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Abstract—To reduce cloud system resource cost, application
consolidation is a must. In this paper, we present a novel pattern-
driven application consolidation (PAC) system to achieve efficient
resource sharing in virtualized cloud computing infrastructures.
PAC employs signal processing techniques to dynamically dis-
cover significant patterns calledsignatures of different applica-
tions and hosts. PAC then performs dynamic application consol-
idation based on the extracted signatures. We have implemented
a prototype of the PAC system on top of the Xen virtual machine
platform and tested it on the NCSU Virtual Computing Lab. We
have tested our system using RUBiS benchmarks, Hadoop data
processing systems, and IBM System S stream processing system.
Our experiments show that 1) PAC can efficiently discover
repeating resource usage patterns in the tested applications; 2)
Signatures can reduce resource prediction errors by 50-90%
compared to traditional coarse-grained schemes; 3) PAC can
improve application performance by up to 50% when running a
large number of applications on a shared cluster.

I. I NTRODUCTION

Cloud computing [1], [5] allows users to lease comput-
ing resources in a pay-as-you-go fashion without maintaining
complex infrastructures themselves. Different from traditional
distributed resource provisioning infrastructures, cloud sys-
tems grant users withdirect but sharedaccesses to system
resources and charge users for the exact resources and services
they use (e.g., in terms of resource usage time).

To reduce the resource cost of the cloud system, application
consolidation is a must in order to host a large number of
applications on a common physical computing infrastructure.
However, without considering fine-grained resource usage pat-
terns of different applications, cloud systems are forced to
either over-provision or under-provision resources. Resource
over-provisoning will incur resource waste to the cloud system
while resource under-provisioning will cause service level ob-
jective (SLO) violations to cloud applications. Thus, we need
to provide more efficient resource control to minimize both
resource over-provisioning and under-provisioning in cloud
systems.

In this paper, we present the design and implementation of a
novel Pattern-driven Application Consolidation (PAC) system
for virtualized cloud computing infrastructures. PAC performs
continuous monitoring of all running virtual machines (VMs)
hosting different applications to capture fine-grained resource
usage information using time series. PAC dynamically extracts
significant patterns calledsignaturesof different VMs. PAC
then performs dynamic pattern-driven VM placement based
on the extracted resource usage signatures. PAC provides both

periodical global application consolidation to achieve load
balancing in the cloud system and on-demand application
relocation using live VM migration [12] to alleviate overloaded
hosts.

However, pattern-driven resource management is challeng-
ing for two major reasons. First, we should not make prior as-
sumptions about the signatures of different cloud applications
(e.g., signature length) in order to achieve general applicability.
Moreover, signatures of dynamic applications may evolve over
time. Second, signature discovery and matching algorithms
must be light-weight in order to avoid imposing significant
overhead to the cloud system.

To address the challenge, PAC employs signal processing
techniques to perform signature extraction and matching. First,
PAC uses Fast Fourier Transform (FFT) to extract repeating
signature patterns from raw time series measurements. Second,
PAC achieves robust signature matching using the dynamic
time warping (DTW) algorithm [31]. PAC can find good
matching between two signature patterns even if one of them
is shifted in the time dimension. This is particularly important
for matching time series patterns in asynchronous distributed
systems. For scalability, PAC applies time series indexing
scheme to achieve fast signature matching.

We have implemented the PAC system on top of the Xen
platform [6] and conducted experiments on the Virtual Com-
puting Lab (VCL) [5], a production virtualized computing en-
vironment. We conducted extensive experiments using RUBiS
benchmarks [3], Hadoop data processing systems [2], and IBM
System S stream processing system [23], [15]. Our experi-
ments reveal several interesting findings. First, we observe that
real applications do exhibit repeating resource usage patterns.
PAC can efficiently discover and extract those patterns. PAC
can achieve much higher signature detection rate than static
signature extraction schemes. Second, using signatures, PAC
can predict future resource demands with 50-90% less errors
than conventional approaches (e.g., mean, max, histogram).
Third, PAC can greatly improve application performance (e.g.,
response time) when running a large number of applications
on a shared cluster than other alternative placement schemes
(e.g., mean value, histogram, correlation based placemental-
gorithms). Our prototype implementation shows that PAC is
feasible for production cluster systems, which imposes little
overhead and requires short execution time.

The rest of the paper is organized as follows. Section II
presents the system model. Section III presents the design and



Fig. 1. Pattern-Driven Application Consolidation in Virtualized Cloud
Computing Environments.

algorithms of the PAC system. Section IV presents the ex-
perimental results. Section V compares our work with related
work. Finally, the paper concludes in Section VI.

II. SYSTEM MODEL

We consider a virtualized cloud system that consists of
a set of physical hosts{v1, ...vN} running a collection of
VMs {m1, ...mK} owned by different applications. Table I
summarizes the notations used in this paper. We deploy a
set of monitoring sensors to collect runtime metric values
for all running VMs, illustrated by Figure 1. Each VM is
associated withA resource attributes (e.g., system load1,
CPU utilization, memory consumption) that are denoted by
{l1, ..., lA}. The monitoring sensor also maintains the same set
of attributes,{r1, ..., rA} for each physical host, which denote
the aggregated resource consumptions of all guest VMs and
the virtual machine monitor (VMM) on the local host. Thus,
we can calculate the residual resource of the host based on its
total resource capacity and aggregated resource consumption.
For service level management, PAC also deploys performance
monitors to keep track of the service levels of different running
applications such as response time and throughput.

The monitoring sensors periodically sample the attribute
values and report the metric values to a PAC management
node. To achieve precise resource control for the cloud sys-
tems, PAC is able to characterizedynamic resource demands
of different VMs andresidual resource levelsat different hosts.
For each resource attribute of a running VM, PAC uses a slid-
ing window of time series to capture the dynamicdemand sig-
natureof this resource attribute of the VM, which is denoted
by Sli = {li,1, ...li,W }, whereli,k, 1 ≤ k ≤ W , denotes the
k′th sample value of the metricli within the sliding window,
andW denotes the size of the sliding window. Similarly, PAC
usesSri

= {ri,1, ...ri,W }, whereri,k, 1 ≤ k ≤ W , denotes the
k′th sample value of the metricri within the sliding window,
to represent theresidual signatureof the resource attribute
of a physical host. To keep the signature refreshed, PAC
dynamically updates the measurement time series by replacing
oldest attribute value with the newest attribute value whenever
it receives a new sample value from the monitoring sensor.

1Standard Linux OS loadavg is used which denotes the number ofjobs in
the run queue or waiting for disk I/O in the guest VM.

notation meaning
vi cloud host
mi guest VM

[l1, ..., lA] VM attributes
[r1, ..., rA] host attributes

W time series window
Z repeating pattern window

Sli
= {li,1, ..., li,W } VM time series for attributeli

Sri
= {ri,1, ..., ri,W } host time series for attributeri

Pli
= {li,1, ..., li,Z} VM signature pattern for attributeli

Pri
= {ri,1, ..., ri,Z} host signature pattern for attributeri

TABLE I
NOTATIONS.

VM signature

1

2 2 2

1 1

Signature of Host A

1

2 2 2
1 1

Signature of Host B

2 2

111

2

Signature of Host C

0

3 3 3

0 0

Fig. 2. Signature pattern matching.

PAC dynamically extracts signature patterns of different VMs
and hosts from their measurement time series.

After discovering signature patterns, PAC can achieve pre-
cise resource control by matching the VM’s signature pattern
with the residual resource signature patterns of all available
hosts. For example, in Figure 2, if we only consider mean val-
ues, all three hosts are considered to match the VM. Similarly,
if we consider both mean values and correlations, both hostA
and hostC are considered to be good matches. However, the
real situation is that only hostA can accommodate the VM
resource requirement all the time while hostB and hostC
can only satisfy the VM’s requirement partially. By tracking
fine-grained signature patterns, PAC achieves more precise
resource control for cloud systems than conventional resource
management schemes.

III. SYSTEM DESIGN

In this section, we present the design details of the PAC
system. We first describe our online signature pattern ex-
traction algorithm. We then present a fast signature pattern
matching algorithm followed by our pattern-driven dynamic
VM placement algorithms.

A. Online Signature Pattern Extraction

Real world applications can present certain resource usage
patterns when they receive repeating requests or perform iter-
ative computations. For example, Figure 3(b) shows the CPU
and I/O usage for the RUBiS online auction benchmark under
a real workload trace [4] and Hadoop applications2. We can
clearly see the resource consumptions of both applications

2Details about the application workloads will be described in section IV.
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Fig. 3. Real application resource usage traces.

present significant patterns. However, the real challenge for
online signature extraction is that we cannot make assumptions
about the properties of the signature such as the length of
the repeating pattern. Moreover, dynamic workload signatures
may vary over time, which makes signature discovery a non-
trivial task.

We develop automatic signature pattern extraction tech-
niques using signal processing techniques, illustrated byFig-
ure 4. PAC can discover i) whether a workload presents
repeating patterns; and ii) what is the dominating patterns
if repeating patterns exist. PAC employs Fast Fourier Trans-
form (FFT) to calculate dominating variation frequencies in
the collected measurement time series. Given a measurement
time series, FFT transforms the time series into a vector
of frequency components. The Fourier coefficients represent
the amplitude of each frequency. PAC can then identify the
dominant frequencies by calculating the signal power at each
frequency. If there are multiple dominating frequencies that
have similar amplitude, PAC selects the lowest dominating
frequencyfd to discover the longest signature pattern.

After we discover the dominating frequencyfd, we derive
the pattern window size (Z) using the inverse offd, that isZ =
1/fd×ri whereri denotes the resource sampling rate. We then
split the original time seriesL = {l1, ..., lW } into Q = [W/Z]
pattern windows:P1 = {l1, ..., lZ}, P2 = {lZ+1, ..., l2Z}, ...,
PQ = {l(Q−1)Z , ..., li,W }. To detect whether the time series

Time series Pattern Window 
P1

Z = 1/ dominat ing frequency*sampl ing rate

Z Z 

Pattern Window 
P2

If P1 and P2 are similar, signature pattern P = (P1 + P2) /2

Fig. 4. Signature pattern extraction.

contains repeating patterns, we evaluate the similarity between
Pi andPj , 1 ≤ i 6= j ≤ Q. We calculate the similarity between
Pi and Pj by computing the Pearson correlation betweenPi

andPj as follows, wherecov(Pi, Pj) denotes the co-variance
betweenPi andPj andvar(Pi) denotes the variance ofPi.

cor(Pi, Pj) =
cov(Pi, Pj)

√

var(Pi)
√

var(Pj)
(1)

We also compute the normalized mean difference betweenPi

andPj as follows, whereE[(Pi − Pj)] denotes the expected
value for the difference betweenPi andPj andmax(Pi, Pj)
denotes the maximum value appeared inPi andPj .

diff(Pi, Pj) =
E[(Pi − Pj)]

max(Pi, Pj)
(2)

We say thatPi andPj are similar if their correlation value is
close to 1 (e.g.,> 0.75) and the normalized mean difference
is close to 0 (e.g.,< 0.1). One exception is the case when the
time series is almost constant (e.g., normalized mean differ-
ence<0.05). In this case, we still say thatPi andPj are similar
even if their correlation value is not close to 1. We calculate
the similarity value between different pattern windows in the
measurement time series. If all pattern windows are similar,
we say that the application’s resource usage presents repeating
patterns. In this case, we derive the signature pattern using the
average value of all repeating windows. Otherwise, we say that
the application’s resource usage does not present significant
patterns. PAC then degenerates to conventional schemes that
use simple statistics such as mean to represent the signature of
a VM. We can apply the similar signature extraction process
on the host’s residual resource time series.

In dynamic computing environments, we cannot assume
signature patterns do not change over time. To maintain sus-
tained accuracy of extracted signatures, PAC performs adaptive
signature pattern extraction to adapt to evolving signature
patterns. If the current signature is still valid, we shouldbe
able to predict future resource values using the signature.
Thus, we can infer that the signature becomes obsolete if
the system makes several consecutive mis-predictions. Under
those circumstances, PAC triggers the signature extraction
process to extract a new signature.

B. Fast Signature Pattern Matching

After extracting signature patterns, PAC needs to perform
similarity matching between the signatures of VM resource
usages and the signatures of residual resources on different



(a) Two time series that are similar but out of phase.

(b) The resulting alignment given by DTW.

Fig. 5. Signature matching.

(b) Time Series Signature Pre-filtering.
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Fig. 6. Signature pre-filtering.

hosts. One simple scheme is to use Euclidean distance that
is the sum of the squared distances from then′th point in
one time series to then′th point in the other. However, this
simple distance measure assumes a synchronized global clock
in a distributed computing environment. It cannot identify
two matching signatures if one is shifted slightly along the
time axis, illustrated by Figure 5 (a). To address the problem,
PAC employs dynamic time warping (DTW) [25] algorithm to
measure the similarity between two signatures, illustrated by
Figure 5 (b).

Given a VM signaturePl = {l1, ..., lZ} and a host sig-
nature Pr = {r1, ..., rZ}, we construct aZ-by-Z matrix3

where the (k′th,m′th) element of the matrix denotes the
distanced(lk, rm) between the two pointslk and rm (e.g.,
d(lk, rm) = (lk − rm)2). A warping pathWP is a contiguous
set of matrix elements that define a mapping betweenPl and
Pr. The q′th element ofWP is defined aswpq = (k, m)q.
So we haveWP = wp1, ..., wpq, ...wpQ, |Z| ≤ Q < 2|Z|−1.
There are exponentially many warping paths. The goal of
DTW is to find the warping path that minimizes the warping
cost. Dynamic programming is used to find the minimum
cost warping path. We say that two signatures are similar if
DTW returns a small warping cost. More details about the
DTW algorithm can be found in [25]. DTW has time and
space complexity ofO(Z2), whereZ is the number of points
included in the signature pattern.

Although DTW provides excellent time series similarity
matching performance, it is computation-intensive. To sup-
port large-scale cloud systems, PAC adapts an existing multi-
dimensional time series indexing scheme [34] to speedup the
signature pattern matching process and support multi-attribute
signature pattern matching. The basic idea is to employ a fast
pre-filtering step to eliminate the majority of dissimilar signa-
tures and execute costly DTW algorithm only on potentially
matching signatures. PAC constructs the index for a multi-
attribute signature patternP as follows, which is illustrated by
Figure 6 (a). For clarity, Figure 6 only gives a one-dimensional
signature pattern example. First, PAC splits the time series

3If two signatures have different lengths, we extend the shorter signature
based on its pattern to become the same length with the longersignature.

Algorithm 1 Periodical global VM consolidation in PAC
Extract resource demand signatures for all VMs
Sort all VMs using weighed average of resource demands
for each VM in decreasing orderdo

Select qualified hosts using qualifying functions
if qualified hosts existthen

Choose the best fit host using DTW
Place the VM on that host
Update the residual resource signature of the host

else
Place the VM on the least loaded host

end if
end for

into a sequence of segments based on a pre-defined segment
length (e.g., 10 measurement points). PAC then constructs
a small Bounding Rectangles(BRs) for each segment. The
lowest and highest values within the segment are taken as the
lower bound and upper bound of the BR respectively. If the
time series is multi-dimensional, the corresponding BR is also
multi-dimensional. The coordinates of those multi-dimensional
BRs are stored into a R-tree4. Given a VM signature pattern
Pl, PAC first constructs aBounding Envelop(BE) aroundPl

given a pre-defined range of possible matching, illustratedby
Figure 6 (b). Suppose the matching range is set as 2%. PAC
then scales up the time series by 2% to get the upper-bound of
the BE and then scales down the time series by 2% to get the
lower-bound of the BE. PAC then splits the BE into a sequence
of segments and constructs a set of BRs for all segments. In
this case, the BR is formed by taking the lowest and highest
values in the BE as the lower bound and upper bound of the
BR, respectively.

The system then performs pre-filtering by calculating the
BR intersections with the BRs of those host signatures stored
in the R-trees. We say that a BR of the VM signature can
be matched by the BR of a host signature if the lower-
bound of the VM BR is lower than the upper-bound of the
host BR. A qualifying function is defined in which a host
signature is considered to bequalified if the BR matching
is larger than a certain threshold (e.g., 80% BRs of the host
signature matches the BRs of the VM signature). Qualifying
functions for different attributes (e.g., CPU, memory, disk) can
be defined separately. We say that a multi-dimensional host
signature is qualified for a multi-dimensional VM signature
if the qualifying functions for all dimensions return positive
results. Only on those qualified host signatures, the DTW
algorithm is performed to find the best match. Note that the
pre-filtering algorithm is much faster than DTW, which has
linear time and space complexity ofO(Z).

C. Pattern-driven Dynamic VM Placement

PAC performs pattern-driven dynamic VM placement,
which consists of two parts: 1)periodical global VM consoli-

4R-trees are tree data structures that are similar to B-trees, but are used for
indexing multi-dimensional information.



dationfor global system load balancing; and 2)on-demand VM
relocationthat employs live VM migration [12] to dynamically
relocate a VM to a different host when PAC detects overloaded
hosts or discovers a better host for the VM due to signature
pattern changes.

The goal of periodical global VM consolidation is to pro-
duce an optimal (or near optimal) VM placement plan based
on current signature patterns of all running VMs. Similar
to previous work, we formulate the VM placement problem
into a bin-packing problem. However, different from previous
approaches, PAC uses signature patterns to assign VMs to
different hosts. Since bin-packing is a well-known NP-hard
problem, we develop a greedy heuristic algorithm to solve the
problem. PAC first sorts all VMs by their average resource
demands in decreasing order. In the case of multiple resource
attributes, the normalized average of all attributes is used as
aggregated resource demands of a single VM [21]. Note that
the normalized average is only used in the stage of sorting
to estimate the total resource demand of a VM. After all
VMs have been sorted, PAC starts from the VM with the
largest resource demand and places VMs one by one5 until
we place all VMs. The residual resource of a host will be
updated accordingly when a new VM is assigned to the
host. In each step, PAC considers CPU, memory and network
resources respectively to find the host whose residual resource
signatures best match the VM resource demand signatures
using Algorithm 1 and places the VM on that host. If two
signature patterns have different length, we first extend the
shorter signature by repeating it or part of it to match the
length of the longer signature.

In addition to periodical global VM consolidation, PAC
may dynamically relocate a VM when it detects overloaded
hosts or discovers a better host for running the VM because
of the VM’s signature pattern changes. We define a host to
be overloaded when the total resource consumption of the
host exceeds a certain threshold (e.g.,> 90%). In this case,
PAC relocates the VM with the largest resource consumption
from the overloaded host to a more suitable host. Since VMs
running on the overloaded host will not get enough resources,
the resource usage information we record on the overloaded
host may not accurately reflect the real resource demand of the
VM. Thus, PAC first places the VM on a lightly loaded host
to get its accurate signature. Then, PAC performs a similarity
match between the VM’s signature and the signatures of all
available hosts to find a suitable host for the VM. If PAC
finds a better hostvj to run the VMmk than the current host
vi, a VM relocation action will be triggered. PAC sends a
relocation request to the hypervisor onvi to perform a live
migration ofmk from vi to vj . During the live migration, the
signature patterns of bothvi andvj are marked as “unstable”
since both hosts’ signature patterns will be perturbed by the
on-going VM relocation action. PAC will update the signature
patterns ofvi andvj after the live migration is done.

5When we consider an empty host, the residual resource signature for the
host will be a constant time series. PAC can handle this case since the signature
pattern matching algorithm can handle constant time series.

IV. EXPERIMENTAL EVALUATION

We have implemented the PAC system on top of the Xen
VM platform [6] and conducted extensive experiments on the
NCSU Virtual Computing Lab (VCL) [5] using real server
applications. In this section, we first describe our experiment
setup. We then present our experimental results.

A. Experiment Setup

Our experiments are conducted on the VCL, a production
virtualized computing infrastructure consisting of about600
blade servers. VCL operates in a similar way as Amazon
EC2 [1]. Our experiments used a cluster of 20 VCL hosts
running 40 to 100 VMs. Each VCL host runs CentOS 5.2
64-bit with Xen 3.0.3. The VMs deployed on those hosts
also run CentOS 5.2 64-bit. Each VCL host has Intel Dual
Core Xeon CPU 3GHz, 4GB memory, and 30GB disk. We
deploy the management node on one server host with Intel
Quad Core Xeon CPU 2GHz, 16GB memory, 50GB disk,
running RedHat Enterprise Linux. The management node runs
the major signature extraction and matching algorithms to
dynamically choose suitable hosts to run different VMs. It
periodically scans the signature database to perform match-
making between different VMs and hosts.

To achieve live migration of Xen VMs [12], we setup an
NFS server to hold all VM disk images. The overhead of live
VM migration is kept low. For example, it only takes about
12 to 20 seconds for a VM with 512MB memory space to
be migrated from one host to another. Since PAC applies live
migration, the application service downtime is less than one
second regardless of the size of the VM memory.

PAC considers three resource metrics including CPU, mem-
ory, and I/O throughput to make the dynamic VM placement
decision. Each host continuously measures CPU, memory, and
I/O consumptions for all VMs using the libxenstat libraries.
The resource information is sampled and reported to the
management node every 10 seconds. As all VM images are
held in the NFS server, all disk I/O accesses will be transferred
into network I/O accesses. VMs are assigned with fixed size of
memory. Each VM running the RUBiS Web server is assigned
with 800MB memory. Each VM running the RUBiS database
server is assigned with 400MB memory. Each VM running
the Hadoop system is assigned with 800MB memory.

Our experiments use three real server applications: 1) RU-
BiS (PHP version), an online auction benchmark [3], 2)
Hadoop, an open source implementation of MapReduce data
processing system [2], and 3) IBM System S, a commercial
high performance data stream processing system [23], [15].
Realistic input workloads are used to drive those applications:
1) For RUBiS, we used the workload intensity observed in a
real-world workload trace to modulate the request rate of our
synthetic workload. To do this, we started with the two week
period beginning at 1995-08-28:00.00 from the ClarkeNet web
server available at the IRCache Internet traffic archive [4].
We calculated the number of requests produced every hour
to form a time-varying series of request rates, and scaled the
RUBiS workload to match the time series. To speed up the
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Fig. 7. Resource usage traces and prediction comparison forRUBiS and Hadoop. The mean prediction errors are shown in thelegend.

experiments, the workload generator used the request rate for
each hour in the real trace to determine how many requests
to generate for each 40 seconds period in our experiments.
The average load produced is 30 requests/sec and the peak
load is 45 requests/sec. The performance metrics of RUBiS
(e.g., response time) are maintained by the client emulator;
2) For Hadoop, we run three sample applications provided
by Hadoop includingword count, sorting and grep; 3) For
System S, we run a sample application provided by the System
S, that is a fruit supplier selection application based on the
weather information. The performance metrics of Hadoop and
System S (e.g., job completion time) are maintained by the
VMs running the applications.

To validate the prediction accuracy of the signature ex-
traction algorithm, we implemented the following prediction
algorithms for comparison: 1)mean valueprediction that pre-
dicts resource demand based on the average resource demand
using recent historic data; 2)max valueprediction that predicts
resource demand using recent peak resource usage; and 3)
histogramprediction that constructs histograms for recent re-
source demand data. It chooses the bin with the largest number
of values and uses the average of those values as the predicted
value. For all algorithms, we use the same number of samples
(e.g., 512) to predict the next 360 samples that corresponding
to one hour of measurements since the global consolidation
is performed every hour. We compare the mean prediction
error (i.e., the difference between the predicted value andthe
true value normalized by the maximum possible value) under
different algorithms.

We implemented the following common alternative VM
placement algorithms for comparison: 1) TheHistogramal-
gorithm denotes a statistical algorithm. Histograms are con-
structed for historical resource usage by counting the fre-
quency of metric value falling into different value ranges (i.e.,
different bins). To find the best matching host for different
VMs, we calculate a matching score between the VM resource
demand histograms and residual resource histograms of dif-
ferent hosts. The matching score is the weighted sum of the
difference for every bin in the histogram6. We choose the node
that has the smallest positive matching score as the best-fithost
to execute the VM; 2) Themeanvalue based algorithm denotes
a VM placement algorithm based on the average value of VM
resource demands and residual resources on hosts. First, the
system selects hosts that have mean residual resource higher
than the mean value of the VM’s resource requirement. Among
all the qualified hosts, we select the host whose mean residual
resource is closest to the mean value of the VM’s resource
requirement; 3) Themaxvalue based algorithm denotes a VM
placement algorithm based on the maximum value of VM
resource demands (i.e., peak load). A host is said to math the
VM if the maximum value of resource requirement of the VM
is lower than the mean value of the host’s residual resource;
and 4) Thecorrelation based algorithm [33] denotes that all
VMs are placed based on the mean values and correlation
values (Equation 1) between the VM’s resource usage time

6We assign higher weights to the bins representing larger value range since
the positive difference at larger value range weighs more than the positive
difference at lower range value for resource satisfaction.



series and the host’s residual resource time series. First,the
system selects hosts that have mean residual resource higher
than the mean value of the VM resource requirement. Among
the qualified hosts, the system selects the host whose available
resource has the highest correlation with the VM’s resource
requirement.

B. Results and Analysis

We first evaluate the efficiency of our signature extraction
algorithm using realistic application workloads. We extract
the signature patterns using the algorithm described in Sec-
tion III-A. The solid lines in Figure 7 show the true CPU
and I/O usage traces for a subset of applications used in our
experiments. Figure 7(a) and Figure 7(b) show one hour snap-
shot of both real and predicted CPU usage traces for RUBiS
web server and database server, respectively. Figure 7(c) shows
one hour snapshot of both real and predicted network I/O
traces for the Hadoop cluster. The dash lines show predicted
values acquired by different algorithms for one hour length
(360 samples) based on the previous 512 data samples (not
shown in the figure)7. Different from PAC, other algorithms
can only perform coarse-grained prediction, which derive one
value from the training samples and use that value to predict
the resource usage for the next one hour period. We observe
that the resource consumptions of those applications do exhibit
certain repeating patterns. The prediction results (shownby
the solid lines in Figure 7) show that PAC can accurately
extract the signature patterns that closely track real dynamic
resource usage. The prediction results based on the extracted
signatures can achieve 50-90% lower prediction error than
other alternative schemes.

Figure 8(a) and Figure 8(b) show the signature detection rate
results for the CPU and I/O usages of all server applications
(i.e., RUBiS, Hadoop, IBM System S) used in our experiments,
respectively. To measure the signature detection rate, we use
the first 512 measurement samples to form a window and
check whether we can detect a signature within this window.
We then continuously slide the window to see whether the old
signature is still valid or a new signature can be extracted.We
record how many times a signature can be extracted to calcu-
late the detection rate. For comparison, we also implemented
a baseline approach which uses fixed window sizes (50 or
100 samples) to extract the signature. The results show that
real world applications do exhibit repeating patterns thatcan
be captured by our signature model. Our signature extraction
algorithm can achieve much higher detection rate than the
baseline algorithm. In figure 8(b), the detection rate usinga
small window size (50) is very low since the window is too
short to cover one signature.

Figure 9(a) and Figure 9(b) show the mean prediction error
for the CPU and I/O resource usage traces of all server appli-
cations used in our experiments, respectively. We calculate the
mean prediction error for the signature approach as follows.

7The spikes in the real trace did not present in the training data so the
maximum value predicted is less than the spike values.
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Fig. 8. Signature detection rate for RUBiS Web server (RW), RUBiS database
server (RD), Hadoop, and IBM System S.

If a signature is detected, the system uses the signature to
predict resource demands in future one hour, and measures
the average error by calculating the difference between the
predicted values and the real values on the time series nor-
malized by the maximum possible values. If no signature is
detected, the system degenerates to the mean value approach.
For other algorithms (i.e., mean, max, histogram), the system
predicts resource demands in future one hour based on the
same sample data used by the signature-based approach. The
results show that our signature approach can achieve much
lower prediction error than other approaches.

We now evaluate the efficiency of different dynamic VM
placement algorithms using application performance metric
and SLO violation rate. In this set of experiments, We use a set
of RUBiS web servers and database servers driven by different
dynamic workload traces to emulate heterogeneous workload
environments. We use the request load curve from IRCache to
generate workload for all VMs as described before. Moreover,
to generate different workload patterns for different VMs,we
shift the curves by different lengths for different VMs so that
the workload curves for all VMs are different in phases. We
measure the mean response time of all auction requests. We set
the response time SLO as 1.5 seconds. We measure the ratio
of requests that have response time larger than 1.5 seconds
and use this ratio as SLO violation rate. To test the system
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Fig. 9. Prediction accuracy comparison for different applications.

under different workload conditions, we gradually increase the
number of VMs running on the cluster from 40 to 100 (half
are RUBiS Web servers and half are RUBiS database servers).
Figure 10(a) shows the average response time achieved by
different algorithms. Under light workload (e.g., 40-70 VMs),
the performance of different algorithms are similar, whichis
expected since there are plenty of resources for all VMs. Under
heavy workload (i.e., 80-100 VMs), PAC can achieve much
better performance than the other approaches. Figure 10(b)
shows the continuous measurements of the average response
time sampled every five minutes in the case of running 100
VMs on 20 hosts. We can see that PAC consistently achieves
the shortest response time among all algorithms.

Figure 11(a) shows the average SLO violation rate achieved
by different algorithms. The results show that PAC can ef-
fectively reduce the SLO violation rate by up to 60% under
high system workload with a large number of concurrently
running VMs. Figure 11(b) shows the detailed continuous
measurements when running 100 VMs on 20 hosts. The results
show that PAC consistently achieves the lowest SLO violation
rate among all algorithms.

We now report the overhead results of the PAC system.
Table II summarizes the overhead measurements for the man-
agement node running the signature analysis and matching
algorithms. The execution time of one signature extractionis
based on 512 samples. The signature matching time denotes
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Fig. 10. Response time comparison for running 40-100 VMs on 20 hosts.

the time of matching one VM signature with 20 host sig-
natures. Each measurement is repeated 1000 times and we
report both mean and standard deviation. The total execution
time includes the execution time of placing 100 VMs on
20 hosts using the PAC global consolidation algorithm. This
measurement is repeated ten times. PAC imposes less than 1%
overhead for running 30 VMs on one physical host8, which
shows that PAC is feasible for large-scale cloud computing
infrastructures.

Signature extraction time 7 ± 0.45 ms
Signature matching time 85 ± 45 ms
Total execution time (100 VMs on 20 hosts)8.5 sec± 0.2 sec

TABLE II
THE OVERHEAD OF THEPAC SYSTEM.

V. RELATED WORK

Virtualization has been extensively studied due to its im-
portant role in consolidated hosting infrastructures. Previ-
ous work has proposed various enhancements to improve
the performance of popular VM platforms such as Xen and
VMware [35], [26], [27]. Since VMs hosted in one machine

830 VMs is the largest number of VMs we can create on a single physical
host due to the memory constraint.
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Fig. 11. SLO violation comparison for running 40-100 VMs on 20 hosts.

share CPU resources, researchers have proposed different CPU
resource scheduling schemes [22], [20]. However, the above
work mainly focuses on managing VMs within one physical
host. In contrast, our research focuses on exploring VM re-
source usage patterns and live VM migration [12] to achieve
efficient dynamic application consolidation in cloud systems.

Application consolidation is widely employed by large-scale
data centers and hosting infrastructures. Previous consolidation
approaches can be broadly classified into static consolidation
over long period of time (e.g., days, weeks) and dynamic
consolidation over short period of time (e.g., hours). Zhu
et al. proposed an integrated control approach to managing
workloads at different scopes and time scales [36]. Gmach
et al. [17], [16] proposed an integrated workload placement
solution using both peak demand based workload assignment
simulation and fuzzy logic based feedback control guided
workload migration. Verma et al. proposed a static consoli-
dation scheme that considers workload correlations and peak
patterns to minimize power consumption of data centers [33].
In contrast, our work focuses on dynamic application con-
solidation and employs time series similarity matching to
achieve precise resource control in multi-tenant cloud systems.
Bobroff et al. proposed a dynamic VM placement scheme
using predicted resource demands based on recent historical
data [7] and tested their algorithm using simulation. Their
work is based on auto-correlation assuming the workload has

cyclic patterns. In contrast, our system can extract signatures at
runtime even when signatures might change dynamically, and
apply time series similarity matching algorithms to perform
runtime VM placement in cloud systems.

Rolia et al. proposed dynamic resource allocation using
an estimated burst factor multiplies the most recent resource
demand [30]. Gmach et al. [18] used a combined evaluation
of the periodogram function and the auto-correlation to pre-
dict workload. They generate synthetic workload based on
the prediction to predict the resource usage. In comparison,
PAC directly extracts dynamic resource usage patterns based
on the observation over an extended period of time. Our
experiments have shown that such an approach is feasible and
efficient. Chen et al. [10] used sparse periodic auto regression
to perform load prediction. However, their approach assumes
the repeating period is known in advance. Chandra et al. [9]
proposed two workload prediction algorithms using a simple
linear regression model (i.e., prediction based on only the
previous value) and a histogram method. Our experiments
have shown that PAC can significantly outperform this simple
approach.

Mi et al. [28] proposed that temporal dependence can be
exploited to forecast future resource requirements of service
requests. They use autocorrelation function to identify the
temporal dependence to make admission control decision. In
comparison, PAC tries to detect resource demand patterns
and consolidate different applications based on their signature
patterns. Casolari et al. [8] proposed short-term prediction
models for Web-based system resources using trend-aware
regression algorithm. In comparison, PAC considers resource
usage patterns at different time scales (i.e., both short term and
long term) to achieve efficient application consolidation and
dynamic application relocation. Kochut provided an analytical
model to quantify the benefit of dynamic VM relocation [24].
Choi et al. [11] proposed the profiling and prediction of
power consumption in consolidated environments. Different
from the above work, PAC focuses on pattern-driven resource
management for consolidated cloud computing environments.
In [19], we presented an initial framework of our signature-
driven load management for wide-area distributed systems
such as PlanetLab [29], which, however, does not provide
dynamic online signature extraction and is not integrated with
the VM platform.

Recent studies have shown that recognizing system patterns
is a promising approach to automatic system management.
Cohen et al. proposed the signature concept to capture the
essential characteristic of a system state that can be indexed
and clustered, and retrieved based on similarity to assist in sys-
tem problem diagnosis [13]. Shen et al. proposed to construct
a whole-system I/O throughput model as the reference of ex-
pected performance and used statistical clustering and charac-
terization of performance anomalies to guide debugging [32].
Ganapathi et al. applied machine learning techniques to predict
multiple performance metrics of query processing [14]. Our
work is similar to the above work by adopting a pattern driven
approach. However, to the best of our knowledge, our work



makes the first step to apply pattern-driven approach to fine-
grained resource control in cloud computing environments.

VI. CONCLUSION

In this paper, we have presented PAC, a new pattern-driven
application consolidation system for multi-tenant cloud com-
puting infrastructures. Different from previous coarse-grained
resource management approaches, PAC models dynamic ap-
plication resource demand using fine-grained time series and
employs signal processing techniques to discover significant
patterns. Based on the extracted patterns, PAC performs effi-
cient application consolidation that can both avoid resource
waste in the cloud system and minimize negative sharing
impact among co-located applications. We have implemented
the PAC system on top of Xen virtual machine platform and
tested it on the NCSU Virtual Computing Lab. Our experi-
mental results show that 1) real world applications do exhibit
significant resource usage patterns that can be captured by
PAC to achieve more efficient resource sharing; 2) pattern-
driven application consolidation can significantly improve the
application performance by up to 50% compared to previous
schemes when running a large number of VMs on a shared
cluster; and 3) PAC is feasible for production cloud systems,
which imposes little overhead to the cloud system.
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