDE infers

that the interaction result at line 116 is 1 and the interaction

result at line 217 is 0.

The failure-triggering input which RDE synthesizes is

“\x01\x01/”. In fact, only the last character must be ‘/’. The

first two characters only need to be different from the null

character (‘\x00’). Thus, the STP solver picks the next char-

acter in the ASCII table (‘\x01’) for these two characters.

With this synthesized input, developers can replay the fail-

ure in an interactive debugger (e.g., GDB) and place break

points at line 116 and line 217. They would see that the dir

variable at line 217 is “\x01\x01/” and the path variable at

line 116 is “\x01\x01”. At this point, they would know that

only the last trailing slash is removed in remove parents,

causing the program to try removing the same directory twice.

Thus, inserting a duplication check would fix the problem.

mkdir failure is an example of bug reproduction in RDE

given an infeasible path. This failure is caused by incorrect

handling of a valid directory path input ending with ‘/’. Fig-

ure 7 shows this infeasible path problem in Insight in the

���������	

�

�

��������	
����
���

���������

� �

� �

� ����������	����������

� �

������������	�
���
������������

� �

�����
���
����
���	�����������

�

� ���������������������������

� ������������������

����

� �!�"�	#$���%������������������������������

�� ����%&��%���'�������������%����#()�!�

� (������������*������++�!�������������

,,�����

� �����-./���0

��������	
���������

� �����
���

�

���#���0�����%#��12�1��34#����������

� �

�

�

5.6

5.7

5.8

550

556

557

558

590

59.

.09

.0:

.0;

.0<

.06

.07

.08

..0

..<

..6

..7

..8

.57

.58

�

�

�

�

�

�

Fig. 6: A subset of the call graph for the rmdir failure. The failure
point is highlighted in bold. When an input with a trailing slash at
the end is used, only that trailing slash is removed in the function
remove parents, causing rmdir to try removing the same directory
twice (at line 217 and line 116).

mkdir failure caused by lack of guidance during the in-situ

path inference.

The input execution path to RDE presented by the sequence

of line number of mkdir source code file is: 136, 140, 141, ...,

216, 234, In other words, Insight outputs the true condition

value for the branch at line 136 and the false condition value

for the branch at line 216. However, this path is infeasible

because if the condition value at line 136 is true, line 141

must be executed and the condition value at line 216 have to

be true. RDE detects this and fixes the problem by inferring

that the branch condition value at line 216 must be true if the

branch condition value at line 136 is true. Since this modified

execution path is feasible, the following steps are similar to

what happened to rmdir program.

V. RELATED WORK

Failure input synthesis. ESD [32] presents an approach

333

����������	
������
������

�������������	
��
��	���������������������

���������	
��
�������������������
	�����������������

����������
�����	������������ �������!� �������"#$������%��

��&�'

�(%������	��������)*$�+

�(���	�����	��������	�

�(,�-

�(���./�

�((�'

�(0������	�������
�����	��+

�(��
���
	��1����2�./�+

�(��-

,��������	�����	�����������
���� 	����	���� ��
�����
�����
�

�������!�
	�"#$�������	

,���'

,���/�
�1����
�.�/��3��
����/�
�1����
�.�/��3�

,�&��..	1���/�4�	2�3��
�+

,�%���
�5��
�����������/.�/6+

,�����
�5��7����.���������
/+

,�,�.���������
/�����
+

,���-
� %&

%&

%&

Fig. 7: A code snippet for mkdir failure. Insight outputs an infeasible
path with the true value for the branch condition at line 136 and the
false value for the branch condition at line 216. RDE corrects it by
solving the constraints and infers that the branch condition value at
line 216 must be true if the branch condition value at line 136 is
true.

to synthesizing program inputs from a specific failure point

(e.g., code crashing statement). It first identifies candidate

paths that can reach the failure point through static code anal-

ysis, and then symbolically executes the program to synthesize

the failure-triggering input. In contrast, RDE does not require

the knowledge of failure points, which can synthesize failure-

triggering inputs for non-crashing failures. RDE leverages the

failure path inferred by production-run failure path inference

tool to synthesize the input.

Crameri et al. [11] present an approach of failure input syn-

thesis by combining symbolic execution with partial logging

of branches. Their approach labels branches whose condition

values depend on program input as symbolic and labels the

other branches as concrete. It selectively instruments symbolic

program branches and uses both branch labels and instrumen-

tation information to guide the program symbolic execution.

Their approach also instruments system calls and guides sym-

bolic execution based on system call logging results. Com-

pared with this approach, RDE relies on the inferred path pro-

duced during production-run, which might provide unreliable

information such as an infeasible path.

BBR (Better Bug Reporting [7]) uses symbolic execution

along the same failure path to synthesize a set of failure in-

puts that are different from the original ones. It also proposes

dynamic flow analysis to remove the constraints that are not

related to the failure to further improve the privacy of the gen-

erated input. In contrast, RDE does not require any program

inputs. RDE can synthesize the failure-triggering inputs from

a failure path inferred during production-run which might be

infeasible.

BugRedux [19] is a technique that collects four different

types of runtime execution data (i.e. point of failure, call stack,

function call sequence, and complete program traces.) and syn-

thesizes the execution using symbolic execution. It also com-

pares the efficiency of the failure execution based on different

types of runtime recorded information. In contrast, RDE does

not require any runtime recorded information for practicality.

It only relies on the inferred failure path that is produced by

in-situ failure path inference tool.

Record and replay. Replaying the failure executions de-

terministically from the recording log has been studied exten-

sively, with the focus on using different mechanisms to reduce

runtime overheads and log sizes, ranging from the application-

level record and replay techniques [14], [15], [17], [27] to

VM-level record and replay techniques [10], [20]. These ap-

proaches generally have high recording overheads, thus they

are not widely used in the production system.

Regarding partial record and replay, a common approach

is checkpointing. TRANSPLAY [28] reproduces production-

run bugs on a completely different environment using partial

recording. It introduces partial checkpointing to record a small

but necessary amount of data just before the application en-

counters a failure. Cheung et al. [8] propose a partial sym-

bolic replay tool which starts replaying from the last check-

point rather than from the beginning of the system. It collects

a log during program execution and discards all previous logs

when it reaches a checkpoint to avoid maintaining full logs.

In contrast, RDE does not require any runtime data logging

or checkpointing.

Guided symbolic execution. There are various usages of

symbolic execution. Ramos et al. [26] run symbolic execu-

tion for functions rather than the entire program to reduce

both the number of and the length of the paths it has to ex-

plore. Pathfinder [25] limits the loop iterations and recursions

of symbolic execution for Java bytecode. Fitnex [29] suggests

a fitness function to measure the distance between a feasible

path and a particular target and uses this fitness value to guide

path exploration. Instead of directly running every execution

path, LATEST [22] does symbolic execution for each func-

tion and stitches them together to form a complete program

execution.

These papers use different strategies to guide the symbolic

execution and alleviate the space explosion problem of the

symbolic execution. While these strategies are different from

RDE, they are complementary to our approach in mitigating

the path explosion problem.

334

VI. LIMITATION AND FUTURE WORK

Although our experiments show that RDE is efficient to re-

produce production-run failures with the guidance of runtime

inferred path, it is currently focused on non-crashing failures

and its application is restricted to small programs. Different

from crashing failures which often receive immediate atten-

tion, many non-crashing failures go unnoticed. RDE cannot

efficiently support large-scale systems due to the following

two reasons.

Library function replaying. Our study shows that RDE

usually spends a lot of time on the symbolic executions of li-

brary functions (e.g., libc). This is because Insight does not

record the failure execution path inside the library functions

and RDE has no guidance once it enters library functions. This

problem becomes more severe since large distributed systems

usually contain more library function calls than small pro-

grams. We can address the problem by recording the execu-

tion path within library calls. However, KLEE currently only

supports simplified libraries such as uclic which will cause

path alignment issue when we record the path in libc. More-

over, production systems do not use simplified libraries. This

limitation can be improved if the symbolic execution could

support the libraries used in the production environment.

Multithreading and multiprocessing. Since KLEE could

not handle multi-threaded or multi-process programs while

most distributed systems are either multi-threaded or multi-

process programs, RDE is insufficient in distributed systems

at the moment due to the limitation of KLEE [6]. In the fu-

ture, we plan to run symbolic execution in parallel. Cloud9 [5]

is a symbolic execution engine that can explore paths of com-

plex systems in parallel. We will replace KLEE with Cloud9

as the symbolic execution engine in RDE.

VII. CONCLUSION

In this paper, we have presented RDE, a system for repro-

ducing production-site failures at the development site. RDE

synthesizes missing production-site information (e.g., failure-

triggering user inputs, missing environment data) from inferred

execution path provided by an in-situ failure path inference

tool. RDE employs a guided symbolic execution exploration

scheme to achieve effective and fast failure reproduction. Our

initial prototype implementation shows that RDE is both fea-

sible and efficient. We tested RDE using a set of real soft-

ware bugs in GNU coreutils. Our experiments show that RDE

can successfully reproduce the failure executions and enable

interactive debugging without requiring the failure-triggering

inputs.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable

comments. This work was sponsored in part by NSF

CNS1513942 grant, NSF CNS1514256 grant, NSF CAREER

Award CNS1149445, IBM Faculty Awards and Google Re-

search Awards. Any opinions expressed in this paper are those

of the authors and do not necessarily reflect the views of NSF

or U.S. Government.

REFERENCES

[1] clang: a C language family frontend for LLVM. http:/clang.llvm.org/.

[2] GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/.

[3] G. Altekar and I. Stoica. ODR: output-deterministic replay for multicore
debugging. In SOSP, 2009.

[4] P. Boonstoppel, C. Cadar, and D. Engler. Rwset: Attacking path explo-
sion in constraint-based test generation. In Tools and Algorithms for the

Construction and Analysis of Systems, 2008.

[5] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic exe-
cution for automated real-world software testing. In Eurosys, 2011.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[7] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with better
privacy. In ASPLOS, 2008.

[8] A. Cheung, A. Solar-Lezama, and S. Madden. Partial replay of long-
running applications. In FSE, 2011.

[9] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a platform for in-vivo
multi-path analysis of software systems. In ASPLOS, 2011.

[10] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In USENIX ATC, 2008.

[11] O. Crameri, R. Bianchini, and W. Zwaenepoel. Striking a new balance
between program instrumentation and debugging time. In Eurosys, 2011.

[12] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Tools

and Algorithms for the Construction and Analysis of Systems. Springer,
2008.

[13] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and
arrays. In Computer Aided Verification, 2007.

[14] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday:
global comprehension for distributed replay. In NSDI, 2007.

[15] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek,
and Z. Zhang. R2: an application-level kernel for record and replay. In
OSDI, 2008.

[16] K. Havelund and T. Pressburger. Model checking java programs using
java pathfinder. In Software Tools for Technology Transfer, 2000.

[17] J. Huang, P. Liu, and C. Zhang. LEAP: lightweight deterministic multi-
processor replay of concurrent java programs. In FSE, 2010.

[18] J. Huang, C. Zhang, and J. Dolby. Clap: recording local executions to
reproduce concurrency failures. In PLDI, 2013.

[19] W. Jin and A. Orso. Bugredux: reproducing field failures for in-house
debugging. In ICSE, 2012.

[20] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems
with time-traveling virtual machines. In USENIX ATC, 2005.

[21] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimiza-

tion, 2004.

[22] R. Majumdar and K. Sen. Latest: Lazy dynamic test input genera-
tion. EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2007-36, 2007.

[23] H. Nguyen, D. Dean, K. Kc, and X. Gu. Insight: in-situ online ser-
vice failure path inference in production computing infrastructures. In
USENIX ATC, 2014.

[24] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
PRES: probabilistic replay with execution sketching on multiprocessors.
In SOSP, 2009.

[25] C. S. Păsăreanu and N. Rungta. Symbolic pathfinder: symbolic execu-
tion of java bytecode. In Proceedings of the IEEE/ACM international

conference on Automated software engineering, pages 179–180. ACM,
2010.

[26] D. A. Ramos and D. Engler. Under-constrained symbolic execution:
correctness checking for real code. In 24th USENIX Security Symposium

(USENIX Security 15), pages 49–64, 2015.

[27] Y. Saito. Jockey: a user-space library for record-replay debugging. In
Automated analysis-driven debugging, 2005.

335

[28] D. Subhraveti and J. Nieh. Record and transplay: partial checkpointing
for replay debugging across heterogeneous systems. In SIGMETRICS,
2011.

[29] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP

International Conference on Dependable Systems & Networks, pages
359–368. IEEE, 2009.

[30] C. Zamfir, G. Altekar, G. Candea, and I. Stoica. Debug determinism:
the sweet spot for replay-based debugging. In HotOS, 2011.

[31] C. Zamfir, G. Altekar, and I. Stoica. Automating the debugging of
datacenter applications with adda. In DSN, 2013.

[32] C. Zamfir and G. Candea. Execution synthesis: a technique for auto-
mated software debugging. In Eurosys, 2010.

336

