On Predictability of System Anomalies
iIn Real World

Yongmin Tan, Xiaohui Gu
Department of Computer Science

North Carolina State University
ytan2@ncsu.edu, gu@csc.ncsu.edu

Abstract—As computer systems become increasingly complex, prediction. Although previous work (e.g., [10], [11], [32]as
system anomalies have become major concerns in system manaddressed the anomaly detection problem, anomaly predicti
agement. In this paper, we present a comprehensive measuremt aads to capture pre-anomaly symptoms to raise advance

study to quantify the predictability of different system anomalies.
Online anomaly prediction allows the system to foresee impeling 2nomaly alert before the anomaly happens. In [13], we pre-

anomalies so as to take proper actions to mitigate anomaly Sented the initial design of our online anomaly prediction
impact. Our anomaly prediction approach combines feature alue  scheme. However, one big question is whether real system
prediction with statistical classification methods. We coduct anomalies do exhibit certain predictability and whether ou

extensive measurement study to investigate anomalous befar g L _
of three systems in the real world: PlanetLab, SMART hard drive gnctmgall}{l p[‘l?hdlctlonlscrime canke_fﬂc':ently c%pture thﬁ_ pre
data, and IBM System S. We observe that real world system Ictabiiity. € goal o IS WOrk IS 10 provide quantitive

anomalies do exhibit predictability, which can be predictel with ~answers to the question by conducting a comprehensive mea-
high accuracy and significant lead time. surement study over a range of anomalies in real production

systems.
Our anomaly prediction approach aims at achiewdgance
Modern computer systems (e.g., cloud computing platnomaly prediction with a certaitead time The intuition
forms [1], [2], enterprise data centers, massive data &naligehind our approach is that system anomalies often manifest
ics [3], and web hosting services) have become increasingjsadual deviations in some system metrics before the system
complex as systems grow in both scale and functionaligscalates into the anomaly state. We monitor various system
Unfortunately, such complexity makes systems more vulnenetrics called features (e.g., CPU load, free memory, disk
able to various anomalies such as performance bottleneaksage, network traffic) to build a feature value prediction
resource hotspots, service level objective (SLO) viotagjand model using discrete-time Markov chain schemes. We also
various software/hardware failures. System administsaaoe induce statistical anomaly classifiers using naive Bayesia
often overwhelmed by the tasks of correcting system probleitnee augmented naive Bayesian (TAN) learning methods. We
under time pressure. Thus, it is imperative to provide aation then integrate feature prediction and anomaly classifier to
system anomaly management to achieve robust computer dgsecast the system anomaly state at a future time. In this
tems. paper, we conduct an extensive comparative study to gyantif
Previous system anomaly management work (e.g., [4], [Bhe predictability of system anomalies in three production
[6], [7], [8], [9]) can be classified into two categories: (Er systems: (1PlanetLab failure datehat incorporate real host
activeapproaches that take corrective actions after an anomédjlures over a two-month period on the widely used wide-
happens, and (2proactive approaches that take preventivearea computing platform PlanetLab [14]; (HMART disk
actions on all system components beforehand. The reactiméure data[15] that include measurement data of 369 real-
approach does not have prevention cost but can have praongerld disks, among which 178 disks experience disk failures
service downtime, which is often unacceptable for continand (3)IBM System S performance anomaly d#tat report
ously running applications such as data stream processimgasurements of SLO violations on the IBM stream process-
Moreover, it is often difficult to reproduce the anomalying cluster [3]. Our extensive measurement study reveas th
inducing environments to perform offline anomaly diagnosifollowing key observations:
which may limit the effectiveness of reactive anomaly cor- First, real world system anomalies exhibit varied prediiia
rection. In contrast, proactive approach offers bettetesys ity. Our anomaly prediction scheme can achieve i) more than
reliability but can incur prohibitive overhead. To this emee  95% true positive rate and less than 20% false positive rate
explore a newpredictiveanomaly management approach thdbr the PlanetLab ping failure data under [10,90] secondd le
can foresee impending system anomalies through intetligeime requirements; ii) 80-85% true positive rate and lessth
prediction so that we can take just-in-time correctionstéeis 10% false positive rate with up to 18 hours lead time for the
the system away from the abnormal state. SMART disk failure data; and iii) 95-85% true positive rate
To achieve efficient predictive anomaly management, oa@d less than 10% false positive rate with 2 to 18 seconds lead
big challenge is to provide high quality online system anlymatime for the System S performance anomaly data.

|I. INTRODUCTION



Second, using proper discretization methods, the discrete
time Markov chain scheme can achieve high prediction ac-
curacy for most system metrics except those metrics whose
values present irregular changing patterns or large vaniat
ranges. However, we observe that low prediction accuraey ov
a small number of metrics does not significantly affect the
accuracy Qf the Inte_gr_ated anor_n_aly prediction m_OdeI' . Fig. 1. Feature evolving pattern prediction. The metriczigalanges

Third, simple statistical classifiers such as naive Bayesia from 0 to 30. We partition the values of the metric into thréetes.
and TAN models can achieve high accuracy given sufficient The arcs are labeled with state transition probability.
training data for both normal and abnormal states. The TAtlHe largest transition probability) that the current stateill

model outperforms the naive Bayesian method in most cases .
e@lve to after time.

since it relaxes the strong independence assumption made 5 use DTMC, we need to perform discretization to trans-

tehx?:enpatlil\c;?] ?na%EZ'anggeé?_ogisrt}gﬁ:reg’ (:Zletja:(lastovfhbesrzw‘? A%a?m cpnti_nuous fegture yalues into discr_ete states. Commo

. . iscretization techniques include equal-width and eqiggth
has worse performance thgn naive BayeS|a_1r_1. The reaso ﬁ%roaches. The equal-width approach divides the range of a
because the TAN model estimates the conditional pmbﬁb'l\‘teature value intaf equal-width bins while the equal-depth
based on not only the class variable but also other metri%1 proach puts the same number of samples into each bin
The SMART data set includes some metrics that have IargI wever, we find that the above two approaches can incur'
variation range and imbalanced distribution, which resirit high preéliction error during our experimental study.

unreliable estimation of some conditional probabilities. To address the problem, we propose a hybrid discretization

The rest of th? Paper 1 organlzed as follows. Sectpn Alpproach. We first use the equal-width approach to create
presents the d§S|gn and a]gonthms of the anomaly pre.d|ct|f&[ bins. We check the number of data samples fallen into
schemes. Section Il describes the anomaly data colleation each bin. If there is no bin with extremely small number of

e>_<perimental results. We dis<_:uss re_lated work in Section I}fata samples (e.g. less than 10% of the second smallest bin),
Finally, the paper concludes in Section V. the discretization is accepted. Otherwise, we apply thalequ
width approach again but use more bins (&#(). Then we
recursively merge some bins with their neighbors. In each
In this section, we present the design details of our syiéeration, we merge the bin containing the smallest number
tem anomaly prediction scheme. We first describe the feat@kdata samples. We proceed until the total number of bins
value prediction scheme followed by the statistical angmais reduced to the target numbgf. The merit of this hybrid
classification methods. We then present the integrated alyomapproach is two-folded: it preserves the original contunio

Il. SYSTEM DESIGN

prediction model. attribute distribution; and it eliminates the negativeeetf
of some outliers by balancing the number of data samples
A. Feature Evolving Pattern Model allocated to different bins. In the experimental sectioa,will

We use finite discrete-time Markov chains (DTMC) tOshow the impact of\/ and different discretization approaches

model the evolving patterns of various system features asch”" the accuracy of feature value prediction.

CPU consumption, memory usage, and input/output data ratel.t is also possible to apply other prediction methods such

For example, Figure 1 shows a Markov model for a metr Se Kca;:;noasr:e f:ljt_(le_;/g Fr)1 riﬂ'.gt f%a;:(ursn\glug;\?é aC::urfot'.rS:'
ranging from 0 to 30 with three discretized states. To build i ! IS W ! provi

. Co - the probabilities of all possible values a feature can have
Markov chain model for a metri¢ with M distinct states, we

learn the transition probability matriR,: an M x M matrix at a futurg t!me. Thus, we can eagly Integrate th_e. feature
value prediction results with the statistical anomaly siféesrs

where the elemenp;; at row ¢ and columnj denotes the . .
bi; ! J to compute the anomaly probability at a future time. The

conditional probability of making a transition from statd¢o . i - .
statej. We deriveP, from a training data set by counting thedetalls about the integrated anomaly prediction model ngll

number of different state transitions observed. described in Section 1I-C.
Assuming the Markov chain is homogeneous, we can dB: Statistical Anomaly Classification

rive the feature value distribution of for any time in th.e The goal of the anomaly classifier is to decide whether the

future by applying the Chapman-Kolmogorov equation: akystem is currently running in a normal or abnormal state.

ter ¢ time units, the probability distribution for metrie is | ot X, denote a measurement sample, which is a vector of
— — 2 _ — t . . ’

T = m—1Py = m2 Py = .. = mP;, wherem and 7o gystem metric valuelo, . . . , z,,] at timet. Let C; denote the

denote the probability distribution at time and the initial system state at timé!, which can take one of the two states

probability distribution for the metria, respectively. Given a {abnormal(1), normal(0)}. The input to the classifier is a

current state, if we want to predict the state at a future timetraining data set that contains a time series of recQgisC;).
t, we only need to check those elements of mattix= 7o P!

at row: to decide the most probable state (i.e., the state withlwe will omit the subindex: when the context is clear.



to the multiplication of the conditional probabilities o&eh
Q individual metric. However, different from the naive Bais@s

\ S classifier, not all metrics are independent now. We applied a
existing scheme[19] to learn the TAN model. For example, we
can derive the following proportional relations for the TAN
model shown in Figure 2(b)P(C = ¢|X) x P(x1|C =

X1 Xz X3 Xy X2 Xa ¢)P(x3|C = ¢, x3)P(23]C = ¢, 1) P(24|C = ¢, 13).
(a) naive Bayesian classi- (b) TAN classifier The posterior probability?(C = ¢|X) is proportional to the
fier probability thatC' is assigned with “abnormal” or “normal”.
Fig. 2. Statistical anomaly classifier for one class vaeabland four feature We use an odds ratio [20]' _denOted WX)' to_ aSS|gn_ _class
variablesz1, z2, 3, z4. labels to a sample vectot, i.e., the system is classified as

Note that our classifier training process is supervisedesme abnormal if the following inequality holds:
depend on an anomaly detector [16] (e.g., applicationiipec () = P(C=1X)(1 - P(C=0[%)) 3)
anomaly predicates [10]) to provide a proper class laBel  P(C=0%)(1-PC=1%)

for each training sample;. The thresholdx is a tunable parameter that can be used to

Ideally, the classifier should be able to produce posteriggniro| the classification confidence. A typical valuecofs
probabilities, i.e.P(C' = 1|X) and P(C = 0[X) for a given gq

measuremeng. We then compare the posterior probabilities o

for abnormal andnormal classes to decide the classificatiof- Integrated Anomaly Prediction

result. That is, the system is classified as abnormal if theTo achieve advance anomaly prediction, our scheme inte-

following inequality holds: grates feature value prediction and statistical anomadg-cl

sification. Through the feature evolving pattern model, we

can predict the values of each metric at a future time. The

Otherwise, the system is considered to be in the normal. stasaomaly classifier is then used to perform classificatiorr ove

Larger 6 means stronger classification confidence since th&ure predicted metric values. In other words, during the

likeliness of one class is overwhelmingly greater than tifat computation of conditional probabilities in naive Bay@siar

the other class. A typical value éfis either zero or the prior TAN classifier, we replace the metric values in Equation 2

difference of the likelihood derived from the training data and Equation 3 with the predicted metric values in the form
However, computing the posterior probability can be chabf prediction probabilities from the Markov model.

lenging: we need to evaluafe(C' = ¢|X) for every possible For the naive Bayesian classifier, we need to replace the

in the multi-dimensional feature space. If the dimensiityal deterministic discrete value of; with all possible discrete

is high, the computation will be very costly. We leveragegalues thatr; can take. We denotB(z;[s, t]) as the probabil-

Bayes' rule to transform the posterior probabiliyC' = ¢|X) ity that z; takes values at a future timet, given the current

into the conditional probability”(X|C' = c). We apply naive value ofz;. Therefore,P(z;|C' = ¢) becomesy " P(x;]s, t])-

Bayesian classifier [17] and tree-augmented naive BayesiB(;[s,t]|C = c¢). Since we build a Markov prediction model

(TAN) network [18] in this work. separately for each collected metric, we aggregate alliosetr
Naive Bayesian ClassifierThe assumption of a naivein X to get the predicted posterior probabiliti€§C = ¢|X)

Bayesian classifier is that each metric is independent given and use Equation 1 to get the anomaly prediction result.

log P(“abnormal” |X) — log P(“normal”|X) > ¢ (1)

class label, illustrated by Figure 2(a). To compBRg' = ¢|X), For the TAN classifier, we compute the predicted posterior
we apply the Bayes’ rule to transform the posterior proligbil probability in the similar way as the naive Bayesian model
into the conditional probability: except for those metrics whose conditional probabilities d
. PE|C=c)P(C=c) pend on other metrics, such as, x3, x4 in Figure 2(b). For
P(C = cX) = PR (2) example, the metric, depends on the metrig;. If we want to

. ~ . evaluateP(x2|C = ¢, x3) at a future time, we need to sum all
We neglect the denominatdt(x) which does not depend onpossibilities of both metria» and metriczs. To be specific, if

C, and only focgs on the numerator of t_he fraction. We furthege useP(z[s2,t]) and P(z3]ss, t]) to denote the probability
apply the naive independence assumption so that we tramsfqﬁamc2 andz; take valuess, andss at a future timer given

P(X|C = c) into [T_, P(x;|C = c). the current value ofs, and zs, respectively, we can com-
Tree-Augmented Naive Bayesian (TAN) Netwdtie TAN 1o P(22|C = c,x3) as Y., Plaa[s2,t]) Y2, plas[ss.t]) -

model e>_<tends the naive_ Bay_esian model_by considering s [52,1]|C = ¢, 23]53, 1]). We aggregate all metrics i to
pendencies among metrics with a constraint that each meE@t the predicted posterior probabilif?(c = ¢|%) and use

has at most one parent in the network other than the clgggjs ratio in Equation 3 to get the anomaly prediction result
variable. The structure of the TAN model is a tree rooted at

the class variabl€' and contains conditional probabilities for lIl. SYSTEM EVALUATION
each tree node, illustrated by Figure 2(b). The posteriobpr In this section, we evaluate our online anomaly prediction
ability P(C|X) is not exactly equal to, but still proportionalscheme. We perform a comprehensive measurement study over



three real-world systems. We first describe our evaluati@amples are collected at a nearly-regular interval of twar$i.o
methodology. Next, we present and analyze our experimertébst good disks have approximately 300 samples. The number
results. of samples for those failed disks range from 10 to 300. This is
because for those failed disks, collected data may get ptaau

or even lost before failure occurrences.

We have implemented the anomaly prediction system andin the SMART dataset, one sample originally consists of 59
deployed it on several real world computing infrastrucattributes. We remove those attributes that are obviousty n
tures such as PlanetLab [14], NCSU virtual computing lalseful for prediction, such as serial number, frame, andsiou
(VCL) [2], and IBM System S stream processing cluster [3]. IBM System S anomaly data.We collected our third
One big challenge for this measurement study is to collemtomaly trace on the IBM System S [3], a large-scale data
real system anomaly data from deployed production systersteam processing system running on a commercial cluster
Although previous research projects have collected variotonsisting of about 250 blade servers. We run a complicated
failure data [21], most of them lack fine-grained continuousiulti-modal stream analysis reference application [25¢ W
measurement data that are required by the anomaly pradictillected 21 system metrics with the sampling interval af tw
system. One exception is the SMART disk failure data [15¢econds. The system anomalies include bottleneck anomaly,
which have been included in our measurement study. To ¢ollgisroughput anomaly, and processing time anomaly. Those
more fine-grained real world system anomaly data, we hasimomalies are caused by various reasons such as memory leak,
developed a scalable continuous monitoring system [22] a@#U starvation, and buffer management error.
deployed it on the PlanetLab, VCL, and IBM System S. We Evaluation metrics. We evaluate our anomaly prediction
have collected a set of real system anomaly data by morgtorialgorithms in three aspects. First, we evaluate the feaalte
those systems for extended period of time. All collected-mejrediction accuracy. We use theean prediction erro{MPE)
rics are used to train both the feature value predictor and o measure the deviation of true values from predicted galue
anomaly classifier. We now describe the anomaly trace d#ar a collected metrig; at timet, we know its current discrete
used in this paper. value S;. We derive its future discrete valug , - with a lead

PlanetLab anomaly data.We collected measurement dataime 7" using the algorithm described in section 2.1. We then
on the widely used planetary-scale open computing platfornansform the predicted discrete valgg, ;. into a predicted
PlanetLab. We monitored about 400 PlanetLab nodes dimetric valuez;(¢ + T) using the average value of all data
tributed all over the world. Our system collects 66 host fostr samples inside the bin representing the discrete véue. .
such as CPU load, virtual memory states, disk usage, & calculate the mean prediction error for a meiridor the
network traffic. The detailed description about those rostriwhole testing data seb as follows:
can be found on either PlanetLab monitoring site [23] or our it +T) — 2L(t+T)]

InfoScope monitoring site [24]. The metric sampling pensd MPE;(T) = AVGp < ! * > (4)

10 seconds. We started the data collection since Janua8y 200 zi(t+7T)

The dataset used in this set of experiments was collected fr@econd, we evaluate the performance of the classifier using
Nov. 14th to Nov. 24th, 2009. the receiver operating characteristiROC) curve. The ROC

Our monitoring infrastructure is capable of capturing érecurve is often used to show the tradeoff between true pesitiv
types of node anomalies: 1) ping failure: a host is not resparate and false positive rate of a classification algorithm. T
sive to successive five ping trials initiated by the managemalraw a ROC curve, we change the value of thresholith
node; 2) SSH failure: a node can not be accessed through “sBlgiuation 1 for the naive Bayesian classifier and the value of
command; and 3) monitoring sensor failure: the monitorinfpresholda in Equation 3 for the TAN classifier to generate
sensor program running on that node crashed and cannotabgeries of (true positive rate, false positive rate) pairs.
restarted. Each detected failure is recorded in a failugenith Third, we evaluate the performance of the integrated
the node name and timestamp. The system stores monitorampmaly prediction algorithm using the standard true pesit
metric data received from different nodes in separate leg.fil rate A;, and false positive ratel;, metrics. Given a lead
We correlate the failure log with monitoring metric logsngi time 7', the anomaly prediction model infers a class label
node name and failure start time. We label 100 records righ{t + 7') at time ¢ for a future recordX;.r. On the other
before each failure occurrence as “abnormal” and otherdscohand, X, has been annotated with its true lakél + 7).
as “normal”. By comparing the predicted labé(t + T") with the true label

SMART disk failure data. Our second anomaly dataset is:(t + 1), we calculate true positived,,, which corresponds
SMART (self monitoring and reporting technology) data for o the number of abnormal samples correctly predicted; true
collection of real-world disks [15]. The dataset contaimset negativesNy, which corresponds to the number of normal
series of SMART attributes collected by SMART incorporatesamples correctly predicted; false positivEs, which corre-
in most modern hard disk drives. In this dataset, there aponds to the number of normal samples mistakenly predicted
totally 369 distinct disks, 178 of which are labeled gmod as abnormal; false negative$s, which corresponds to the
while the remaining 191 ones are labeledated. Each disk number of abnormal samples mistakenly predicted as normal.
has a time-series of samples of SMART attribute values. &hoshus, we can calculate the true positive ratg, and false

A. Evaluation Methodology
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We now present our anomaly prediction results. For each 0-; 0-3
1 1 10t 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
examined system, we first show the mean prediction error load time () load time (3)
of the Markov predictor under different parameters. We then (a) NaiveBayes + Markov (b) TAN + Markov

evaluate the naive Bayesian classifier and the TAN classifier
using ROC curves. Finally, we show the integrated anomaly Fig. 5. Advance anomaly prediction accuracy for PlanetlLatad
prediction accuracy under different lead time. We also repo
the overhead of the anomaly prediction system. mistakes when predicting bin identifier, which will also umc

1) PlanetLab Anomaly PredictioriVe first examine failure larger feature value prediction error.
data collected on the PlanetLab. We focus on the host pingWe then evaluate the performance of the naive Bayesian
failures since we find that SSH failures and sensor progranassifier and the TAN classifier. When we use the classifier in
startup failures are rare. Host ping failures occur freglyenisolation, it means that we classify whether the currentesys
on the PlanetLab but with various frequencies and duratiosite exhibits abnormal behavior. Figure 4(a) and Figubg 4(
on different hosts. We observe ping failures on nearly 4@how the ROC curves for two PlanetLab hosts as examples.
PlanetLab nodes. The average number of occurrences for égimal performance should be at the top left of each figure
node is 15. The average duration of ping failures is 6 houmith high true positive rate and low false positive rate. We
For each host, we use first half of the data as training apbiserve that our classifiers have good performances. Furthe
second half as testing. more, the TAN model performs slightly better than the naive

Figure 3(a) shows the MPE achieved by the feature valB&yesian model.
prediction model using different discretization approseh We now evaluate the performance of our advance anomaly
Generally, MPE increases as the lead time becomes larger. ptediction scheme shown by Figure 5(a) and Figure 5(b).
observe that our Markov predictor achieves reasonabldgredVe average the results among five PlanetLab hosts and show
tion accuracy in all cases. The results show that our hybsthndard error bars for both true and false positive rates. W
discretization approach consistently achieves loweriptieth have several observations: 1) our system can still achieve
error than both the equal-width and equal-depth approachesasonably good prediction accuracy for future systeme;stat
Figure 3(b) shows the MPE of the feature value predictic?) prediction accuracy drops as the lead time becomes |arger
model using the hybrid discretization approach under difie  which indicates that predicting anomalies in more distant f
number of bins. Among the thred/ values, we observe ture is more challenging; 3) TAN classifier has more predicti
that the predictor achieves the best prediction accuragnwhpower than the naive Bayesian classifier, and is more robust
M is 10. With a small number of bins (e.gl/ = 5), under increasing lead time; 4) both algorithms are stable
the discretization scheme tends to group a large rangevdfh small standard error bars, which implies the anomaly
data samples into one bin. As a result, the “representatierediction algorithms are robust for different node fagisir
value of one discrete bin may no longer be representative2) SMART Anomaly Prediction:We now present the
Even though the prediction in terms of the bin identifier ianomaly prediction results for the SMART dataset. We split
correct, the difference between the metric’'s true value atiie original SMART dataset into six subsets, each of which
the representative value of that bin in Equation 4 will beontains failed and normal disks. Therefore, we conduct six
large. On the other hand, with a large number of bins (e.dold cross-validation for all related experiments. Firate
M = 30), each bin is assigned with less training data. If thehow the impact of different configurations on the predictio
training dataset is not large enough, the Markov chain wilccuracy of the Markov predictor in Figure 6(a) and Figure
get insufficiently trained. Thus, the predictor may make eno6(b). Again, we observe that our hybrid discretization apgh
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trend. The prediction model using the naive Bayesian dlassi
Fig. 7. Classification ROC curves for SMART data. can achieve 85-80% true positive rate and 2-9% false pesitiv
rate for a lead time of up to 18 hours.
consistently performs better than the other two approaches3) System S Anomaly PredictiokiVe now present the ad-
Particularly, the equal-width discretization yields mudgher vance prediction results for the System S dataset. Differen
prediction error than the other two approaches in the SMARTom previous two systems, this set of experiments focus
dataset. The reason is because some SMART metrics havenaperformance anomalies (e.g., prolonged processing, time
wide range of values. The equal-width discretization tetads low throughput) caused by various faults such as insufficien
make the range of each bin very big. Therefore, one specifgsources or program bugs. We collected data from six hosts
data sample may be numerically far away from the represeng@-that we use six-fold cross-validation in the experiments
tive value of its bin, especially when the bin contains a $mal Figure 9(a) and 9(b) show the feature value prediction ac-
number of training samples. Similarly, the prediction aecy curacy under different discretization schemes and quetitiz
is the highest whe is neither too small nor too big. For thegranularity, respectively. Again, we observe that the ftybr
similar reason as that of the equal-width discretizatidreste, discretization scheme using 10 discrete bins achieve tBe be
the prediction accuracy with bin number equalling to five iprediction accuracy.
much worse than the other two cases. In Figure 10(a) and Figure 10(b), we show the accuracy
Figure 7(a) and Figure 7(b) show the ROC curves of thf the naive Bayesian classifier and the TAN classifier for
naive Bayesian classifier and the TAN classifier. We shoggtecting a performance anomaly caused by a memory leak
the best and the worst data subsets as well as the averaige fault. We set the service level objectives (SLOs) in ad-
result. For the SMART dataset, low false positive rate igance and label collected metric vectors with SLO violation
favored since it is costly to replace a good hard drive that @& compliance. We observe that both classifiers achievdynear
incorrectly predicted to crash soon. We observe that batlenaperfect performance.
Bayesian classifier and TAN classifier can achieve reasenabl Figures 11(a) and 11(b) show the accuracy of the two
detection rate while keeping the false alarm rate very lowtegrated anomaly prediction models for predicting Syste
ROC curves also implies that we can adjust the threshold $operformance anomalies. We observe that both prediction
trade-off true and false positive rates. However, difftfemm models can achieve very good prediction accuracy for the
the previous set of experiments, we observe that the TABystem S performance anomaly dataset.
classifier performs worse than the naive Bayesian clastiiier ~We now evaluate the overhead of our online anomaly pre-
time. The reason is that the conditional probabilities aheo diction model. Table | shows the average training time and
metrics in the TAN model depends on not only the class labgiediction time of the two prediction models. The trainimge
but also other metrics. In the SMART dataset, some metricgludes the time of building the Markov model and inducing
have large value range and the distribution of differensloian the anomaly symptom classifier. The prediction time inctude
be very imbalanced. Thus, the estimation of some conditiorthe time to retrieve state transition probabilities, cilteipos-
probabilities become unreliable when some of the metris biterior probabilities, and synthesize the classificaticultefor
contain very few training samples. This problem is not sdecua singe data record. These statistics are collected ovedit-00
in the case of the naive Bayesian classifier since it assdssesferent experiment runs. We observe that the total trairimg t



&
a

| p——— 25, = 1 1
< equal-dep! < M=5 \x .
S0 =hybm|j - 9\:20 EM =10 | g:: 8:2
% 25 equal-widtl % WM =30 07 o
S 20 s 15 § 0.6 § 0.6
8 '3 8 0.5 8 0.5
S S 10 G 0.4 3 0.4
S10 s 03 —true positive rate 03 —true positive rate
g . S s 02 ---false positive rate 02 ---false positive rate
g g oaf A 0L e g

0 8 14 18 0 2 8 14 18 G0 2 4 6 8 10 12 14 16 18 0O 2 4 6 8 10 12 14 16 18

lead time (s) lead time (s) lead time (s) lead time (s)
(a) quantization scheme (b) quantization granularity (a) NaiveBayes + Markov (b) TAN + Markov
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o

: time / scheme | NaiveBayes + Markov | TAN + Markov

) training time 412 £1.5 ms 510 +£2 ms

: prediction time 105 +0.01 us 125 +0.02 us

ﬁ TABLE |

: S worst subset Cworst subset ANOMALY PREDICTION SYSTEM COST

) average average

5 ~=best subset . = best subset anomalies, and then use clustering method to predict &slur

° “faise positive rate. ° *Fuse posiiverate. - Thus, the accuracy of failure prediction depends on accu-
(a) NaiveBayes (b) TAN rate anomaly detectors to generate correct anomaly vectors

In contrast, our approach does not require feature anomaly
Fig. 10. Classification ROC curves for System S data. detectors but combines feature value prediction with whole
system classification using user-defined anomaly predicate
is within several hundreds of milliseconds and the predglicti Recently, statistical learning methods have been shown to
requires less than 150 microseconds. We notice that the nagig promising for autonomic failure management. Cohen et
Bayesian classifier is faster than the TAN classifier in botj) proposed to apply the TAN model to correlate system-
training and prediction. The above overhead measuremeptse| metrics to system states [6], and capture the essentia
show that our approach is practical for performing onlingharacteristic called signature of a system state [16].nChe
prediction of system anomalies. et al. explored a decision tree learning approach to diagnos
There are several other factors that may affect the perfesjjures [35). Several machine learning techniques haenbe
mance of our anomaly prediction scheme. First, the prextictiysed to correlate disk failures with SMART parameters [36],
accuracy depends on the amount and the quality of trainings]. 1n comparison, we focus on exploring online learning
data (i.e., prediction model bootstrapping). Ideally, titaning  techniques for classifying future system state.
dataset should be large enough to cover all pre-anomaly-sympconsiderable research efforts have been conducted on sys-
toms. Second, the prediction accuracy can be improved By pgem |og analysis. Lin and Siewiorek studied a 22-month lag fo
viding adaptability to dynamic execution environments][26igentifying transient and intermittent error processed.[Sa-
We plan to further refine our anomaly prediction model alonggg et al. evaluated the rule-based classification and Bayes
those directions in future work. networks for failure prediction on an IBM cluster [37]. Lign
et al. collected RAS event logs from BlueGene/L and proposed
three prediction schemes based on the correlations between
System anomaly prediction has recently received much ffailure occurrences [38]. Xu et al. proposed a console log
search attention. Previous work can be classified into thregning algorithm to detect runtime problems in Hadoop file
categories: data-driven, symptom-driven and event-drajg- system [39]. In comparison, our work focuses on online char-
proaches. Data-driven methods [27] learn and classifyrrecacterization of black box system anomalies using perfooaan
ring failure patterns from historical data. Symptom-baapd and resource metrics.
proaches [28], [29] evaluate periodic measurements oésyst Mickens et al. presented several statistical analysis odsth
parameters such as memory consumption, input workloddr predicting host availability [40]. Power et al. invested
number of processes. Event-based methods [30], [31], [3#]e predictive power of different statistical schemes azdni-
[33] directly analyze time series of error events. Diffdrering approaches [41]. Schroeder et al. studied failuressiedi
from previous work, our research focuses on black-box enlitn a large-scale high-performance computing system [42].
failure prediction by combining feature value predictioithv Pinheiro et al. conducted a comprehensive statisticalystnd
statistical anomaly classification. Our work is closelyatel failure trends in a large disk drive population [43]. Javati
to the Tiresias system [34] which also proposed a block-bak discovered statistical models of host availability ifaege-
failure prediction solution for distributed systems. Howee scale distributed system SETI@home [44]. Different from th
one major difference is that Tiresias first applies anomahpove work, this work focuses on quantifying the predidigbi
detection on individual metrics to generate a vector ofueat of real-world system anomalies.
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