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Abstract—Quality-of-service (QoS) management often requires
a continuous monitoring service to provide updated information
about different hosts and network links in the managed system.
However, it is a challenging task to achieve both scalability
and precision for monitoring various intra-node and inter-node
metrics (e.g., CPU, memory, disk, network delay) in a large-scale
hosting infrastructure. In this paper, we present a novel OnLine
Information Compression (OLIC) system to achieve scalable
fine-grained hosting infrastructure monitoring. OLIC mode ls
continuous snapshots of a hosting infrastructure as a sequence
of images and performs online monitoring data compression to
significantly reduce the monitoring cost. We have implemented a
prototype of the OLIC system and deployed it on the PlanetLab
and NCSU’s virtual computing lab (VCL). We have conducted
extensive experiments using a set of real monitoring data from
VCL, Planetlab, and a Google cluster as well as a real Internet
traffic matrix trace. The experimental results show that OLIC
can achieve much higher compression ratios with several orders
of magnitude less overhead than previous approaches.

I. I NTRODUCTION

Large-scale distributed hosting infrastructures have become
fundamental platforms for many real world production systems
such as enterprise data centers, cloud systems [1], and massive
data processing systems [2]–[4]. A production hosting infras-
tructure typically consists of i) a large number of distributed
worker nodes that execute different application tasks; andii)
a set of management nodes that provide various configura-
tion and optimization services. Particularly, quality-of-service
(QoS) management plays a key role to convince users to
migrate their applications into those hosting infrastructures.
However, to achieve automatic QoS management, the first step
is to provide a continuous monitoring service that can collect
various resource and performance metrics (e.g., host resource
availability, application resource usages, inter-node network
delays/bandwidth) in the hosting infrastructure.

To achieve efficiency, the QoS management module of-
ten desires to obtaincompleteand fine-grainedinformation
about all hosts and network connections within the host-
ing infrastructure. Our previous work [5], [6] has shown
that fine-grained monitoring information can greatly improve
QoS provisioning performance. Similarly, online performance
anomaly detection system [7]–[9] also depends on fine-grained
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Fig. 1. OLIC distributed monitoring architecture.

monitoring data to achieve high accuracy.
However, it is a challenging task to deploy fine-grained

monitoring for large-scale hosting infrastructures due tothe
scalability concern. A production hosting infrastructureoften
comprises thousands of hosts and many more virtual machines
(VMs), each of which can be associated with tens of or
hundreds of dynamic metrics [10], [11]. For example, the IBM
Tivoli monitoring system [11] can collect over 600 metrics on
a host running Windows OS. Hence, most production hosting
infrastructures [10], [13] typically use a long update interval
(e.g., every five minutes) to tradeoff information precision for
scalability, which unfortunately will significantly affect the
performance of the QoS management functions [5]–[8].

Previous research work has identified the challenge of
scalable distributed monitoring and proposed various solutions
to address the problem: i) employing decentralized architec-
tures such as hierarchical aggregation [14] or peer-to-peer
structure [15], [16] to distribute monitoring workload; orii)
trading off information coverage [17] or precision [18] for
lower monitoring cost. In contrast, the goal of our researchis
to provide a fine-grained and full coverage monitoring system
that can be applied to any distributed hosting infrastructure.
Recent work [9], [19] has proposed to leverage temporal
and/or spatial correlations to reduce monitoring overhead.
However, exploring temporal correlation alone has limitedcost
reduction [19] while spatial correlation discovery can be costly
when the size of the hosting infrastructure is large.

In this paper, we present a novel light-weight OnLine
Information Compression (OLIC) framework that explores a
new image-based approach to scalable distributed monitoring.



Figure 1 shows the overall architecture of the OLIC system.
OLIC models snapshots of dynamic monitoring metrics of the
whole hosting infrastructure as a sequence of system images.
We partition each system image into a set of blocks and
dynamically search the optimal reference block from a window
of recent snapshots for each block. OLIC reduces monitoring
cost by suppressingthe remote update of those attributes
whose values can be inferred by their reference values within
a user defined error bound. Compared to previous correlation-
based approaches, OLIC employs a larger search range to find
better reference blocks. Moreover, OLIC does not enforce a
group of data blocks to share a common reference block as in
the spatial correlation based scheme.

OLIC can reconstruct all monitoring data and deliver full-
coverage and fine-grained information to other system man-
agement modules. If the error bound is set to be 0, OLIC
delivers the exact original attribute value to the management
module; If the error bound is non-zero, OLIC provides approx-
imate values for some attributes. However, all approximation
errors are guaranteed to be within the specified error bound.
Our experiments will show that a small approximation error in
monitoring data does not significantly affect the performance
of the management function.

This paper makes the following contributions:

• We propose OLIC, a light-weight online information
compression framework to enable scalable, full-coverage,
fine-grained monitoring for large-scale hosting infrastruc-
tures.

• We have implemented a prototype of the OLIC system
and deployed it on the PlanetLab [20] and NCSU virtual
computing lab (VCL) [13]. Our prototype implementation
shows that our approach is feasible and practical for real
world hosting infrastructures.

• We conducted extensive experiments using real system
monitoring data from PlanetLab, VCL, a Google clus-
ter [21], and real Internet traffic matrices [22]. Our
experimental results show that the OLIC can achieve up
to 95% monitoring cost reduction under a range of tight
error bounds (0.01-0.1) and 70% reduction for lossless
compression (i.e. 0 error bound). OLIC can improve the
compression ratio by up to 200% with more than several
orders of magnitudes less overhead than other alternative
schemes.

The rest of the paper is organized as follows. Section II
gives an overview about our system model and problem for-
mulation. Section III describes the design details of the OLIC
system. Section IV presents the prototype implementation and
experimental evaluation. Section V compares our work with
related work. Finally, the paper concludes in Section VI.

II. PRELIMINARY

In this section, we first introduce the distributed monitoring
system model. We then present the problem formulation.

A. Monitoring System Model

We consider a large-scale distributed hosting infrastructure
that consists ofN worker nodes, denoted by{v1, . . . vN},
as shown in Figure 1. OLIC installs monitoring agents on
all worker nodes and configures those monitoring agents to
report their local metrics to the management node using certain
sampling rate (e.g., every 10 seconds). We classify distributed
system attributes into two categories: 1)intra-nodeattributes
which contain information relating to each node (e.g. CPU
load, memory usage, disk I/O statistics), and 2)inter-node
attributes which denote measurements between different nodes
(e.g. network delay and network traffic volume).

On each worker node, the monitoring agent periodically
samples each intra-node attribute to form a time series
{a1

i,k,. . . , at
i,k,. . .,at+m

i,k }, where at
i,k denotes the sampled

value for the intra-node attributeak collected on nodevi

at time t. Similarly, the monitoring agent also periodi-
cally sample each inter-node attribute to form a time series
{d1

i,j , . . . , d
t
i,j , . . . , d

t+m
i,j } wheredt

i,j denotes the value of the
inter-node attributedi,j at time t.

OLIC performs compressed information collection from all
monitoring agents for reducing the distributed monitoringcost.
On the management node, OLIC decompresses the monitoring
data and delivers complete, fine-grained monitoring data time
series to other QoS management modules.

B. Problem Formulation

The goal of the OLIC monitoring system is to provide
full-coverage and fine-grained monitoring information to the
management node with low information collection cost. The
basic idea is to suppress the update of the attribute value
from a worker node to the management node at timet if the
management node can infer the attribute value using other
reference values that are already known to the management
node. OLIC allows the user to define an error bounde(e ≥ 0)
to indicate the maximum approximation error that can be
tolerated by the management function. If|ai − a′

i|/ai ≤ e,
OLIC can suppress the update of the attribute valueai from
the worker node and restore the value ofai on the management
node using its reference valuea′

i within the error bounde.
To quantify the effectiveness of the online compression

algorithm, we define the compression ratio (CR) as follows:

CR =
Ncompressed

Norig

(1)

Ncompressed is the number of attribute values whose updates
are suppressed by OLIC andNorig is the number of original
attribute updates without any compression. The larger the
compression ratio, the more monitoring cost reduction can be
achieved by the OLIC system. To maximize the compression
ratio, OLIC needs to find the optimal reference value for
each attribute whose value can be used as reference with
the highest probability. However, the key question is how
to discover such reference values online and maintain the
efficiency of reference values while monitoring a dynamic
hosting infrastructure. The goal of the online compression
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Fig. 2. System image sequence for an inter-node attribute for a distributed
system ofN nodes.
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Fig. 3. System image sequence for an intra-node attribute for a distributed
system ofN nodes.

algorithm is to efficiently address this question. Furthermore,
the online compression algorithm needs to be light-weight by
itself. Otherwise, the cost of the compression will defeat the
original purpose of the compression.

We propose a novel image based approach to achieving
light-weight online compression for the distributed monitoring
system. We model a snapshot of a distributed system using a
system image, which is described in detail as follows:

For monitoring an inter-node attribute (e.g., network delay)
of a distributed system consisting of N nodes, the system
image at timet comprisesN ×N pixels, illustrated by Figure
2. The pixel ati′th row andj′th column denotes the attribute
value between the nodei and the nodej at time t. Note that
the main diagonal of this image should have all zero values
since the inter-node attribute value does not exist for one node
itself.

For monitoring an intra-node attribute (e.g., CPU load) of
a distributed system consisting of N nodes, the system image
at time t comprisesN pixels where each pixel denotes the
attribute value at one particular node. We can organize the N
pixels into l rows andk columns wherel · k = N , illustrated
by Figure 3. To fully utilize the power of our search algorithm
described in Section III-A, we choose the values ofl and k
so that the system image is close to a square matrix.

We partition each system image into a set of small blocks,
each of which containsn × n attribute samples wheren is a
tunable small number. We can then perform reference value
search at block level instead of the pixel level. For each block,
we strive to find the optimal reference block for each block
using a fast reference block search algorithm that will be

described in the next section.
There are several design issues we need to consider. First,

our information compression system needs to handle decen-
tralized monitoring data where different image blocks are
disseminated on different distributed hosts. This requires all
monitoring agents and the management node to perform the
online information compression together in a coordinated
way. Second, our system deals with dynamic live monitoring
data, which requires an adaptive online training algorithmto
maintain the efficiency of the compression.

Different from the static, offline compression scheme (e.g.,
gzip) that can only be applied after the data have been
reported to the management node, our approach performs
online compression over live monitoring data streams during
monitoring runtime. Thus, our approach can reduce end-
system resource and network bandwidth consumption on both
monitored worker nodes and management node, which cannot
be achieved by previous offline compression techniques.

III. SYSTEM DESIGN

In this section, we present the design and algorithm details
of the OLIC system. We first describe our reference block
search algorithm. Next, we present the online information
compression algorithm.

A. Online Reference Block Training

One key step in our online compression scheme is to
select a good reference block for each block. As long as
an attribute value within one block can be inferred from
the attribute value of its corresponding block within the user
defined error bound, the monitoring agent does not need to
report the current value to the management node. Ideally, we
wish to find the optimal reference block for each block that can
achieve the highest compression ratio defined by Equation 1.
However, finding the optimal reference block would require
us to search all the blocks in all historical system images.
This will inevitably impose high overhead to the monitoring
system. Thus, in practice, we have to adopt fast reference block
search algorithms to find near-optimal reference blocks with
low overhead.

OLIC employs a training phase to perform online reference
block search, illustrated by Figure 4. During the training phase,
the management node examines a window of consecutive sys-
tem images preceding the current system image. We call those
imagesreference imagesand the current image astraining
image. For each block in the training image, the management
node examines a number of blocks in all reference images as
well as the current image to find its best reference block. We
then slide our training window to an earlier time by one step
and designate the image immediately preceding the current
image as the training image. We then apply the reference block
search algorithm to find another set of reference blocks for
each block in the current training image. We repeat the above
training process a few times and use majority voting to decide
the best reference block for each block.
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Fig. 4. Online training phase.

For example, in Figure 4, the best reference blocks for
block 1 during the three rounds of training are{2, 2, 3}. Thus,
we will select block2 as the reference block for block1.
If multiple reference blocks have the same frequency, we
break tie by selecting the reference block with the highest
average compression ratio. Note that we will not achieve any
compression during the reference block training phase since all
monitoring agents need to send all their recent sample values
to the management node during this process. Thus, we cannot
perform training over a large number of reference images.

We provide a fast and efficient reference block search
algorithm inspired by similar techniques in the video coding
area [23]. The idea is to greedily increase the search range
to explore more candidate reference blocks and terminate the
search immediately when little compression improvement can
be achieved. This search strategy can achieve good tradeoff
between search coverage and search overhead.

Specifically, the search algorithm follows dual-diamond
search patterns illustrated by Figure 5. The first pattern is
a large diamond search pattern(LDSP) that searches eight
blocks surround the center block following a diamond shape
and the center block. The second pattern is asmall diamond
search pattern(SDSP) that searches four blocks surrounding
the center block which form a small diamond with the center
block. Our search algorithm repeatedly conduct LDSP search
until the best reference block occurs at the center block. Next,
the search pattern is switched from LDSP to SDSP to find
the best reference block among the five blocks included in
SDSP. For example, in Figure 5, the search path includes two
LDSPs and one SDSP. The arrows indicate the movement of
the diamond center. Finally, the red block in the reference
imageK is chosen as the best reference block.

In the worst case, LDSP needs to search all blocks in
the current image with a computation complexity ofO(M2),
whereM denotes the number of blocks. However, in practice,
we found that the search algorithm has sub-linear overhead in
most cases since the search process often terminates after a
few search rounds.

B. OLIC Compression Algorithm

We now describe the detailed online compression algorithms
of the OLIC system. The runtime operation of the OLIC
system involves both the management node and all distributed
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Fig. 5. Reference block search using dual diamond pattern.

monitoring agents. The online compression process alternates
between two phases: the training phase and the compression
phase.

During the training phase, all monitoring agents send
all monitoring data to the management node. Thus, OLIC
achieves zero compression at this stage. When the manage-
ment node accumulates a number of raw system images, it ex-
ecutes the online reference block training algorithm described
in Section III-A to derive the reference blocks that give the
best compression ratio. The management node then records
the reference block information (e.g., block location, theindex
of the reference image within the training window) for each
image block. Next, the management node sends the reference
block information to the corresponding monitoring agents.

During the compression phase, each monitoring agent con-
tinuously compares the current sample value of each at-
tribute with the corresponding reference value that has been
reported to the management node in the reference block.
If the difference is within the pre-defined error bound, the
monitoring agent will omit the report of its current value to
the management node. Otherwise, the monitoring agent will
send the current attribute value to the management node. On
the management node side, if the management node does not
receive the update from a monitoring agent during the current
sampling period, it assumes that it can infer the attribute
value using the attribute’s reference value. Otherwise, the
management node will use the most recent value reported
by the monitoring agent as the sample value for the current
sampling period. One tricky situation is that the management
node may not be able to distinguish between a failed node or
a healthy node that performs information compression when
it does not receive updates from that node. We will further
discuss this in the next section.

The compression power of the OLIC system depends on
the effectiveness of the reference blocks. Since distributed
monitoring data streams are often dynamic, the effectiveness
of the reference blocks may become weaker after a period of
time. The management node can calculate recent compression
ratios achieved by the current reference block assignment
using Equation 1. The management node can trigger the
reference block training periodically or when compression
ratios fall below a certain threshold. Figure 6 shows the
pseudo-code of the training phase and compression phase on



K: number of reference images
r: number of training rounds

Training()
1. build (K + r) system images
2. for i =1 to r

3. load imagesi to (i + K − 1) as reference images
4. load the image(i + K) as the current training image
5. run GS or LS to find best reference blocks
6. decide best reference blocks using majority voting
7. send the reference block information back

to corresponding monitoring agents

Compression()
1. for each worker node at timet
2. if (no update from this node)
3. if (this node has failed)
4. reassign reference hosts for affected blocks
5. else
6. use the attribute’s reference value
7. else
8. use the most recent reported value

Fig. 6. OLIC algorithm on the management node.

the management node.

IV. SYSTEM EVALUATION

In this section, we first describe our system implementation
details followed by the trace description. We then present and
analyze our experimental results.

A. Prototype Implementation

We have implemented a prototype of the OLIC system
and deployed it on: 1) the PlanetLab [20] that is a wide-
area network testbed, and 2) the NCSU virtual computing
lab (VCL) [13] that is a production virtualized hosting infras-
tructure similar to Amazon EC2 [1]. We deploy a monitoring
agent on each host and run the management node program
on a dedicated server in our lab as shown in Figure 1. The
server machine has configuration of Intel Core Duo CPU
2.4 GHz with 4GB RAM. Each monitoring agent on the
PlanetLab collects about 66 attributes that are supported by
the PlanetLab CoMon monitoring tool [10] (e.g., CPU load,
free memory, available CPU). Each monitoring sensor also
periodically pings other nodes in the system to collect inter-
node attributes such as network delay and bandwidth. The
monitoring agent on VCL host is connected to the IBM Tivoli
Monitoring agent [11] that can collect hundreds of attributes.

For comparison, we also implemented several alternative
online compression algorithms: 1) thetemporalalgorithm that
suppresses the monitoring updates if the last value can be
used to predict the current value within the pre-defined error
bound1; 2) thespatialalgorithm uses thek-medoids clustering
algorithm [26] to group all monitored nodes into different
groups. We elect one node in the group (i.e. cluster head,

1We have implemented other temporal prediction algorithms such as
Kalman filter, which however have very similar performance with the last
value based approach [19].

usually the medoid of each cluster) as the representative. Other
cluster members do not need to send their updates if the
difference between their values and the cluster head is within
a predefined error bound; 3) thetemporal+spatialalgorithm
developped by our previous work ( the InfoTrack system) [19]
that leverages both temporal and spatial correlations among
attribute values from different nodes to suppress distributed
monitoring traffic; and 4) theneighborsearch algorithm that
performs a similar online compression process as OLIC but
its reference block search algorithm only examines eight
neighboring blocks and the co-located blocks in the reference
images.

In most of our experiments, we trigger the online training al-
gorithm with a fixed training interval ranging within [200,300]
system images. The number of reference imagesK and the
number of training roundsr are both set to be 3. The spatial
and the temporal+spatial approaches also use the same training
interval to perform clustering periodically. We will conduct
sensitivity studies to discuss the impact of these parameters.

B. Trace Collection

To compare the performance of different compression algo-
rithms, we use real world distributed system monitoring data
to drive our experiments. Both the monitoring agents and the
management node are fully implemented with the monitoring
traces replayed at different monitoring agents.

The VCL monitoring traces are collected by the production
VCL system using the IBM Tivoli monitoring software [11].
The trace dataset contains various performance attributesfor
400 VCL nodes from Oct.18th, 2010 to Nov.3rd, 2010. The
sampling interval is five minutes. In our experiments, we test
our algorithms on the IP statistics attribute (datagrams/sec) and
windows NT processor attribute (DPC queued/sec).

The PlanetLab data were collected by our distributed mon-
itoring system [17], [19] deployed on 500 PlanetLab nodes.
The monitoring agent on each node collected various system-
level attributes (i.e., intra-node attributes) that are supported by
the PlanetLab CoMon monitoring tool [10] (e.g., CPU load,
free memory, available CPU etc.) at a sampling interval of
ten seconds. Each monitoring agent also periodically pings
other nodes in the system to collect inter-node attributes such
as network delay and bandwidth. We collected a dataset of
intra-node attributes containing 400 nodes from Jan.29th,2009
to Feb.3rd, 2009. We collected another dataset of inter-node
attributes containing 464 nodes from Oct.4th, 2009 to Oct.6th,
2009.

To test inter-node attributes, we also used a real Internet
traffic matrices collected by previous research work from a
transit network [22]. This dataset contains traffic matrices
sampled every 15 minutes for a period of about four months.

We also got a small sample of real application workload
trace data from a Google cluster [21]. The dataset contains
normalized CPU and memory usage attributes for more than
30,000 different jobs, with a sampling interval of five minutes.
We selected a subset of these jobs (i.e., 1296 jobs) which
have larger variations in the raw data. Since different jobs
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Fig. 7. Compression ratio comparison for the VCL IP Statistics trace. (Intra-
node attribute, 400 nodes, Mean: 38.69, Standard deviation: 82.58, Sampling
interval: 5 minutes, Total data size: 18MB)
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Fig. 8. Compression ratio comparison for the VCL NT Processor trace. (Intra-
node attribute, 400 nodes, Mean: 45.4, Standard deviation:58.23, Sampling
interval: 5 minutes, Total data size: 36MB)

have varied execution length in the original trace, we repeated
short jobs from randomized start points within the trace. We
also assume that those jobs are executed on different hosts.

C. Results and Analysis

We first present the compression comparison results using
the VCL monitoring datasets. Figure 7(a) shows the average
compression ratio achieved by different schemes under various
error bounds for the IP statistics attribute (datagrams/sec).
Figure 7(b) shows the compression ratio changes in time-series
for different approaches under fixed error bound 0.01. The at-
tribute is sampled every five minutes, and the whole trace lasts
about 16 days. According to the statistics, this dataset is highly
fluctuating with a very large standard deviation. We observe
that OLIC significantly outperforms all the other schemes with
more than 200% higher compression ratios under tight error
bound requirements. The temporal algorithm can only achieve
very low compression ratios since the monitoring data are
highly dynamic. The compression ratio fluctuation of OLIC
scheme in Figure 7(b) is caused by the variation degree change
in the monitoring data. It indicates that that OLIC can fully
explore the changing compressibility of the monitoring data to
maintain the highest compression ratio. Figure 8(a) and Figure
8(b) show the compression result of NT processor attribute
(DPC Queued/sec) in the VCL processor statistics trace. The
results are consistent with those of the IP statistics trace.

We then present the results of monitoring intra-node at-
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Fig. 9. Compression ratio comparison for the PlanetLab freememory trace.
(Intra-node attribute, 400 nodes, Mean: 107, Standard deviation: 42, Sampling
interval: 10 seconds, Total data size: 744MB)
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Fig. 10. Compression ratio comparison for the PlanetLab inter-node delay
trace. (Inter-node attribute, 464 nodes, Mean: 241.8, Standard deviation: 58.9,
Sampling interval: 10 seconds, Total data size: 92GB)

tributes on the PlanetLab. Each monitoring attribute is sampled
every 10 seconds and the whole trace lasts about six days.
Figure 9(a) and Figure 9(b) shows the average compression re-
sults and time-series compression ratio changes for PlanetLab
free memory attribute trace. Different from the VCL datasets,
the Planetlab monitoring data are more stable with smaller
standard deviations. Thus, we can see that the PlanetLab
monitoring data are much easier to be compressed with up
to 70-80% compression ratios. This also is the reason why
the performance of all approaches are very close. However,
OLIC and temporal+spatial algorithms still perform betterthan
the temporal algorithm. We will show later that OLIC has
much lower overhead than the temporal+spatial algorithm.
Furthermore, OLIC still performs the best under rigid error
bounds (e.g., 0.01).

Next we present the compression results for PlanetLab inter-
node delay dataset in Figure 10(a) and Figure 10(b). The size
of this dataset (92GB) is much bigger than the other datasets.
We observe that this dataset is also very stable and easy to
be compressed. OLIC can achieve 88% compression ratio
under a very tight 0.01 error bound and 70% compression
ratio for lossless compression (i.e. 0 error bound). The reason
is that the measured delay between two PlanetLab nodes are
stable within certain period of time. We note that the inter-
node metric shows better compression potential. However, it
is impractical to apply previous spatial-temporal correlation
to the inter-node metrics due to its high overhead. In contrast,
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Fig. 11. Compression ratio comparison for the traffic matrices trace. (Inter-
node attribute, 23 nodes, Mean: 17040, Standard deviation:52578, Sampling
interval: 15 minutes, Total data size: 126MB)
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Fig. 12. Compression ratio comparison for the Google cluster cpu trace.
(Intra-node attribute, 1296 nodes, Mean: 0.039, Standard deviation: 0.026,
Sampling interval: 5 minutes, Total data size: 86MB)

OLIC can easily achieve a very high compression ratio with
little overhead. In our experiment, the spatial algorithm took
around 6 minutes while OLIC only needs 50 milliseconds for
one training period.

Now we present the compression results for another inter-
node attribute trace - Internet traffic matrices, shown by Figure
11(a) and Figure 11(b). Again, we observe that the OLIC
algorithm consistently outperforms the other algorithms over
different error bound settings. In Figure 11(b), the fluctuating
compression ratio curve for OLIC indicates that OLIC can
dynamically discover the best reference blocks to maintain
the highest compression ratio.

Next, we present the compression results for the CPU
monitoring datasets from a Google cluster. Google normalizes
original data using some secrete linear function for privacy
protection. However, the normalized data preserve the chang-
ing pattern of the original data. Figure 12(a) and Figure 12(b)
show the compression result for the cpu attribute. Again, we
observe that the OLIC algorithm consistently outperforms all
the other algorithms.

As we have seen, OLIC achieves varying compression
ratios because of the data variability among different datasets.
However, OLIC consistently outperforms other alternative
schemes in all test cases. The fundamental reason is that OLIC
dynamically and intelligently explores much broader search
range than temporal and spatial approaches so that the chance
of finding best reference blocks for higher compression ratio

Error bound 0.01 0.05
Block 2x2 17.71 33.60
Block 4x4 19.98 36.32
Block 6x6 18.72 34.94
150 mins. interval 14.74 27.50
1000 mins. interval 18.72 34.94
3000 mins. interval 19.18 36.68
40000 mins. interval 14.41 31.93
K=5, r=5 20.04 35.31
K=3, r=3 19.45 35.29
K=1, r=1 18.72 34.94
Image 36x36 18.72 34.94
Image 24x54 18.65 34.17
Image 18x72 18.58 34.08

TABLE I
SENSITIVITY EXPERIMENT RESULTS FOR THEGOOGLE CLUSTERCPU

TRACE.

is greatly increased.
We conduct sensitivity experiments to investigate the impact

of different parameters (i.e., block size, training interval,
reference image number, training rounds). Table I shows a
subset of results for the Google cluster CPU trace with the
optimal parameter settings highlighted.

First, block size decides the granularity of the search algo-
rithms. A larger block size can reduce the number of search
steps and thus decrease the computational overhead. However,
under coarse granularity, it will lead to less accurate block
matching. On the other hand, a smaller block size performs
fine-grained search but has limited search range. It is also less
robust to noises in data (e.g., some transient similarity).In our
experiments, we observe that block size 4x4 achieves the best
performance.

Second, we evaluate the impact of training interval. The
reference block training is triggered more frequently under
a smaller training interval. The consequence is that we can
always have an accurate model. However, the overall com-
pression ratio will be affected since those images during the
training phase have zero compression ratio. In contrast, a
larger training interval can mitigate the negative effect of zero
compression ratio but runs the risk of losing reference block
freshness. The normalized Google cluster CPU trace contains
7500 data samples and the sampling interval is five minutes.
We observe that training interval of 3000 minutes (i.e. 600 data
samples) achieves the best performance. It is also interesting
to observe that too small training interval (e.g., 150 minutes)
brings even worse performance than using one training model
from beginning to the end (i.e. 40000 minutes).

Third, we alter the number of reference imagesK and
training roundsr in one training phase. The results show that
having more reference images and training rounds only brings
marginal performance gains.

Fourth, we look into the effect of different image organiza-
tions for the intra-node attribute. We organize one image using
different combinations of row and column sizes. We observe
that our diamond search algorithm is robust to different image
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Fig. 13. A case for fine-grained monitoring.

Algorithm Memory Training Compression
OLIC 43 MB 0.051±0.021 s 17.57±1.19 ms
Neighbor 38 MB 0.047±0.022 s 13.51±1.25 ms
Spatial 40 MB 400±190 s 12.89±1.43 ms

TABLE II
SYSTEM OVERHEAD COMPARISON FOR COMPRESSING AN INTER-NODE

ATTRIBUTE ON 464 PLANETLAB HOSTS.

sizes since it has a flexible search pattern.
We conducted a case study to qualify the benefit of fine-

grained monitoring and the impact of approximation error
on the performance of QoS management . Figure 13 shows
the QoS provisioning performance of a dynamic resource
scaling system [6] under different monitoring granularities
(i.e., 1 second v.s. 1 minute monitoring interval) for the RUBiS
online auction benchmark application. The resource scaling
system dynamically adjusts the resource allocation based
on the predicted application resource demand. The resource
demand predictor is trained using the sampled monitoring
data. We can see that fine-grained monitoring (one second
sampling interval) can reduce QoS violation rate to 4.3% from
17.4% achieved under a 1-minute sampling interval. We then
introduce a 0.05 approximation error and re-run the scaling
experiments. We can see that the QoS violation rate is almost
unaffected under a small approximation error.

Finally, we evaluate the overhead of different compression
algorithms for compressing the inter-node network delay at-
tribute on 464 PlanetLab hosts in Table II. For OLIC and
neighbor search algorithms, the training overhead includes the
time of searching best reference blocks during one training
phase. For the spatial approach, the training overhead in-
cludes the time of performingk-medoids clustering during one
training phase. Since the training overhead of the temporal
algorithm is negligible, we did not show its overhead. The
compression time includes the time of performing compression
for one system image by using the reference block information
obtained during the training phase. We observe that both
OLIC and neighbor search algorithm have significantly smaller
training overhead than the spatial approach. The neighbor
search algorithm is a bit faster than OLIC since its search range
is even smaller. However, we have already shown that the
compression performance of OLIC consistently outperforms
the neighbor search algorithm for all datasets due to its broader
search coverage. We observe that the memory consumption for
all three approaches are around 40 MB. We also observe that

OLIC can finish one round training within tens of millisec-
onds, which well meet our online compression goal.

V. RELATED WORK

Distributed systems and network monitoring have been
extensively studied before. Previous work (e.g. Astrolabe[14],
SDIMS [15], Mercury [27], SWORD [16]) has proposed to
leverage hierarchical or decentralized architectures to achieve
scalable distributed monitoring. Chen et al. proposed an al-
gebraic approach that selectively monitors a subset of paths
to fully predict the loss rate and latency of all paths in an
overlay network [28] with the assumption that the underlying
network topology is known. In contrast, our work focuses
on monitoring an arbitrary distributed hosting infrastructure
without any prior assumption about the monitored distributed
system.

Exploring correlation patterns among distributed data
sources have been studied under different context such as
sensor network monitoring [29]–[31], distributed event track-
ing [32], and resource discovery [33]. Several previous
work [9], [18], including some of our own [19], has proposed
to leverage correlation patterns to reduce monitoring cost.
In contrast, our work explores a new image-based online
compression approach to reducing distributed monitoring over-
head. Zhang et al. proposed to leverage spatial and temporal
correlations to infer missing values from other received values
in Internet traffic monitoring systems [34]. In comparison,
our work addresses an orthogonal problem of reducing the
collection cost of known values.

Compression techniques have been extensively studied in
video streaming applications [35], [36]. Our work is inspired
by the video compression technique that encodes large video
data at the source, transmits the compressed video data for
lower communication cost, and then decodes the compressed
data at the receiver to restore the original data. However,
our work needs to address a set of new challenges since
our source data are distributed on different hosts that can
experience transient or persistent failures from time to time.
Offline data compression has been well studied. For example,
VPC3 [37] is an offline trace compression algorithm for large
log files, which utilizes value predictors to identify and amplify
patterns in the log files so that compression/decompressioncan
be achieved more effectively and faster. Flight data recorder
[38] is an online system call tracing tool with system call
compression support. In contrast, our work focuses on online
compression of dynamic metric values.

VI. CONCLUSIONS

In this paper, we have presented OLIC, a novel image-
based online information compression framework for moni-
toring large-scale hosting infrastructures. OLIC models snap-
shots of the monitored distributed system using a sequence
of system images and apply light-weight online reference
block search schemes to compress distributed monitoring data
streams. OLIC performs online reference block training using
a dual diamond reference block search algorithms inspired



by the video compression techniques. To the best of our
knowledge, OLIC makes the first attempt to adopt an image-
based approach to achieving efficient distributed monitoring
traffic reduction. We have implemented the OLIC system and
deployed it on the PlanetLab and NCSU virtual computing lab
(VCL). We conducted extensive experiments using a range of
real system monitoring data from PlanetLab, VCL, a Google
cluster, and a real Internet traffic matrix dataset. Our prototype
implementation indicates that OLIC is practical and efficient,
which can achieve the best compression performance with
much lower overhead compared to previous schemes.
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