Adaptive System Anomaly Prediction for Large-Scale
Hosting Infrastructures

Yongmin Tan, Xiaohui Gu
North Carolina State University
Raleigh, NC 27695

ytan2@ncsu.edu,gu@csc.ncsu.edu

ABSTRACT

Large-scale hosting infrastructures require automastesy anomaly
management to achieve continuous system operation. lp#ais
per, we present a novel adaptive runtime anomaly predicysa
tem, called ALERT, to achieve robust hosting infrastruesur In
contrast to traditional anomaly detection schemes, ALERIsa
at raisingadvance anomaly alerts to achieve just-in-time anomaly
prevention. We propose a novel context-aware anomaly gtredi
scheme to improve prediction accuracy in dynamic hostifigu
tructures. We have implemented the ALERT system and degloye
it on several production hosting infrastructures such &4 8/stem

S stream processing cluster and PlanetLab. Our experirabote
that ALERT can achieve high prediction accuracy for a rangge o
system anomalies and impose low overhead to the hostingsinfr
tructure.

Categories and Subject Descriptors

C.4 [Performance of Systemk Reliability, availability, and ser-
viceability

General Terms
Reliability, Management, Experimentation

Keywords

Anomaly Prediction, Context-aware Prediction Model

1. INTRODUCTION

Large-scale hosting infrastructures have become impioptat
forms for many real-world systems such as cloud computing [1
massive data analytics [6, 7], and enterprise data centdemy
real-world applications such as stream processing regdieé con-
tinuous system operation. Unfortunately, today’s largates host-
ing infrastructures are still vulnerable to various systemmalies
such as performance bottlenecks, resource hotspots, avidese
level objective (SLO) violations. System administrators aften
overwhelmed by the tasks of correcting anomaly problemsund
time pressure. Thus, it is imperative to achieve automastesn

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODC' 10, July 25-28, 2010, Zurich, Switzerland.

Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

Haixun Wang
Microsoft Research Asia
Beijing, China 100190

haixunw@microsoft.com

anomaly management to provide robust large-scale hosifrask
tructures.

Previous distributed system anomaly management work, (e.g.
[12, 16, 28, 39]) can be broadly classified into two categorid)
reactive approaches that take corrective actions after an anomaly
happens, and (2roactive approaches that take preventive actions
(e.g., backup) omll system components beforehand. The reactive
approach can have prolonged service downtime, which isofte
unacceptable by continuously running applications suctrasm
processing. In contrast, the proactive approach offetebggstem
reliability but can incur prohibitive overhead. This matigs us to
explore a newpredictive anomaly management approach [23, 24]
that can raiseadvance anomaly alerts to trigger proper anomaly
correction in a just-in-time fashion.

To achieve efficient predictive anomaly management, one big
challenge is to provide high quality online anomaly predict Al-
though previous work (e.g., [11,15,20]) has addressedrtbmaly
detection problem, anomaly prediction needs to captur@apoenaly
symptoms to raisadvance anomaly alert before the anomaly hap-
pens. Second, applications running in the hosting infuasire are
often opaque to the infrastructure provider, which demaadks
box approaches to anomaly prediction. Third, a large-duagéing
infrastructure often consists of thousands of hosts and/mare
software components. To make runtime anomaly predictiac-pr
tical for large-scale hosting infrastructures, we must leypight-
weight learning methods.

More importantly, many real world applications (e.g., datteaam
processing, Google MapReduce [18]) running in hostingsthuc-
tures are long lived and operate under changing executiotexis
such as time-varying input workload and fluctuating reseuanail-
ability. Applications may exhibit context-dependent béba For
example, given an input workload of 100 tuples per second and
40% CPU, a normal stream operator can achieve a throughput of
50 tuples per second while a faulty stream operator with aangm
leak bug under the same input workload and CPU allocation can
only achieve a throughput of 5 tuples per second. Howevéngif
CPU allocation is reduced to 5%, the normal stream operator c
only achieve a throughput of 5 tuples per second. Thus, witho
considering the execution context, we cannot distinguisiuiy
component with memory leak from a normal component under low
CPU allocation. Thus, the runtime anomaly prediction systaust
be adaptive in order to achieve high quality prediction fgmamic
hosting infrastructures.

In this paper, we present the design and evaluation of a novel
adaptive runtime anomaly prediction system calfcERT. We
focus on anomaly prediction that can raise advance aledréef
an anomaly happens. ALERT depends on an anomaly detection
system (e.g., [11,17]) to provide normal and anomaly stdtels
for different measurement samples. However, to achievdigre
tion, ALERT employs triple-state multi-variant stream sdiica-

Anomaly detectors
based on pre-defined
anomaly predicates

Distributed Hosting Infrastructure

—

,,,,,,,,,,,,,,,,,,,,,,,,,

Anomaly alerts,
diagnosis report

fffffffffffffffff

| [Just-in-time
Anomaly

training
data

A

Distributed
monitoring
sensors

=

Anomaly
predictors

prevention

I
| anomaly
| alerts

,,,,,,,,,,,,,,,,,,,,,,,,,,

Anomaly
diagnosis

,,,,,,,,,,,,

Figure 1: Predictive anomaly management for distributed hating infrastructures.

tion scheme [23] to capture a special alert state in addtticine

the design details of our approach. Section 3 presents titetppe

normal and anomaly state. The alert state corresponds tb a seimplementation and experimental results. Section 4 coegpaur

of measurementpreceding the anomaly state, which allows the
prediction model to capture pre-anomaly symptoms. Thus, th
prediction model can raise advance alert when the monitcoed
ponent enters the alert state rather than wait until the oot is
already in the anomaly state. We can adjust the scope of ¢ne al
state to tune the sensitivity of the prediction model (iteadeoff
between the accurate predictions and false alarms).

To adapt to dynamic execution environments, one simple ap-
proach is to continuously update the prediction model wittv n
training data. However, this simple incremental approaah thvo
fundamental problems. First, the anomaly prediction systeay
incur large overhead to the monitored infrastructure ddestuent
model re-training. Second, the accuracy of such prediationel
may be low when the execution context fluctuates a lot (elg., a
ternating between high and low input workloads or high avd lo
resource availability). Third, the execution contexts an&nown
a priori and exhibit evolving behavior. To address the amke,
ALERT employs self-evolving, context-aware prediction dats.
Under a specific execution context, the prediction modedgoon-
sistent state labels for the same measurement. Our schesne fir
employs a clustering scheme to automatically discoveefit
execution contexts. We then train a set of prediction modelsh
of which captures anomaly behavior under a specific exatutio
context. During runtime, ALERT dynamically switches beéme
different prediction models based on context evolvinggratt to
achieve high quality anomaly prediction for dynamic syste@ur
approach differs from previous model ensemble approadhgs, (
[45]) in several aspects. First, unlike previous ensemppeaach,
wherein each classifier is learned from a fixed window of dad4 t
might span multiple execution contexts, in our approachghwster
data that belongs to one context and learn a model from tHéaten
free data. Second, we establish explicit mapping from ptidt
models to different execution contexts, which can impronesje-
tion accuracy as well as avoid repetitive learning.

We have implemented a prototype of the ALERT system. To
make the ALERT system practical for large-scale hostingas
tructures, we employ fully decentralized monitoring, téag, and
prediction architectures, which is illustrated by Figure/Ale have

work with related work. Finally, the paper concludes in 8etb.

2. SYSTEM DESIGN

In this section, we present the design details of the ALERSF sy
tem. We first present the basic anomaly prediction model.nThe
we describe the context discovery scheme. Third, we desotib
adaptive anomaly prediction algorithm.

2.1 Baseline Anomaly Prediction Model

To perform runtime system anomaly prediction, we deploy-mon
itoring sensors on all hosts in the hosting infrastructwrjch
continuously monitor a set of metrigs, ..., zx }, such as CPU
consumption, memory usage, input/output data rate, bgfieue
length, for each running host and application component.eko
ample, we collect about 20 metrics on each host in IBM System
S [23, 24] and about 66 metrics on each host in PlanetLab [4].
The monitoring sensor periodically samples each metrigevat a
certain rate (e.g., one sample every 10 seconds) to foneasure-
ment stream. To achieve online anomaly prediction, we employ
a triple-state stream classifier that can continuouslysilagach
measurement sample into normal, alert, or anomaly statee Th
prediction model will raise alert when the component entkes
alert state that precedes the anomaly state.

To train the prediction model, we first employ an anomaly de-
tection module to label all measurements with either noraral
anomaly states. A simple anomaly detection module can usealy
predicates [20] based on the user’s service level obje¢8i)
requirements. For example, we can use an anomaly predijgate “
cessing time > 50ms" to check whether a system is in an anomaly
state in terms of performance. Previous work also providedem
advanced anomaly detection schemes that can accuratéiy- dis
guish anomaly from application change [15] and infer angmal
labels using similarity clustering [17]. Note that the feoof our
work is on anomaly prediction rather than anomaly detectieor
prediction, we introduce a specaikbrt state to capture pre-anomaly
symptoms. In the feature space, the alert state correspgonals
region “preceding” the anomaly points, illustrated by Fya.

tested the ALERT system on IBM System S stream processing Different from the normal and abnormal measurements theat ar

cluster [21,22] and PlanetLab wide-area network systethee45].
Our experimental results using real system performancmalies
and host failures show that: 1) a range of system anomaliketh
exhibit predictability; 2) ALERT achieves much higher piatibn
accuracy than exiting alternative algorithms (€5% higher true
positive rate an®0% lower false alarm rate); and 3) ALERT im-
poses low overhead for large-scale hosting infrastrustwith real-
time prediction performance (e.g., a few millisecondsiirag time
and a few microseconds prediction time).

The rest of the paper is organized as follows. Section 2 ptese

labeled by the anomaly detector, whether a set of measutemen
are labeled as alert is controlled by alert interval (I), which
denotes a time interval (e.g., 30 seconds) before the agomal
cident. Suppose the anomaly incident happens at tinadl the
measurement points sampled between I andt will be labeled

as alert. For example, we use a larger alert interfalH 3) in
Figure 2(a) than that/(= 1) in Figure 2(b). Thus, the alert
regions in Figure 2(a) include more measurement pointsttizse

in Figure 2(b). As a result, the prediction models in Figu(e)2
will classify more measurement samples as alert state thaset

x2

o

_---Anomaly A
FARG) AnomaIyA SR
: +2)
| / alert 1
t+1
alert™.
/) Anomaly B / Anomaly B
O/,O\}o)(oo _r \AO)(,"
/y S
x1 x1
Normal oAlet x Anomaly Normal ~ oAlert x Anomaly

(a) Alertinterval 1 =3 (b) Alertinterval 1 =1

Figure 2: Tunable anomaly predictor with different alert in ter-
vals.

X2A

X Normal

Anol aIy
|on / \

Yes/ w
Alen
Region | M -
x1

Normal o Alert x Anomaly

Figure 3: Anomaly prediction using triple-state decision tee
classifier.

in Figure 2(b). Intuitively, the larger the alert intervéiie more
measurement points will be classified as alert, the moréylite
predictor is to raise anomaly alerts. Thus, we can use th¢ ale
interval I as a tuning knob to control the predictor’s true positive
rate Ar and false-alarm ratél . The anomaly predictor is said
to raise a correct alert if the predicted anomaly indeed éapp
shortly after the anomaly alert is issued. Léf,, N¢,, Ny, and
Nin denote the true positive number, false negative numbese fal
positive number, and true negative number, respectivehe tfue
positive rateAr and false alarm ratd » of the anomaly predictor
are defined in a standard way as

I
th + J\[’fn7 pr + Ntn

At one extreme, if we set = 0, ALERT becomes conventional

reactive approach where the alert state is always empty and n
alarm will be generated before anomaly happens (ie.,= 0,
Ap = 0). Atthe other extreme, if we sét= oo, ALERT becomes
traditional proactive approach that performs preventistoas on
all components unconditionally (i.eAr = 1, Ar = 1). The
optimal solution often lies in-between the two extremesracfice,
which motivates us to develop tunable prediction models.was
will show later in our experimental results, the alert intdrcan
indeed be used to tune the tradeoff between true positiecarad
false alarm rate.

We chose decision trees [27] to classify component statégsn
paper since the decision tree classifier can produce rutbsiizect,
intuitive interpretation by non-experts. Thus, the préatican not
only raise anomaly alert but also provide cues for possihderealy
causel Figure 3 illustrates a simple case of classification using
two metrics. For state classification, the decision treergsally
applies a sequence of threshold tests on the metrics. ThHeate

Ar = @

'However, our adaptive anomaly prediction scheme is not re-
stricted to the decision tree classification method, whiah be
applied to other classification methods as well.

that corresponds to the alert region is, “< m andxz2 < p”, and
can be determined by following the path in the tree which dead
to the leaf labeledalert. The decision tree classifier is trained
using labeled measurement data from all three states. ler ord
to effectively and automatically discover the approprif#atures
from the monitored metrics for prediction, the classifies tain-
corporate multiple features in the training phase. An aolakt
benefit of decision trees is that they can inherently selease
metrics appropriate for state classification by seekingsti@test
possible tree that explains the data. In our case, the feater
lection occurs whenever we induce a new decision tree &kassi
under a specific execution context. We train every new dlassly
incorporating all monitoring metrics, and rely on the demistree
classifier training algorithm to perform feature selection

2.2 Context-Aware Anomaly Prediction Model

We now present the context-aware anomaly prediction model
training algorithm, illustrated by Figure 4. We first emplaglus-
tering algorithm to discover different execution contértdynamic
systems. We then train a set of prediction models described i
Section 2.1, each of which is responsible for predictingnaaiges
under a specific context. In contrast to common online learni
algorithm that frequently updates models with new trainitaga,
our scheme induces a set of prediction models over a longgefi
training data to avoid unnecessary repetitive learningreMimpor-
tantly, we induce models from conflict-free data, which proes
high quality prediction models.

Our approach is based on two observations. First, once emsyst
component enters a certain execution context, it will stayhe
context for a period of time, until a certain event occurscheads
the system into another context. Second, the system mawpteper
under similar execution contexts repetitively over a loegiqd of
time. For example, a web server often receives higher wadklo
in the morning and lower workload in the evening and such exe-
cution context switching repeats. In Figure 4, we show aastre
of measurement samples (divided into stream data blockagh E
stream data blocK; contains a small fixed length of measurement
samples. Data blocks with the same color belong to the same ex
ecution context. Here, the system component operates timeer
different execution contexts. Conte&t, for instance, has three
(non-contiguous) occurrences at time 0, 8, and 18. The yste
component switches from Context to C-» at timet = 6.

To achieve context-aware anomaly prediction, one big ehgi
is that system contexts are hard to identify and charaeteszhey
evolve over time. Our goal is to group measurement sampéds th
correspond to the same context, and then learn models sifides
from the grouped measurements. Grouping is essential ecau
each individual instance or occurrence of the context aftenains
too little information to fully characterize the context. chassifier
trained from insufficient data will have large overfittinga@rand
will generalize badly for future testing data. On the othandh
by grouping together measurement samples belonging tathe s
context, we will be able to learn high quality prediction netxlas
we minimize overfitting error. We employ a clustering algjom to
discover different contexts. The goal of the algorithm ipastition
a measurement stream into a set of stream segments, , ddayoted
D;. Each stream segment contains several continuous datesbloc

P:{D17D27 7Dk} (2)
that minimizes the global error:
1
E(P)= — ——Err(D; ?3)
(P) D > |D| (Di)

D;eP

where Err(D;) denotes the error of the predictor learned from

Prediction Prediction Prediction
model M1 model M2 model M3

ldlo | dia | diz | dis | dia

1
Time o 2 a (S 8 10 12

Figure 4: Context-aware

stream segmen®;. Before we discuss how to compul&r(D;),
let us first understand the rationale behind the optiminapimb-
lem. Itis easy to see that whdt(P) is minimized, the quality of
the contexts, or the accuracy of the predictor learned ftacon-
texts, is maximized. The reason is the following. If two segits
belong to the same context, then merging them will reduce the
overfitting error of the predictor learned from the mergeghsents.
On the other hand, if two segments belong to different cdatex
then merging them will create a training data set with cotifigc
contexts, which reduces the accuracy of the predictoredafrom
such data. Thus, minimizing (P) maximizes the quality of the
discovered contexts.

To computeErr(D;), the error of the predictor trained from
segmentD;, we perform cross validation. For instance, two-fold
cross validation randomly splits data in a segment into tets.s
We use data in the first set to train a predictor, and use ther oth
set to computerr(D;), which is the percentage of wrong predic-
tions made by the trained predictor. It is easy to see thatdero
for cross-validation to work, segments must satisfy thestraimt
|D;| > 1 for all 7 to avoid the trivial partition wherein each;
contains only one data sample.

The core task is then to minimiz€(P) in Equation 3, which
gives us the optimal partition of the stream data and henee th
contexts we want to discoveE (P) can be minimized by dynamic
programming since the clustering problem we defined abosge ha
optimal sub-structures. Lé?, ,, denotes a stream of length and
D; ; denote a substream from data bladb ;. Let P; ; denote the
optimal partition ofD; ;, that is, predictors trained from segments
defined byP; ; have the minimum validation errdr(P; ;). Our
task is to findP; ., the optimal partition for the entire stream.

Assume we knowP; i and P41, the optimal partitions for
substreamD, , and Dy41,, Vk,1 < k < n. ConsiderpP; ,,
there are two cases: it either contains no sub-partiti@n, the
entire streanD; ,, forms a single segment, or it is a union of two
partitions P, and Pr11,», for a certaink. In the first case, we
learn a predictor fronD: ,,, and estimate the validation error of the
predictor. In the second case, the validation error can beedeby:

n—=k
E(PkJrlnL)} (4)
Clearly, finding the best partition fdp; . or D1, is the sub-
problem with the same structure. We solve these sub-prablem
recursively until we reach the simple case ;7 when we partition
D; j,1 <1 < j < n. Note that we only need to solve each sub-

k
E(Pin) = mk'}n{gE(Pl,k) +

14 16

i8 20 22 249 26 28 30 32

anomaly prediction.

segments, i.e.Pi,, = {Di,D2,---,Dn}. Each segment in
Py, represents a context occurrence. The boundary between two
segments means a context change. One context usually his mul
ple occurrences throughout the entire measurement stiBaene-
fore, we need to perform a clustering algorithm again to gritne
segments which maybe non-contiguous into a number of unique
contexts. For example, in Figure 4, stream segméntsD3 and

Ds are merged as a specific conté&. ContextsC> andCs are
formed in a similar way. We still minimize the objective fuion

in Equation 3 to decide the optimal partition. The only diffe
ence is that now any two stream segments (i.e., contiguonsrer
continuous) are eligible to be merged.

In terms of complexity, when we decide the optimal partifion
continuous data blocks, each sub-probl&ifP; ;) requires us to
train and test a classifier to get the prediction error valith no
sub-partition. Note that we use decision tree classifier adupt
C4.5 implementation [2]. Assume there aremeasurement sam-
ples inD; ; and k features for each sample. Previous work has
proven that the total cost of building a decision tree cfassis
O(kmlogm)+O(m(logm)?) [43]. There are totallyd (n?) sub-
problems. After that, when we decide the optimal partition§¥
stream segments, a naive solution requires us to exa@ine’)
possible segment paird{,D;). Each examination incurs cost of
building a decision tree classifier to get the predictioroefor
the temporarily combined segmeb, U D;. Clearly, the overall
complexity is high. However, heuristic optimization tetues
such as greedy top-down or bottom-up techniques can be-devel
oped to find good but suboptimal solutions. In our implenmigona
we use a two-stage hierarchical clustering algorithm [14]clv
belongs to the greedy bottom-up technique. We will showr kit
this lightweight heuristic algorithm has fast training @rand still
achieves good performance.

After extracting different execution contexts, we trained of
prediction models\4, ..., M,, whereM;, 1 < k < gisaunique
model for contexC'. In contrast to a monolithic prediction model
that is trained using all measurement samples, our adagtv@aly
prediction approach employs an ensemble of prediction eode
Different from previous model ensemble approach that $reind-
els from different windows of consecutive training datar ap-
proach induces prediction models from context-based gupea-
surements. For example, for the contéxt, we train a prediction
model M, using training datd D, D3, D5} in Figure 4. In con-
trast to previous model ensemble approach where differedeia
are induced from windows of consecutive training data, oadeh

problem once, as we memorize and reuse solutions to problems'S induced from intelligently grouped data that are not ssaely

that we have already solved. The intermediate redu(ts; ;) are
stored and reused by succeeding computation. By storink- bac
tracking pointers, the corresponding optimal partit®n, can be
recovered easily.

Assume that we have decided the optimal partition Withtream

consecutive.

2.3 Adaptive Runtime Anomaly Prediction

During runtime, to decide if an alert should be raised based o
system measurements at timewve must first find out the context

C} at timet, so that we can apply, the model corresponding
to contextC}, on the system measurements to make the decision.
However, finding the current context is a nontrivial probjesimce
instead of exhibiting simple patterns such as periodicitntext
changes may occur at any time. For example, in Figure 4, the sy
tem component operates under changing execution corttexts
Cy — Cy — C3 — C1 — C3 — Cs. Our approach of finding
the current context is based on Bayesian analysis. We talec
statistics of context changes in the measurement streairaraax
lyze how different contexts interact with each other. Thauteis a
context switching model, which enables us to switch to thestmo
likely context giving cues from an online monitoring stream

Let P,(C%) denote the probability that', is the context at time
t. LetY; denote the new measurement that arrives at timeet
p(Y:|C) denote the probability that; is generated under context
Ck. Let P, (Cy) denote theprior probability of C being the
context at timet, that is, the probability tha€’;, is the context at
time ¢ before we se&;. According to the Bayesian rule, we hdve

Pi(Ck) o< P (Ck) - p(Y2|Ck) (5)

Our goal is to find the context’, that has the largesP;(Ck).
To do this, it suffices to computg(Y:|Cx) and P, (Cr). We
approximatep(Y:|C) using the prediction error aM;. More
specifically, letErry, be the cross validation error g¥1,,. Thus,
if M), predictsY;: correctly, we havep(Y;|Cx) « 1 — Errg,
otherwise, we have(Y:|Ck) < Errg.

Probability P,” (C}) is computed recursively:

P (Cy) = Z P (Ci)x(Ci, Cr) (6)

wherex(C;, Ck) is the probability of changing to conte&t, when
contextC; is previously active. Furthermore, we assume all con-
texts have the same probability to be the context at time 1.
Finally, we need to fing (C;, C;), which is derived from historical
data:

__number of transitions from contek; to C; %
- total number of context transitions

For example, in Figure 4, there are altogether six contextsir
tions, with two occurrences of contegts following contextC1
(block ds to d7 and blockd:: to di2). Thus,x(C1, Cs), the prob-
ability that contexiC, is followed by contexC5 is 2/6.

In a dynamic hosting infrastructure, new context will engerg
during runtime. In our system, we actively log data for whazir
prediction is unsatisfactory (e.g., data for which alemaised but
never lead to anomaly even without intervention, and alsa fia
which alert is not raised but leads to anomalies). Those mata
indicate the emergence of a new execution context that ¢doeno
captured by our current prediction models. We can thus ieduc

X(CZ7 CJ)

System S Metrics Description
AVAILCPU percentage of free CPU cycles
FREEMEM available memory
PAGEIN/OUT virtual page in/out rate
MYFREEDISK free disk space
RXSDOS num. of received data objects
TXSDOS num. of transmitted data objects
DPSDOS num. of dropped data objects
RXBYTES num. of received bytes
TXBYTES num. of transmitted bytes
QUEUELEN input queue length
UTIME process time spent in user mode
STIME process time spent in kernel mode
ROUTING system data handling time
VMSIZE address space used by a component
VMLCK VM locked by the component
VMRSS VM resident set size
VMDATA VM usage of the heap
VMSTK VM usage of the stack
VMEXE VM executable
VMLIB VM libraries
Planetlab Metrics Description
LOAD1 load in last 1 minute
LOADS load in last 5 minutes
AVAILCPU percentage of free CPU cycles
MYFREEDISK free disk space of my slice
DISKUSAGE percentage of utilized disk space
FREEDISK free disk space
FREEMEM available memory
NUMSLICE num. of registered slices on this hgst

Table 1: Subset of monitoring metrics.

trace sets that contain anomaly data. Third, we presenixjherie
mental results to validate the prediction accuracy of opragch.

3.1 System Implementation

We have implemented a prototype of the ALERT system and
deployed it on two production hosting infrastructures: By Sys-
tem S stream processing cluster [21, 22] that consists aftet&)
IBM blade servers, each of which has dual Intel Xeon 3.2GHZ
CPUs and 2 to 4 GB memory; and 2) PlanetLab wide-area network
system testbed [33]. To achieve generality, the ALERT sydte
implemented based on standard Linux APIs, which allows us to
port the ALERT system to different hosting infrastructueesiéy.
We collect about 20 metrics on each host in IBM System S [23,24
and about 66 metrics on each host in PlanetLab [4]. Tabletd lis

new contexts and models from those data. We also update thea subset of key metrics collected by ALERT on System S and

context switching model to incorporate these new modets time
dynamic context switching pattern. At the same time, we may
also remove inactive contexts (i.e., with zero switch philis)

to keep the set of active contexts small. If the current mtemh
model consistently provides unsatisfactory predictiosuls, we
will trigger the context-aware prediction model trainirigaithm
described in Section 2.2 to induce a new set of predictionaisod
based on new training data.

3. IMPLEMENTATION & EVALUATION

In this section, we evaluate our ALERT system. We first descri
the system implementation. Then, we show how we collectraéve

2p,(Cy) is a shorthand fop(Cy|Yz,---, Y1), and P (Cy) a
shorthand fop(Ck|Yi—1,- -+, Y1).

PlanetLab. All collected metrics are used to train the degitree
classifier.

To make ALERT practical for large-scale hosting infrastanes,
we employ a fully decentralized monitoring and learninghétex-
ture, illustrated by Figure 1. We first deploy distributedmitor-
ing sensors to collect various monitoring metrics. We then d
ploy a set of predictors that are associated with differgstesn
hosts/components. To avoid affecting normal applicatiarka
loads, we strive to usklle resources in the hosting infrastructure
to perform prediction and model training. We also instalbaaf
anomaly detectors to continuously provide normal/anonctdgs
labels for new measurement samples that will be later used by
the predictors as training data. Note that a set of measurteme
samples preceding the anomaly samples will be later laketed
alert by the predictor based on the alert interval. We will deserib

Join Componem TCP Flows, 1=10

N
o

Diffuser Componem Video Streams, 1=10

PlanetLab Ping Failures

EIProchme [IProchme
9] 9] 0n
£ 20 Il Throughput || $¢ 10 Throughput 1
Q Q O 15
= = 1
S g ¢ S
ol 3] 3]
kS S 6 B 10
g0] o]
Q o 4 Ke)
1S £ E s
55 =R >
c c c
0 . J ! ! 0 |
memory leak loop err buffer err rate mismatch memory leak Ioop err buffererr rate m|smalch N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

fault

@ (b)

Node ID

(©

Figure 5: Number of execution contexts in dynamic systems.

the implementation details of the anomaly detectors fdiediht
applications in Section 3.2.

3.2 Experiment Setup

We first collected measurement traces on the IBM System S clus
ter. We deploy monitoring sensors on all hosts and contisiyou
collect various metrics with a sampling rate of one sampkeryev
two seconds. We install a set of predicate-based anomadgtdes
in the system to catch anomaly incidents: PipcTime anomaly
when the average per-tuple processing time of the companent
ceeds a certain threshold (e.g., 4 seconds for a join companel
1200 milliseconds for a diffuser component) ; andTByoughput
anomaly when the output rate of the component is lower than a
threshold (e.g., 30 tuples/second), or the ratio betweerotiiput
rate and the input rate is lower than a threshold (e.g., 0.4).

In our experiments, we run the System S reference applicfig
that consists of about 50 distributed stream processingooants
performing complicated multi-modal stream analysis. Téker
ence application shares resources with other applicasiamged by
different infrastructure users. Each trace includes ab600 mea-
surement samples. To trigger anomalies, we inject variauissfin
different components at different time instants to testitheptabil-
ity of our anomaly prediction model for time-varying worklds.

We employed a set of common faults in stream systemsnef)

-©-A~ALERT
-© A.~ALERT
A;—Monolithic
A—Monolithic
_|_AT—IncremenlaI
-—+ A —Incremental
_A_AT—Ensemble
-A A.—Ensemble

* »
0.9
0.8
0% .
0.6l
e

T TR
AT BT
P g

0.4
0.3
¥ 3
PO -0 -O--)
10 20 30 . 40 50 60 70 80
Alert interval (sec)

(a) ProcTime Anomaly

-

Prediction accuracy

-©-A~ALERT
-© A.~ALERT
A;—Monolithic
A—Monolithic
_|_AT—IncremenlaI
-—+ A —Incremental
_A_AT—Ensemble
-A A—Ensemble

yO

Prediction accurac

20 30_40 50 60 70
Alert interval (sec)

(b) Throughput Anomaly

80

Figure 6: True positive rate (Ar) and false alarm rate (Ar) for

Leak: the component executes a buggy code segment that keepghe IBM System S Join component with the memory leak fault.

forgetting to free memory; 2)oopErr: the component spawns a
CPU-bound thread that includes an infinite loop error (itetator
update mistake); and ByfferErr: the component forgets to remove
processed data units from its input buffers. Each faults|&x
seconds: we activate the fault at time t and remove the fault a
time t + 50. We report the results on two commonly used stream
processing components [25]: 1) a join component that coatisly
correlates tuples from different wide-area TCP traffic fldvesed

on a pre-defined join condition, and 2) the diffuser compoiés:
patches data items in news video streams to different hoistsdd
balancing.

We have started to collect measurement traces on the PimetL
since July 2009 [4]. In our experiments, we deploy monitprin
sensors on about 400 PlanetLab nodes and collect variods hos
level metrics with a sampling rate of one sample every 10rs#%0
We deploy a set of anomaly detectors to catch host ping &slua
monitored host does not respond to five successive ping.tizch
failure detected in this way is recorded with timestamptinfation.

The system also collects about 66 monitoring metrics [3]fn t
failed hosts to capture pre-failure behavior. Each hogj failure
trace consists of 4000 to 6000 samples.

In each trace, ALERT detects multiple execution contextscty
indicates real applications do exhibit evolving behavidre execu-
tion context change is caused by time-varying input datsrand

fluctuating resource availability on the shared hostingaistfuc-
ture. Figure 5 shows the number of contexts discovered ferdift
IBM System S trace data. We observe that the join component pr
cessing TCP traffic streams experiences more dynamic ésacut
context than the diffuser component processing the videausts.
As we will show next, the anomaly predictor generally hasdow
prediction accuracy for more dynamic components. The reaso
is that with a larger number of different contexts, the prtafiis
less certain to find the right context in evolving systems] each
context is trained with fewer data. We also observe 8 - 12\gi@t
contexts discovered in different PlanetLab trace data.

For comparison, we implemented three commonly used exist-
ing learning algorithms: 1) thenonolithic scheme that trains a
single anomaly prediction model using the entire trainingad 2)
the incremental scheme that incrementally builds and updates the
prediction model using a sliding window of recent measursie
and 3) theensemble scheme [45] that maintains an ensemble of
prediction models, each of which is trained using differgimdows
of training data. At any moment, the best performed modetthas
on thebalanced accuracy [45] in the past window of data is used
to predict anomaly in the current window of data. Each window
includes 500 samples. In all approaches, we use the sanmateci
tree classifier to build the triple-state anomaly predittinodel.

—©- A ~ALERT
- AF*ALERT
AT—MonoIithiC
A—Monolithic
—— A ~Incremental
- Apflncremental
—A— A —Ensemble
-A<x A_—Ensemble

-O--D

Prediction accuracy
A

O 40 50 60 70
Alert interval (sec)

(a) ProcTime Anomaly

80

= AT—ALERT
-© A.~ALERT
A,—Monolithic
A—Monolithic
—_— A_rflncremental
- Apflncremental
A A —Ensemble
-Ax A_—Ensemble

Prediction accuracy

20
Alert interval (sec)

(b) Throughput Anomaly

30 40 50 60 70 80

Figure 7: True positive rate (Ar) and false alarm rate (Ar) for
the IBM System S Join component with the loopErr fault.

We adapt the widely-used decision tree software package [2}.

to make it work in online learning and classification. We us@és
dard evaluation metrics: true positive raté;() and false alarm
rate (Ar) denoted by Equation 1 to compare the performance of
different learning algorithms. We say the prediction mauekes

a true positive prediction if it raises an anomaly alert atetit;
and the anomaly indeed happens at titwgls < t2 < t1 + 1.
Otherwise, we say the prediction model fails to make a correc
prediction. If the predictor raises an alert and the prediethomaly
does not happen after a period of time (e.qg., the alert iatgrwe
say that the prediction model raises a false alarm.

3.3 Results and Analysis

In our first set of experiments, we evaluate the prediction ac
curacy for the performance anomalies of a join componentaand
diffuser component in the IBM System S. There are six refgita
join components running on different hosts in our appl@atiThey
perform the same operation on similar workload so that tixbibé
similar but not identical behavior. In each experiment rume,
choose one component as the training set and predict theadiesm
of the other five replicated components. Under the same aenfig
ration, We swap their roles for six times so that each compbne
is used for training exactly once. All the following expegntal
results of the join component are aggregated in this way. ter
diffuser component, we did not have replica in our applarato
we use half of the collected data as the training data to grréut
anomalies of the other half data.

For each algorithm, we show both the true positive rate)(
and false alarm rate4r) which are calculated for the whole trace
data. An ideal predictor should have 100% true positive aaig
zero false alarm rate. To show the impact of the alert intesma
the sensitivity of the prediction model, we repeat our expents
using a range of alert intervals= 10, 20, 30, 40, 50, 60, 70, and
80 seconds. Figure 6(a) and Figure 6(b) show the true pesitiv
rate Ar and false alarm ratel» for the faulty join components
containing the memory leak fault. The X-axis shows diffe@ert
intervals used by the prediction models and the Y-axis shbes
true positive rate and false alarm rate achieved by diftguesdic-
tion methods. The results show that ALERT consistently exc¥s

—©- A ~ALERT
-& AF*ALERT
AT—MonoIithiC
A—Monolithic
—— A ~Incremental
- Apflncremental
—A— A —Ensemble
-A<x A_—Ensemble

yO

Prediction accurac

20 30_ 40 50
Alert interval (sec)

(a) ProcTime Anomaly

60 70

= AT—ALERT

-© A.~ALERT
A,—Monolithic
Ag—Monolithic

—_— A_rflncremental

- Apflncremental

-4 A —Ensemble

-Ax A_—Ensemble

\vi7m= v

T) @:g:-‘e‘:—:ﬁx--ﬂ-
02!{/:9/@— - PN

0.2

Prediction accuracy
o
By

(o]
10 20 30 40 50 60 70

Alert interval (sec)

(b) Throughput Anomaly

80

Figure 8: True positive rate (Ar) and false alarm rate (Ar) for
the IBM System S Join component with the bufferErr fault.

much higher true positive rate and lower false alarm rate tther
alternative methods. This confirms that context-aware ahpm
predictions are necessary for real application workloads.

We also observe that the alert intenvalcan indeed be used
as a control knob to tune the sensitivity of the predictiondelo
Generally speaking, as we increase the alert interval, é¢nivetl
prediction model is more sensitive with both increased postive
rate and false alarm rate. This provides the opportunityufor
to achieve tunable anomaly management. Based on the benefit
achieved by accurate predictions and cost for handling fkrms,
we can configure the prediction model with a proper alertriate
to achieve optimal prediction reward. We also observe tHtsre
ent anomaly types exhibit varied predictability. In thiseathe
ProcTime anomaly is easier to predict than the throughpornaty
that has high false alarm rate. Note that the premise of alyoma
prediction is that the anomaly exhibits gradual pre-angraginp-
tom. Thus, if the anomaly does not have prominent pre-anpmal
symptoms, the predictor will have high errors.

For the ensemble approach, we sometimes observe ups and down
for both true positive rate and false alarm rate as the al@tvall
increases. The reason of such fluctuation is that we use tedeal
accuracy as the criteria to select the best prediction nfoolel the
ensemble, which is defined &4 = (Ar+1—Ar)/2. Therefore,
if we look at the true positive rate individually, it is posks that the
true positive rate of a largdris lower than that of a smalldr. The
essence here is to know that the ensemble approach perfarss w
than ALERT even in terms of the balanced accuracy.

Figure 7(a) and Figure 7(b) show the prediction accuraqyltes
for the join components containing the loopErr fault. Agaive
observe that our algorithm can achieve much better perfocma
than all other schemes. However, the anomalies caused by the
loopErr fault are more difficult to predict than those caubgdhe
memLeak fault in terms of high false alarm rate. The reason is
that the effect of the loopErr fault is more sudden than tthahe
memLeak fault, which makes it less predictable. Partitylail
algorithms have high false alarm rates for the throughpatveay,
which make it unpredictable.

Figure 8(a) and Figure 8(b) show the prediction results lier t
join components containing the bufferErr fault. The resalgain

—©- A ~ALERT
. -© A_—ALERT

.74 © % e

A —Monolithic

A—Monolithic
—— A ~Incremental
-+ A-Incremental
—A— A —Ensemble
-A<x A_—Ensemble

Xi
]

Prediction accuracy

Alert interval (sec)

(a) ProcTime Anomaly

20 30 40 50 60

-©-A~ALERT
-© A.~ALERT
A;—Monolithic
A—Monolithic
_|_AT—IncremenlaI
-—+ A —Incremental
_A_AT—Ensemble
-A A.—Ensemble

1 !
— o565
. zc}’d E — =

Prediction accuracy

Alert interval (sec)
(b) Throughput Anomaly

Figure 9: True positive rate (Ar) and false alarm rate (Ar) for
the IBM System S Diffuser component with the memory leak
fault.

show that our approach consistently achieves higher trediym
rate and lower false alarm rate than other learning algosthAl-
though different anomaly types exhibit varied predictiépilour
prediction model can consistently achieve much betterigtied
accuracy. Similar to the previous cases, the throughpunahois
more difficult to predict than the ProcTime anomaly.

We now evaluate our anomaly prediction approach using a dif-
ferent type of application component called diffuser. Caneg to
the join component, the diffuser component has simpleriegibn
semantics: it dispatches input data to different hostscbeseheir
load conditions. Second, the diffuser processes a differgut
stream workload: news video streams that exhibit less eatation
than the network traffic streams. Due to the space limitatiosn
only show a subset of our results. Figure 9(a) and Figure 9(b)
show the prediction accuracy results for a faulty diffuséthvhe
memory leak fault. We observe that our scheme still corsiste
outperforms other schemes. The Monolithic approach aehkiev
similar true positive rate with our scheme but incurs higladse
alarm rate. The Incremental and Ensemble approaches hayve ve
low true positive rate, which is caused by learning from dotfl
training data contained in the fixed-length of windows.

We now present the anomaly prediction results for the piilg fa
ure on the PlanetLab hosts.
trace data as the training data and predict the ping failurdise
other half of the trace data. Figure 10(a) shows the averege p
diction accuracy for all ten failed hosts during our expemts.
Figure 10(b) and Figure 10(c) shows the prediction accufacy
two specific failed hosts. The results show that the pingifaibn
PlanetLab shows good predictability and our approach chieae
high prediction accuracy with over 90% true positive ratd aear
zero false alarm rate. In contrast, other alternativesesehinuch
lower true positive rate and higher false alarm rate. Afxangining

—©— A -ALERT
(o]

> —
S -© A.~ALERT
‘SB A,—Monolithic
8 ApronoIi(hic
[+ —+— A ~Incremental
5 -4 A_-Incremental
§ A AT—Ensemble
8 -Ac AF—EnsembIe
=
[a 9

B=-B=0
100 150 2‘520 250 300 350 400 450 500
Alert interval (sec)

(a) Average prediction accuracy

= D=

—- A, ~ALERT
-© A_~ALERT
A,—Monolithic
Ag—Monolithic
_|_A_r7|ncremental
- Apflncremental
A ATfEnsembIe
-Ac Aprnsemble

A
[ST S S S S

Prediction accuracy

= e

B=-=-B=3=
10150 150 200 250 300 350 400 450 500

Alert interval (sec)
(b) Prediction accuracy on host A

—- A, ~ALERT
-© A_~ALERT
A,—Monolithic
Ag—Monolithic
_|_A_r7|ncremental
- Apflncremental
A ATfEnsembIe
-Ac Aprnsemble

Prediction accuracy

100 150 200 250 300 350 400 450 500
Alert interval (sec)

(c) Prediction accuracy on host B

Figure 10: True positive rate (A7) and false alarm rate (Ar)
for Ping failure prediction accuracy on the PlanetLab.

results. Figure 11(a) shows the minimum, average, and maxim
prediction lead time achieved by ALERT for the IBM System S
anomalies. We observe that the alert interval affects the fine.
As we increase the alert interval, the prediction modelséandaise
alerts earlier since more measurement samples will bededlin
the alert state. The tradeoff here is that larger alertwatenay also
incur higher false alarm rate, as shown in previous figurésii-S
larly, Figure 11(b) shows the prediction lead time for tharfeitLab
host failure. The results indicate that ALERT can achieves tef
seconds or several minutes lead time to allow just-in-tinenaaly
diagnosis and correction.

For each host, we use half of the One design objective of the ALERT system is to achieve stalab

online anomaly learning and prediction. To achieve the ,goeal
employ reservoir biased sampling [23] to reduce the measeme
sampling overhead. One question is whether the biased sampl
can greatly affect the prediction accuracy. We repeat tloweab
experiments using biased sampling that retained 50% andd0%
the total measurements. Due to space limitation, we onlysho
subset of results shown by Figure 12(a) and Figure 12(b). We o
serve that biased sampling can maintain similar predic@muracy
while reducing the sampling overhead.

the trace data, we found that a set of metrics such as LOAD1 and We now evaluate the overhead of the ALERT system. Figure

AVAILCPU exhibit significant difference between normal sales
and anomaly ones, and those metrics change gradually.

We also measure the prediction lead time (i.e., how earlpdhe
can the prediction model raise an alert) achieved by the ALER
system. Due to the space limitation, we only show a subsell of a

13(a) shows the cumulative distribution function (CDF) abdel
training time collected in different experiment runs. Thairing
time includes the time for discovering contexts and budditeci-
sion tree ensembles corresponding to different contexts civh-
pare the model training time using full measurement sampits

5 400 =
@ 80 2 min
2 &% Bllavg
@ 300
e 2 Il max
= S 250
N 3
3. . g0
o 510
3 B 100
52 3
L 10 o 50
o o
%90 20 30 40 50 60 70 80 9”50 100 150 200 250 300 350 400
Alert interval (sec) Alert interval (sec)
(a) System S (b) PlanetLab
Figure 11: ALERT prediction lead time.
1 1
> 0.9 > 0-
8 0.8 -6-A~unsampled © 0.8 -o-A~unsampled
0.7 . 0.7
§ . A,~biased 50% § 05 A, -biased 50%
8 0-6[A -biased 30%|| © o -5-A,~biased 30%
c 05 c 05
5 .@.AF—unsampIed o -@-A_-unsampled
= 04 . = 04 F
o A_-biased 50% 3] A_-biased 50%
503 F 503 F
5] -g-A_-biased 30%|| © A _-biased 30%
202 F 0.2 -B-A.biased 0%
0.1 .- 0.1
c==§=--a==§==%--ﬂ--'@--g CeE-- B!

§=:8==4
10 20 30 40 50 60 70 80 0 100 150 200 250
Alert interval (sec) Alert interval (sec)

(a) Join component - ProcTin{b) PlanetLab - Ping Failure on
Anomaly host A

Figure 12: True positive rate (A7) and false alarm rate (Ar)
under different sub-sampling rates.

the training time using a subset of samples obtained by veiser
sampling. With full measurements, the model training timiaithe
range of [1,2] milliseconds. By retaining 30% samples, we rea
duce the training time to [0.3, 0.6] millisecond. Figurel)3¢hows
the CDF of mean prediction time collected in different exmpent
runs. The results show that our prediction algorithm is, fastich
requires less than four microseconds for the model trairsiugu
30% biased samples. The results indicate that ALERT carethde
support online anomaly prediction with realtime evaluatépeed.
We also measured the cost of online system monitoring, which
generally imposes less than 1% load on the monitored host.

4. RELATED WORK

System anomaly detection and debugging have been exthnsive

[N
[N

—r
¥ P

o
<3}
>

o
<3}

fraction
o
[=2]
e
fraction
o
[=2]

o
o
o
o

f
i

—+—predictionTime-unsampled
predictionTime-biased 50%
—— predictionTime-biased 30%

£

*
—+—trainingTime-unsampled
trainingTime-biased 50%
—+—trainingTime-biased 30%

o
N
o
N

o
o

05 1
time (ms)

(a) Training time

15 2 10

4 6
time (us)
(b) Prediction time

Figure 13: ALERT system computation cost.

flow and resource consumption of each request. Pinpointdl8)
takes a request-oriented approach to tag each call withuesetD
and diagnose faults by applying statistical methods totifjecom-
ponents that are highly correlated with failed requestsuilkga
et al. proposed a black box performance debugging techrigue
analyzing message-level traces of system activities &r icéiusal
paths [8]. Triage [39] leverages lightweight re-execusapport to
deal with system bugs without requiring an interventiomfra pro-
grammer. Different from previous work, our research fosuse
applying machine learning techniques to achieve advanoealy
prediction instead of post-anomaly detection.

Our work is closely related to the Tiresias system [42] thst a
addresses the black-box failure prediction problem inrithsted
systems. Different from the Tiresias system that reliesramraly
detection over individual performance metrics to achieygtesn
state prediction, our work provides predictions usinglérigtate
whole system classification that can easily achieve turtadtieoff
between true positive and false alarm rates. Furthermdre; T
sias does not consider execution context changes in dyngistic
tributed systems. In [23, 24], we have presented an iniggigh
of our online anomaly prediction system and time-to-angnest
timation, which, however, do not address dynamic computiony
text changes that are common in many real-world systemsasich
stream processing systems.

Recently, machine learning methods have been shown to b@gpro
ing for autonomic failure management. Much previous work fo
cuses on offline system log analysis (e.g., [29, 30, 35, 3, X
et al. developed online console log analysis techniquestect
system problems [44]. In contrast, our research focusesnen o
line characterization of system anomalies using perfooaand
resource metrics. Power et al. investigated the performane-

studied. For example, Noble et al. proposed an anomaly -detec diction power of different statistical learning approagfig4]. Co-

tion algorithm for graph-based data in which system predict
ity is quantified as graph regularity [31]. Shen et al. praubs

hen et al. applied Tree-Augmented Bayesian Networks (TAN) t
perform performance diagnosis [16], and proposed the Bigna

a change profile based approach to detect system anomaly sympconcept to capture the essential characteristic of a systEm[17].

toms by checking performance deviation between referende a
target execution conditions [37]. Wang et al. proposed therP
Pressure to automatically troubleshoot system miscorigurs
by checking the status of machines running the same applicat
in the database [41]. Bhatia et al. proposed “sketch" data-mo
itoring structure and correlated anomaly symptoms by gieeid
rules [10]. Oznat proposed an information-theoretic apphoto
detect anomalies in the metric behavior for web servicep [BRer-
kasova et al. built regression-based transaction moddlagplica-
tion performance signatures to detect anomalous apitaghav-
iors [15]. Guo et al. explored method of probabilisticalhrielat-
ing monitoring data for failure detection in complex sysse26].
Magpie [9] is a request extraction and workload modeling toat
can record fine-grained system events and correlates thestse
using an application specific event schema to capture thieaton

Zhang et al. extended the TAN model and proposed to use ensem-
bles of models for diagnosing performance problems [45k Fa
system employs various machine learning techniques te'aehu-
tomatic failure diagnosis for query processing systems [$8ien

et al. proposed to construct a whole-system I/O throughmdeah

as the reference of expected performance and used sdtdtis-
tering and characterization of performance anomalies itegtie-
bugging [38]. Different from previous work, our researcleuises

on applying self-evolving learning methods to achieve sidapun-

time anomaly prediction for large-scale hosting infrastuves.

5. CONCLUSION

In this paper, we have presented the ALERT system that pesvid
adaptive runtime anomaly prediction system for largeestaist-

ing infrastructures. ALERT provides a tunable anomaly fmtish
model and employs self-evolving learning algorithm to dadap

dynamic hosting infrastructures. To the best of our knogded

our work makes the first attempt to achieve context-awarenaho
prediction for dynamic distributed systems. We have imgetad

the ALERT system and deployed it on several production hgsti

infrastructures. We learned the following lessons from gnato-

type implementation: 1) a range of system anomalies do #&xhib

predictability; 2) ALERT can achieve much better prediotaxcu-
racy than existing learning methods for dynamic systemd; 3n
ALERT can provide realtime prediction performance whilgos-
ing low overhead to the hosting infrastructure.

6. ACKNOWLEDGMENT

This work was sponsored in part by NSF CNS-09-1-5567, NSF
CNS-09-1-5861, U.S. Army Research Office (ARO) under grant

[20] G.W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. Mhed.
Detecting Past and Present Intrusions Through
Vulnerability-Specific Predicates. Proc. of SOSP, Oct. 2005.

[21] K.-L.W. et al. Challenges and Experience in Prototgpin
Multi-Modal Stream Analytic and Monitoring Application on
System S. IrProc. of VLDB, 2007.

[22] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADEe
system s declarative stream processing enginradn. of SGMOD,
2008.

[23] X. Gu, S. Papadimitriou, P. S. Yu, and S. P. Chang. Toward
Predictive Failure Management for Distributed Stream Eseing
Systems. IrProc. of ICDCS, 2008.

[24] X. Gu and H. Wang. Online Anomaly Prediction for Robusiister
Systems. IrProc. of IEEE ICDE, 2009.

[25] X. Gu, P. S. Yu, and H. Wang. Adaptive load diffusion foultiway
windowed stream joins. IRroc. of ICDE, 2007.

[26] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira. Trackinghabilistic
correlation of monitoring data for fault detection in compl
systems. IrProc. of DSN, pages 259-268, 2006.

W911NF-08-1-0105 managed by NCSU Secure Open Systems Ini- [27] R. Jin and G. Agrawal. Efficient decision tree consfiarcion

tiative (SOSI), IBM Exploratory Stream Analytics Award,caiBM
Faculty Award. Any opinions expressed in this paper aredtuis

the authors and do not necessarily reflect the views of the, NSF

ARO, or U.S. Government.

7. REFERENCES

[1] Amazon Elastic Compute Cloud. http://aws.amazon. em2y/

[2] CA4.5 Release &ttp://mww.rulequest.com/Personal/.

[3] CoMon. http://comon.cs.princeton.edu/.

[4] InfoScope Distributed Monitoring System.
http://dance.csc.ncsu.edu/projects/infoscope/irdet.

[5] PlanetLab. https://www.planet-lab.org/.

[6] The STREAM Group, STREAM: The Stanford Stream Data
Manager| EEE Data Engineering Bulletin, 26(1):19-26, Mar. 2003.

[7] D.J. Abadi and et al. The Design of the Borealis Streanc€ssing
Engine. InProc. of CIDR, 2005.

[8] M. K. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distribiggstems
of black boxes. IrProc. of ACM SOSP, 2003.

[9] P.Barham, A. Donnelly, R. Isaacs, and R. Mortier. Usingdgie for
request extraction and workload modelling.Aroc. of OSDI, 2004.

[10] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson
Lightweight, high-resolution monitoring for troublestomg
production systems. IRroc. of OSDI, pages 103-116, 2008.

[11] J. Breese and R. Blake. Automating computer bottlerd=tlection
with belief nets. InProc. of UAI, pages 36—-45, San Francisco, CA,
1995. Morgan Kaufmann.

[12] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and Ax.Fo
Microreboot- A Technique for Cheap Recovery.Rroc. of OSDI,
Dec. 2004.

[13] M.Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fand
E. Brewer. Path-Based Failure and Evolution Managemerirdo.
of NSDI, 2004.

[14] S. Chen, H. Wang, S. Zhou, and P. S. Yu. Stop Chasing $rend
Discovering High Order Models in Evolving Data. Rroc. of ICDE,
2008.

[15] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Simir
Anomaly? application change? or workload change? towards
automated detection of application performance anomaly an
change. IrProc. of DSN, pages 452-461, 2008.

[16] 1. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Sagh
Correlating Instrumentation Data to System States: A Bugld
Block for Automated Diagnosis and Control. Bnoc. of OSDI,
2004.

[17] 1. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelhyd &. Fox.
Capturing, indexing, clustering, and retrieving systestdry. In
Proc. of SOSP, 2005.

[18] J. Dean and S. Ghemawat. MapReduce: Simplified DateeBsitg
on Large Clusters. IRroc. of OSDI, Dec. 2004.

[19] S. Duan, S. Babu, and K. Munagala. Fa: A System for Autorga
Failure Diagnosis. IProc. of ICDE, 2009.

streaming data. IRroc. of KDD, 2003.

[28] E. Kiciman and A. Fox. Detecting Application-Level kaks in
Component-based Internet Servicd=EE Transactions on Neural
Networks, 2005.

[29] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure Potidn in
IBM BlueGene/L Event Logs. IRroc. of ICDM, 2007.

[30] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Corigoa of
machine learning methods for predicting failures in hardedr.
Journal of Machine Learning Research, 2005.

[31] C. C. Noble and D. J. Cook. Graph-based anomaly deteditio
Proc. of KDD, pages 631-636, Aug. 24-27 2003.

[32] K. M. Ozonat. An information-theoretic approach toetging
performance anomalies and changes for large-scale ditgtdhwveb
services. IrProc. of DN, pages 522-531, 2008.

[33] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. Aephint for
introducing disruptive technology into the internet.Aroc. of
HotNets-I, Princeton, New Jersey, October 2002.

[34] R. Powers, M. Goldszmidt, and I. Cohen. Short term pennce
forecasting in enterprise systems.Hroc. of KDD, pages 801-807,
2005.

[35] R. K. Sahoo and et al. Critical event prediction for bz
management in large-scale computer cluster®rat. of ACM
SIGKDD, 2003.

[36] B. Schroeder and G. Gibson. Disk failures in the reallshowhat
does an MTTF of 1,000,000 hours mean too youProc. of FAST,
2007.

[37] K. Shen, C. Stewart, C. Li, and X. Li. Reference-drivearfprmance
anomaly identification. IfProc. of S GMETRICS/Performance,
pages 85-96, 2009.

[38] K. Shen, M. Zhong, and C. Li. I/o system performance dgjing
using model-driven anomaly characterizationPhac. of FAST,
2005.

[39] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage
Diagnosing Production Run Failures at the User’s Sitérire. of
SOSP, 2007.

[40] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, and S. Weiss.
Predictive algorithms in the management of computer systHiv
Systems Journal, 2002.

[41] H.J.Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with peergres. In
Proc. of ODI, pages 245-258, 2004.

[42] A. W. Williams, S. M. Pertet, and P. Narasimhan. Tiresia
Black-box failure prediction in distributed systems.Rroc. of
IPDPS, 2007.

[43] 1. H. Witten and E. FrankData Mining : Practical Machine
Learning Tools and Techniques with Java Implementations. Morgan
Kaufmann, 1999.

[44] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. leasgale
system problems detection by mining console log$roc. of
SOSP, 2009.

[45] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.
Ensemble of models for automated diagnosis of system pesioce
problems. InProc. of DSN, 2005.

