
Adaptive System Anomaly Prediction for Large-Scale
Hosting Infrastructures

Yongmin Tan, Xiaohui Gu
North Carolina State University

Raleigh, NC 27695
ytan2@ncsu.edu,gu@csc.ncsu.edu

Haixun Wang
Microsoft Research Asia
Beijing, China 100190

haixunw@microsoft.com

ABSTRACT
Large-scale hosting infrastructures require automatic system anomaly
management to achieve continuous system operation. In thispa-
per, we present a novel adaptive runtime anomaly predictionsys-
tem, called ALERT, to achieve robust hosting infrastructures. In
contrast to traditional anomaly detection schemes, ALERT aims
at raisingadvance anomaly alerts to achieve just-in-time anomaly
prevention. We propose a novel context-aware anomaly prediction
scheme to improve prediction accuracy in dynamic hosting infras-
tructures. We have implemented the ALERT system and deployed
it on several production hosting infrastructures such as IBM System
S stream processing cluster and PlanetLab. Our experimentsshow
that ALERT can achieve high prediction accuracy for a range of
system anomalies and impose low overhead to the hosting infras-
tructure.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

General Terms
Reliability, Management, Experimentation

Keywords
Anomaly Prediction, Context-aware Prediction Model

1. INTRODUCTION
Large-scale hosting infrastructures have become important plat-

forms for many real-world systems such as cloud computing [1],
massive data analytics [6, 7], and enterprise data centers.Many
real-world applications such as stream processing require24x7 con-
tinuous system operation. Unfortunately, today’s large-scale host-
ing infrastructures are still vulnerable to various systemanomalies
such as performance bottlenecks, resource hotspots, and service
level objective (SLO) violations. System administrators are often
overwhelmed by the tasks of correcting anomaly problems under
time pressure. Thus, it is imperative to achieve automatic system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

anomaly management to provide robust large-scale hosting infras-
tructures.

Previous distributed system anomaly management work (e.g.,
[12, 16, 28, 39]) can be broadly classified into two categories: (1)
reactive approaches that take corrective actions after an anomaly
happens, and (2)proactive approaches that take preventive actions
(e.g., backup) onall system components beforehand. The reactive
approach can have prolonged service downtime, which is often
unacceptable by continuously running applications such asstream
processing. In contrast, the proactive approach offers better system
reliability but can incur prohibitive overhead. This motivates us to
explore a newpredictive anomaly management approach [23, 24]
that can raiseadvance anomaly alerts to trigger proper anomaly
correction in a just-in-time fashion.

To achieve efficient predictive anomaly management, one big
challenge is to provide high quality online anomaly prediction. Al-
though previous work (e.g., [11,15,20]) has addressed the anomaly
detection problem, anomaly prediction needs to capture pre-anomaly
symptoms to raiseadvance anomaly alert before the anomaly hap-
pens. Second, applications running in the hosting infrastructure are
often opaque to the infrastructure provider, which demand black-
box approaches to anomaly prediction. Third, a large-scalehosting
infrastructure often consists of thousands of hosts and many more
software components. To make runtime anomaly prediction prac-
tical for large-scale hosting infrastructures, we must employ light-
weight learning methods.

More importantly, many real world applications (e.g., datastream
processing, Google MapReduce [18]) running in hosting infrastruc-
tures are long lived and operate under changing execution contexts
such as time-varying input workload and fluctuating resource avail-
ability. Applications may exhibit context-dependent behavior. For
example, given an input workload of 100 tuples per second and
40% CPU, a normal stream operator can achieve a throughput of
50 tuples per second while a faulty stream operator with a memory
leak bug under the same input workload and CPU allocation can
only achieve a throughput of 5 tuples per second. However, ifthe
CPU allocation is reduced to 5%, the normal stream operator can
only achieve a throughput of 5 tuples per second. Thus, without
considering the execution context, we cannot distinguish afaulty
component with memory leak from a normal component under low
CPU allocation. Thus, the runtime anomaly prediction system must
be adaptive in order to achieve high quality prediction for dynamic
hosting infrastructures.

In this paper, we present the design and evaluation of a novel
adaptive runtime anomaly prediction system calledALERT. We
focus on anomaly prediction that can raise advance alert before
an anomaly happens. ALERT depends on an anomaly detection
system (e.g., [11, 17]) to provide normal and anomaly state labels
for different measurement samples. However, to achieve predic-
tion, ALERT employs triple-state multi-variant stream classifica-

Distr ibuted
moni tor ing

sensors

Anomaly
predictors

anomaly
alerts

Anomaly alerts,
diagnosis report

Distributed Hosting Infrastructure

M
Monitor

P

M

M PM
P

P

M

P
Predictors

Just-in-time
Anomaly

prevention

Anomaly
diagnosis

Anomaly detectors
 based on pre-defined

anomaly predicates

training
data

system administrator

Figure 1: Predictive anomaly management for distributed hosting infrastructures.

tion scheme [23] to capture a special alert state in additionto the
normal and anomaly state. The alert state corresponds to a set
of measurementspreceding the anomaly state, which allows the
prediction model to capture pre-anomaly symptoms. Thus, the
prediction model can raise advance alert when the monitoredcom-
ponent enters the alert state rather than wait until the component is
already in the anomaly state. We can adjust the scope of the alert
state to tune the sensitivity of the prediction model (i.e.,tradeoff
between the accurate predictions and false alarms).

To adapt to dynamic execution environments, one simple ap-
proach is to continuously update the prediction model with new
training data. However, this simple incremental approach has two
fundamental problems. First, the anomaly prediction system may
incur large overhead to the monitored infrastructure due tofrequent
model re-training. Second, the accuracy of such predictionmodel
may be low when the execution context fluctuates a lot (e.g., al-
ternating between high and low input workloads or high and low
resource availability). Third, the execution contexts areunknown
a priori and exhibit evolving behavior. To address the challenge,
ALERT employs self-evolving, context-aware prediction models.
Under a specific execution context, the prediction model gives con-
sistent state labels for the same measurement. Our scheme first
employs a clustering scheme to automatically discover different
execution contexts. We then train a set of prediction models, each
of which captures anomaly behavior under a specific execution
context. During runtime, ALERT dynamically switches between
different prediction models based on context evolving patterns to
achieve high quality anomaly prediction for dynamic systems. Our
approach differs from previous model ensemble approaches (e.g.,
[45]) in several aspects. First, unlike previous ensemble approach,
wherein each classifier is learned from a fixed window of data that
might span multiple execution contexts, in our approach, wecluster
data that belongs to one context and learn a model from the conflict-
free data. Second, we establish explicit mapping from prediction
models to different execution contexts, which can improve predic-
tion accuracy as well as avoid repetitive learning.

We have implemented a prototype of the ALERT system. To
make the ALERT system practical for large-scale hosting infras-
tructures, we employ fully decentralized monitoring, learning, and
prediction architectures, which is illustrated by Figure 1. We have
tested the ALERT system on IBM System S stream processing
cluster [21,22] and PlanetLab wide-area network system testbed [5].
Our experimental results using real system performance anomalies
and host failures show that: 1) a range of system anomalies indeed
exhibit predictability; 2) ALERT achieves much higher prediction
accuracy than exiting alternative algorithms (e.g.50% higher true
positive rate and80% lower false alarm rate); and 3) ALERT im-
poses low overhead for large-scale hosting infrastructures with real-
time prediction performance (e.g., a few milliseconds training time
and a few microseconds prediction time).

The rest of the paper is organized as follows. Section 2 presents

the design details of our approach. Section 3 presents the prototype
implementation and experimental results. Section 4 compares our
work with related work. Finally, the paper concludes in Section 5.

2. SYSTEM DESIGN
In this section, we present the design details of the ALERT sys-

tem. We first present the basic anomaly prediction model. Then,
we describe the context discovery scheme. Third, we describe our
adaptive anomaly prediction algorithm.

2.1 Baseline Anomaly Prediction Model
To perform runtime system anomaly prediction, we deploy mon-

itoring sensors on all hosts in the hosting infrastructure,which
continuously monitor a set of metrics{x1, ..., xk}, such as CPU
consumption, memory usage, input/output data rate, bufferqueue
length, for each running host and application component. For ex-
ample, we collect about 20 metrics on each host in IBM System
S [23, 24] and about 66 metrics on each host in PlanetLab [4].
The monitoring sensor periodically samples each metric value at a
certain rate (e.g., one sample every 10 seconds) to form ameasure-
ment stream. To achieve online anomaly prediction, we employ
a triple-state stream classifier that can continuously classify each
measurement sample into normal, alert, or anomaly state. The
prediction model will raise alert when the component entersthe
alert state that precedes the anomaly state.

To train the prediction model, we first employ an anomaly de-
tection module to label all measurements with either normalor
anomaly states. A simple anomaly detection module can use anomaly
predicates [20] based on the user’s service level objective(SLO)
requirements. For example, we can use an anomaly predicate “pro-
cessing time > 50ms" to check whether a system is in an anomaly
state in terms of performance. Previous work also provided more
advanced anomaly detection schemes that can accurately distin-
guish anomaly from application change [15] and infer anomaly
labels using similarity clustering [17]. Note that the focus of our
work is on anomaly prediction rather than anomaly detection. For
prediction, we introduce a specialalert state to capture pre-anomaly
symptoms. In the feature space, the alert state correspondsto a
region “preceding” the anomaly points, illustrated by Figure 2.

Different from the normal and abnormal measurements that are
labeled by the anomaly detector, whether a set of measurements
are labeled as alert is controlled by analert interval (I), which
denotes a time interval (e.g., 30 seconds) before the anomaly in-
cident. Suppose the anomaly incident happens at timet, all the
measurement points sampled betweent − I andt will be labeled
as alert. For example, we use a larger alert interval (I = 3) in
Figure 2(a) than that (I = 1) in Figure 2(b). Thus, the alert
regions in Figure 2(a) include more measurement points thanthose
in Figure 2(b). As a result, the prediction models in Figure 2(a)
will classify more measurement samples as alert state than those

x2

x1

Anomaly A

Anomaly B

(a) Alert interval I = 3

Normal Alert Anomaly

t

t+1
t+2

alert

x2

x1

Anomaly A

Anomaly B

(b) Alert interval I = 1

Normal Alert Anomaly

t
t+1alert

Figure 2: Tunable anomaly predictor with different alert in ter-
vals.

x1 < m?

x2 < p? Normal

Alert Anomaly

Anomaly
Region

Alert
Region

Normal
Region

p

m

xxx xx

+
+
+

+
+

+
+ +

+

+ Normal Alert x Anomaly

x2

x1

Yes No

Yes No

Figure 3: Anomaly prediction using triple-state decision tree
classifier.

in Figure 2(b). Intuitively, the larger the alert interval,the more
measurement points will be classified as alert, the more likely the
predictor is to raise anomaly alerts. Thus, we can use the alert
interval I as a tuning knob to control the predictor’s true positive
rateAT and false-alarm rateAF . The anomaly predictor is said
to raise a correct alert if the predicted anomaly indeed happens
shortly after the anomaly alert is issued. LetNtp, Nfn, Nfp, and
Ntn denote the true positive number, false negative number, false
positive number, and true negative number, respectively. The true
positive rateAT and false alarm rateAF of the anomaly predictor
are defined in a standard way as

AT =
Ntp

Ntp + Nfn

, AF =
Nfp

Nfp + Ntn

(1)

At one extreme, if we setI = 0, ALERT becomes conventional
reactive approach where the alert state is always empty and no
alarm will be generated before anomaly happens (i.e.,AT = 0,
AF = 0). At the other extreme, if we setI = ∞, ALERT becomes
traditional proactive approach that performs preventive actions on
all components unconditionally (i.e.,AT = 1, AF = 1). The
optimal solution often lies in-between the two extremes in practice,
which motivates us to develop tunable prediction models. Aswe
will show later in our experimental results, the alert interval can
indeed be used to tune the tradeoff between true positive rate and
false alarm rate.

We chose decision trees [27] to classify component states inthis
paper since the decision tree classifier can produce rules with direct,
intuitive interpretation by non-experts. Thus, the predictor can not
only raise anomaly alert but also provide cues for possible anomaly
causes1. Figure 3 illustrates a simple case of classification using
two metrics. For state classification, the decision tree essentially
applies a sequence of threshold tests on the metrics. The predicate
1However, our adaptive anomaly prediction scheme is not re-
stricted to the decision tree classification method, which can be
applied to other classification methods as well.

that corresponds to the alert region is “x1 < m andx2 < p”, and
can be determined by following the path in the tree which leads
to the leaf labeledalert. The decision tree classifier is trained
using labeled measurement data from all three states. In order
to effectively and automatically discover the appropriatefeatures
from the monitored metrics for prediction, the classifier has to in-
corporate multiple features in the training phase. An additional
benefit of decision trees is that they can inherently select those
metrics appropriate for state classification by seeking theshortest
possible tree that explains the data. In our case, the feature se-
lection occurs whenever we induce a new decision tree classifier
under a specific execution context. We train every new classifier by
incorporating all monitoring metrics, and rely on the decision tree
classifier training algorithm to perform feature selection.

2.2 Context-Aware Anomaly Prediction Model
We now present the context-aware anomaly prediction model

training algorithm, illustrated by Figure 4. We first employa clus-
tering algorithm to discover different execution contextsin dynamic
systems. We then train a set of prediction models described in
Section 2.1, each of which is responsible for predicting anomalies
under a specific context. In contrast to common online learning
algorithm that frequently updates models with new trainingdata,
our scheme induces a set of prediction models over a long period of
training data to avoid unnecessary repetitive learning. More impor-
tantly, we induce models from conflict-free data, which produces
high quality prediction models.

Our approach is based on two observations. First, once a system
component enters a certain execution context, it will stay in the
context for a period of time, until a certain event occurs which leads
the system into another context. Second, the system may operate
under similar execution contexts repetitively over a long period of
time. For example, a web server often receives higher workload
in the morning and lower workload in the evening and such exe-
cution context switching repeats. In Figure 4, we show a stream
of measurement samples (divided into stream data blocks). Each
stream data blockdi contains a small fixed length of measurement
samples. Data blocks with the same color belong to the same ex-
ecution context. Here, the system component operates underthree
different execution contexts. ContextC1, for instance, has three
(non-contiguous) occurrences at time 0, 8, and 18. The system
component switches from ContextC1 to C2 at timet = 6.

To achieve context-aware anomaly prediction, one big challenge
is that system contexts are hard to identify and characterize as they
evolve over time. Our goal is to group measurement samples that
correspond to the same context, and then learn models or classifiers
from the grouped measurements. Grouping is essential because
each individual instance or occurrence of the context oftencontains
too little information to fully characterize the context. Aclassifier
trained from insufficient data will have large overfitting error and
will generalize badly for future testing data. On the other hand,
by grouping together measurement samples belonging to the same
context, we will be able to learn high quality prediction models as
we minimize overfitting error. We employ a clustering algorithm to
discover different contexts. The goal of the algorithm is topartition
a measurement stream into a set of stream segments, , denotedby
Di. Each stream segment contains several continuous data blocks:

P = {D1, D2, · · · , Dk} (2)

that minimizes the global error:

E(P) =
1

|D|

X

Di∈P

1

|Di|
Err(Di) (3)

whereErr(Di) denotes the error of the predictor learned from

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

D1 D2 D3 D4 D5 D7

Time 0 2 4 6 8 10 12 14 16 18 20 3022

Stream

24 26 28 32

D6

Context C2

Prediction
model M2

Context C3

Prediction
model M3

Context C1

Prediction
model M1

Figure 4: Context-aware anomaly prediction.

stream segmentDi. Before we discuss how to computeErr(Di),
let us first understand the rationale behind the optimization prob-
lem. It is easy to see that whenE(P) is minimized, the quality of
the contexts, or the accuracy of the predictor learned from the con-
texts, is maximized. The reason is the following. If two segments
belong to the same context, then merging them will reduce the
overfitting error of the predictor learned from the merged segments.
On the other hand, if two segments belong to different contexts,
then merging them will create a training data set with conflicting
contexts, which reduces the accuracy of the predictor trained from
such data. Thus, minimizingE(P) maximizes the quality of the
discovered contexts.

To computeErr(Di), the error of the predictor trained from
segmentDi, we perform cross validation. For instance, two-fold
cross validation randomly splits data in a segment into two sets.
We use data in the first set to train a predictor, and use the other
set to computeErr(Di), which is the percentage of wrong predic-
tions made by the trained predictor. It is easy to see that in order
for cross-validation to work, segments must satisfy the constraint
|Di| > 1 for all i to avoid the trivial partition wherein eachDi

contains only one data sample.
The core task is then to minimizeE(P) in Equation 3, which

gives us the optimal partition of the stream data and hence the
contexts we want to discover.E(P) can be minimized by dynamic
programming since the clustering problem we defined above has
optimal sub-structures. LetD1,n denotes a stream of lengthn, and
Di,j denote a substream from data blocki to j. LetPi,j denote the
optimal partition ofDi,j , that is, predictors trained from segments
defined byPi,j have the minimum validation errorE(Pi,j). Our
task is to findP1,n, the optimal partition for the entire stream.

Assume we knowP1,k andPk+1,n, the optimal partitions for
substreamD1,k and Dk+1,n, ∀k, 1 ≤ k < n. ConsiderP1,n,
there are two cases: it either contains no sub-partition, i.e., the
entire streamD1,n forms a single segment, or it is a union of two
partitionsP1,k andPk+1,n, for a certaink. In the first case, we
learn a predictor fromD1,n, and estimate the validation error of the
predictor. In the second case, the validation error can be derived by:

E(P1,n) = min
k

{
k

n
E(P1,k) +

n − k

n
E(Pk+1,n)} (4)

Clearly, finding the best partition forD1,k or Dk+1,n is the sub-
problem with the same structure. We solve these sub-problems
recursively until we reach the simple casei = j when we partition
Di,j , 1 ≤ i ≤ j ≤ n. Note that we only need to solve each sub-
problem once, as we memorize and reuse solutions to problems
that we have already solved. The intermediate resultsE(Pi,j) are
stored and reused by succeeding computation. By storing back-
tracking pointers, the corresponding optimal partitionP1,n can be
recovered easily.

Assume that we have decided the optimal partition withN stream

segments, i.e.P1,n = {D1, D2, · · · , DN}. Each segment in
P1,n represents a context occurrence. The boundary between two
segments means a context change. One context usually has multi-
ple occurrences throughout the entire measurement stream.There-
fore, we need to perform a clustering algorithm again to group the
segments which maybe non-contiguous into a number of unique
contexts. For example, in Figure 4, stream segmentsD1, D3 and
D5 are merged as a specific contextC1. ContextsC2 andC3 are
formed in a similar way. We still minimize the objective function
in Equation 3 to decide the optimal partition. The only differ-
ence is that now any two stream segments (i.e., contiguous ornon-
continuous) are eligible to be merged.

In terms of complexity, when we decide the optimal partitionfor
continuous data blocks, each sub-problemE(Pi,j) requires us to
train and test a classifier to get the prediction error value with no
sub-partition. Note that we use decision tree classifier andadopt
C4.5 implementation [2]. Assume there arem measurement sam-
ples inDi,j andk features for each sample. Previous work has
proven that the total cost of building a decision tree classifier is
O(km log m)+O(m(log m)2) [43]. There are totallyΘ(n2) sub-
problems. After that, when we decide the optimal partition for N
stream segments, a naive solution requires us to examineΘ(N2)
possible segment pairs (Di,Dj). Each examination incurs cost of
building a decision tree classifier to get the prediction error for
the temporarily combined segmentDi ∪ Dj . Clearly, the overall
complexity is high. However, heuristic optimization techniques
such as greedy top-down or bottom-up techniques can be devel-
oped to find good but suboptimal solutions. In our implementation,
we use a two-stage hierarchical clustering algorithm [14] which
belongs to the greedy bottom-up technique. We will show later that
this lightweight heuristic algorithm has fast training time and still
achieves good performance.

After extracting different execution contexts, we train a set of
prediction modelsM1, ...,Mq, whereMk, 1 ≤ k ≤ q is a unique
model for contextCk. In contrast to a monolithic prediction model
that is trained using all measurement samples, our adaptiveanomaly
prediction approach employs an ensemble of prediction models.
Different from previous model ensemble approach that trains mod-
els from different windows of consecutive training data, our ap-
proach induces prediction models from context-based grouped mea-
surements. For example, for the contextC1, we train a prediction
modelM1 using training data{D1, D3, D5} in Figure 4. In con-
trast to previous model ensemble approach where different models
are induced from windows of consecutive training data, our model
is induced from intelligently grouped data that are not necessarily
consecutive.

2.3 Adaptive Runtime Anomaly Prediction
During runtime, to decide if an alert should be raised based on

system measurements at timet, we must first find out the context

Ck at timet, so that we can applyMk, the model corresponding
to contextCk, on the system measurements to make the decision.
However, finding the current context is a nontrivial problem, since
instead of exhibiting simple patterns such as periodicity,context
changes may occur at any time. For example, in Figure 4, the sys-
tem component operates under changing execution contextsC1 →
C2 → C1 → C3 → C1 → C3 → C2. Our approach of finding
the current context is based on Bayesian analysis. We collect the
statistics of context changes in the measurement stream, and ana-
lyze how different contexts interact with each other. The result is a
context switching model, which enables us to switch to the most-
likely context giving cues from an online monitoring stream.

Let Pt(Ck) denote the probability thatCk is the context at time
t. Let Yt denote the new measurement that arrives at timet. Let
p(Yt|Ck) denote the probability thatYt is generated under context
Ck. Let P−

t (Ck) denote theprior probability of Ck being the
context at timet, that is, the probability thatCk is the context at
time t before we seeYt. According to the Bayesian rule, we have2:

Pt(Ck) ∝ P−

t (Ck) · p(Yt|Ck) (5)

Our goal is to find the contextCk that has the largestPt(Ck).
To do this, it suffices to computep(Yt|Ck) and P−

t (Ck). We
approximatep(Yt|Ck) using the prediction error ofMk. More
specifically, letErrk be the cross validation error ofMk. Thus,
if Mk predictsYt correctly, we havep(Yt|Ck) ∝ 1 − Errk,
otherwise, we havep(Yt|Ck) ∝ Errk.

ProbabilityP−

t (Ck) is computed recursively:

P−

t (Ck) =
X

i

Pt−1(Ci)χ(Ci, Ck) (6)

whereχ(Ci, Ck) is the probability of changing to contextCk when
contextCi is previously active. Furthermore, we assume all con-
texts have the same probability to be the context at timet = 1.
Finally, we need to findχ(Ci, Cj), which is derived from historical
data:

χ(Ci, Cj) =
number of transitions from contextCi to Cj

total number of context transitions
(7)

For example, in Figure 4, there are altogether six context transi-
tions, with two occurrences of contextC3 following contextC1

(block d6 to d7 and blockd11 to d12). Thus,χ(C1, C3), the prob-
ability that contextC1 is followed by contextC3 is 2/6.

In a dynamic hosting infrastructure, new context will emerge
during runtime. In our system, we actively log data for whichour
prediction is unsatisfactory (e.g., data for which alert israised but
never lead to anomaly even without intervention, and also data for
which alert is not raised but leads to anomalies). Those datamay
indicate the emergence of a new execution context that cannot be
captured by our current prediction models. We can thus induce
new contexts and models from those data. We also update the
context switching model to incorporate these new models into the
dynamic context switching pattern. At the same time, we may
also remove inactive contexts (i.e., with zero switch probability)
to keep the set of active contexts small. If the current prediction
model consistently provides unsatisfactory prediction results, we
will trigger the context-aware prediction model training algorithm
described in Section 2.2 to induce a new set of prediction models
based on new training data.

3. IMPLEMENTATION & EVALUATION
In this section, we evaluate our ALERT system. We first describe

the system implementation. Then, we show how we collect several
2Pt(Ck) is a shorthand forp(Ck|Yt, · · · , Y1), and P−

t (Ck) a
shorthand forp(Ck|Yt−1, · · · , Y1).

System S Metrics Description
AVAILCPU percentage of free CPU cycles
FREEMEM available memory

PAGEIN/OUT virtual page in/out rate
MYFREEDISK free disk space

RXSDOS num. of received data objects
TXSDOS num. of transmitted data objects
DPSDOS num. of dropped data objects

RXBYTES num. of received bytes
TXBYTES num. of transmitted bytes

QUEUELEN input queue length
UTIME process time spent in user mode
STIME process time spent in kernel mode

ROUTING system data handling time
VMSIZE address space used by a component
VMLCK VM locked by the component
VMRSS VM resident set size

VMDATA VM usage of the heap
VMSTK VM usage of the stack
VMEXE VM executable
VMLIB VM libraries

Planetlab Metrics Description
LOAD1 load in last 1 minute
LOAD5 load in last 5 minutes

AVAILCPU percentage of free CPU cycles
MYFREEDISK free disk space of my slice
DISKUSAGE percentage of utilized disk space
FREEDISK free disk space
FREEMEM available memory
NUMSLICE num. of registered slices on this host

Table 1: Subset of monitoring metrics.

trace sets that contain anomaly data. Third, we present the experi-
mental results to validate the prediction accuracy of our approach.

3.1 System Implementation
We have implemented a prototype of the ALERT system and

deployed it on two production hosting infrastructures: 1) IBM Sys-
tem S stream processing cluster [21, 22] that consists of about 250
IBM blade servers, each of which has dual Intel Xeon 3.2GHZ
CPUs and 2 to 4 GB memory; and 2) PlanetLab wide-area network
system testbed [33]. To achieve generality, the ALERT system is
implemented based on standard Linux APIs, which allows us to
port the ALERT system to different hosting infrastructure easily.
We collect about 20 metrics on each host in IBM System S [23,24]
and about 66 metrics on each host in PlanetLab [4]. Table 1 lists
a subset of key metrics collected by ALERT on System S and
PlanetLab. All collected metrics are used to train the decision tree
classifier.

To make ALERT practical for large-scale hosting infrastructures,
we employ a fully decentralized monitoring and learning architec-
ture, illustrated by Figure 1. We first deploy distributed monitor-
ing sensors to collect various monitoring metrics. We then de-
ploy a set of predictors that are associated with different system
hosts/components. To avoid affecting normal application work-
loads, we strive to useidle resources in the hosting infrastructure
to perform prediction and model training. We also install a set of
anomaly detectors to continuously provide normal/anomalyclass
labels for new measurement samples that will be later used by
the predictors as training data. Note that a set of measurement
samples preceding the anomaly samples will be later labeledas
alert by the predictor based on the alert interval. We will describe

memory leak loop err buffer err rate mismatch
0

5

10

15

20

25
Join Component, TCP Flows, I=10

fault

n
u
m

b
e
r

o
f
c
o
n
te

x
ts

ProcTime
Throughput

(a)

memory leak loop err buffer err rate mismatch
0

2

4

6

8

10

12
Diffuser Component, Video Streams, I=10

fault

n
u
m

b
e
r

o
f
c
o
n
te

x
ts

ProcTime
Throughput

(b)

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
0

5

10

15

20
PlanetLab Ping Failures

Node ID

n
u
m

b
e
r

o
f
c
o
n
te

x
ts

(c)

Figure 5: Number of execution contexts in dynamic systems.

the implementation details of the anomaly detectors for different
applications in Section 3.2.

3.2 Experiment Setup
We first collected measurement traces on the IBM System S clus-

ter. We deploy monitoring sensors on all hosts and continuously
collect various metrics with a sampling rate of one sample every
two seconds. We install a set of predicate-based anomaly detectors
in the system to catch anomaly incidents: 1)ProcTime anomaly
when the average per-tuple processing time of the componentex-
ceeds a certain threshold (e.g., 4 seconds for a join component and
1200 milliseconds for a diffuser component) ; and 2)Throughput
anomaly when the output rate of the component is lower than a
threshold (e.g., 30 tuples/second), or the ratio between the output
rate and the input rate is lower than a threshold (e.g., 0.4).

In our experiments, we run the System S reference application [21]
that consists of about 50 distributed stream processing components
performing complicated multi-modal stream analysis. The refer-
ence application shares resources with other applicationsstarted by
different infrastructure users. Each trace includes about5000 mea-
surement samples. To trigger anomalies, we inject various faults in
different components at different time instants to test theadaptabil-
ity of our anomaly prediction model for time-varying workloads.
We employed a set of common faults in stream systems: 1)mem-
Leak: the component executes a buggy code segment that keeps
forgetting to free memory; 2)loopErr: the component spawns a
CPU-bound thread that includes an infinite loop error (i.e.,iterator
update mistake); and 3)bufferErr: the component forgets to remove
processed data units from its input buffers. Each fault lasts 50
seconds: we activate the fault at time t and remove the fault at
time t + 50. We report the results on two commonly used stream
processing components [25]: 1) a join component that continuously
correlates tuples from different wide-area TCP traffic flowsbased
on a pre-defined join condition, and 2) the diffuser component dis-
patches data items in news video streams to different hosts for load
balancing.

We have started to collect measurement traces on the PlanetLab
since July 2009 [4]. In our experiments, we deploy monitoring
sensors on about 400 PlanetLab nodes and collect various host-
level metrics with a sampling rate of one sample every 10 seconds.
We deploy a set of anomaly detectors to catch host ping failures: a
monitored host does not respond to five successive ping trials. Each
failure detected in this way is recorded with timestamp information.
The system also collects about 66 monitoring metrics [3] on the
failed hosts to capture pre-failure behavior. Each host ping failure
trace consists of 4000 to 6000 samples.

In each trace, ALERT detects multiple execution contexts, which
indicates real applications do exhibit evolving behavior.The execu-
tion context change is caused by time-varying input data rates and

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(a) ProcTime Anomaly

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(b) Throughput Anomaly

Figure 6: True positive rate (AT) and false alarm rate (AF) for
the IBM System S Join component with the memory leak fault.

fluctuating resource availability on the shared hosting infrastruc-
ture. Figure 5 shows the number of contexts discovered in different
IBM System S trace data. We observe that the join component pro-
cessing TCP traffic streams experiences more dynamic execution
context than the diffuser component processing the video streams.
As we will show next, the anomaly predictor generally has lower
prediction accuracy for more dynamic components. The reason
is that with a larger number of different contexts, the predictor is
less certain to find the right context in evolving systems, and each
context is trained with fewer data. We also observe 8 - 12 execution
contexts discovered in different PlanetLab trace data.

For comparison, we implemented three commonly used exist-
ing learning algorithms: 1) themonolithic scheme that trains a
single anomaly prediction model using the entire training data; 2)
the incremental scheme that incrementally builds and updates the
prediction model using a sliding window of recent measurements;
and 3) theensemble scheme [45] that maintains an ensemble of
prediction models, each of which is trained using differentwindows
of training data. At any moment, the best performed model based
on thebalanced accuracy [45] in the past window of data is used
to predict anomaly in the current window of data. Each window
includes 500 samples. In all approaches, we use the same decision
tree classifier to build the triple-state anomaly prediction model.

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(a) ProcTime Anomaly

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(b) Throughput Anomaly

Figure 7: True positive rate (AT) and false alarm rate (AF) for
the IBM System S Join component with the loopErr fault.

We adapt the widely-used decision tree software package C4.5 [2]
to make it work in online learning and classification. We use stan-
dard evaluation metrics: true positive rate (AT) and false alarm
rate (AF) denoted by Equation 1 to compare the performance of
different learning algorithms. We say the prediction modelmakes
a true positive prediction if it raises an anomaly alert at time t1
and the anomaly indeed happens at timet2, t1 < t2 < t1 + I .
Otherwise, we say the prediction model fails to make a correct
prediction. If the predictor raises an alert and the predicted anomaly
does not happen after a period of time (e.g., the alert interval), we
say that the prediction model raises a false alarm.

3.3 Results and Analysis
In our first set of experiments, we evaluate the prediction ac-

curacy for the performance anomalies of a join component anda
diffuser component in the IBM System S. There are six replicated
join components running on different hosts in our application. They
perform the same operation on similar workload so that they exhibit
similar but not identical behavior. In each experiment run,we
choose one component as the training set and predict the anomalies
of the other five replicated components. Under the same configu-
ration, We swap their roles for six times so that each component
is used for training exactly once. All the following experimental
results of the join component are aggregated in this way. Forthe
diffuser component, we did not have replica in our application so
we use half of the collected data as the training data to predict the
anomalies of the other half data.

For each algorithm, we show both the true positive rate (AT)
and false alarm rate (AF) which are calculated for the whole trace
data. An ideal predictor should have 100% true positive rateand
zero false alarm rate. To show the impact of the alert interval on
the sensitivity of the prediction model, we repeat our experiments
using a range of alert intervalsI = 10, 20, 30, 40, 50, 60, 70, and
80 seconds. Figure 6(a) and Figure 6(b) show the true positive
rateAT and false alarm rateAF for the faulty join components
containing the memory leak fault. The X-axis shows different alert
intervals used by the prediction models and the Y-axis showsthe
true positive rate and false alarm rate achieved by different predic-
tion methods. The results show that ALERT consistently achieves

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(a) ProcTime Anomaly

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(b) Throughput Anomaly

Figure 8: True positive rate (AT) and false alarm rate (AF) for
the IBM System S Join component with the bufferErr fault.

much higher true positive rate and lower false alarm rate than other
alternative methods. This confirms that context-aware anomaly
predictions are necessary for real application workloads.

We also observe that the alert intervalI can indeed be used
as a control knob to tune the sensitivity of the prediction model.
Generally speaking, as we increase the alert interval, the derived
prediction model is more sensitive with both increased truepositive
rate and false alarm rate. This provides the opportunity forus
to achieve tunable anomaly management. Based on the benefit
achieved by accurate predictions and cost for handling false alarms,
we can configure the prediction model with a proper alert interval
to achieve optimal prediction reward. We also observe that differ-
ent anomaly types exhibit varied predictability. In this case, the
ProcTime anomaly is easier to predict than the throughput anomaly
that has high false alarm rate. Note that the premise of anomaly
prediction is that the anomaly exhibits gradual pre-anomaly symp-
tom. Thus, if the anomaly does not have prominent pre-anomaly
symptoms, the predictor will have high errors.

For the ensemble approach, we sometimes observe ups and downs
for both true positive rate and false alarm rate as the alert intervalI
increases. The reason of such fluctuation is that we use the balanced
accuracy as the criteria to select the best prediction modelfrom the
ensemble, which is defined asBA = (AT +1−AF)/2. Therefore,
if we look at the true positive rate individually, it is possible that the
true positive rate of a largerI is lower than that of a smallerI . The
essence here is to know that the ensemble approach performs worse
than ALERT even in terms of the balanced accuracy.

Figure 7(a) and Figure 7(b) show the prediction accuracy results
for the join components containing the loopErr fault. Again, we
observe that our algorithm can achieve much better performance
than all other schemes. However, the anomalies caused by the
loopErr fault are more difficult to predict than those causedby the
memLeak fault in terms of high false alarm rate. The reason is
that the effect of the loopErr fault is more sudden than that of the
memLeak fault, which makes it less predictable. Particularly, all
algorithms have high false alarm rates for the throughput anomaly,
which make it unpredictable.

Figure 8(a) and Figure 8(b) show the prediction results for the
join components containing the bufferErr fault. The results again

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(a) ProcTime Anomaly

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(b) Throughput Anomaly

Figure 9: True positive rate (AT) and false alarm rate (AF) for
the IBM System S Diffuser component with the memory leak
fault.

show that our approach consistently achieves higher true positive
rate and lower false alarm rate than other learning algorithms. Al-
though different anomaly types exhibit varied predictability, our
prediction model can consistently achieve much better prediction
accuracy. Similar to the previous cases, the throughput anomaly is
more difficult to predict than the ProcTime anomaly.

We now evaluate our anomaly prediction approach using a dif-
ferent type of application component called diffuser. Compared to
the join component, the diffuser component has simpler application
semantics: it dispatches input data to different hosts based on their
load conditions. Second, the diffuser processes a different input
stream workload: news video streams that exhibit less rate variation
than the network traffic streams. Due to the space limitation, we
only show a subset of our results. Figure 9(a) and Figure 9(b)
show the prediction accuracy results for a faulty diffuser with the
memory leak fault. We observe that our scheme still consistently
outperforms other schemes. The Monolithic approach achieves
similar true positive rate with our scheme but incurs higherfalse
alarm rate. The Incremental and Ensemble approaches have very
low true positive rate, which is caused by learning from conflict
training data contained in the fixed-length of windows.

We now present the anomaly prediction results for the ping fail-
ure on the PlanetLab hosts. For each host, we use half of the
trace data as the training data and predict the ping failuresin the
other half of the trace data. Figure 10(a) shows the average pre-
diction accuracy for all ten failed hosts during our experiments.
Figure 10(b) and Figure 10(c) shows the prediction accuracyfor
two specific failed hosts. The results show that the ping failure on
PlanetLab shows good predictability and our approach can achieve
high prediction accuracy with over 90% true positive rate and near
zero false alarm rate. In contrast, other alternatives achieve much
lower true positive rate and higher false alarm rate. After examining
the trace data, we found that a set of metrics such as LOAD1 and
AVAILCPU exhibit significant difference between normal samples
and anomaly ones, and those metrics change gradually.

We also measure the prediction lead time (i.e., how early ahead
can the prediction model raise an alert) achieved by the ALERT
system. Due to the space limitation, we only show a subset of all

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(a) Average prediction accuracy

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(b) Prediction accuracy on host A

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

Pr
ed

ict
ion

 a
cc

ur
ac

y

A

T
−ALERT

A
F
−ALERT

A
T
−Monolithic

A
F
−Monolithic

A
T
−Incremental

A
F
−Incremental

A
T
−Ensemble

A
F
−Ensemble

(c) Prediction accuracy on host B

Figure 10: True positive rate (AT) and false alarm rate (AF)
for Ping failure prediction accuracy on the PlanetLab.

results. Figure 11(a) shows the minimum, average, and maximum
prediction lead time achieved by ALERT for the IBM System S
anomalies. We observe that the alert interval affects the lead time.
As we increase the alert interval, the prediction model tends to raise
alerts earlier since more measurement samples will be included in
the alert state. The tradeoff here is that larger alert interval may also
incur higher false alarm rate, as shown in previous figures. Simi-
larly, Figure 11(b) shows the prediction lead time for the PlanetLab
host failure. The results indicate that ALERT can achieve tens of
seconds or several minutes lead time to allow just-in-time anomaly
diagnosis and correction.

One design objective of the ALERT system is to achieve scalable
online anomaly learning and prediction. To achieve the goal, we
employ reservoir biased sampling [23] to reduce the measurement
sampling overhead. One question is whether the biased sampling
can greatly affect the prediction accuracy. We repeat the above
experiments using biased sampling that retained 50% and 30%of
the total measurements. Due to space limitation, we only show a
subset of results shown by Figure 12(a) and Figure 12(b). We ob-
serve that biased sampling can maintain similar predictionaccuracy
while reducing the sampling overhead.

We now evaluate the overhead of the ALERT system. Figure
13(a) shows the cumulative distribution function (CDF) of model
training time collected in different experiment runs. The training
time includes the time for discovering contexts and building deci-
sion tree ensembles corresponding to different contexts. We com-
pare the model training time using full measurement sampleswith

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Alert interval (sec)

P
re

di
ct

io
n

le
ad

 ti
m

e
(s

ec
)

min
avg
max

(a) System S

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Alert interval (sec)

P
re

di
ct

io
n

le
ad

 ti
m

e
(s

ec
)

min
avg
max

(b) PlanetLab

Figure 11: ALERT prediction lead time.

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

P
re

d
ic

tio
n
 a

cc
u
ra

cy

A
T
−unsampled

A
T
−biased 50%

A
T
−biased 30%

A
F
−unsampled

A
F
−biased 50%

A
F
−biased 30%

(a) Join component - ProcTime
Anomaly

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alert interval (sec)

P
re

d
ic

tio
n
 a

cc
u
ra

cy

A
T
−unsampled

A
T
−biased 50%

A
T
−biased 30%

A
F
−unsampled

A
F
−biased 50%

A
F
−biased 30%

(b) PlanetLab - Ping Failure on
host A

Figure 12: True positive rate (AT) and false alarm rate (AF)
under different sub-sampling rates.

the training time using a subset of samples obtained by reservoir
sampling. With full measurements, the model training time is in the
range of [1,2] milliseconds. By retaining 30% samples, we can re-
duce the training time to [0.3, 0.6] millisecond. Figure 13(b) shows
the CDF of mean prediction time collected in different experiment
runs. The results show that our prediction algorithm is fast, which
requires less than four microseconds for the model trained using
30% biased samples. The results indicate that ALERT can indeed
support online anomaly prediction with realtime evaluation speed.
We also measured the cost of online system monitoring, which
generally imposes less than 1% load on the monitored host.

4. RELATED WORK
System anomaly detection and debugging have been extensively

studied. For example, Noble et al. proposed an anomaly detec-
tion algorithm for graph-based data in which system predictabil-
ity is quantified as graph regularity [31]. Shen et al. proposed
a change profile based approach to detect system anomaly symp-
toms by checking performance deviation between reference and
target execution conditions [37]. Wang et al. proposed the Peer-
Pressure to automatically troubleshoot system misconfigurations
by checking the status of machines running the same application
in the database [41]. Bhatia et al. proposed “sketch" data mon-
itoring structure and correlated anomaly symptoms by predefined
rules [10]. Oznat proposed an information-theoretic approach to
detect anomalies in the metric behavior for web services [32]. Cher-
kasova et al. built regression-based transaction models and applica-
tion performance signatures to detect anomalous application behav-
iors [15]. Guo et al. explored method of probabilistically correlat-
ing monitoring data for failure detection in complex systems [26].
Magpie [9] is a request extraction and workload modeling tool that
can record fine-grained system events and correlates these events
using an application specific event schema to capture the control

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

time (ms)

fr
a
ct

io
n

trainingTime−unsampled
trainingTime−biased 50%
trainingTime−biased 30%

(a) Training time

0 2 4 6 8 1010
0

0.2

0.4

0.6

0.8

1

time (us)

fr
a
ct

io
n

predictionTime−unsampled
predictionTime−biased 50%
predictionTime−biased 30%

(b) Prediction time

Figure 13: ALERT system computation cost.

flow and resource consumption of each request. Pinpoint [13]also
takes a request-oriented approach to tag each call with a request ID
and diagnose faults by applying statistical methods to identify com-
ponents that are highly correlated with failed requests. Aguilera
et al. proposed a black box performance debugging techniqueby
analyzing message-level traces of system activities to infer causal
paths [8]. Triage [39] leverages lightweight re-executionsupport to
deal with system bugs without requiring an intervention from a pro-
grammer. Different from previous work, our research focuses on
applying machine learning techniques to achieve advance anomaly
prediction instead of post-anomaly detection.

Our work is closely related to the Tiresias system [42] that also
addresses the black-box failure prediction problem in distributed
systems. Different from the Tiresias system that relies on anomaly
detection over individual performance metrics to achieve system
state prediction, our work provides predictions using triple-state
whole system classification that can easily achieve tunabletradeoff
between true positive and false alarm rates. Furthermore, Tire-
sias does not consider execution context changes in dynamicdis-
tributed systems. In [23, 24], we have presented an initial design
of our online anomaly prediction system and time-to-anomaly es-
timation, which, however, do not address dynamic computingcon-
text changes that are common in many real-world systems suchas
stream processing systems.

Recently, machine learning methods have been shown to be promis-
ing for autonomic failure management. Much previous work fo-
cuses on offline system log analysis (e.g., [29, 30, 35, 36, 40]). Xu
et al. developed online console log analysis techniques to detect
system problems [44]. In contrast, our research focuses on on-
line characterization of system anomalies using performance and
resource metrics. Power et al. investigated the performance pre-
diction power of different statistical learning approaches [34]. Co-
hen et al. applied Tree-Augmented Bayesian Networks (TAN) to
perform performance diagnosis [16], and proposed the signature
concept to capture the essential characteristic of a systemstate [17].
Zhang et al. extended the TAN model and proposed to use ensem-
bles of models for diagnosing performance problems [45]. The Fa
system employs various machine learning techniques to achieve au-
tomatic failure diagnosis for query processing systems [19]. Shen
et al. proposed to construct a whole-system I/O throughput model
as the reference of expected performance and used statistical clus-
tering and characterization of performance anomalies to guide de-
bugging [38]. Different from previous work, our research focuses
on applying self-evolving learning methods to achieve adaptive run-
time anomaly prediction for large-scale hosting infrastructures.

5. CONCLUSION
In this paper, we have presented the ALERT system that provides

adaptive runtime anomaly prediction system for large-scale host-

ing infrastructures. ALERT provides a tunable anomaly prediction
model and employs self-evolving learning algorithm to adapt to
dynamic hosting infrastructures. To the best of our knowledge,
our work makes the first attempt to achieve context-aware anomaly
prediction for dynamic distributed systems. We have implemented
the ALERT system and deployed it on several production hosting
infrastructures. We learned the following lessons from ourproto-
type implementation: 1) a range of system anomalies do exhibit
predictability; 2) ALERT can achieve much better prediction accu-
racy than existing learning methods for dynamic systems; and 3)
ALERT can provide realtime prediction performance while impos-
ing low overhead to the hosting infrastructure.

6. ACKNOWLEDGMENT
This work was sponsored in part by NSF CNS-09-1-5567, NSF

CNS-09-1-5861, U.S. Army Research Office (ARO) under grant
W911NF-08-1-0105 managed by NCSU Secure Open Systems Ini-
tiative (SOSI), IBM Exploratory Stream Analytics Award, and IBM
Faculty Award. Any opinions expressed in this paper are those of
the authors and do not necessarily reflect the views of the NSF,
ARO, or U.S. Government.

7. REFERENCES
[1] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
[2] C4.5 Release 8.http://www.rulequest.com/Personal/.
[3] CoMon. http://comon.cs.princeton.edu/.
[4] InfoScope Distributed Monitoring System.

http://dance.csc.ncsu.edu/projects/infoscope/index.html.
[5] PlanetLab. https://www.planet-lab.org/.
[6] The STREAM Group, STREAM: The Stanford Stream Data

Manager.IEEE Data Engineering Bulletin, 26(1):19-26, Mar. 2003.
[7] D. J. Abadi and et al. The Design of the Borealis Stream Processing

Engine. InProc. of CIDR, 2005.
[8] M. K. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributedsystems
of black boxes. InProc. of ACM SOSP, 2003.

[9] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. InProc. of OSDI, 2004.

[10] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson.
Lightweight, high-resolution monitoring for troubleshooting
production systems. InProc. of OSDI, pages 103–116, 2008.

[11] J. Breese and R. Blake. Automating computer bottleneckdetection
with belief nets. InProc. of UAI, pages 36–45, San Francisco, CA,
1995. Morgan Kaufmann.

[12] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot- A Technique for Cheap Recovery. InProc. of OSDI,
Dec. 2004.

[13] M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox,and
E. Brewer. Path-Based Failure and Evolution Management. InProc.
of NSDI, 2004.

[14] S. Chen, H. Wang, S. Zhou, and P. S. Yu. Stop Chasing Trends:
Discovering High Order Models in Evolving Data. InProc. of ICDE,
2008.

[15] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni.
Anomaly? application change? or workload change? towards
automated detection of application performance anomaly and
change. InProc. of DSN, pages 452–461, 2008.

[16] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating Instrumentation Data to System States: A Building
Block for Automated Diagnosis and Control. InProc. of OSDI,
2004.

[17] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.
Capturing, indexing, clustering, and retrieving system history. In
Proc. of SOSP, 2005.

[18] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. InProc. of OSDI, Dec. 2004.

[19] S. Duan, S. Babu, and K. Munagala. Fa: A System for Automating
Failure Diagnosis. InProc. of ICDE, 2009.

[20] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Detecting Past and Present Intrusions Through
Vulnerability-Specific Predicates. InProc. of SOSP, Oct. 2005.

[21] K.-L. W. et al. Challenges and Experience in Prototyping a
Multi-Modal Stream Analytic and Monitoring Application on
System S. InProc. of VLDB, 2007.

[22] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: the
system s declarative stream processing engine. InProc. of SIGMOD,
2008.

[23] X. Gu, S. Papadimitriou, P. S. Yu, and S. P. Chang. Toward
Predictive Failure Management for Distributed Stream Processing
Systems. InProc. of ICDCS, 2008.

[24] X. Gu and H. Wang. Online Anomaly Prediction for Robust Cluster
Systems. InProc. of IEEE ICDE, 2009.

[25] X. Gu, P. S. Yu, and H. Wang. Adaptive load diffusion for multiway
windowed stream joins. InProc. of ICDE, 2007.

[26] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira. Tracking probabilistic
correlation of monitoring data for fault detection in complex
systems. InProc. of DSN, pages 259–268, 2006.

[27] R. Jin and G. Agrawal. Efficient decision tree construction on
streaming data. InProc. of KDD, 2003.

[28] E. Kiciman and A. Fox. Detecting Application-Level Failures in
Component-based Internet Services.IEEE Transactions on Neural
Networks, 2005.

[29] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure Prediction in
IBM BlueGene/L Event Logs. InProc. of ICDM, 2007.

[30] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Comparison of
machine learning methods for predicting failures in hard drives.
Journal of Machine Learning Research, 2005.

[31] C. C. Noble and D. J. Cook. Graph-based anomaly detection. In
Proc. of KDD, pages 631–636, Aug. 24–27 2003.

[32] K. M. Ozonat. An information-theoretic approach to detecting
performance anomalies and changes for large-scale distributed web
services. InProc. of DSN, pages 522–531, 2008.

[33] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the internet. InProc. of
HotNets-I, Princeton, New Jersey, October 2002.

[34] R. Powers, M. Goldszmidt, and I. Cohen. Short term performance
forecasting in enterprise systems. InProc. of KDD, pages 801–807,
2005.

[35] R. K. Sahoo and et al. Critical event prediction for proactive
management in large-scale computer clusters. InProc. of ACM
SIGKDD, 2003.

[36] B. Schroeder and G. Gibson. Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean too you? InProc. of FAST,
2007.

[37] K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven performance
anomaly identification. InProc. of SIGMETRICS/Performance,
pages 85–96, 2009.

[38] K. Shen, M. Zhong, and C. Li. I/o system performance debugging
using model-driven anomaly characterization. InProc. of FAST,
2005.

[39] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
Diagnosing Production Run Failures at the User’s Site. InProc. of
SOSP, 2007.

[40] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, and S. M.Weiss.
Predictive algorithms in the management of computer systems. IBM
Systems Journal, 2002.

[41] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with peerpressure. In
Proc. of OSDI, pages 245–258, 2004.

[42] A. W. Williams, S. M. Pertet, and P. Narasimhan. Tiresias:
Black-box failure prediction in distributed systems. InProc. of
IPDPS, 2007.

[43] I. H. Witten and E. Frank.Data Mining : Practical Machine
Learning Tools and Techniques with Java Implementations. Morgan
Kaufmann, 1999.

[44] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Large-scale
system problems detection by mining console logs. InProc. of
SOSP, 2009.

[45] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.
Ensemble of models for automated diagnosis of system performance
problems. InProc. of DSN, 2005.

