CloudScale: Elastic Resource Scaling for
Multi-Tenant Cloud Systems

Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu,
Department of Computer Science

North Carolina State University

{zshen5,ssubbia2}@ncsu.edu, gu@csc.ncsu.edu

ABSTRACT

Elastic resource scaling lets cloud systems meet appitatrvice
level objectives (SLOs) with minimum resource provisianaosts.

In this paper, we present CloudScale, a system that autsrfiage
grained elastic resource scaling for multi-tenant cloudhjgating
infrastructures. CloudScale employs online resource denpae-
diction and prediction error handling to achieve adaptesource
allocation without assuming any prior knowledge about thglia
cations running inside the cloud. CloudScale can resolaéngr
conflicts between applications using migration, and irateg dy-
namic CPU voltage/frequency scaling to achieve energyngavi
with minimal effect on application SLOs. We have implemente
CloudScale on top of Xen and conducted extensive experanent
using a set of CPU and memory intensive applications (RUBIS,

Hadoop, IBM System S). The results show that CloudScale can

achieve significantly higher SLO conformance than otheara#-
tives with low resource and energy cost. CloudScale is ntnisive
and light-weight, and imposes negligible overhead (< 2% Q@PU
Domain 0) to the virtualized computing cluster.

Categories and Subject Descriptors

D.4.8 [Operating System$: Performance-Modeling and predic-
tion, Monitors C.4 [Performance of Systems Modeling tech-
niques

General Terms
Measurement, Performance

Keywords
Cloud Computing, Resource Scaling, Energy-efficient Caingu

1. INTRODUCTION

Most Infrastructure as a Service (laaS) providers [1, 6]vise
tualization technologies [10, 7, 3] to encapsulate appbioa and

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SOCC’11,0October 27-28, 2011, Cascais, Portugal.

Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

John Wilkes
Google
Mountain View, CA
johnwilkes@google.com

T T
Conlflict

----- Demand
1004 |[—=— Prediction \]
Cap TS

Under-estimation error

g\&
N2
. | N\
g Padding
° 504 .
%
5]
R~
T
e g o WSS U
4 AN LelTIINY Under-estimation error
‘ correction
0 T T T T
0 8 16 24 32 40

Time (s)

Figure 1: Problems and solutions of prediction-driven resairce
scaling.

provide isolation among uncooperative users. Howeveticatly
partitioning the physical resource into virtual machingMeg) ac-
cording to the applications’ peak demands will lead to pa®sr r
source utilization. Overbooking [39] is used to improve terall
resource utilization, and resource capping is applied hieae per-
formance isolation among co-located applications by guasing
that no application can consume more resources than thiuse al
cated to it. However, application resource demand is ratzltic,
varying as a result of changes in overall workload, the waatl
mix, and internal application phases and changes. If theures
cap is too low, the application will experience SLO violaiso If
the resource cap is too high, the cloud service provider ivasy
for the wasted resources. To avoid both situations, meitant
cloud systems need atastic resource scalingystem to adjust the
resource cap dynamically based on application resourceuaiésn

In this paper we present CloudScale, a prediction-drivexs-el
tic resource scaling system for multi-tenant cloud commutiThe
goal of our research is to develop an automatic system thaheat
the SLO requirements of the applications running insidectbed
with minimum resource and energy cost. In [24], we descrilad
application-agnostic, light-weight online resource dadharedic-
tor and showed that it can achieve good prediction accuracy f
a range of real world applications. When applying the prtedic
to the resource scaling system, we found that the resouatmgc
system needs to address a set of new problems in order toereduc
SLO violations, illustrated by Figure 1. First, online rasme de-
mand prediction frequently makes over- and under-estonagi-
rors. Over-estimations are wasteful, but can be corregtededon-
line resource demand prediction model after it is updatet taiie
application resource demand data. Under-estimations aih m

worse since they prevent the system from knowing the trué-app
cation resource demand and may cause significant SLO apnfati
Second, co-located applications will conflict when the iadeé re-
sources are insufficient to accommodate all scale-up rexpaints.

CloudScale provides two complementary under-estimatimor e
handling schemes: 1) online adaptive padding and 2) reaetior
correction. Our approach is based on the observation tlaat re
tive error correction alone is often insufficient. When armlem
estimation error is detected, an SLO violation has probalvtbady
happened. Moreover, there is some delay before the scaléig s
tem can figure out the right resource cap. Thus, it is worthentioi
perform proactive padding to avoid under-estimation atror

When a scaling conflict happens, we can either reject sonhe-sca
up requirements or migrate some applications [14] out obifres-
loaded host. Migration is often disruptive, so if the confictran-
sient, it is not cost-effective to do this. Moreover, it igesf too
late to trigger the migration on a conflict since the mignatiight
take a long time to finish when the host is already overloa@ed.
approach achievgwedictive migrationwhich can start the migra-
tion before the conflict happens to minimize the impact ofnaig
tion to both migrated and non-migrating applications. Cli8cale
uses conflict prediction and resolution inference to dewitiether
a migration should be triggered, which application(s) $théxe mi-
grated, and when the migration should be triggered.

We make the following contributions in this paper:

e We introduce a set of intelligent schemes to reduce SLO vi-
olations in a prediction-driven resource scaling system.

e We show how using both adaptive padding and fast under-
estimation error correction minimizes the impact of under-
estimation errors with low resource waste.

e We evaluate how well predictive migration resolves scaling
conflicts with minimum SLO impact.

e \We demonstrate how combining resource scaling with CPU
voltage and frequency scaling can save energy without af-
fecting application SLOs.

The rest of the paper is organized as follows. Section 2 ptese
the system design of CloudScale. Section 3 presents theiexpe
mental results. Section 4 compares our work with relateckwor
Section 5 discusses the limitations and future work. Fynahe
paper concludes in Section 6.

2. CLOUDSCALE DESIGN

In this section, we present the design of CloudScale. Rirst,
provide an overview of our approach. Then, we introduce ihe s
gle VM scaling algorithms that can efficiently handle rurgipre-
diction errors. Next, we describe how to resolve scalinglazis.
Finally, we describe the integrated VM resource scaling @rd)
frequency and voltage scaling for energy saving.

2.1 Overview

CloudScale runs within each host in the cloud system, and is
complementary to the resource allocation scheme that éswdbrse-
grained replicated server capacity scaling [30, 38, 9].u@&cale
is built on top of the Xen virtualization platform. Figure Baws
the overall architecture of the CloudScale System.

CloudScale uselibxenstatto monitor guest VM’s resource us-
age from domain 0. The monitored resource metrics included CP
consumption, memory allocation, network traffic, and di€kdtat-
ics.

Application SLO violation metric /
target resource pressure

1
- I
Pl
|
|

[
[Resource demand prediction
i

Host 4 Resource J’ Resource demands
_-~"| | usage time ‘
ad series ‘ Prediction error correction ‘
VM + CloudScale \L Initial resource caps
application ™ || Migration ! | Scaling conflict handling
Dom 0 1
S l Adjusted resource caps
Set (cap,
‘ Xen hypervisor ‘ frequency, { Predictive frequency/voltage scaling
L voltage)

Figure 2: The CloudScale system achitecture.

within each VM to get memory usage statistics (through/grec
interface in Linux). Measurements are taken every 1 sectvel.
use external application SLO monitoring tools [11] to kesyek of
whether the application SLO is violated. CloudScale cutyesup-
ports CPU and memory resource scaling. The CPU resource scal
ing is done by adjusting the CPU cap using the Xen credit sched
uler [8] that runs in the non-work-conserving mode (i.e.pandin
cannot use more than its share of CPU). The memory resouate sc
ing is done using Xen'setMemoryTargeAPI.

The resource usage time series are fed into an online resdarc
mand prediction model to predict the short-term resourcecchels.
CloudScale uses the online resource demand predictionirdede
veloped in our previous work [24]. It uses a hybrid approdwit t
employs signature-driven and state-driven predictionrigms to
achieve both high accuracy and low overhead. The model first e
ploys a fast Fourier transform (FFT) to identify repeatirggterns
called signatures. If a signature is discovered, the ptiedienodel
uses it to estimate future resource demands. Otherwisqréie
diction model employs a discrete-time Markov chain to pretlie
resource demand in the near future.

The prediction error correctionmodule perform®online adap-
tive paddingthat adds a dynamically determined cushion value to
the predicted resource demand in order to avoid under-astim
errors. Thereactive error correctioncomponent detects and cor-
rects under-estimation errors that are not prevented byabding
scheme. The result is an initial resource cap for each agijgit
VM.

The resource usage time series are also fed ist@bing conflict
predictioncomponent. CloudScale decides to trigger VM migra-
tions or resolve scaling conflicts locally in tlenflict resolution
component. Théocal conflict handlingcomponent adjusts the ini-
tial resource caps for different VMs according to their pties
when the sum of the initial resource caps exceed the capzdite
host. Themigration-based conflict handlingomponent decides
when to trigger VM migration and which VM to migrate.

The predictive frequency and voltage scalingpdule takes the
resource cap information to derive the minimum CPU frequenc
and voltage that can support all the VMs running on the hose T
cap adjustmentomponent then calculates the final resource cap
values based on the ratio between the new CPU frequency and th
old CPU frequency.

In the rest of this section, we will provide details aboutleac
major system module.

2.2 Prediction Error Correction

CloudScale incorporates both proactive and reactive agpes
to handle under-estimation errors. In this section, weerethe

CloudScale also uses a small memory monitoring daemon online adaptive padding and under-estimation correctiberses.

1004 —— Original time series | | pares\WMA(ey, ...e)| with the padding value calculated from the
Padding values | burst pattern, and picks the larger one as the padding value.
------- Extracted burst pattern| |

80+

2.2.2 Fast Under-estimation Correction

We wish to detect and correct under-estimation errors as soo
as possible since the application will suffer SLO violatiuring
resource under-provisioning. The key problem is that tlaé me-
source demand is unknown during under-provisioning: wey onl
have a lower bound. Thus, we have to guess the right resource
allocation.

One simple solution is to immediately raise the resource cap
to the maximum possible value (i.e., all residual resoumethe
host). This will cause excessive resource waste, and a ketadf
ing conflicts when we perform concurrent scaling for muéipb-
located applications. Instead, CloudScale raises thauresaap
Figure 3: Padding values decided according to the extracted by multiplying the current resource cap by a ratic- 1 until the
burst pattern. under-estimation error is corrected. CloudScale diviites into

steps The length of each step is 1 second. If the resource cap for
the current step i, the resource cap aftérsteps will bex x aX.
2.2.1 Online Adaptive Padding It is possible that this scheme will cause some over-prorisg.
However, since CloudScale is driven by a prediction modiel re-
source cap will be corrected when the prediction model estcip
and learns the real demand of the application.

The value ofo denotes the tradeoff between the under-estimation
correction speed and the resource waste. When we use a éarger
the system raises the cap faster but may over-provisionuress
by a larger margin and reduce the resources that are awiiabl
other collocated applications. Thus, CloudScale dynaliyicke-
cides the scale-up ratio by mapping the resource pressdramn
plication SLO feedback ta according to the severity of the under-
estimation error. The resource pressBr(d < P < 1) denotes the
ratio of resource usage to the resource cap. The SLO feedback
the feedback from the applications about the SLO conformanc

We defineamin and amax as the minimum and maximum scale-
up ratios we want to use in the system, which can be tuned by the
cloud provider. For example, we s@&hin = 1.2 andamax= 2 for
CPU scaling, an@mi, = 1.1 andamax = 1.5 for memory scaling.
Omin IS the minimum scale-up granularity we want to achieve dur-
ing the under-estimation correctiomax is tuned so that we can
scale up to the maximum resource cap in two or three steps. We
use smalleomin and amax for memory scaling, because the appli-
cation reacts to the memory scale-up slower than CPU, afidgca
up memory too quickly will cause resource waste. Refenote the
current resource pressure. We will trigger under-estionatian-
dling whenP exceeds a certain threshd¥ghqer (€.9-,Punder= 0.9).

We calculaten as:

CPU usage (%)

Time (s)

CloudScale uses an online adaptive padding scheme to avoid
under-estimation errors by adding a small extra value toptiee
dicted resource demand. If we pad too little, we might stilt e
counter under-estimation errors; if we pad too much, we migh
have unnecessary resource waste. Our approach is basezlait th
servation that under-estimation errors are often causeddnurce
usage bursts. Thus, we choose the padding value based a the r
cent burstiness of application resource usage and recedicpon
errors.

Burst-based padding. We employ signal processing techniques
to extract theburst patterrand use it to calculate the padding value,
illustrated by Figure 3. Suppose we want to decide the pgddin
value for timet. We examine a window of recent resource us-
age time seriek = {li_w,...,l—1} (€.9.,W4=100). We use a fast
Fourier transform (FFT) algorithm to determine the coeffits
that represent the amplitude of each frequency componeaton
sider the tofk (e.g., 80%) frequencies in the frequency spectrum as
high frequencies. We then apply reverse FFT over the high fre
guency components to synthesize the burst pattern. Sieogodl
of padding is to avoid under-estimation errors, we only aersthe
positive values.

Next, we calculate hurst densitymetric, which is the number of
positive values in the extracted burst pattern. The bunssitere-
flects how often bursts appear in recent application resousage.

If the burst density is high (e.g., larger than 50%), Clowml8aises

the maximum of all burst values as the padding value. Otlsexwi
CloudScale uses a smaller burst value (e.g., 80th pereaftthe
burst values) as the padding value to avoid over-paddirgurgi3 o= P~ Punder - (0max— Amin) + Amin ()
shows the padding values decided according to the extractest 1—PRunder

pattern, withWs = 100 seconds. The padding values are higher CloudScale currently uses a static pre-defined resourcsyme
when the application’s CPU usage is bursty, and are smalenw threshold (90% or 75%). According to [45], the thresholdiatly
the usage becomes stable. varies with different workloads and different SLO requikts. A

Remedial padding. With padding, the scaling system can ob- more intelligent way to determine the resource pressueskiuld is
serve when the real resource demand is higher than the ueghadd to learn from the application workload type and the SLO featth

predicted value. We can learn from recent prediction etmasoid which is part of our on-going work.
under-estimation errors in the future. Lest ..., e denote a set of The mapping from application SLO feedbackdocan be ap-
recent prediction errors. We calculaeasx — X/, wherex; andx{ plication specific. For example, when the SLO feedback is the

denote the predicted value and the observed resource demand request-response time, we can calcutaias:
spectively and < X{. Since the goal of the remedial padding is
to make up for recent resource under-provisioning, we ooly-c _ .
sider under-estimation errors, i.e, < 0. Thus, we seg = 0 if @ =1+Nio/N @

g > 0. We then calculate a weighted moving average (WMA) of Nvio denotes the number of requests that have a response time
those prediction errord/ MA(ey, ...ec). The scaling system com- larger than the SLO violation threshold, ahNddenotes the total

number of requests during the previous sampling period,(&.g
second). For Hadoop applications, the SLO feedback cantbe jo
progress scores. We calcul@tes 1+ (Pet — P)/Pef, WherePet
denotes the desired progress score derived from the taggtle-
tion time of the job, andP denotes the current progress score.

scheme, CloudScale allocates resources based on apuliqamii
orities or resource under-provisioning penaltiBR) of different
applications in order to minimize the total penalty. Forrapée,
when the VMs have different priorities, CloudScale strifiest to
satisfy the resource requirements of high-priority agglans and

When both resource pressure and SLO feedback are available only share the under-provisioning impact among low prycajpli-

CloudScale chooses the larger one as the mal

2.3 Scaling Conflict Handling

In this section, we describe how we handle concurrent resour
scaling for multiple co-located applications. The key &sssi to
deal with scaling conflicts when the available resource srefi-
cient to accommodate all scale-up requirements on a hosfirst/e
describe how to predict the conflict. Then we introduce thallo
conflict handling and migration-based conflict handlingesubks.
Finally we describe the policy of choosing different corifti@n-
dling approaches.

2.3.1 Conflict Prediction

We can resolve a scaling conflict by either rejecting some ap-

plications’ scale-up requirements or employing VM migoatito
mitigate the conflict. Both approaches will probably caus® Si-
olations, but we try to minimize these. We use a conflict prtat
model to estimate 1) when the conflict will happen, 2) howaesi
the conflict will be, and 3) how long the conflict will last.

We leverage our resource demand prediction schemes for con-

flict prediction, looking further into the future. The scajisystem
maintains a long-term resource demand prediction modeddoh
VM. Different with the prediction model used by the resouscal-

ing system, which uses 1-second prediction interval, thg-term
prediction model uses 10-second prediction interval ireotd pre-
dict further into the future. We udat, to denote the length of the
look-ahead window of the long-term prediction model (e/4, =

100 seconds). Suppose a host runs K application s:.. mg.
Let{rit+1,...rit+w, } denote predicted future resource demands on
them; from timet+ 1 tot +W,. We can then derive the total re-

z Tit+ W, }-

By comparing this total resource demand time serles withtiss
resource capacit, we can estimate when a conflict will happen

source demand time series on the hos{ {sr. -

(e, Z riy, > C,t1 denotes the conflict start time), how serious the

conflict will be (i.e., theconflict degree Z rit, —C), and how long
i=1

the conflict will last.

2.3.2 Local conflict handling

If the conflict duration is short and the conflict degree is lkma
we resolve the scaling conflict locally without invoking exsive
migration operations. We defir®.O penaltyas the financial loss
for the cloud provider when applications experience SLQavio
tions, and we usBR (Resource under-provisioningeRalty) to de-
note the SLO penalty for the application Vit caused by one unit
resource under-provisioning.

Using local conflict handling, we need to consider how to dis-
tribute the resource under-provisioning impact amongedffit ap-
plications. CloudScale supports both uniform and difféetad
local conflict handling. In the uniform scheme, we set theuese
cap for each application in proportion to its resource dem&up-
pose the predicted resource demand for the applicationnyé

. We set the resource cap for as (r;/ Z ri) -C, whereC de-

notes the total resource capacity on the host In the differed

cations. CloudScale first ranks all applications accordmtheir
priorities, and decides the resource caps of differentiegpbns
based on the priority rank. If the application’s resourcended
can be satisfied by the residual resource, CloudScale Jdltate
the required resource to the application. Otherwise, C3aatk al-
locates the residual resources to all the remaining agitain
proportion to their resource demands. We can apply a sidifar
ferentiated allocation scheme Wh&R is used to rank different
applications.

We estimate the total SLO penalty fo based on the conflict

t
prediction results as; RR- & 11, wheret; andt, denote the con-
k=t; '
flict start and end time, angl .« denotes the under-estimation er-
ror at timet + k. We aggregate the SLO penalties of all application
VMs to calculate the total resource under-provisioningghgmQrp
using the local conflict handling scheme.

2.3.3 Migration-based conflict handling

If we decide to resolve the scaling conflict using VM migra-
tion, we first need to decide when to trigger the migration. We
observe that Xen live migration is CPU intensive. Withoutper
isolation, the migration will cause significant SLO impaethtoth
migrated and non-migrating applications on both sourcecdesd
tination hosts. Furthermore, without sufficient CPU, thgnaiion
will take a long time to finish, which will lead to a long sergic
degradation time. It is often too late to trigger the migratafter
the conflict already happened and the host is already owktba
To address the problem, we ysedictive migrationwhich lever-
ages the conflict prediction to trigger migration before ¢baflict
happens. If we want to trigger migratidn(e.g.,| = 70s) before
the conflict happens, the migration-based conflict handfivog-
ule will check whether any conflict that needs to be resolha&dgl
migration will happen after time+ |, wheret denotes the current
time. If positive, the module will trigger the migration nattime
t rather than wait until the conflict happens later after timd .

To avoid triggering unnecessary migrations for mis-priedicor
transient conflicts, the migration will be triggered onlythe con-
flict is predicted to last continuously for at ledstseconds. The
value ofK denotes the tradeoff between correct predictions and
false alarms, and can be tuned by the cloud provider. Typioad
setK = 30s, which corresponds to three consecutive predicted con-
flicts using a 10-second prediction interval. As a future kyave
will make K a function of the migration lead timeand the VM
migration time. We may use largét for longer migration lead
time since it will be more likely to have false alarms giveroader
migration lead time. For VMs that have longer migration tjme
want to avoid unnecessary migrations by using a laikgfar lower
false alarm rate.

Next, we need to decide which application VMs should be mi-
grated. Since modern data centers usually have high spéed ne
works, the network cost for migration typically is not the jora
concern. Instead, our scheme focuses on i) migrating as fd& V
as possible, and 2) minimizing SLO penalty caused by mignati
Similar to previous work [41], we consider a normalized Slebalty
metric:Z; = MB, - Ti /(w1 - cpu +w> - mem), whereMR, (Migration
Penalty) denotes the unit SLO penalty for the application Wi

during the migratioh; T; denotes the total migration time fon;
cpu andmem denote the normalized CPU and memory utilization
of the application VMm; compared to the capacity of the host. The
weightsw; andw, denote the importance of the CPU resource or
the memory resource in our decision-making. We can give laehig
weight to the bottleneck resource that has lower avaitgbikor
example, if the host is CPU-overloaded but has plentiful wmm
wy can be much larger tham, so that we will choose a VM with
high CPU consumptions to release sufficient CPU resource. In
tuitively, if the application has low SLO penalty during méagjon
and high resource demands, we want to migrate this apmlicati
first since the migration imposes low SLO penalty to the migta
application and can release a large amount of resourcesadtvee
conflicts. We sort all application VMs using the normalizdd®s
penalty metric, and start to migrate the application VMsrfrthe
one with the smallest SLO penalty until sufficient resouriaesre-
leased to resolve the conflicts.

Finally, we need to decide which host the selected VM shoald b
migrated to. CloudScale relies on a centralized controdeselect
the destination host for the migrated application. For elamve
can use a greedy algorithm to migrate the VMs to the leaseldad
host that can accommodate the VM [41], or we can find a suitable
host by matching the resource demand signature of the VM with
the residual resource signature of the host [23].

We calculate the SLO penalty for migratimy asMP, - T;. In
our current implementation, we estimate the migration tirsieg
a linear function of average memory footprint. The functi®ae-
rived from a few measurement samples using linear regmesgie
can then aggregate the SLO penalties of all migrated VMstioele
the total migration penalt®y using the migration-based conflict
handling scheme.

2.3.4 Conflict Resolution Inference

CloudScale currently decides whether to trigger migratign
comparingQrp andQum. If Qrp > Qm, CloudScale will not mi-
grate any application VM and resolve the scaling conflichgshe
local conflict handling scheme. Otherwise, CloudScale atey
selected VMs out until sufficient resources are releaseddolve
the conflict. As a future work, we can also adopt a hybrid ap-
proach that combines both local conflict handling and migrat
based conflict handling to minimize the total SLO pen&yp +
Qm. We can estimate the total SLO pena@yp+ Qm of migrat-
ing different subsets of VMs, and choose the migrated suhsaét
minimizes the total SLO penalty.

The unit SLO penalty valueRR and MP, are application de-
pendent.
the user. Typically, batch processing applications (domg run-
ning MapReduce jobs) are more tolerant of short periods ©f se
vice degradation than time-sensitive interactive appibica such
as Web transactions.

2.4 Predictive Frequency/Voltage Scaling

CloudScale integrates VM resource scaling with dynami¢-vol
age and frequency scaling (DVFS) to transform unused reseur
into energy savings without affecting application SLOs.r Er-
ample, if the resource demand prediction models indicatettte

We assume that these are provided to CloudScale b

way of saving energy is to let the application run as fast asipte
and then shutdown the machine. However, the host in the multi
tenant cloud system often runs some interactive foregrgobsl
that are expected to operate 24x7. Thus, we believe thatrejow
down the CPU is a more practical solution in this case.

Modern processors often can run at a range of frequencies and
voltages and support dynamic frequency/voltage scalingp8se
the host processor can operatd different frequenciesf; < ... <
fx and the current frequency fs For example, the processor in our
experimental testbed supports 11 different frequencieswdnt to
slow down the CPU based on the current resource cap infasmati
to ensure that application performance is not affected.(.eind
C denote the total CPU demand by all the application VMs and
the CPU capacity of the host, respectively. We can then éeriv
the current CPU utilization a8’/C. If the current host does not
have a full utilization (i.e.C’/C < 1) and the current frequency
fj is not the lowest, CloudScale picks the lowest frequefcthat
meets the conditionf; > C'/C- f;. If fj < fj, we scale down the
CPU frequency tof;. We then multiply the resource caps for all
application VMs byfj/fj to maintain the application SLOs. To
maintain the accuracy of the resource demand predictiorglsae
need to scale up the stored resource demand training déf{g jy
to match the new CPU frequency.

If the processor is not running at the highest frequency, ave ¢
increase the CPU speed to try to resolve scaling conflicts eo
ample, if the future CPU demand is predicted tagC’ > C and
the current frequency i§, we will scale up the CPU frequency to
the slowest ond; amongfi,1, ... f such thatfj/f; > C’/C. After
we set the CPU frequency g, we will scale down the resource
capri for each application VM te; - (fj/f;) to match the new CPU
frequency. After we reach the highest frequency, we wilbret
either local conflict handling or migration-based confliantling,
as described in the previous section.

3. EXPERIMENTAL EVALUATION

We implemented CloudScale on top of the Xen virtualization
platform and conducted extensive evaluation studies ubimRU-
BiS [4] online auction benchmark (PhP version), Hadoop M&pR
duce systems [2, 15], and IBM System S data stream processing
system [21]. This section describes our results.

3.1 Experiment setup

Most of our experiments were conducted in the NCSU'’s Virtual
Computing Lab (VCL) [6]. Each VCL host has a dual-core Xeon

Y3.00GHz CPU, 4GB memory and 100Mbps network bandwidth,

and runs CentOS 5.2 64bit with Xen 3.0.3. The guest VMs also
run CentOS 5.2 64bit and have one virtual CPU core (the small-
est scheduling unit in Xen hypervisor, similar to the task.iimux
kernel).

The integrated VM scaling and DVFS experiments were con-
ducted on the Hybrid Green Cloud Computing (HGCC) cluster in
our department since VCL hosts are not equipped with power me
ters. Each HGCC node has a quad-core Xeon 2.53GHz processor,
8GB memory and 1Gbps network bandwidth, and runs CentOS 5.5
64 bit with Xen 3.4.3. The processor supports 11 frequengysst

total CPU resource demand on a host is 50%, we can then halfpoyyeen 2,53 and 1.19Ghz. We used Watts Up power meters to get

the CPU frequency and double the resource caps of all atiplica
VMs. Thus, we can reduce energy consumption since the CRJ run
at a slower speed but the application’s SLO is unaffectedtiier

1Although Xen live migration shortens the VM downtime, the ap
plication may experience a period of high SLO violations dune
the memory copy.

real time power readings from HGCC hosts. The guest VM OS is
the same with the VCL host. We use Intel SpeedStep technétogy
perform DVFS. We run our systems on DVFS enabled Linux 2.6.18
kernel and control the CPU frequency from the host OS usiag th
Linux CPUfreq subsystem.

In all of our experiments, we pin down Domain 0 to one core and

100
80
60+
40
204

Word Cup]

100
80
60+
40 A
20

CPU usage (%)
(=]
S~
(=)}

0 1 2 3 4 5 6
Time (hours)

Figure 4: The real uncapped CPU demand of the RUBIS web-
server under two different workloads.

50 50
—— World Cup

& 404 {60
S
3
304 470
o)
A
2 204 480
g
E
£ 104 490
@]

O T T T T T T T T 100

—
-10 0 10
CPU prediction error (%)

20 30

Figure 5: Folded cumulative distribution of CPU resource de
mand prediction errors for two different workloads. The left
half is a normal CDF using the y-axis scale on the left; the ript
half, using the scale on the right, is the reflected upper halbf
the CDF.

run all guest VMs on another core. CloudScale runs within Biom
0.

CloudScale performs fine-grained monitoring by frequesdim-
pling all resource metrics and repeatedly updates the resale-
mand prediction model using a number of recent resourceeusag
samples. The resource scaling period, the sampling pepied,
diction model update period, and training data size areuathile
parameters. For CPU scaling, CloudScale uses a 1 secoimpscal
and sampling period, 10 second prediction model updat®geri
100 recent resource usage samples as training data for dnie sh
term resource demand prediction model, and 2000 recenin@so
usage samples as training data for the long-term conflicligtien
model. For memory scaling, the default setup is the same &s CP
scaling except that the scaling period is 10 seconds, artcktining
data set for short-term resource demand prediction modehizs
1000 recent resource usage samples. We found that the todefaul
tings work well for all of the applications used in our expeents.

A service provider can either rely on the application iteglfin
external tool [11] to keep track of whether the applicatidrOSs
violated. In our experiments with RUBIS and IBM System S, we
adopted the latter approach, using the workload generatima¢k
the response time of the HTTP requests it made or the processi
day of each stream data tuple. In RUBIS, the SLO violatioe rat
is the fraction of requests that have response time larger tihe
pre-defined SLO threshold (200 ms) during each experimeant ru

Scheme Prediction ‘ OnlineT)
Error Correction Adaptive Padding
Correction Resource pressure none
Dynamic padding none Dynamic
Padding-X% none Constant X%
CloudScale RP Resource pressure Dynamic
CloudScale RP + SLO Resource pressure Dynamic

+ SLO feedback

Table 1: Configurations of different schemes.

In System S, the SLO violation rate is the fraction of datddsp
that have processing delay larger than the pre-defined SteStth

old (20 ms). In Hadoop experiments, we used the progresg scor
provided by the Hadoop API as the SLO feedback, and transform
the target job completion time into the desired progressescthe
SLO violation rate is sampled every second in RUBIS and 8yste
S. In Hadoop, since calling the Hadoop API to get the progress
score will take a long time (> 1 minute) to return, we try to thet
updated progress score as fast as possible by calling thagsii
immediately after getting the returned value.

To evaluate CloudScale under workloads with realistic tiang-
ations, we used per-minute workload intensity observecdeai-r
world Web traces [5] to modulate the request rate of the RUBIS
benchmark and the input data rate to the System S streamspgroce
ing system. We constructed two workload time series: 1) ¢he r
quest rate observed in each minute of the six-hour World Gip 9
web server trace starting at 1998-05-05:00.00; and 2) theest
rate observed in each minute of the six-hour EPA web seraeetr
starting at 1995-08-29:23.53.

For comparison, we also implemented a set of alternativerseb
and several variations of the CloudScale system, sumntbinZea-
ble 1: 1)Correction the scaling system performs resource pressure
triggered prediction error correction only; Plynamic padding
the scaling system performs dynamic padding onlyPajiding-

x%: the scaling system performs a constant percentage pabging
adding x% predicted value; ©loudScale RPthe scaling system
performs both dynamic padding and scaling error correctiom
the scaling error correction is only triggered by resounesgure;
and 5)CloudScale RP+SLQhe scaling system performs both dy-
namic padding and scaling error correction, and the scainor
correction is triggered by both resource pressure and Sk@-fe
back.

3.2 Results

Figure 4 shows theeal CPU demandthe CPU usage achieved
with no resource caps) for the RUBIS Web server under two test
workload patterns. Both workloads have fluctuating CPU detaa
We focus on CPU resource scaling in RUBIS experiments since i
appears to be the bottleneck in this application.

Figure 5 shows the accuracy of online resource demand pre-
diction using folded cumulative distributions. The resuthow
that the resource demand prediction makes less than 5%icagri
under-estimation or over-estimation errors (ilel.,> 10%) for the
World Cup workload and about 10% significant under-estiomati
or over-estimation errors for the EPA workload.

We conducted experiments for both single VM and multiple VMs
For single VM case, the VM hosts a RUBIS web server. For the
multi-VM case, there were two VMs running on the same physica
host, each hosting a RUBIS Web server driven by the World Cup
workload and the EPA workload respectively. The databasese
run on different physical hosts. During the multi-VM scaliax-
periment, all the VMs have equal priority.

_ - — = 3004 — .
S 104 = 1 & 100- 7] 1l E %
2 % g :
= 'S 200 E
= %7 2 1 5
£ 2 S
2 7 {1 & 504 =
2 8 1 B 1004 .
o = o
7 3 E
= 5
0 t t =0 t t
World Cup EPA Both World Cup EPA Both ‘World Cup EPA Both
[ICorrection [ZZZZ] Dynamic padding XY CloudScale RP [l CloudScale RP+SLO

Figure 6: Performance comparison for different prediction-based scaling algorithms, maintaining 90% resource presse. The left
figure shows the mean SLO violation rate of the RUBIS system wuder the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-respoagime of RUBIS system under different workloads. The right fgure
shows the total CPU allocation to the application VMs under dfferent workloads.

51 4

~
[
3

3
/)

%

5]

=3

o
1

100

SLO violation rate (%)

A
A Y
S Y
ATy

N
%
Mean response time (ms)

7

(=1
I

World Cup World Cup

)

(=3

(=]
L

200+

100

’
é
)
/
/)
/
/
/
/)
7S
7
n
/
)
)
)

4

\
\
\
\
\
)

Total CPU allocations (min)

%)

(=1
!

Both World Cup EPA Both

U777 Padding-10% XXX Padding-20% B8 Padding-30% [Padding-40% 77 Padding-50% RXXJ CloudScale RP [l CloudScale RP+SLO

Figure 7: Performance comparison for CloudScale and consta padding algorithms, maintaining 90% resource pressure.The left
figure shows the mean SLO violation rate of the RUBIS system wuder the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-respoagime of RUBIS system under different workloads. The right fgure
shows the total CPU allocation to the application VMs under dfferent workloads.

Figure 6 and Figure 7 show the performance and total CPU al-
locations of different scaling schemes. In these experisjeghe
resource pressure threshold to trigger under-estimatiar eor-
rection is set at 90% and the SLO triggering threshold is s8¥%a
requests experience SLO violation (i.e., response tH1BO0ms).
The total CPU allocation is calculated based on the resaageset
by different schemes. Each experiment is repeated thress tamd
we report both mean and standard deviations.

Figure 6 shows that CloudScale can achieve lower SLO viola-
tion rate and smaller response time than other schemes.r&ath
tive correction and dynamic padding when used alone camapgart
alleviate the problem. But dynamic padding works bettertfar
World Cup workload, while the reactive correction worksteefor
the EPA workload, because the EPA workload shows more fluctu-
ations and reactive correction becomes more important. [¥ée a
observe that runtime SLO feedback is helpful, but not vitat,
CloudScale to reduce SLO violations. CloudScale also sebkie
better performance than other schemes in the multi-VM coeot
scaling case.

Figure 7 shows the performance comparison between Cloud-
Scale with different constant padding schemes. The reshte
that if we pad too little (e.g., padding-10%), we have highO8L-
olations and if we pad too much (e.g., padding-50%), we hawe |
SLO violation rate but at high resource cost. When the resoal-
location reaches a certain threshold, more padding doe®dote
the response time and SLO violation rate much. More imptgtan
itis hard to decide how much to pad in advance if we use cotstan
padding schemes. In contrast, CloudScale does not needdifysp

the padding percentage, and is able to adjust the paddinggdur
runtime automatically.

We learned from our experiments that the prediction-onheste
performs poorly without under-estimation correction aadging,
which is not shown in the figures. The reason is that the ptiedic
model cannot get the real resource demand when under-géistima
error happens, and can only learn the distorted demand svalue
Since the application cannot consume more resources teame-th
source cap, once the resource cap is pushed down, it will@ot b
raised anymore. In this case, the scaling system will ptedid al-
locate less and less resources, and the application widrsinbm
severe resource under-provisioning.

Figure 8 and Figure 9 shows the results of the same set of ex-
periments but with the resource pressure threshold se®at The
SLO violation rates are consistently lower for all alganithwhen
compared to the 90% resource pressure threshold casesthdbte
CloudScale RP+SLO achieves much better performance indbes
That is because CloudScale RP+SLO considers both reso@se p
sure and SLO feedback. Moreover, since the SLO triggeriregth
old is set at 5%, and we derive the scale-up ratiosing equation
2, a derived from SLO feedback is typically very small and the
resource pressure feedback becomes the dominant factog-in t
gering scaling error corrections. We can see that CloueéSstél
achieves the best application performance with low resooost.
The benefit of CloudScale is more significant for EPA trachiec
ing much lower SLO violations and smaller response time than
generous constant padding scheme “padding-50%" but wittma s
ilar resource cost. The reason is that the EPA trace is vemstybu

- = 300]]
S 104 7] 1 E 1004 7] 1l E 7
2 g g
g £ 2 200+ .
2 7 {1 & 504 =
2 8 1 B 1004 .
o) £ @)
7 o =
= 3
0 t } 0 } t (] t t
World Cup EPA Both World Cup EPA Both ‘World Cup EPA Both

[__ICorrection [ZZZ] Dynamic padding KXY CloudScale RP [l CloudScale RP+SLO

Figure 8: Performance comparison for different prediction-based scaling algorithms, maintaining 75% resource presse. The left
figure shows the mean SLO violation rate of the RUBIS system wuder the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-respoagime of RUBIS system under different workloads. The right fgure
shows the total CPU allocation to the application VMs under dfferent workloads.

32 51 40

%

5]

=3

o

1
[o%)
(=3
(=1
1

2 N

< 204 i E ? g s
b A 2 y
2 2 7 g N
=1 £ / 1) §
s -2 7 =S 2004 N
= / s N
S 2 7 g N
Z 104 1 & 10047 = N
2 g |0 I z
= 8 7 2 100+ N
o = % &) §
04 és 1§ {2 04 4; 71 A ﬁ 0+ R ,\ A 4§

World Cup EPA Both World Cup EPA Both World Cup EPA Both

U777 Padding-10% XXX Padding-20% B8 Padding-30% [Padding-40% 77 Padding-50% RXXJ CloudScale RP [l CloudScale RP+SLO

Figure 9: Performance comparison for CloudScale and consta padding algorithms, maintaining 75% resource pressure.The left
figure shows the mean SLO violation rate of the RUBIS system wuder the World Cup 98 workload, the EPA workload, and both
workloads. The middle figure shows the mean request-respoagime of RUBIS system under different workloads. The right fgure

shows the total CPU allocation to the application VMs under dfferent workloads.

and intelligent handling of under-estimation plays a caitirole in
this case.

Figure 10 shows the energy saving effectiveness of the gredi
tive CPU scaling. We repeated the same RUBIS experimenteas t

2GB, so the migration time of VM2 is much longer than VM1. We
sample the SLO violation rate every second for both VMs, ald ¢
culate the total time that the application experience®dbfit SLO
violation rates. Figure 11(a) shows the SLO violation tinmeler

CloudScale RP+SLO scheme on the HGCC cluster, and set the re-the local conflict handling scheme. We can see that when confli
source pressure threshold as 90%. We ran each experimedt for happens, both VMs suffer from high SLO violation rates fooiad

hours and measured the total energy consumption for bothdElo
Scale without DVFS and with DVFS. Without DVFS, the CPU runs

period of time. The total time that both VMs experience SLQa
tions adds up to 351 seconds. We then evaluate the migradised

at the maximum frequency. The idle energy consumption is mea conflict handling schemes. We first test with the reactiveratign

sured when the host is idle and stays at its lowest power. Stage
workload energy consumption is derived by subtracting dieén-
ergy consumption from the total energy consumption. Theltes

scheme where the scaling system triggers the live migrationi-
grate VM2 out after it detects a sustained scaling conflictgithe
algorithm proposed in [41]. In Figure 11(b), we can see that t

show that CloudScale with DVFS enabled (CloudScale DVF8) ca migration reduces the SLO violation time significantly. Tioeal
save 8-10% total energy consumption, and 39-71% workload en time of having SLO violations becomes 92 seconds. Howeker, t

ergy consumption with little impact to the application merhance

live migration still takes a long time to finish when the systes

and SLO conformance. We also observe that compared to the wor overloaded and both non-migrating and migrated VMs expede

load energy consumptions, the idle energy consumptiondare
inating in all cases. This is because all HGCC hosts are golver
qguad-core machines and each experiment run only uses twe:cor

significant SLO violations during the migration. We thenldeahe
CloudScale’s VM selection algorithm that selects the nigga/M
based on the normalized SLO penalty metric. In this expertme

one core for the application VM and one core for Domain 0. We be we used equal weights for CPU and memory. Wedgt=RR =1

lieve that CloudScale DVFS can achieve higher total enesging
when more cores are utilized.

andMP; = MP, = 8 (RR andRR denote the unit resource under-
provisioning penalties for VM1 and VM2 respectivelyiP; and

We now evaluate our conflict handling schemes. We run two MP, denote the unit migration penalty for VM1 and VM2 respec-
RUBIS web server VMs on the same host, and maintain a 75% re- tively). We tried different ratios betweeviP andRP, and find that

source pressure with dynamic padding. The local conflictitiag
uses the uniform handling policy that treats the two VMs oimifly.
The memory size of VM1 is 1GB, and the memory size of VM2 is

settingMP/RP = 8 provides a reasonable tradeoff between local
conflict resolving and migration. The migration time is psited
using the regression-derived function shown by Figure b4this

§ 0.60 Workload energy consumption - CloudScale b
< I Workload energy consumption - CloudScale DVFS
£ [Idle power
2. 0404 g
g
2
2
8
2 0.201 g
of
L
s
S 0.00 .
e World Cup EPA Both
(a) Total energy consumption
. XY CloudScale
£ 4. I CloudScale DVFS)
[}
£
9
Z
S 304 .
g
=}
5
=
World Cup EPA Both
(b) Mean response time.
XX CloudScale
S 8- I CloudScale DVFS 4
Fl
&
=}
g
£ 4 -
2
-
O T
v
0
World Cup EPA Both
(c) SLO violation rate.
Figure 10: Effect on energy consumption and applica-

tion performance of RUBIS application using predictive fre
guency/voltage scaling (maintaining 90% resource presse).

case, the system selects VM1 instead of VM2 to migrate oamFr
Figure 11(c) we can see that although the total SLO violadiom-
tion is similar to the previous case (90 seconds), the SL@tiom
rates are much smaller.

We then repeat the same experiment using CloudScale’saonfli
handling scheme. The predictive migration triggers theratign
of VM1 about 70 seconds before the conflict happens. From Fig-
ure 11(d) we can see that the live migration can finish in atgier
riod of time and both VMs experience shorter SLO violationei
The total SLO violation duration is reduced to 60 seconds.

100 T
754
50
254 N

t
0 100
(a) Local conflict resolving (Total violation time: 351s)

; ;
b Ofg —o—VMI |]
i K --0-- VM2 |

ol

100
754
504
254

0

T
o 7 o -f Clgz':g% o]
Rol | L%c‘%{z% @%a a0 f ol o]
f T

7 T
0 100 200 300 400

(b) Reactive migration (Total violation time: 92s)
—4—VMI |]
8- VM2

T f 7
0 100 200 300 400
(c) Reactive migration + VM selection (Total violation time: 90s)

100 : : : :
75
50

25 T

SLO Violation Rate (%)

500

100 T T T
754
504
254

9
! o
E e oo
0 100 200 300
(d) CloudScale (Total violation time: 60s)

Time (s)

Figure 11: Time series of SLO violation rate for different sal-
ing conflict resolving schemes.

rates using different scaling conflict schemes. When usiogds
Scale’s conflict handling scheme, the application does xé-
ence any SLO violation for 94% of the time, and the SLO violati
rate is less than 20% for 99% of the time. All of the other schem
incur higher SLO violation rates than CloudScale.

To measure the accuracy of our conflict prediction algorgghm
we used six hours of CPU demand traces for two RUBIS web
servers used in previous experiments for different scaatgmes.
We first mark the start time of all significant conflicts, thesewur
conflict prediction algorithms to predict the conflict withdliffer-
ent time windows. By comparing predicted conflicts with toaa-
flicts, we calculate the number of true positive predictiftg): the
conflicts that are predicted correctly; the number of falsgative
predictions Nf,): the conflicts that were not predicted; the num-
ber of false-positive predictiondNg): the predicted conflicts that
did not happen; and the number of true-negative prediciiNipg:
the non-conflicts that are predicted correctly. The trueitpes
rate At and false alarm rat@g are defined in a standard way as
At =Nip/(Nip+Nin); AF = Nrp / (Nip + Nin). Figure 15 shows the
true positive and false positive rate of our conflict predittalgo-

Figure 12 shows the cumulative percentage of continuous SLO rithms under different migration lead time requirementss &-

violation duration under different SLO violation rates. ®hre-
solving the conflict locally, more than 10% of the violatioard-
tions are longer than 5 seconds. Using reactive migratéss, than

pected, the prediction accuracy decreases with a longeatiug
lead time (i.e., triggering migration earlier). Howevence predic-
tive migration is triggered before conflict happens, the $ioPact

5% of the SLO violation durations are more than 5 seconds, but of false alarms is small. We plan to further improve the aacyof

the application can still experience up to 19 seconds oficootis
SLO violations. After enabling our VM selection algorithitine
maximum continuous SLO violation time becomes 4 seconds. In
contrast, when using CloudScale’s conflict handling schetme
continuous SLO violation durations are always less tharc@rsgs,
and 90% of the continuous SLO violation durations are onlgd s
ond.

Figure 13 shows the cumulative percentage of SLO violation

the conflict prediction algorithm in our future work.

We then apply the scaling system to a Hadoop MapReduce ap-
plication. Unlike RUBIS, the Hadoop application is memony i
tensive, so we focus on memory scaling in this set of experisie
We used the Word Count and Grep MapReduce sample applica-
tions. One VM holds all the map tasks while another VM holds
all the reduce tasks. The number of slots for map tasks orceedu
tasks is set to 2 on both nodes. Figure 16 shows the real memory

32

T T T T T

- 00—
& e L T T L e
o pd -7
5 804/ / 4
S ! /
2 K
4 '
2 60d 1T CloudScale (Total: 11s) |
-°—<; /’ ------- Reactive migration + VM selection (Total: 23s)
g |+ |--—--Reactive migration (Total: 38s)
@] /' - = = Local conflict resolving (Total: 238s)

40 T T T T T T T T

1 5 10 15 20

Continuous SLO violation duration (s)

Figure 12: CDF of continuous SLO violation duration (when
SLO violation rate is larger than 20%) comparison among dif-
ferent scaling conflict resolving schemes for the RUBIS syasin.

T T T T T
|| = Migration time model
O Sample data for calculating the regression model

289 m Real data observed in experiments
Z C
Q
£ 244
=
g
s 204
—
20
=

16+

T T
1500 2000

Memory size (MB)

Figure 14: Migration time estimation model. The model is a
linear regression of the sample data we got by measuring the
migration time of the VMs with different memory sizes. We
also put the real data that we observed in the experiments to
show the accuracy of the model.

100 -7
S
& o0t |
=
[
2
S 80 |
° - CloudScale
g o PRGN R Reactive migration + VM selection
E ,7 e Reactive migration
(3 - - - -Local conflict resolving
60 T T T T T T ! y ’
] 0 40 60 80 100

SLO Violation Rate (%)

Figure 13: CDF of SLO violation rate comparison among dif-
ferent scaling conflict resolving schemes for the RUBIS syain.

100 T T T T T T T T T T
—=— True positive rate |
304 —e— False positive rate] |
S
- |
s 60 b
=
Q
3
s 40 -
g
8
g 20+
A oo o o — o«
O T T T T T

T T T T T
7 14 21 28 35 42 49 56 63 70

Lead time (s)

demand (the memory footprint achieved with no memory cap) of Eigure 15:. Conflict.prediction accuracy under different migra-
the VM hosting map tasks. We can see that the memory footprint tion lead time requirements.

of the VM fluctuates a lot. The peak memory footprint of word
count is 591MB, and the peak memory footprint of grep is 579MB
Without scaling, we have to perform memory allocation based
the maximum memory footprint, which will cause memory waste
Moreover, it is hard to get the maximum memory footprint in ad
vance. We apply predictive memory scaling on Hadoop. Figire
shows the prediction accuracy of memory scaling. As with CPU
CloudScale can achieve good prediction accuracy for memory

tioned before, calling the Hadoop API to get the progressssail

take a long time (10 to 60 seconds) to return, especially vthen
node is busy with memory page swapping. When the application
is suffering from resource under-provisioning, Cloud$aadnnot
trigger under-estimation handling in time because it cagedthe
SLO feedback immediately.

Figure 18 shows the job completion time and average memory We now evaluate CloudScale on IBM System S, a production

caps of different scaling schemes. Since the progress s€anap
tasks is more accurate than that of reduce tasks, we onlgrpeztl

data stream processing system. We run one of the sampleappli
tions provided by System S. It is a tax calculation applarathat

memory scaling on the map VM and the reduce VM is always given takes commodity records including commodity name, segliece,

sufficient memory. The resource pressure threshold is s@@%s
We observe that CloudScale can achieve the shortest jobleemp

quantity and state as the input stream tuples and calcuitzes-
nal price for each tuple based on the tax rates of differaatest

tion time with low memory cap. We use “mean” to denote the We used the sample data provided by the System S. To emulate

static memory allocation scheme that allocates a fixed atafun

dynamic data arrivals, we used the World Cup and EPA workload

memory based on the average memory footprint in the real mem- to regulate the input data rate. The average input rate istabo

ory demand trace. The results show that this static schemieswo
poorly, which significantly increases the job completiandi the

million data tuples per second. The application consistg dis-

tributed processing elements (PEs). We run each PE withén on

system spends a long time on swapping memory pages when more/M. All VMs are deployed on different hosts. Since Cloud%cal

memory is needed. In contrast, CloudScale does not knovxtw: e
memory demand in advance, but still achieves better pegooa
The effect of progress score feedback is not significant. &a-m

focuses on resource scaling within single host, we perfofy C
scaling on one of the PEs and always give sufficient resotodbe
other PEs. We set the resource pressure to 90%, and measure th

800 12828

~ 600 Wor(i Count 2
m 1 1 % B Mean
% 4004 E 2 6000+ 3 [JCorrection 1
= 2001 1 o 2 V2 Dynamic padding
a 0 g 40004 B XX CloudScale RP)
g 0 500 1000 1500 2000 2500 8 S 2 I CloudScale RP+SLO
E‘ 600 ‘ ‘ ‘ ‘ ‘ ‘ < E& % X
rep 1K : _
g 400 § 2000
5 : 1B :
> 2004 2 .
0 ! , , , , . N— Word ‘Count Gr‘ep
0 80 160 240 320 400 480 560) .
Time (s) (a) Job completion time
600
. . . = B Mean
Figure 16: The memory footprint trace of the Map tasks of g C] Correction
Hadoop MapReduce applications. z 400 % 77 Dynamic padding
- CloudScale RP 7
g B 7\ B I CloudScale RP+SLO
50 30 = AN B
—— Word Count 2 2004 BX %\ §§§ j
= £ st \ P
g e\ N
§ 304 170 =’ Word'Count '
[
=¥
5 20 150 (b) Average memory cap
=
g 1o 190 Figure 18: Performance of memory scaling on two different
35 Hadoop MapReduce applications (maintaining 90% resource
< pressure).
O I' T T T ~I 100
2300 200 -100 0 100 200 300
s Operations CPU cost
Memory Usage Prediction Error (MB =
y Lsag (MB) Model training (100 samples) 69470.3ms
Prediction 0.1+ 0.0 ms
Figure 17: Folded cumulative distribution of memory resource Dynamic padding (100 samples) £30.1 ms
demand prediction errors for two different Hadoop MapRe- CPU resource scaling 400.1ms
duce applications. The left half is a normal CDF using the y- Memory resource scaling 940.3ms
axis scale on the left; the right half, using the scale on theight, o .
is the reflected upper half of the CDF. Table 2: Mean and standard deviation of CPU execution costs

for all core operations in CloudScale, averaged over 300 ope
tions on Xeon 3.0GHz CPU.

per-tuple processing delay. Figure 19 shows the performand
average CPU cap achieved by different scaling algorithmise T
results show that CloudScale can achieve much lower primcess

delay than other prediction-based scaling schemes withdBw parison, our work focuses on fine-grained VM-level resowsaad-

caps. ing, which can be used on each server node to adaptivelytadjus

We now evaluate the overhead of the CloudScale system. Ta- resource allocation to different VMs for reducing resousod en-
ble 2 shows the CPU overhead of all the key operations in Cloud ergy °°$t- Our scaling scheme is complementary to the boet-|
Scale. The results show that CloudScale is light-weightfoop- tier scaling scheme. _ _
erations. In our experiment environment, running CloudSoaly Previous work [44, 29, 31, 36, 32] has extensively studighap

consumes about 2% CPU resource in Domain 0. Thus, we believeind control theory to achieve adaptive fine-grained respafioca-
that CloudScale is suitable for large-scale cloud systems. tions based on SLO conformance feedback. However, those ap-

proaches often have parameters that need to be specifiedest tu
offline, and need some time to converge to the optimal (or-near
4. RELATED WORK optimal) decisions. In contrast, CloudScale does not recgiy
Existing production cloud system scaling techniques sedkma- offline tuning and can achieve elastic resource allocatighout
zon Auto Scaling [1] is not fully automatic, which depend b t assuming any prior knowledge about applications.
user to define the conditions for scaling up or down resources Our work is closely related to trace-driven resource alioca

However, it is often difficult for the user to figure out the peo schemes. Rolia et al. [33] proposed a dynamic resourceaalloc

scaling conditions, especially when the application weldxecuted tion scheme by multiplying estimated resource usage witbratb

on a third-party virtualized cloud computing infrastruetu factor that is derived offline based on different QoS leviiscon-
Several projects [30, 38, 9] studied coarse-grained capscil- trast, our scheme performs online burst pattern extraetimhuses

ing scheme by dynamically adding or releasing server naules i the burst pattern to dynamically decide the padding valuganc

particular system tier. The tier scaling schemes focus ¢erchén- dra et al. [12] proposed workload prediction using autaesgion

ing how many server hosts are needed in each tier using quguei and histogram based methods. Gmach et al. [22] used a Fourier

theory [38], machine learning [9], or control theory [30hdshow transform-based scheme to perform offline extraction of{tarm

to rebalance workload among replicated server instancesorh- cyclic workload patterns. Our previous system PRESS [2d} pr

149
100

[Correction
21 Dynamic padding
B XY CloudScale RP
= Il CloudScale RP+SLO
< 504 i
]
[}
0
]
o)
>
<
0 t T
EPA World Cup
(a) Average response time
[Correction
< 404 €72 Dynamic padding]
e XX CloudScale RP
g I CloudScale RP+SLO
=
O 204 i
[}
)
=]
o}
>
<
0 t T

Worhli Cup
(b) Average CPU cap

EPA

Figure 19: Performance of CPU scaling on IBM System S
(maintaining 90% resource pressure).

vides a hybrid resource demand prediction scheme that ¢eevac
both high accuracy and low overhead. In contrast, this work f
cuses on efficiently handling prediction errors and corentrscal-
ing conflicts to achieve elastic resource scaling for ngitiant
cloud systems.

Previous work has proposed model-driven resource allmtati
schemes. Those approaches use statistical learning nsefbbd
37, 20, 35] or queueing theory [17] to build models that allow
the system to predict the impact of different resource alion
policies on the application performance. However, thoseeto
need to be built with non-trivial overhead and calibratecad:
vance. Moreover, the resource allocation system needsstores
certain prior knowledge about the application and the numppiat-
form (e.g., input data size, cache size, processor speddthw
often is impractical in the cloud system. In contrast, Clbcale
is completely application and platform agnostic, which eskt
more suitable for cloud computing infrastructures thaewofhost
third-party applications. Other work has used offline orirmal
profiling [39, 40, 43, 25] to experimentally derive applicat re-
source requirements using benchmark or real applicatiork-wo

scheme leverages long-term prediction to trigger mignabefore
conflict happens and makes migration decisions based omthe i
pact of migration to application SLOs. Entropy [27] is a nase
manager for homogeneous clusters, which performs dynaonic ¢
solidation based on constraint programming and takes tiogra
overhead into account. Entropy assumes that the resouncande
is known in advance. In contrast, our work focuses on adiirgss
the challenge in predicting the resource demand and thecingba
migration.

Although initial work [19, 42] on power saving focused on mo-
bile devices, it has become increasingly important to a®srsén-
ergy saving while managing large-scale hosting centerse\iL3]
is one pioneering work that integrates energy managemeat in
comprehensive resource management. It proposed an eaoapmi
proach to adaptive resource provisioning and an on-powssaty
scaling system that can adaptively turn on/off some hosteda
on the workload needs. ACES [26] is an automatic controbher f
energy-aware server provisioning that provisions sern@nseet
workload demand while minimizing the energy, maintenanoe a
reliability cost. ACES tries to balance the tradeoff betwemn-
ergy savings and reliability impact due to on-off cycles.uses
regression analysis to predict workload demand in the neard,
and has a model to quantify the reliability impact in termgtsf
dollar cost. ACES focuses on using low power states (ofgfsle
hibernate) instead of DVFS. In comparison, our work focuses
integrating fine-grained resource scaling and DVFS to aehém-
ergy saving. Our approach is complementary to Muse and ACES
system, which can be particularly useful for multi-tendotid sys-
tems when host shutdown is not an option. DVFS has been shown
to be effective for reducing power consumption of largelescam-
puter systems [28]. Previous work (e.g., [16]) focuses onev&l
task characterization and uses learning algorithms tonagti the
best suited voltage and frequency setting. Fan et al. [18f us
simulation to calculate the potential of power and energsynsa
in large scale systems using power management technigsed ba
on DVFS. It considers triggering DVFS according to diffaréRU
utilization thresholds. In comparison, our scheme integr®VFS
with VM scaling and leverages predicted resource caps twvealer
the proper frequency/voltage setting.

5. FUTURE WORK

Although demonstrated efficient in experiments, CloudSbak
several limitations which we plan to address in our futurekwo

CloudScale currently uses a pre-defined resource pre$sasht
old. Although the resource pressure maintenance and SL® fee
back handling can work together, CloudScale currently duss
adjust resource pressure threshold dynamically accortirifpe
workload type or SLO feedback. However, different typespyla

loads. However, profiling needs extra machines and may take acations might need varying resource pressure threshaltisgger-

long time to derive resource requirements. Our experimasitsy
the perfect prediction scheme also show that profiling oftees
not work well for fine-grained resource control since a tihiftsn

time will cause significant performance impact.

Virtual machine migration [14] has been widely used for dy-
namic resource provisioning. Sandpiper [41] is a systerhdba
tomates the task of monitoring and detecting hotspotsrméteng
a new mapping of physical to virtual resources, and iniiatiec-
essary migrations. It uses both black-box and gray-boxcambr
to detect hotspots and determine resource provisioning A
gration is triggered in Sandpiper when a certain metric edse
some threshold for a sustained time and the next predicted va
also exceeds the threshold. In comparison, our work leesrag
live VM migrations to resolve significant scaling conflict©ur

ing the under-estimation handling. For example, an interaep-
plication typically needs to avoid high resource pressarerfain-
taining sufficient resources to serve any requests as sotiregs
arrive. In contrast, for batch jobs, we can afford to mamtatight
resource pressure to achieve high resource utilizationowtitsig-
nificant SLO violations. To make CloudScale more intelligeve
can automatically tune the resource pressure threshokedbas
some general knowledge about the application (e.g. irtieeacs.
batch jobs) or coarse-grained SLO feedback.

CloudScale can scale on different metrics independenttyddes
not coordinate the scaling operations on them. It is a nofatrre-
search task to efficiently handle potential interferendevben dif-
ferent resource scaling operations. The problem is thatstidp
the allocation of one resource type can affect the usageathan

type of resource, which might introduce more dynamics ihi t
system and cause more prediction errors. To address thieprob
we plan to investigate multi-metric prediction model thah gre-
dict multiple metrics together and scale them concurrently

Similar to multi-metric scaling, it is also challenging taridle
multi-tier application scaling, in which different tierave inter-
dependency and scaling on one tier can affect the others.awe c
integrate CloudScale with host-level scaling techniqaés 88, 9]
to handle multi-tier application scaling efficiently by preting the
resource demand of different tiers at the same time and cwdrd
ing the scaling operation on different hosts.

CloudScale performs long-term conflict prediction by estiray
the repeating pattern in the resource usage trace. Whepfkatr
ing pattern is not found, CloudScale relies on multi-steprida
prediction algorithms for long-term predictions. Howeveulti-
step Markov prediction has limited prediction accuracycsithe
correlation between the resource prediction model and ¢cheab
resource demand becomes weaker as we look further into the fu
ture. We are investigating other long-term prediction nietiebet-
ter handle the case when no periodic pattern is found in #ieitig
data.

CloudScale currently works in the capping mode, which iesla
co-located applications by ensuring that the applicataomot con-
sume more resources than those allocated to it. Xen crduitsc
uler also supports a weight mode: assigning each VM a weight
which indicates the relative CPU share of the VM. CloudScale
be easily extended to support weight mode by adjusting thghive
of the VMs dynamically based on the resource demand predicti

In contrast to the capping mode, VMs can consume residual CPU [10]

resources out of their shares in weight mode. However, when r
source contention happens, weight mode cannot providermperf
mance isolation, and it is impossible to know the real demaind
the collocated VMs since their resource usages are affégtedch
other. As a future work, we will leverage our conflict prediat

to dynamically switch between capping mode and weight mode.
When there is no conflict, CloudScale can work in weight made t
improve the resource utilization. When there are conflicteud-
Scale can work in capping mode to ensure performance isolati

6. CONCLUSION

In this paper, we presenté&tloudScalean automatic elastic re-
source scaling system for multi-tenant cloud computingaistiuc-
tures. CloudScale consists of three key components: 1) icemb
ing online resource demand prediction and efficient pratiotr-
ror handling to meet application SLOs with minimum resource
cost; 2) supporting multi-VM concurrent scaling with cocfflpre-
diction and predicted migration to resolve scaling cordliatith
minimum SLO impact; and 3) integrating VM resource scaling
with dynamic voltage and frequency scaling (DVFS) to save en
ergy without affecting application SLOs. We have impleneent
CloudScale on top of the Xen virtualization platform anddacted
extensive experiments using the RUBIS benchmark driverebl r

Web server traces, Hadoop MapReduce systems, and a commer-

cial stream processing system. The experimental resuits #iat
CloudScale can achieve much better SLO conformance thamn oth
alternative schemes with low resource cost. CloudScalerean
solve scaling conflicts with up to 83% less SLO violation tithan
other schemes. CloudScale can save 8-10% total energyrapasu
tion, and 39-71% workload energy consumption with littlgoauat

to the application performance and SLO conformance. Cloa#S

is light-weight and application-agnostic, which makesuittable
for large-scale cloud systems.

7. ACKNOWLEDGEMENT

This work was sponsored in part by NSF CNS0915567 grant,
NSF CNS0915861 grant, U.S. Army Research Office (ARO) un-
der grant W911NF-10-1-0273, and Google Research Awardg. An
opinions expressed in this paper are those of the authorsland
not necessarily reflect the views of the NSF, ARO, or U.S. Gove
ment. The authors thank the anonymous reviewers for thagtit-
ful comments.

8. REFERENCES

[1] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/.

[2] Apache Hadoop System. http://hadoop.apache.ordlcore

[3] KVM (Kernel-based Virtual Machine).
http://www.linux-kvm.org/page/Main_Page.

[4] RUBIS Online Auction System. http://rubis.ow?2.org/.

[5] The IRCache Project. http://www.ircache.net/.

[6] Virtual Computing Lab. http://vcl.ncsu.edu/.

[7] VMware Virtualization Technology.
http://www.vmware.com/.

[8] Xen Credit Scheduler.

http://wiki.xensource.com/xenwiki/CreditScheduler.

M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,

B. Trushkowsky, J. Trutna, and H. Oh. Scads:

Scale-independent storage for social computing applicati

In Proc. CIDR 20089.

P. Barham and et al. Xen and the art of virtualization. In

Proc. SOSP2003.

D. Breitgand, M. B.-Yehuda, M. Factor, H. Kolodner,

V. Kravtsov, and D. Pelleg. NAP: a building block for

remediating performance bottlenecks via black box network

analysis. InProc. ICAG 2009.

A. Chandra, W. Gong, and P. Shenoy. Dynamic resource

allocation for shared data centers using online

measurements. IRroc. IWQ0$2004.

J. Chase, D. Anderson, P. N. Thakar, and A. M. Vahdat.

Managing energy and server resources in hosting centers. In

Proc. SOSP2001.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of

virtual machines. IfProc. NSD| 2005.

[15] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. Dec. 2004.

[16] G. Dhiman and T. S. Rosing. Dynamic voltage frequency

scaling for multi-tasking systems using online learnimg. |

Proc. ISLPED 2007.

R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.

Model-based resource provisioning in a web service utility

In Proc. USIT$2003.

X. Fan, W.-D. Weber, and L. A. Barroso. Power provisiapi

for a warehouse-sized computer.Rroc. ISCA 2007.

J. Flinn and M. Satyanarayanan. Energy-aware adaptétr

mobile applications. IfProc. SOSP1999.

A. Ganapathi, H. Kuno, and et al. Predicting multipletries

for queries: Better decisions enabled by machine learming.

Proc. ICDE, 2009.

B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.

SPADE: the System S declarative stream processing engine.

Proc. SIGMOD 2008.

[22] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Cadpaci

(9]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

management and demand prediction for next generation data
centers. IrProc. ICWS 2007.

Z. Gong and X. Gu. PAC: Pattern-driven Application
Consolidation for Efficient Cloud Computing. Rroc.
MASCOTS2010.

Z.Gong, X. Gu, and J. Wilkes. PRESS: PRedictive Elastic
ReSource Scaling for Cloud SystemsProc. CNSM 2010.
S. Govindan, J. Choi, and et al. Statistical profilirgsed
techniques for effective power provisioning in data cesiter
In Proc. Eurosys2009.

B. Guenter, N. Jain, and C. Williams. Managing cost,
performance, and reliability tradeoffs for energy-aware
server provisioning. IfProc. INFOCOM 2011.

F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and

J. Lawall. Entropy: a consolidation manager for clustars. |
Proc. VEE 2009.

C.-H. Hsu and W.-C. Feng. A power-aware run-time system
for high-performance computing. Proc. SG 2005.

E. Kalyvianaki, T. Charalambous, and S. Hand. Selfptisia
and self-configured CPU resource provisioning for
virtualized servers using Kalman filters. fioc. ICAG

2009.

H. Lim, S. Babu, and J. Chase. Automated control fortalas
storage. IrProc. ICAG 2010.

P. Padala and et al. Adaptive control of virtualizedrgses
in utility computing environments. IRroc. Eurosys2007.

P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z.Wang, S. Singhal, and A. Merchant. Automated control of
multiple virtualized resources. Broc. Eurosys2009.

J. Rolia, L. Cherkasova, M. Arlitt, and V. Machiraju.
Supporting application QoS in shared resource pools.
Communications of the ACN006.

P. Shivam, S. Babu, and J. Chase. Learning application
models for utility resource planning. FProc. USIT$2003.

P. Shivam, S. Babu, and J. Chase. Active and accelerated
learning of cost models for optimizing scientific applicats.
In Proc. VLDRB 2006.

S.S.Parekh, N.Gandhi, J.L.Hellerstein, D.M.Tilqury

T. Jayram, and J. P. Bigus. Using control theory to achieve
service level objectives in performance managemeriédal
Time System2002.

C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from
15 cents: cross-platform management for internet services
In Proc. USENIX Annual Technical Conferen€08.

B. Urgaonkar, M. S. G. Pacifici, P. J. Shenoy, and A. N.
Tantawi. An analytical model for multi-tier internet seses
and its applications. Ifroc. SIGMETRICS2005.

B. Urgaonkar, P. Shenoy, and et al. Resource overbgokin
and application profiling in shared hosting platforms. In
Proc. OSD] 2002.

T. Wood, L. Cherkasova, and et al. Profiling and modeling
resource usage of virtualized applicationsPhoc.
Middleware 2008.

T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif
Black-box and gray-box strategies for virtual machine
migration. InProc. NSD| 2007.

[42] W. Yuan and K. Nahrstedt. Energy-efficient soft reahi

CPU scheduling for mobile multimedia systemsPlroc.
SOSPR2003.

[43] W. Zheng, R. Bianchini, and et al. JustRunlt:

[44]

[45]

Experiment-based management of virtualized data centers.
In Proc. USENIX Annual Technical Conferen2e09.

X. Zhu and et al. 1000 Islands: integrated capacity and
workload management for the next generation data center. In
Proc. ICAGC June 2008.

X. Zhu, Z. Wang, and S. Singhal. Utility-driven worklda
management using nested control desigrPioc. American
Control Conferenceg2006.

