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Abstract—To reduce cloud system resource cost, application periodical global application consolidation to achievado
consolidation is a must. In this paper, we present a novel p&m-  palancing in the cloud system and on-demand application

driven application consolidation (PAC) system to achieveféicient  yq|5cation using live VM migration [12] to alleviate oveaded
resource sharing in virtualized cloud computing infrastructures. hosts

PAC employs signal processing techniques to dynamically sh . .
cover significant patterns calledsignatures of different applica- However, pattern-driven resource management is challeng-
tions and hosts. PAC then performs dynamic application cons- ing for two major reasons. First, we should not make prior as-

idation based on the extracted signatures. We have impleméd  sumptions about the signatures of different cloud apptioat
a prototype of the PAC system on top of the Xen virtual machine (e.g., signature length) in order to achieve general agipilicy.

platform and tested it on the NCSU Virtual Computing Lab. We M . ¢ fd . licati |
have tested our system using RUBIS benchmarks, Hadoop data oreover, signatures or dynamic applications may evohr ov

processing systems, and IBM System S stream processing syat time. Second, Signature diSCOVery and matching algorithms
Our experiments show that 1) PAC can efficiently discover must be light-weight in order to avoid imposing significant
repeating resource usage patterns in the tested applicatis; 2) overhead to the cloud system.

Signatures can reduce resource prediction errors by 50-90% To address the challenge, PAC employs signal processing

compared to traditional coarse-grained schemes; 3) PAC (:ant hni ¢ f . ¢ tracti d tchiinst. E
improve application performance by up to 50% when running a echniques to perform signature extraction and matchimst,

large number of applications on a shared cluster. PAC uses Fast Fourier Transform (FFT) to extract repeating
signature patterns from raw time series measurementsn8geco
. INTRODUCTION PAC achieves robust signature matching using the dynamic

Cloud computing [1], [5] allows users to lease computime warping (DTW) algorithm [31]. PAC can find good
ing resources in a pay-as-you-go fashion without maintgini matching between two signature patterns even if one of them
complex infrastructures themselves. Different from ttiadial is shifted in the time dimension. This is particularly imtzort
distributed resource provisioning infrastructures, diasys- for matching time series patterns in asynchronous digeibu
tems grant users witllirect but shared accesses to systemsystems. For scalability, PAC applies time series indexing
resources and charge users for the exact resources antkesergcheme to achieve fast signature matching.
they use (e.g., in terms of resource usage time). We have implemented the PAC system on top of the Xen

To reduce the resource cost of the cloud system, applicatiplatform [6] and conducted experiments on the Virtual Com-
consolidation is a must in order to host a large number pfiting Lab (VCL) [5], a production virtualized computing-en
applications on a common physical computing infrastrieturvironment. We conducted extensive experiments using RUBIS
However, without considering fine-grained resource usage pbenchmarks [3], Hadoop data processing systems [2], and IBM
terns of different applications, cloud systems are foragd Bystem S stream processing system [23], [15]. Our experi-
either over-provision or under-provision resources. Res® ments reveal several interesting findings. First, we olestrat
over-provisoning will incur resource waste to the cloudsys real applications do exhibit repeating resource usagenmastt
while resource under-provisioning will cause service l®l® PAC can efficiently discover and extract those patterns. PAC
jective (SLO) violations to cloud applications. Thus, weede can achieve much higher signature detection rate tharc stati
to provide more efficient resource control to minimize botkignature extraction schemes. Second, using signatud€s, P
resource over-provisioning and under-provisioning inudio can predict future resource demands with 50-90% less errors
systems. than conventional approaches (e.g., mean, max, histogram)

In this paper, we present the design and implementation of hird, PAC can greatly improve application performance.(e.
novel Pattern-driven Application Consolidation (PAC)teys response time) when running a large number of applications
for virtualized cloud computing infrastructures. PAC merhs on a shared cluster than other alternative placement scheme
continuous monitoring of all running virtual machines (VMs(e.g., mean value, histogram, correlation based placeaient
hosting different applications to capture fine-graineduese gorithms). Our prototype implementation shows that PAC is
usage information using time series. PAC dynamically ettra feasible for production cluster systems, which imposét lit
significant patterns calledignaturesof different VMs. PAC overhead and requires short execution time.
then performs dynamic pattern-driven VM placement basedThe rest of the paper is organized as follows. Section I
on the extracted resource usage signatures. PAC providles ivesents the system model. Section Ill presents the dersifjn a
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algorithms of the PAC system. Section IV presents the ex- 1 |77 11 11 a2

perimental results. Section V compares our work with relate _ )
VM signature Signature of Host B

work. Finally, the paper concludes in Section VI.
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Il. SYSTEM MODEL 222

1 jl 1
We consider a virtualized cloud system that consists of 0 oo

a set of physical host§vi,...on} running a collection of  Signature of Host A signature of Host C
VMs {m1,..mx} owned by different applications. Table |
summarizes the notations used in this paper. We deploy a Fig. 2. Signature pattern matching.
set of monitoring sensors to collect runtime metric values
for all running VMs, illustrated by Figure 1. Each VM is
associated withA resource attributes (e.g., system ldad PAC dynamically extracts signature patterns of differemsv
CPU utilization, memory consumption) that are denoted tand hosts from their measurement time series.
{l1,...,14}. The monitoring sensor also maintains the same setAfter discovering signature patterns, PAC can achieve pre-
of attributes,{r1, ..., 74} for each physical host, which denotecise resource control by matching the VM's signature patter
the aggregated resource consumptions of all guest VMs anith the residual resource signature patterns of all abkila
the virtual machine monitor (VMM) on the local host. Thushosts. For example, in Figure 2, if we only consider mean val-
we can calculate the residual resource of the host based oruis, all three hosts are considered to match the VM. Similarl
total resource capacity and aggregated resource consumptif we consider both mean values and correlations, both Host
For service level management, PAC also deploys performararel hostC' are considered to be good matches. However, the
monitors to keep track of the service levels of differentmimg  real situation is that only host can accommodate the VM
applications such as response time and throughput. resource requirement all the time while hdstand hostC

The monitoring sensors periodically sample the attributan only satisfy the VM's requirement partially. By traclin
values and report the metric values to a PAC manageméne-grained signature patterns, PAC achieves more precise
node. To achieve precise resource control for the cloud syesource control for cloud systems than conventional megou
tems, PAC is able to characteridgnamic resource demandsmanagement schemes.
of different VMs andesidual resource levelst different hosts.
For each resource attribute of a running VM, PAC uses a slid-
ing window of time series to capture the dynamd@mand sig-  In this section, we present the design details of the PAC
nature of this resource attribute of the VM, which is denote@ystem. We first describe our online signature pattern ex-
by Si, = {li1,...liw}, wherel; ,,1 < k < W, denotes the traction algorithm. We then present a fast signature patter
k'th sample value of the metrig within the sliding window, matching algorithm followed by our pattern-driven dynamic
andWV denotes the size of the sliding window. Similarly, PAG/M placement algorithms.
usesS,, = {ri1,...r,w}, wherer; ,,1 < k < W, denotes the
k'th sample value of the metrig; within the sliding window,
to represent theesidual signatureof the resource attribute ~Real world applications can present certain resource usage
of a physical host. To keep the signature refreshed, PA@tterns when they receive repeating requests or perferm it
dynamically updates the measurement time series by reglacftive computations. For example, Figure 3(b) shows the CPU
oldest attribute value with the newest attribute value veven and I/O usage for the RUBIS online auction benchmark under

it receives a new sample value from the monitoring sensdr.real workload trace [4] and Hadoop applicatiorig/e can
clearly see the resource consumptions of both applications

Ill. SYSTEM DESIGN

A. Online Signature Pattern Extraction

1standard Linux OS loadavg is used which denotes the numbjebsfin
the run queue or waiting for disk 1/O in the guest VM. 2Details about the application workloads will be describedeéction IV.
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800 Timtﬁ?gecoﬁggf 3200 contains repeating patterns, we evaluate the similarityéden
(8) CPU trace PyandP;, 1 <i# j < Q. We calculate the similarity between
P; and P; by computing the Pearson correlation betwé&n
and P; as follows, wherecov(P;, P;) denotes the co-variance
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(b) Network 1/0 trace We say thatP; and P; are similar if their correlation value is

close to 1 (e.g.> 0.75) and the normalized mean difference
Fig. 3. Real application resource usage traces. is close to O (e.g.< 0.1). One exception is the case when the
time series is almost constant (e.g., normalized meanrdiffe
o ence<0.05). In this case, we still say th&f andP; are similar
present significant patterns. However, the real challemge &yen if their correlation value is not close to 1. We calcailat
online signature extraction is that we cannot make assompti the similarity value between different pattern windows liee t
about the properties of the signature such as the length gfasurement time series. If all pattern windows are similar
the repeating pattern. Moreover, dynamic workload sigmstu \ye say that the application’s resource usage presentstigpea
may vary over time, which makes signature discovery a nogatterns. In this case, we derive the signature patterry i
trivial task. average value of all repeating windows. Otherwise, we saty th
We develop automatic signature pattern extraction tecfie application’s resource usage does not present sigttifica
niques using signal processing techniques, illustrate@igy patterns. PAC then degenerates to conventional schemes tha
ure 4. PAC can discover i) whether a workload presenfge simple statistics such as mean to represent the sigredtur
repeating patterns; and ii) what is the dominating pattergs\/\. we can apply the similar signature extraction process
if repeating patterns exist. PAC employs Fast Fourier Frangy the host's residual resource time series.
form (FFT) to calculate dominating variation frequencias i |p dynamic computing environments, we cannot assume
the collected measurement time series. Given a measurem@ihature patterns do not change over time. To maintain sus-
time series, FFT transforms the time series into a vect@ined accuracy of extracted signatures, PAC performstagap
of frequency components. The Fourier coefficients reptesefynature pattern extraction to adapt to evolving sigreatur
the amplitude of each frequency. PAC can then identify thestterns. If the current signature is still valid, we shobtl
dominant frequencies by calculating the signal power aheagple to predict future resource values using the signature.
frequency. If there are multiple dominating frequencieatthThys, we can infer that the signature becomes obsolete if
have similar amplitude, PAC selects the lowest dominatifge system makes several consecutive mis-predictionsetUnd

frequency/, to discover the longest signature pattern.  those circumstances, PAC triggers the signature extractio
After we discover the dominating frequengy, we derive process to extract a new signature.

the pattern window size (Z) using the inversefgfthatisZ = . .

1/f4xr; wherer; denotes the resource sampling rate. We théh Fast Signature Pattern Matching

split the original time seried = {{;,...,lw } into Q = [W/Z] After extracting signature patterns, PAC needs to perform

pattern windows:P; = {l,...,lz}, P» = {lz41,...,l2z}, ..., Similarity matching between the signatures of VM resource

P = {l(g-1)z,----liw}. To detect whether the time seriesusages and the signatures of residual resources on differen



Bounding Rectangle (BR)

Algorithm 1 Periodical global VM consolidation in PAC

Extract resource demand signatures for all VMs

Sort all VMs using weighed average of resource demands

for each VM in decreasing ordeio

Select qualified hosts using qualifying functions

Bounding Envelope (BE) if qualified hosts existhen

Choose the best fit host using DTW

Place the VM on that host

Update the residual resource signature of the host
else

Place the VM on the least loaded host

(b) Time Series Signature Pre-filtering. .
end if

(a) Time Series Signature indexing using BR.

(b) The resulting alignment given by DTW.

end for

Fig. 5. Signature matching. Fig. 6. Signature pre-filtering.

hosts. One simple scheme is to use Euclidean distance I{
is the sum of the squared distances from tHéh point in

e a sequence of segments based on a pre-defined segment
ength (e.g., 10 measurement points). PAC then constructs
one time series to the’th point in the other. However, thisl"]l Sm?" Bgur?_dlr?g tRetlztangIe_SﬁRstL for each tsegmterllt. Theth
simple distance measure assumes a synchronized globkl cigevest and nighest values within the segment are taken as the
lower bound and upper bound of the BR respectively. If the

in a distributed computing environment. It cannot identify, L S . : ,
two matching signatures if one is shifted slightly along th Me Series 1S muItl—d|menS|opaI, the correspondl_ng. Bﬂssa
time axis, illustrated by Figure 5 (a). To address the proble mult|—d|men3|ongl. The coordmgtes of those_multl—dlmenal
PAC employs dynamic time warping (DTW) [25] algorithm toBRs are _stored Into a R-tréeGl\_/en a VM signature pattern
measure the similarity between two signatures, illustrdty Pl PAC first constructs Boundlng.Envelop(BE) a_roundPl
Figure 5 (b). given a pre-defined range of pos§|ble matchmg, |IIustrathpd
Given a VM signatureP, — {l1,...,15} and a host sig- Figure 6 (b). Suppqse the .matchmog range is set as 2%. PAC
nature P, = {ry,...,7z}, we construct aZ-by-Z matrix® :EenBsEcaleg '?hp the t|r|ne sdenes tt;]y 2,[./0 to get th(la)ugg/ert-bou?(;ihof
where the §'th,m'th) element of the matrix denotes the| N ban q ??hSCSEeSPA%Wt?w € 'ﬂetier'gé.% oo getihe
distanced(lx,r,,) between the two points, andr,, (e.g., ofwer- oundo de ' €n sp 'fSBRef |n”0asequenc|e
(i, 7m) = (Lx —7)2). A warping pathi¥’ P is a contiguous oh.segments and constructs a set 0 s for all segments. In
set of matrix elements that define a mapping betwBeand this case, the BR is formed by taking the lowest and highest
P.. The ¢'th element of WP is defined asup, — (k,m),. values in the BE as the lower bound and upper bound of the

BR, respectively.
VP = < —1. — .
So we havdV P = wp, ..., Wpg, --wpq, | 2] < Q < 2|Z] -1 The system then performs pre-filtering by calculating the

There are exponentially many warping paths. The goal &TR . . :
. ) . S . intersections with the BRs of those host signatures dtore
DTW is to find the warping path that minimizes the warpin the R-trees. We say that a BR of the VM signature can

cost. Dyn_amlc programming 1S used_to find the m|_n|r_nurBF matched by the BR of a host signature if the lower-
cost warping path. We say that two signatures are similar

| :
DTW returns a small warping cost. More details about t I%ound of the VM BR is lower than the upper-bound of the

DTW algorithm can be found in [25]. DTW has time an .OSt S’R' Aquallfy(;ng ;ur:ct|on|s|_?e(1;|nfe(t:ih|n é’:;hmh tathSt

space complexity 0 (Z?2), whereZ is the number of points signature IS considered to iaiiied It the matching

: . : is larger than a certain threshold (e.g., 80% BRs of the host

included in the signature pattern. . . o

Although DTW provides excellent time series similaritySlgnature matches the BRs of the VM signature). Qualifying
functions for different attributes (e.g., CPU, memorykjlisan

matching performance, it is computation-intensive. To-su , o K
o e defined separately. We say that a multi-dimensional host
port large-scale cloud systems, PAC adapts an existing-mu . o _— . .
nature is qualified for a multi-dimensional VM signature

. N . . . . |
gi'mnzrgjlrzna;ttggﬁ rsrg,iﬁir;nde;gr;gssscgﬁ;ngu[m(]):f ;ngtuep ti'%he qualifying functions for all dimensions return pogi
9 P gp PP results. Only on those qualified host signatures, the DTW

signature pattern matching. The basic idea is to employta f"%ﬁgorithm is performed to find the best match. Note that the

pre-filtering step to eliminate the majgrlty of d|35|mllag|$a—_ re-filtering algorithm is much faster than DTW, which has
tures and execute costly DTW algorithm only on potentiall : .
near time and space complexity 6f(7).

matching signatures. PAC constructs the index for a mult-
attribute signature patterf as follows, which is illustrated by C. Pattern-driven Dynamic VM Placement

F.igure 6 (a). For clarity, Figure_6 only gives a one-dimenalo ~ PAC performs pattern-driven dynamic VM placement,
signature pattern example. First, PAC splits the time serignich consists of two parts: eriodical global VM consoli-

3If two signatures have different lengths, we extend the tehaignature 4R-trees are tree data structures that are similar to B;ttegsare used for
based on its pattern to become the same length with the I@igeature. indexing multi-dimensional information.



dationfor global system load balancing; andd)-demand VM IV. EXPERIMENTAL EVALUATION

relocationthat employs live VM migration [12] to dynamically - we have implemented the PAC system on top of the Xen
relocate a VM to a different host when PAC detects overloadggy platform [6] and conducted extensive experiments on the
hosts or discovers a better host for the VM due to signatukgsu virtual Computing Lab (VCL) [5] using real server

pattern changes. S applications. In this section, we first describe our experitn
The goal of periodical global VM consolidation is to Prosetup. We then present our experimental results.
duce an optimal (or near optimal) VM placement plan based

on current signature patterns of all running VMs. Similaft- EXperiment Setup

to previous work, we formulate the VM placement problem Our experiments are conducted on the VCL, a production
into a bin-packing problem. However, different from prayéo virtualized computing infrastructure consisting of ab&@0
approaches, PAC uses signature patterns to assign VMsbkade servers. VCL operates in a similar way as Amazon
different hosts. Since bin-packing is a well-known NP-harBC2 [1]. Our experiments used a cluster of 20 VCL hosts
problem, we develop a greedy heuristic algorithm to sohee thunning 40 to 100 VMs. Each VCL host runs CentOS 5.2
problem. PAC first sorts all VMs by their average resoura@-bit with Xen 3.0.3. The VMs deployed on those hosts
demands in decreasing order. In the case of multiple resousdso run CentOS 5.2 64-bit. Each VCL host has Intel Dual
attributes, the normalized average of all attributes islus® Core Xeon CPU 3GHz, 4GB memory, and 30GB disk. We
aggregated resource demands of a single VM [21]. Note tlagploy the management node on one server host with Intel
the normalized average is only used in the stage of sortiQguad Core Xeon CPU 2GHz, 16GB memory, 50GB disk,
to estimate the total resource demand of a VM. After atlnning RedHat Enterprise Linux. The management node runs
VMs have been sorted, PAC starts from the VM with théhe major signature extraction and matching algorithms to
largest resource demand and places VMs one by anél dynamically choose suitable hosts to run different VMs. It
we place all VMs. The residual resource of a host will bperiodically scans the signature database to perform match
updated accordingly when a new VM is assigned to theaking between different VMs and hosts.

host. In each step, PAC considers CPU, memory and networklo achieve live migration of Xen VMs [12], we setup an
resources respectively to find the host whose residual resouNFS server to hold all VM disk images. The overhead of live
signatures best match the VM resource demand signatuwhd migration is kept low. For example, it only takes about
using Algorithm 1 and places the VM on that host. If twdl2 to 20 seconds for a VM with 512MB memory space to
signature patterns have different length, we first extered the migrated from one host to another. Since PAC applies live
shorter signature by repeating it or part of it to match thaigration, the application service downtime is less thar on
length of the longer signature. second regardless of the size of the VM memory.

In addition to periodical global VM consolidation, PAC PAC considers three resource metrics including CPU, mem-
may dynamically relocate a VM when it detects overloadesty, and I/O throughput to make the dynamic VM placement
hosts or discovers a better host for running the VM becaugecision. Each host continuously measures CPU, memory, and
of the VM's signature pattern changes. We define a host #® consumptions for all VMs using the libxenstat libraries
be overloaded when the total resource consumption of tifee resource information is sampled and reported to the
host exceeds a certain threshold (e39.90%). In this case, management node every 10 seconds. As all VM images are
PAC relocates the VM with the largest resource consumptibield in the NFS server, all disk 1/0 accesses will be tramster
from the overloaded host to a more suitable host. Since VMo network I/O accesses. VMs are assigned with fixed size of
running on the overloaded host will not get enough resourcesemory. Each VM running the RUBIS Web server is assigned
the resource usage information we record on the overloadgith 800MB memory. Each VM running the RUBIS database
host may not accurately reflect the real resource demanckof #erver is assigned with 400MB memory. Each VM running
VM. Thus, PAC first places the VM on a lightly loaded hosthe Hadoop system is assigned with 800MB memory.
to get its accurate signature. Then, PAC performs a sinylari Our experiments use three real server applications: 1) RU-
match between the VM’s signature and the signatures of 8iS (PHP version), an online auction benchmark [3], 2)
available hosts to find a suitable host for the VM. If PAGHadoop, an open source implementation of MapReduce data
finds a better host; to run the VMm,, than the current host processing system [2], and 3) IBM System S, a commercial
v;, a VM relocation action will be triggered. PAC sends &igh performance data stream processing system [23], [15].
relocation request to the hypervisor opto perform a live Realistic input workloads are used to drive those appboeti
migration ofmy, from v; to v;. During the live migration, the 1) For RUBIS we used the workload intensity observed in a
signature patterns of both) andv; are marked as “unstable” real-world workload trace to modulate the request rate of ou
since both hosts’ signature patterns will be perturbed ley tBynthetic workload. To do this, we started with the two week
on-going VM relocation action. PAC will update the signaturperiod beginning at 1995-08-28:00.00 from the ClarkeNet we
patterns ofv; andv; after the live migration is done. server available at the IRCache Internet traffic archive [4]

SWhen we consider an empty host, the residual resource signfdr the Wwe CaICUIa.‘ted the .numbe.r of requests produced every hour
host will be a constant time series. PAé can handle this dase the signature to form a time-varying series of request rates, and scaled th
pattern matching algorithm can handle constant time series RUBIS workload to match the time series. To speed up the
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Fig. 7. Resource usage traces and prediction comparisoRU&iS and Hadoop. The mean prediction errors are shown itetiend.

experiments, the workload generator used the requestaate f We implemented the following common alternative VM
each hour in the real trace to determine how many requeptacement algorithms for comparison: 1) Thigstogramal-
to generate for each 40 seconds period in our experimerngsrithm denotes a statistical algorithm. Histograms ane- co
The average load produced is 30 requests/sec and the psakcted for historical resource usage by counting the fre-
load is 45 requests/sec. The performance metrics of RUBi8Bency of metric value falling into different value ranges.(
(e.g., response time) are maintained by the client emulatdifferent bins). To find the best matching host for different
2) For Hadoop we run three sample applications provide®Ms, we calculate a matching score between the VM resource
by Hadoop includingword count sorting and grep, 3) For demand histograms and residual resource histograms of dif-
System Swe run a sample application provided by the Systeferent hosts. The matching score is the weighted sum of the
S, that is a fruit supplier selection application based am thlifference for every bin in the histogr&mMe choose the node
weather information. The performance metrics of Hadoop atitht has the smallest positive matching score as the bésisfit
System S (e.g., job completion time) are maintained by the execute the VM; 2) Thmeanvalue based algorithm denotes
VMs running the applications. a VM placement algorithm based on the average value of VM
resource demands and residual resources on hosts. Fast, th
To validate the prediction accuracy of the signature exystem selects hosts that have mean residual resourcer highe
traction algorithm, we implemented the following predicti than the mean value of the VM'’s resource requirement. Among
algorithms for comparison: Ipean valugprediction that pre- all the qualified hosts, we select the host whose mean rdsidua
dicts resource demand based on the average resource demegslurce is closest to the mean value of the VM’s resource
using recent historic data; #)ax valueprediction that predicts requirement; 3) Thenaxvalue based algorithm denotes a VM
resource demand using recent peak resource usage; angl&ement algorithm based on the maximum value of VM
histogramprediction that constructs histograms for recent reesource demands (i.e., peak load). A host is said to math the
source demand data. It chooses the bin with the largest numbg1 if the maximum value of resource requirement of the VM
of values and uses the average of those values as the ptedigidower than the mean value of the host's residual resource;
value. For all algorithms, we use the same number of sampigsi 4) Thecorrelation based algorithm [33] denotes that all
(e.g., 512) to predict the next 360 samples that correspgndivMs are placed based on the mean values and correlation
to one hour of measurements since the global consolidatigfiues (Equation 1) between the VM's resource usage time
is performed every hour. We compare the mean prediction
error (i.e., the difference between the predicted valuethed o _ _ _ _
We assign higher weights to the bins representing largerevange since

tr_ue value normal'zed by the maximum pOSSIble Value) undtﬁg positive difference at larger value range weighs moaa tthe positive
different algorithms. difference at lower range value for resource satisfaction.



series and the host’s residual resource time series. [est,

system selects hosts that have mean residual resource highe & 100l Bl Fixed Window Size (50) |
. o I Fixed Window Size (100)
than the mean value of the VM resource requirement. Among = [ signature
the qualified hosts, the system selects the host whose bleaila ”C‘ 80}
resource has the highest correlation with the VM’s resource =)
requirement. o 00
o
B. Results and Analysis g 401
We first evaluate the efficiency of our signature extraction § 20¢
algorithm using realistic application workloads. We egtra 5—)” o
the signature patterns using the algorithm described in Sec RW  RD Hadoop SystemS
tion IlI-A. The solid lines in Figure 7 show the true CPU
and 1/O usage traces for a subset of applications used in our (&) CPU usage
experiments. Figure 7(a) and Figure 7(b) show one hour snap-
shot of both real and predicted CPU usage traces for RUBIS S B Fixed Window Size (50)
web server and database server, respectively. Figurefrga)ss @ gol I Fixed Window Size (100) |
one hour snapshot of both real and predicted network 1/O g [ Signature
traces for the Hadoop cluster. The dash lines show predicted S sol
values acquired by different algorithms for one hour length ks
(360 samples) based on the previous 512 data samples (not % a0l
shown in the figur€) Different from PAC, other algorithms %
can only perform coarse-grained prediction, which derine o > 20l
value from the training samples and use that value to predict g
the resource usage for the next one hour period. We observe & |

that the resource consumptions of those applications dibieéxh RW  RD Hadoop SystemS
certain repeating patterns. The prediction results (shbwn
the solid lines in Figure 7) show that PAC can accurately
extract the signature patterns that closely track real uhjma Fig. 8. Signature detection rate for RUBIS Web server (RW)BFS database
resource usage. The prediction results based on the edraéever (RD). Hadoop, and IBM System S.

signatures can achieve 50-90% lower prediction error than

other alternative schemes. ) ) )

Figure 8(a) and Figure 8(b) show the signature detectiean réft ad_S|gnature IS Setectedd, _thef system ushes the s(,jlgnature to
results for the CPU and 1/O usages of all server applicatioﬂge ict resource demands In _ uture one hour, and measures
(i.e., RUBIS, Hadoop, IBM System S) used in our experimen e average error by calculating the dlfferenc_e betwe_en the
respectively. To measure the signature detection rate, sge fiedicted values and the real values on the time series nor-
the first 512 measurement samples to form a window a lized by the maximum possible values. If no signature is
check whether we can detect a signature within this windo .tected, the system Qegenerates to the_ mean value approach
We then continuously slide the window to see whether the o’ qther algorithms (i.e., mean, max, histogram), theesyst
signature is still valid or a new signature can be extradfésl. predicts resource demands in fu_ture one hour based on the
record how many times a signature can be extracted to calcgme sample data used. by the signature-based apProaCh- The
late the detection rate. For comparison, we also implerden{éesuns show that our signature approach can achieve much
a baseline approach which uses fixed window sizes (50 'gIVer Prediction error than other approaches. _

100 samples) to extract the signature. The results show thaYVe now evaluate the efficiency of different dynamic VM
real world applications do exhibit repeating patterns teat placement. algpnthms using application performance metri
be captured by our signature model. Our signature extractignd SLO violation rate. In this set of experiments, We use a se
algorithm can achieve much higher detection rate than tHERUB_'S web servers and database servers driven by ditferen
baseline algorithm. In figure 8(b), the detection rate usingdyngmlc workload traces to emulate heterogeneous workload
small window size (50) is very low since the window is tognvironments. We use the request load curve from IRCache to
short to cover one signature. generate workload for all VMs as described before. Moreover

Figure 9(a) and Figure 9(b) show the mean prediction errls} generate dlfferent.workload patterns fc_>r different VM&
for the CPU and /O resource usage traces of all server appiit the curves by different lengths for different VMs sath
cations used in our experiments, respectively. We caletks the workload curves for all VMs are d|ffere_nt in phases. We
mean prediction error for the signature approach as followgeasure the mean response time of all auction requests.tWe se

the response time SLO as 1.5 seconds. We measure the ratio
“The spikes in the real trace did not present in the training da the of requeStS_ that. have respor_lse .t'me larger than 1.5 seconds
maximum value predicted is less than the spike values. and use this ratio as SLO violation rate. To test the system

(b) 1/0O usage
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Fig. 9. Prediction accuracy comparison for different aggilbns. Fig. 10. Response time comparison for running 40-100 VMs @ra@sts.

under different workload conditions, we gradually inceetfse  the time of matching one VM signature with 20 host sig-
number of VMs running on the cluster from 40 to 100 (halhatures. Each measurement is repeated 1000 times and we
are RUBIS Web servers and half are RUBIS database servergport both mean and standard deviation. The total exatutio
Figure 10(a) shows the average response time achievedtibye includes the execution time of placing 100 VMs on
different algorithms. Under light workload (e.g., 40-70 ¥M 20 hosts using the PAC global consolidation algorithm. This
the performance of different algorithms are similar, whish measurement is repeated ten times. PAC imposes less than 1%
expected since there are plenty of resources for all VMs ddnaverhead for running 30 VMs on one physical Bpsthich
heavy workload (i.e., 80-100 VMs), PAC can achieve mucshows that PAC is feasible for large-scale cloud computing
better performance than the other approaches. Figure 1G(dyastructures.
shows the continuous measurements of the average respanse -
time sampled every five minutes in the case of running 10g'dnature extraction time 7 £ 045 ms
VMs on 20 hosts. We can see that PAC consistently achie s2lgnature matching time 85+ 45 ms
) ! . /Sfbtal execution time (100 VMs on 20 host$)8.5 sect 0.2 sec

the _shortest response time among all algorithms. TABLE I

F|gure 11(a) shpws the average SLO violation rate achieved THE OVERHEAD OF THEPAC SYSTEM.
by different algorithms. The results show that PAC can ef-
fectively reduce the SLO violation rate by up to 60% under
high system workload with a large number of concurrently
running VMs. Figure 11(b) shows the detailed continuous
measurements when running 100 VMs on 20 hosts. The results L ) ) L
show that PAC consistently achieves the lowest SLO viatatio \ﬁrtuahzauo_n has be_en extensw_ely s_tud|ed due to its im-
rate among all algorithms. portant role in consohdated.hostmg mfrastructures.yPre

We now report the overhead results of the PAC systefUS Work has proposed various enhancements to improve
Table Il summarizes the overhead measurements for the mm‘?- performance of populgr VM platforms S_UCh as Xen -and
agement node running the signature analysis and match}ﬁlz.ﬁ‘Ware [35], [26], [27]. Since VMs hosted in one machine

algo”thms' The execution t'me_ of one S|gnatu_re e?(tracmn 830 VMs is the largest number of VMs we can create on a singleipaly
based on 512 samples. The signature matching time denoigs due to the memory constraint.

V. RELATED WORK



: : cyclic patterns. In contrast, our system can extract sigeatat
j ,\PAAegn Value runtime even when signatures might change dynamically, and
i Histogram ] apply time series similarity matching algorithms to pemfor
Correlation A runtime VM placement in cloud systems.
| Rolia et al. proposed dynamic resource allocation using
an estimated burst factor multiplies the most recent resour
demand [30]. Gmach et al. [18] used a combined evaluation
of the periodogram function and the auto-correlation to- pre

, dict workload. They generate synthetic workload based on

& /e/ ‘ ‘ ‘ ‘ the prediction to predict the resource usage. In comparison
40 50 60 70 80 90 100 PAC directly extracts dynamic resource usage patternsdbase

N
o

=
o
T

a

SLO Violation Rate (%)
=
&)

Number of VMs on the observation over an extended period of time. Our
(a) 40-100 VMs experiments have shown that such an approach is feasible and

efficient. Chen et al. [10] used sparse periodic auto regness

50 : : to perform load prediction. However, their approach assume
—=— PAC (10.3%) . O .
S || Mean value (18%) the repeating period is known in advance. Chandra et al. [9]
| Histogram (25.9%) ] proposed two workload prediction algorithms using a simple
5 Correlation (17.2%) linear regression model (i.e., prediction based on only the
S 30 previous value) and a histogram method. Our experiments
= have shown that PAC can significantly outperform this simple
.g 20?\\/3 X /G\b//?\/ approach.
g 1&\N\/\\ Mi et al. [28] proposed that temporal dependence can be
@ 7 exploited to forecast future resource requirements ofiserv
requests. They use autocorrelation function to identifg th

10 20 30 40 50 temporal dependence to make admission control decision. In
Time (minutes) . .
comparison, PAC tries to detect resource demand patterns
() 100 VMs and consolidate different applications based on theiragige
Fig. 11. SLO violation comparison for running 40-100 VMs ob fiosts. ~ Patterns. Casolari et al. [8] proposed short-term presficti
models for Web-based system resources using trend-aware
regression algorithm. In comparison, PAC considers resour
share CPU resources, researchers have proposed diffé?eht @sage patterns at different time scales (i.e., both shont ¢éad
resource scheduling schemes [22], [20]. However, the abdeag term) to achieve efficient application consolidatiord a
work mainly focuses on managing VMs within one physicalynamic application relocation. Kochut provided an ariejt
host. In contrast, our research focuses on exploring VM rexodel to quantify the benefit of dynamic VM relocation [24].
source usage patterns and live VM migration [12] to achiewghoi et al. [11] proposed the profiling and prediction of
efficient dynamic application consolidation in cloud sys¢e power consumption in consolidated environments. Differen
Application consolidation is widely employed by largedgca from the above work, PAC focuses on pattern-driven resource
data centers and hosting infrastructures. Previous ciolasioin  management for consolidated cloud computing environments
approaches can be broadly classified into static consmliatin [19], we presented an initial framework of our signature-
over long period of time (e.g., days, weeks) and dynamifriven load management for wide-area distributed systems
consolidation over short period of time (e.g., hours). Zhsuch as PlanetLab [29], which, however, does not provide
et al. proposed an integrated control approach to managihgnamic online sighature extraction and is not integratét w
workloads at different scopes and time scales [36]. Gmattie VM platform.
et al. [17], [16] proposed an integrated workload placementRecent studies have shown that recognizing system patterns
solution using both peak demand based workload assignmisnfa promising approach to automatic system management.
simulation and fuzzy logic based feedback control guidgdiohen et al. proposed the signature concept to capture the
workload migration. Verma et al. proposed a static consokssential characteristic of a system state that can be eddex
dation scheme that considers workload correlations anll peand clustered, and retrieved based on similarity to agssts-
patterns to minimize power consumption of data centers. [33m problem diagnosis [13]. Shen et al. proposed to cortstruc
In contrast, our work focuses on dynamic application com whole-system I/O throughput model as the reference of ex-
solidation and employs time series similarity matching tpected performance and used statistical clustering andcha
achieve precise resource control in multi-tenant cloudkesys. terization of performance anomalies to guide debugging. [32
Bobroff et al. proposed a dynamic VM placement schenm@anapathi et al. applied machine learning techniques tigire
using predicted resource demands based on recent histonmnaltiple performance metrics of query processing [14]. Our
data [7] and tested their algorithm using simulation. Thework is similar to the above work by adopting a pattern driven
work is based on auto-correlation assuming the workload hagproach. However, to the best of our knowledge, our work



makes the first step to apply pattern-driven approach to firje4] A. Ganapathi and et al. Predicting Multiple Performaridetrics for

grained resource control in cloud computing environments. ~ Queries: Better Decisions Enabled by Machine Learnigc. of IEEE
International Conference on Data Engineering (ICDERPO09.

[15] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADEe

) VI. ConcLusIoN _ system s declarative stream processing end?nec. of SIGMOD 2008.
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