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ABSTRACT

Distributed applications running inside cloud are prone to
performance anomalies due to various reasons such as insuf-
ficient resource allocations, unexpected workload increases,
or software bugs. However, those applications often consist
of multiple interacting components where one component
anomaly may cause its dependent components to exhibit
anomalous behavior as well. It is challenging to identify the
faulty components among numerous distributed application
components. In this paper, we present a Propagation-aware
Anomaly Localization (PAL) system that can pinpoint the
source faulty components in distributed applications by ex-
tracting anomaly propagation patterns. PAL provides a
robust critical change point discovery algorithm to accu-
rately capture the onset of anomaly symptoms at different
application components. We then derive the propagation
pattern by sorting all critical change points in chronologi-
cal order. PAL is completely application-agnostic and non-
intrusive, which only relies on system-level metrics. We have
implemented PAL on top of the Xen platform and tested it
on a production cloud computing infrastructure using the
RUBIS online auction benchmark application and the IBM
System S data streaming processing application with a range
of common software bugs. Our experimental results show
that PAL can pinpoint faulty components in distributed
applications with high accuracy and low overhead.
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1. INTRODUCTION

Cloud computing allows application service providers to
run their applications in a cost-effective way by obviating the
need to own and maintain a physical computing infrastruc-
ture. However, applications running inside cloud are often
prone to various performance anomalies (e.g., SLO viola-
tions) due to various reasons such as insufficient resource al-
location, unexpected workload increase, and software bugs.

It is challenging to diagnose the performance anomaly
appearing in distributed application running inside cloud.
The application often appears as a black box to the cloud
service provider. It is very difficult to apply the previous
white box or grey box diagnosis techniques [9, 13] that need
modifications or instrumentations to application or under-
lying systems (e.g., middleware platform). Additionally,
many subtle software bugs only manifest during large-scale
runs, which makes it difficult for application developers to
perform in-house debugging since they often do not have the
infrastructure or workload to reproduce the anomaly.

Recent work [15, 16, 17, 25, 26, 27] has shown that it is
promising to apply statistical learning methods over system-
level metrics (e.g., CPU, memory, network I/O) to achieve
online anomaly detection and causal path inference. How-
ever, those approaches typically either treat the whole dis-
tributed application as one black box or examine each indi-
vidual component separately. The former cannot localize
faulty components in a distributed application while the
latter tends to produce false alarms since system-level metric
anomaly often propagates among dependent components.

In this paper, we present PAL, a novel propagation-aware
anomaly localization system for cloud hosted distributed
applications. PAL employs a robust change point detection
algorithm over system-level metrics to identify the onset of
anomalous behavior in different distributed application com-
ponents. PAL then arranges the discovered change points
in chronological order to infer the anomaly propagation pat-
tern. We can then use the anomaly propagation pattern to
pinpoint faulty components. PAL is completely application-
agnostic without assuming any prior knowledge about the
application including the application topology. PAL is non-
intrusive, which does not require any modification to the
application, and only relies on low-level system metrics that
can be easily acquired via hypervisor or OS.

System-level metrics are often inherently fluctuating due
to the dynamic nature of real world applications. Thus,
the key challenge is how to distinguish the critical change
point that marks the beginning of the anomalous behavior
from many change points that just reflect normal workload



fluctuations. To address this challenge, we provide a robust
critical change point detection algorithm that can accurately
identify the onset of the anomalous behavior in system-
level metrics. Specifically, this paper makes the following
contributions:

e We present PAL, a non-intrusive propagation-aware
anomaly localization system for troubleshooting dis-
tributed applications running inside cloud.

e We provide a robust change point discovery algorithm
to extract runtime anomaly propagation patterns for
pinpointing faulty components. Our pinpointing re-

sults can provide useful guidance for subsequent anomaly

correction tasks.

e We have implemented PAL on top of the Xen plat-
form and tested it on the NCSU’s Virtual Computing
Lab [5], a production cloud computing system that
operates in a similar way as Amazon EC2 [1]. We used
the RUBIS online auction benchmark application [4]
and the IBM System S data stream processing sys-
tem [18] running inside VCL and injected a range of
common software bugs to evaluate the accuracy of our
anomaly localization algorithm.

e Our experimental results show that PAL can identify
the faulty component in distributed applications with
high accuracy. PAL is light-weight, imposes negligible
overhead during normal application execution.

The rest of the paper is organized as follows. Section 2
describes our system design. Section 3 presents our experi-
mental evaluation. Section 4 compares our work with other
related works. Section 5 discusses the limitations of the PAL
system and possible extensions. Finally, the paper concludes
in Section 6.

2. SYSTEM DESIGN

In this section, we first present an overview of the PAL
system. We then describe the anomaly onset identifica-
tion algorithm and the propagation-based fault localization
scheme.

2.1 Approach Overview

Figure 1 shows the overall architecture of the PAL system.
It consists of three system modules: 1) non-intrusive virtual
machine (VM) resource monitoring, 2) anomaly onset iden-
tification, and 3) propagation-based fault localization.

The PAL system continuously monitors various system-
level metrics (e.g. CPU usage, free memory, network traffic)
of distributed application components running inside dif-
ferent guest VMs with a certain sampling interval (e.g. 1
second). PAL adopts a non-intrusive monitoring approach
that collects guest VM information from outside. In addition
to monitoring resource metrics, PAL also needs an orthog-
onal monitoring module to detect whether the application
is experiencing SLO violations. PAL can rely on either the
application itself or an external monitoring tool to keep track
of the application SLO status. Our current prototype adopts
the latter method.

Upon detecting an application SLO violation, PAL per-
forms the anomaly onset identification to capture the start
time of the anomalous behavior in any system-level metric of
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Figure 1: Overall architecture of the PAL system.

different components. The assumption behind our approach
is that performance anomalies are usually manifested as
observable changes in one or multiple system-level metrics
(e.g. CPU usage, free memory). In order to find such
changes, PAL performs a robust change point detection algo-
rithm over each collected system-level metric. The goal is to
identify the critical change point that marks the beginning
of the anomalous behavior.

Next, PAL sorts the discovered critical change points of
different components in a chronological order to infer the
anomaly propagation pattern. PAL then leverages the ex-
tracted propagation pattern to localize the faulty compo-
nent(s). The intuition is that performance bugs often have
latent effects, which start to affect one system component,
then propagate to other components, and eventually lead to
application SLO violation. Therefore, the first set of com-
ponents in the anomaly propagation pattern are most likely
to be the faulty components since they exhibit anomalous
behavior at the earliest time.

Note that PAL does not assume any knowledge about the
distributed application topology for practicality and robust-
ness. First, the application topology information might be
privacy sensitive and the application user might be reluc-
tant to release the application topology information to the
cloud service provider. Second, the application topology can
be dynamically evolving by adding or removing application
components. Thus, it is unreliable to perform fault local-
ization based on static topology information. Third, some
applications such as IBM System S [18], exhibit a “back
pressure” symptom where a faulty component might cause
its upstream component to show anomalous behavior. For
example, when a component becomes anomalous and its
input buffer is filled with unprocessed tuples, its upstream
component will not be able to send new tuples and get stuck
as well. Thus, if we perform fault localization based on the
static topology information, we will mistakenly pinpoint the
upstream component of the faulty component as the root
cause faulty component.

Figure 2 shows a real example of our propagation-aware
anomaly localization scheme for an IBM System S stream
processing application consisting of eight components. The
system detects an application SLO violation at time ¢,,. PAL
then performs anomaly onset identification on a look-back
window of different system-level metrics and detects three
critical change points: t1 on the metric x of the component
Cs, t2 on the metric y of the component C7, and t3 on
the metric z of the component Cs. Since t1 < t2 < ts,
we infer the anomaly propagation pattern as Cg — C7 —
C5. Note that the anomaly propagation pattern in this case
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Figure 2: An example of propagation-aware
anomaly localization for a distributed application.

is different from the application data dependency topology
that is s — Cg¢ — C7. We then infer that Cg is the source
faulty component.

Before we present the details of the PAL system, we first
describe the assumptions of the PAL system. We first as-
sume that the performance bug manifests as changes in some
system-level metrics. Since real world distributed appli-
cations are often inherently dynamic by processing time-
varying workload, we assume that the system-level metric
changes caused by normal workload fluctuations are less
significant than those caused by the performance bugs. Since
our propagation pattern is derived based on the timing infor-
mation of different change points, we assume the anomaly
onset time instants at faulty components are earlier than
those of other components. These assumptions are generally
valid in practice as we will show in the experiment section.
Since PAL relies on timing information to infer propagation
patterns, we need to assume the clocks of all system compo-
nents are synchronized. In practice, machines can be syn-
chronized using NTP which has an RMS errors of less than
0.1 ms on LANs and of less than 5 ms on Internet [21]. In our
experiments, we observe that most of anomaly propagation
delay between two dependent components is at second level.
Therefore, our system can tolerate small time skews (i.e.
tens of milliseconds).

2.2 Anomaly Onset Identification

We identify the onset of the anomalous behavior at each
component by extracting critical change points in all system-
level metrics associated with that component. The change
point detection algorithm examines a set of metric samples
in a look-back window [t, — W + 1,¢,] where ¢, is the time
when the SLO violation happens and W is the length of
the look-back window. The look-back window should be
sufficiently large to cover any relevant critical change points.
In our experiments, we used W = 100 under a one-second
sampling interval. We developed a four-step robust critical
change point detection algorithm to accurately identify the
onset of the anomalous behavior at each system-level metric.
We will use the metric time series X = {z1,...,zw} for the
look-back window [t, — W + 1,t,] as an example to explain
each algorithm step.

Step 1: Preprocess X using smoothing to tackle the data
fluctuation issue. Figure 3 shows the result of data smooth-
ing for a real network traffic trace. We can see that the
change points detected over the smoothed data are more
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Figure 4: Change point rollback

meaningful than those detected on the original trace, which
are often just random peak and bottom points. The tricky
issue here is that if we smooth the data too much, we may
run into the risk of filtering out the critical change point as
well. We have tried both Kalman filter and moving average
filter, and found that Kalman filter often filters the critical
change points as well. Thus, the current PAL prototype
adopts a 5-length moving average filter that calculates one
average value for each sliding window of five consecutive
data samples.

Step 2: Detect the change points using time series change
point detection algorithms. There are many algorithms for
change-point detection [10]. We used a combination of cu-
mulative sum (CUSUM) charts and bootstrapping to detect
a set of change points. We chose CUSUM because it does
not require any assumption about the data distribution and
its computation overhead is negligible compared with other
methods. The CUSUM chart for X is constructed as follows:
Si = Si—1+ (x; —X)7 where 1 <43 < W, Sop = 0, X is the
mean of X. We then calculate a magnitude of change using:
S = maxi<i<w Sl — minlgigw Sl

‘We then employ bootstrap analysis to automatically inter-
pret CUSUM charts. A bootstrap of X is one permutation
of X generated by randomly reordering X. If X has a larger
S than most bootstraps (e.g., 95%), we say that X contains
one change point that is located at x. where |S.| is the
maximum among {|S1], ... |Sw|}.

We apply the same algorithm on {z1, ..., zc—1} and {xc11, ...

recursively to discover more change points.
Step 3: Identify the critical change point that marks the
onset of the anomalous behavior from the change points

, Tw }



detected in Step 2. We define a separation level metric for
each change point z. to denote the change magnitude at this
change point:

i=c—1 =W
|c11 ~ XTq — Wlfc i ZI)7,|
i= i=c
Qze) = ime 1 =W 1)
max(ci1 T, W{ﬂ Zi)
i=1 i=ct1

Intuitively, the above equation compares the normalized dif-
ference between the mean of the time series before the change
point and the mean of the time series after the change point.
Next, we extract the critical change point whose separation
level values are the outliers (e.g., larger than mean plus 1.5
x standard deviation). If there are multiple outlier change
points, we pick the one that is closest to the SLO violation
time as the critical change point.

Step 4: During our experimental study, we found that the
critical change point discovered above may sometimes reside
in the middle of one sloped line such as ¢ps in Figure 4. Since
our goal is to discover the onset of the anomalous behavior,
we want to extract the change point at the beginning of
the sloped line. We compare the slope angle at the current
critical change point with that of its preceding change point.
If their slope angles are similar (e.g., less than 30% differ-
ence), we replace the critical change point with its preceding
change point. For example, in Figure 4, we start from cps
and roll back to ¢p1 since ¢p1 and ¢p2 are on the same sloped
line.

After the above four steps, we identify one critical change
point for each system-level metric associated with each ap-
plication component. We use the earliest critical change
point among all system-level metrics to denote the onset of
the anomalous behavior at that component.

2.3 Propagation-based Fault Localization

Our goal is to discover how a performance anomaly prop-
agates in a distributed application, and use the propagation
pattern to localize the faulty components.

We first classify the propagation pattern into either full
coverage when we detect critical change points in all ap-
plication components or partial coverage when the prop-
agation only involves a subset of application components.
Such classification allows us to distinguish the anomaly case
caused by external factors such as workload spikes from
that caused by internal component problems. Intuitively,
if the anomaly is triggered by some external factors, all
application components should see some changes in the same
upward or downward trend within a short period of time.
Thus, PAL decides whether the fault is an external one by
considering whether all components include critical change
points and whether those change points follow the same
trend. Otherwise, we say the anomaly is caused by some
internal fault.

For the internal fault case, we sort the anomaly onset
time for different components to derive the anomaly prop-
agation pattern. The propagation pattern could be either:
1) sequential where a chain of components exhibit anoma-
lous behavior in a sequential order; or 2) concurrent where
multiple components show anomalous behavior at similar
time (e.g., the difference is less than 2 seconds). If the
anomaly propagation pattern is sequential, we will pinpoint
the first component on the chain as the faulty component.
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Figure 6: RUBIS application topology.

If the anomaly propagation pattern consists of concurrent
anomalous behaviors, we will pinpoint the beginning set of
current anomalous components as faulty components.

The fault localization results based on the anomaly prop-
agation pattern need further validation (e.g., VM perturba-
tions), which is part of our on-going work and is beyond the
scope of this paper. Although the propagation pattern can
not always provide the exact anomaly causes, it can speed up
the diagnosis process by narrowing down faulty components
and relevant system-level metrics.

3. EXPERIMENTAL EVALUATION

We have implemented the PAL system and conducted
extensive experiments using IBM System S data stream pro-
cessing system [18] and RUBIS online auction benchmark
(EJB version) [4]. In this section, we first describe our
experiment setup. We then present the experimental results.

3.1 Experiment Setup

Our experiments were conducted on the NCSU’s Virtual
Computing Lab (VCL), a production cloud computing in-
frastructure, that operates in a similar ways as Amazon
EC2 [1]. Each host has a dual-core Xeon 3.00GHz CPU
and 4GB memory, and runs CentOS 5.2 64- bit with Xen
3.0.3. The guest VMs also run CentOS 5.2 64-bit.

PAL monitors an application resource demands from do-
main 0, using the libxenstat library to collect resource
usage information (e.g., CPU usage, memory consumption,
network I/0) for both domain 0 and guest VMs. The sam-
pling interval is 1 second. We perform critical change point
detection over a look-back window (W) of time series. We
used W=100 seconds in our experiments.

IBM System S testbed: We first used IBM System
S data stream processing system [18] as case study appli-
cations. In System S, each application consists of a set
of inter-connected processing elements called PEs. In our
experiments, we used a tax calculation application which
is one of the sample applications provided by System S.
We measured the average per-tuple processing time and an
SLO violation anomaly is marked if the average processing
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Figure 7: Sample CPU usage traces in System S and
RUBIS.

time is larger than a pre-defined threshold (e.g., 100ms).
Figure 5 shows the application topology including the IP
addresses of the VCL hosts used in the experiments. We
run each PE in a Xen guest VM. In order to evaluate our
system under workloads with realistic time variations, we
used the workload intensity observed in the WorldCup 98
web trace [3] to modulate the data arrival rate.

RUBIS testbed: We used the RUBIS workload genera-
tor to track the response time of the HT'TP requests it made.
An SLO violation anomaly is marked if the average request
response time is larger than 100ms. In order to evaluate
our system under workloads with realistic time variations,
we used the workload intensity observed in three real-world
web traces (WorldCup 98, ClarkNet, NASA) [3] to modulate
the request rate of our synthetic RUBIS benchmark. Figure
6 shows the topology of the RUBIS application including
the IP addresses of the VCL hosts used in the experiments.
Similar to the IBM System S experiment, we run each ap-
plication component in a Xen guest VM.

In Figure 7, we show a snapshot of CPU usage traces of
sample components (DB server in RUBIS and PE5 in System
S application) in our experiments. We can see both applica-
tions exhibit dynamic CPU usages under real world dynamic
workload traces, which brings challenges to accurate change
point detection. We will show later that our approach is
robust to dynamic workloads.

Fault injection. We inject different faults at different
time instants during an application runtime. For each fault
injection, we repeated the experiment 10 to 20 times. We
tested both single component faults and multiple component
faults. For IBM System S, we injected the following single
component faults: 1) CpuHog: we introduce a busy loop in
PE1; and 2) MemULeak: we inject a memory leak bug in PE1
that continuously allocates memory but forgets to release
the allocated memory. Multiple component faults include:
1) NetHog: we use httperf [2] tool to send large volume of
http requests from PE1 to PE2 so that the link between PE1
and PE2 is saturated; 2) WkChg: we increase the workload
intensity to make the whole application overloaded; and 3)
MemLeak: we inject the memory leak bug simultaneously
on PE1 and PE3.

For RUBIS, single component faults include 1) CpuHog: a
CPU-intensive program competed CPU with the App Server
1; 2) MemULeak: a memory-intensive program competed mem-
ory with the App Server 1; and 3) NetHog: an external
program sent an excessive number of HT'TP requests to the
Web Server. Multiple component faults include: 1) WkChyg:
we increase the workload intensity to make the whole appli-
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cation overloaded; 2) OffloadBug: the App Server 1 wants to
offload some EJBs to App Server 2. However, the program
bug (JIRA #JBAS-1442) in App Server 1 makes HTML
contents still return to the Java servlets hosted on the App
Server 1; and 2) LBBug: aload balancing bug (mod_jk 1.2.30
) causes the Web Server to dispatch requests unevenly.

For comparison, we also implemented a set of alternative
schemes: 1) the topology-based scheme that employs the
same change point detection algorithms as PAL (except the
rollback step) and then pinpoints the faulty components
based on the application topology; 2) the CUSUM scheme
that first employs CUSUM charts and bootstraps to detect
a set of changes points, and then picks the outlier change
point as the critical change point; and 3) the CUSUM + S
scheme that first performs smoothing (i.e., 5-length moving
average) over the raw monitoring data and then performs the
CUSUM scheme over the smoothed data. But this scheme
does not perform roll back as PAL does.

To quantify the accuracy of our anomaly localization model,
we use the standard precision and recall metrics. Let Ny,
Ny, Ngp, and Ny, denote the number of true positives (cor-
rectly pinpoint a faulty component), false negatives (miss a
faulty component), false positives (pinpoint a normal com-
ponent as faulty), and true negatives, respectively. We cal-
culate the recall and precision in standard ways as follows,

th th

Recall = —————— -
Ntp + Ny Nip + Nyp

, Precision = (2)

3.2 Results and Analysis

We first present the results of IBM System S experiments.
Figures 8 and 9 show the faulty component pinpoint accu-
racy results for different single-component faults. We ob-
serve that the precision and recall values of PAL are con-
sistently among the highest and memory leak fault is much
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easier to detect than the CPU hog fault. We can see that
all three change point based approaches can achieve more
than 90% precision and recall in the memory leak case. In
contrast, the topology-based scheme has poor accuracy in
both fault cases. As mentioned in section 2, System S has
the “back pressure” symptom where the faulty component
(PE1) causes its upstream component (PE0) to show anoma-
lous symptom. Thus, the topology-based scheme pinpoints
the upstream component as the faulty component instead of
the true faulty component.

In the CPU hog case, although PAL can achieve over 80%
recall, its precision is around 40%, which means a number
of false positives are generated. After examining the de-
tailed logs, we found that most of these false positives were
those components whose change points are very close to the
change point of the faulty component (e.g. differ in one
or two seconds). Therefore, our system considers them as
the multiple component faults. We observe that the change
point of the faulty component was still the earliest. This
result also reflects that the anomaly caused by the CPU hog
fault propagates very fast in the distributed application.

Figures 10 and 11 show the recall and precision results
for the multiple-component faults. PAL can achieve 100%
recall in the workload change case. However, PAL did not
identify change points on all components in a few workload
change cases. In this situation, the pinpointed components
were considered as false positives. As a result, PAL has
a precision value less than 100%. PAL can also achieve
100% precision in the network hog and multiple memory leak
fault injection cases. Again, the topology-based approach
performs poorly.

We now present the results of the RUBIS experiments.
Figure 12 and 13 show the recall and precision results for
single-component faults. Figure 14 and 15 show the re-
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call and precision results for multiple-component faults. In
most cases, PAL outperforms the other approaches in both
precision and recall values. In comparison, topology-based
scheme achieved better accuracy than all the other algo-
rithms in the cases of network hog, offloading bug, and load
balancing bug. The reason is because we happened to inject
the fault in the first component in the topological order.
For the offloading and load balancing bug, the fault did
not show the back pressure symptom in RUBIS as in IBM
System S. However, PAL does not assume the knowledge
of application topology and still achieves 80-100% precision
and recall values.

Finally, we evaluate the overhead of PAL. Our measure-
ments show that it takes 6.4+1.3 seconds to perform one
distributed application anomaly pinpointing (including ex-
tracting change points for all metrics of all components).
Since the pinpointing is only triggered after the anomaly
is detected, we believe such an overhead is small. During
normal execution, PAL only performs passive VM system-
level metric sampling. Thus, during normal execution, PAL
imposes less than 1% CPU load in domain 0. The memory
consumption of PAL is about 1.4MB.

4. RELATED WORK

There has been extensive study on change point detection
and its applications [10]. In the context of system prob-
lem detection, the common approach is to correlate change
points in system-level metrics with the change points of ap-
plication activities. For example, Blacksheep [24] correlates
the change point at system-level metric (e.g., cpu usage)
with the change in count of Hadoop application states (i.e.,
events extracted from logs of DataNodes and TaskTrackers)
to detect and diagnose the anomaly in a Hadoop cluster.
Wang et. al. [28] studied the change point correlation be-
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tween requests and corresponding replies to detect DoS at-
tacks. Agarwal et. al. [6] monitored the change relation
between response time with load balancer’s assigned weight
to detect a storm drain condition: the load balancing system
is confused by the fast response time of faulty server and tries
to shift more requests to the faulty server. In comparison,
our approach applies the change point detection in the con-
text of distributed application fault localization. Instead of
performing correlations, our approach focuses on identifying
the onset of anomalous behavior at different components and
sort them to achieve pinpointing.

Previous work has proposed various black box pinpointing
techniques. Project5 [8] performed cross-correlations be-
tween message traces to derive causal paths and identify
performance bottlenecks. E2EProf [7] also applied cross-
correlation techniques over network traffic traces to identify
the bottleneck component. Jiang et al. [19] maintained a
collection of extracted invariants based on linear models
and performed anomaly detection based on invariant vio-
lations. NAP [11] collected network communication traces
and applied queuing theory to estimate the service time
and waiting time for identifying the bottleneck component.
Kahuna-BB [25] applied clustering algorithms over system-
level metrics to learn normal node behavior and detect faulty
nodes using peer-comparison. The EntomoModel [23] stud-
ied performance anomaly manifestations by characterizing
workload and management policy settings under which the
performance anomalies are likely to be triggered. Fa [17]
proposed a clustering method which groups instances based
on how they are different from the failure instances. In
comparison, our work focuses on extracting anomaly prop-
agation patterns and leveraging the propagation pattern to
localize the faulty components and infer anomaly causes.

A flurry of research work has provided various distributed
application debugging tools. Magpie [9] is a request ex-

traction and workload modeling tool that can record fine-
grained system events and correlates these events using an
application specific event schema to capture the control flow
and resource consumption of each request. Pinpoint [13]
takes a request-oriented approach to tag each call with a
request ID by modifying middleware platform and applies
statistical methods to identify components that are highly
correlated with failed requests. Pinpoint can best handle
service failures such as machine crashes or exceptions rather
than latent performance anomalies. Pip [22] can find struc-
tural and performance bugs in distributed systems by com-
paring actual system behavior to expected system behav-
ior described in programmer-written templates. However,
Pip requires application modifications. JAGR [12] injected
controlled Java exceptions into J2EE applications to obtain
application-specific fault propagation graphs and used the
graph as a guidance for fast recovery. In contrast, our work
focuses on black box online anomaly localization, which does
not require any modifications to applications or middleware
platforms. We believe that our scheme is complementary
to the above work, which can provide useful hints for more
intrusive debugging.

5. DISCUSSIONS

The accuracy of the PAL system depends on whether the
chosen change points are related to the anomaly. However,
in dynamic distributed systems, change points can be caused
by various reasons such as workload fluctuations and routine
operations such as periodic system maintenance. Although
our critical change point algorithm can filter out some irrele-
vant change points caused by transient resource usage spikes,
it is still a challenging problem to distinguish the change
points related to anomalies from all the other irrelevant
change points. One possible extension to PAL is to use
a predictability metric (e.g., prediction error) to filter out
those irrelevant change points. The intuition behind our
approach is that the values of the change points caused by
normal workload fluctuation are more predictable than the
values of those critical change points caused by anomalies.

The change point based propagation discovery algorithm
is also sensitive to the length of the look-back window. If the
length of the look-back window is too small, PAL might miss
the change point corresponding to the anomaly onset time;
If the length of the look-back window is too large, it will
increase the possibility of including irrelevant change points.
The current prototype of the PAL system empirically decides
the look-back window length based on our observation about
the range of anomaly propagation delays. As part of our
future work, we will study principled algorithms to properly
decide the look-back window length.

Large-scale distributed systems often consist of many dis-
tributed components driven by dynamic workloads, which
might greatly increase the chance of detecting spurious prop-
agation patterns caused by irrelevant change points. It is
probably insufficient to only rely on change point detection
to perform propagation pattern discovery and fault localiza-
tion. To address the problem, we plan to integrate PAL with
previous statistical dependency discovery techniques [14, 20]
to improve the fault localization accuracy.

6. CONCLUSIONS

In this paper, we have presented PAL, a novel black-box



propagation-based performance anomaly localization system
for distributed applications running inside cloud. PAL em-
ploys a robust critical change point detection algorithm that
can accurately identify the onset of anomalous behavior at
different components. It then derives the anomaly propa-
gation pattern based on the chronological order of different
components’ anomaly onset time. Next, PAL can localize
faulty components based on the derived anomaly propaga-
tion patterns. We have implemented PAL on top of the
Xen platform and tested it using the RUBIS online auc-
tion benchmark and IBM System S data stream processing
system driven by real world dynamic workload. Our exper-
imental results show that PAL is efficient and light-weight,
which makes it suitable for localizing distributed application
anomalies in cloud systems.
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