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Abstract—Quality-of-service (QoS) management often requires system system
a continuous monitoring service to provide updated informdion image | ... |image
about different hosts and network links in the managed syste. ait atk

However, it is a challenging task to achieve both scalabilit Distrbuted hosting infrastructures

and precision for monitoring various intra-node and inter-node W [ T T oue T '
metrics (e.g., CPU, memory, disk, network delay) in a largescale monitoring agent  =f _ ___ i

hosting infrastructure. In this paper, we present a novel Oriine fcompressor _(/C Mic
Information Compression (OLIC) system to achieve scalable (

; management

' module

reference block
training

fine-grained hosting infrastructure monitoring. OLIC models
continuous snapshots of a hosting infrastructure as a sequee
of images and performs online monitoring data compressiona
significantly reduce the monitoring cost. We have implemerad a
prototype of the OLIC system and deployed it on the PlanetLab Fig. 1. OLIC distributed monitoring architecture.
and NCSU's virtual computing lab (VCL). We have conducted
extensive experiments using a set of real monitoring data ém
VCL, Planetlab, and a Google cluster as well as a real Interrte
traffic matrix trace. The experimental results show that OLIC

| reconstructor

monitoring data to achieve high accuracy.

can achieve much higher compression ratios with several ogts However, it is a challenging task to deploy fine-grained
of magnitude less overhead than previous approaches. monitoring for large-scale hosting infrastructures duehe
scalability concern. A production hosting infrastructuféen
|. INTRODUCTION comprises thousands of hosts and many more virtual machines

Large-scale distributed hosting infrastructures haveotrez (VMS), each of which can be associated with tens of or
fundamental platforms for many real world production syste hundreds of dynamic metrics [10], [11]. For example, the IBM
such as enterprise data centers, cloud systems [1], andvmasbVoli monitoring system [11] can collect over 600 metrias o
data processing systems [2]—[4]. A production hostingaisfr & host running Windows OS.. Hence, most producuon_ hosting
tructure typically consists of i) a large number of disttis Infrastructures [10], [13] typically use a long update med
worker nodes that execute different application tasks; ignd (€-9-» every five minutes) to tradeoff information prearsfor
a set of management nodes that provide various configup4@/ability, which unfortunately will significantly affedhe
tion and optimization services. Particularly, qualitysgirvice Performance of the QoS management functions [5]-[8].
(QoS) management plays a key role to convince users toPrévious r_esearch W(_)rk_ has identified the _chall_enge of
migrate their applications into those hosting infrastnues. Scalable distributed monitoring and proposed varioustsnis:
However, to achieve automatic QoS management, the first si@gaddress the problem_: i) employlng decentralized archite
is to provide a continuous monitoring service that can cpllefureés such as hierarchical aggregation [14] or peer-to-pee
various resource and performance metrics (e.g., host resoistructure [15], [16] to distribute monitoring workload; o
availability, application resource usages, inter-nodevaek trading off information coverage [17] or precision [18] for
delays/bandwidth) in the hosting infrastructure. lower monitoring cost. In contrast, the goal of our reseasch

To achieve efficiency, the QoS management module Jf provideafine-grained and fulllcoverage moniForing gyste
ten desires to obtaicompleteand fine-grainedinformation that can be applied to any distributed hosting infrastmectu
about all hosts and network connections within the hogRecent work [9], [19] has proposed to leverage temporal
ing infrastructure. Our previous work [5], [6] has showrfnd/or spatial correlations to reduce monitoring overhead
that fine-grained monitoring information can greatly imypzo However, exploring temporal correlation alone has limitest
QoS provisioning performance. Similarly, online perforoe reduction [19] while spatial correlation discovery can bstty

anomaly detection system [7]-[9] also depends on fine-gchinVhen the size of the hosting infrastructure is large. _
In this paper, we present a novel light-weight OnLine

Information Compression (OLIC) framework that explores a
978-1-4577-0103-0/11/$26.00)2011 IEEE. new image-based approach to scalable distributed momitori



Figure 1 shows the overall architecture of the OLIC systerA. Monitoring System Model

OLIC models snapshots of dynamic monitoring metrics of the \we consider a large-scale distributed hosting infrastmect
whole hosting infrastructure as a sequence of system images: consists ofV worker nodes. denoted byvs,...on}

We partition each system image into a set of blocks apd shown in Figure 1. OLIC installs monitoring agents on
dynamically search the optimal reference block from a wimdog)| worker nodes and configures those monitoring agents to
of recent snapshots for each block. OLIC reduces monitoripgyort their local metrics to the management node usingicert
cost by suppressmgth_e remote updgte of those attnbut_eg_amp“ng rate (e.g., every 10 seconds). We classify digeib
whose values can be inferred by their reference valueswithiystem attributes into two categories:ijra-nodeattributes

a user defined error bound. Compared to previous corre+at|q_ghich contain information relating to each node (e.g. CPU
based approaches, OLIC employs a larger search range to figly memory usage, disk /O statistics), andi®er-node
better reference blocks. Moreover, OLIC does not enforcezgriputes which denote measurements between differefgsio
group of data blocks to share a common reference block as(g]g_ network delay and network traffic volume).

the spatial correlation based scheme. On each worker node, the monitoring agent periodically

OLIC can reconstruct all monitoring data and deliver fullsamples each intra-node attribute to form a time series

coverage and fine-grained information to other system mafir!, ..., al,,.. .,QEJ;CM}, where a!, denotes the sampled
agement modules. If the error bound is set to be 0, OLKalue for the intra-node attribute;, collected on nodey;
delivers the exact original attribute value to the manageémest time ¢. Similarly, the monitoring agent also periodi-

module; If the error bound is non-zero, OLIC provides approxally sample each inter-node attribute to form a time series

imate values for some attributes. However, all approxiomati {d};,....dl, ..., ditm} whered! ; denotes the value of the

errors are guaranteed to be within the specified error boungter-node attributel; ; at timet.

Our experiments will show that a small approximation error i OLIC performs compressed information collection from all

monitoring data does not significantly affect the perforoen monitoring agents for reducing the distributed monitoriogt.

of the management function. On the management node, OLIC decompresses the monitoring
This paper makes the following contributions: data and delivers complete, fine-grained monitoring date ti

« We propose OLIC, a light-weight online information~c" > to other QoS management modules.

compression framework to enable scalable, full-coverag®, Problem Formulation
fine-grained monitoring for large-scale hosting infrastru
tures.

« We have implemented a prototype of the OLIC syste

The goal of the OLIC monitoring system is to provide
full-coverage and fine-grained monitoring information ket

. : anagement node with low information collection cost. The
and deployed it on the Planetlab [20] and NCSU virtu asic idea is to suppress the update of the attribute value

computing lab (VCL) [13]. Our prototype implementatio ?m a worker node to the management node at tinifethe

hows th 1 is feasible and practical for res
shows that our approach is feasible and practical for reI’ﬂanagement node can infer the attribute value using other

world hosting mfrastru_c tures. reference values that are already known to the management
o ¥0de. OLIC allows the user to define an error boutw> 0)
monitoring data. from PIanetLab,_ VCL, a Google CIUSt'o indicate the maximum approximation error that can be
ter [21], and real Internet traffic matrices [22]. Ourtolerated by the management function.|4 — /| /a; < e
experimental results show that the OLIC can achieve W 1C can suppress the update of the attributel vadLe’a_'orﬁ

To quantify the effectiveness of the online compression

compression ratio by up to 200% with more than Severﬁ'gorithm, we define the compression ratio (CR) as follows:

orders of magnitudes less overhead than other alternativ
SChemeS CR = Ncompressed

The rest of the paper is organized as follows. Section I Norig
gives an overview about our system model and problem for- Neompressed iS the number of attribute values whose updates
mulation. Section Il describes the design details of tha@L are suppressed by OLIC and,,;, is the number of original
system. Section IV presents the prototype implementatich aattribute updates without any compression. The larger the

experimental evaluation. Section V compares our work wigPmpression ratio, the more monitoring cost reduction aan b
related work. Finally, the paper concludes in Section VvI. achieved by the OLIC system. To maximize the compression

ratio, OLIC needs to find the optimal reference value for
each attribute whose value can be used as reference with

[l. PRELIMINARY the highest probability. However, the key question is how

to discover such reference values online and maintain the

In this section, we first introduce the distributed monitgri efficiency of reference values while monitoring a dynamic
system model. We then present the problem formulation. hosting infrastructure. The goal of the online compression

1)



t+1 t41 described in the next section.
dﬁyN 0 ---d1,j ... d

0 ...d
1 1,N . . . .
) ; There are several design issues we need to consider. First,

o
: : : : : - our information compression system needs to handle decen-
diy ... 0 odiy ait.o 0 dily tralized monitoring data where different image blocks are
: : : : disseminated on different distributed hosts. This reguak
monitoring agents and the management node to perform the
online information compression together in a coordinated
way. Second, our system deals with dynamic live monitoring
data, which requires an adaptive online training algoritom
(d! ; - inter-node attribute between nodéo nodej) maintain the efficiency of the compression.
Different from the static, offline compression scheme (e.g.

Fig. 2. System image sequence for an inter-node attribute fistributed  92iP) that can only be applied after the data have been

t t t+1 t+1
dyy..dy, ... 0 Ayt dh 0

Image at timet Image at timet + 1

system of N nodes. reported to the management node, our approach performs
online compression over live monitoring data streams d@urin
a§,1 aﬁ,k ai,*il CLE};I monitoring runtime. Thus, our approach can reduce end-
al iy - Aoy aftly oalhy system resource and network bandwidth consumption on both
: S : < monitored worker nodes and management node, which cannot
ot ' . at-. CLH:l at..“ be achieved by previous offline compression techniques.
i N—k i, N i, N—k i,N

) ) Ill. SYSTEM DESIGN
Image at timet Image at timef + 1
In this section, we present the design and algorithm details

(a; . = attributea; of the nodek) of the OLIC system. We first describe our reference block

search algorithm. Next, we present the online information
Fig. 3. System image sequence for an intra-node attribute fiistributed compression algorithm.
system of N nodes.

algorithm is to efficiently address this question. Further, A. Online Reference Block Training

the online compression algorithm needs to be light-weight b One key step in our online compression scheme is to
itself. Otherwise, the cost of the compression will deféwt t select a good reference block for each block. As long as
original purpose of the compression. an attribute value within one block can be inferred from
We propose a novel image based approach to achievihg attribute value of its corresponding block within theus
light-weight online compression for the distributed moning defined error bound, the monitoring agent does not need to
system. We model a snapshot of a distributed system usingeport the current value to the management node. Ideally, we
system imagewhich is described in detail as follows: wish to find the optimal reference block for each block that ca
For monitoring an inter-node attribute (e.g., network glelaachieve the highest compression ratio defined by Equation 1.
of a distributed system consisting of N nodes, the systardowever, finding the optimal reference block would require
image at timet comprisesV x N pixels, illustrated by Figure us to search all the blocks in all historical system images.
2. The pixel ati'th row and;’th column denotes the attributeThis will inevitably impose high overhead to the monitoring
value between the nodeand the nodg at timet. Note that system. Thus, in practice, we have to adopt fast referemaibl
the main diagonal of this image should have all zero valusearch algorithms to find near-optimal reference block$ wit
since the inter-node attribute value does not exist for auen low overhead.
itself. OLIC employs a training phase to perform online reference
For monitoring an intra-node attribute (e.g., CPU load) dflock search, illustrated by Figure 4. During the trainimgge,
a distributed system consisting of N nodes, the system imape management node examines a window of consecutive sys-
at time ¢ comprisesN pixels where each pixel denotes théem images preceding the current system image. We call those
attribute value at one particular node. We can organize theilfNagesreference imagesnd the current image asaining
pixels into! rows andk columns wheré - k£ = N, illustrated image For each block in the training image, the management
by Figure 3. To fully utilize the power of our search algonith node examines a number of blocks in all reference images as
described in Section IlI-A, we choose the valuesi@nd k well as the current image to find its best reference block. We
so that the system image is close to a square matrix. then slide our training window to an earlier time by one step
We partition each system image into a set of small blockand designate the image immediately preceding the current
each of which containg x n attribute samples whene is a image as the training image. We then apply the referencdbloc
tunable small number. We can then perform reference valsearch algorithm to find another set of reference blocks for
search at block level instead of the pixel level. For eaclelglo each block in the current training image. We repeat the above
we strive to find the optimal reference block for each blockaining process a few times and use majority voting to decid
using a fast reference block search algorithm that will ktbe best reference block for each block.
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Fig. 4. Online training phase. Fig. 5. Reference block search using dual diamond pattern.

For example, in Figure 4, the best reference blocks famonitoring agents. The online compression process atesna
block 1 during the three rounds of training af®, 2,3}. Thus, between two phases: the training phase and the compression
we will select block2 as the reference block for block phase.

If multiple reference blocks have the same frequency, weDuring the training phase, all monitoring agents send
break tie by selecting the reference block with the higheall monitoring data to the management node. Thus, OLIC
average compression ratio. Note that we will not achieve aaghieves zero compression at this stage. When the manage-
compression during the reference block training phaseesific ment node accumulates a number of raw system images, it ex-
monitoring agents need to send all their recent sample salwtutes the online reference block training algorithm dbsdr

to the management node during this process. Thus, we cannoSection IlI-A to derive the reference blocks that give the
perform training over a large number of reference images. best compression ratio. The management node then records

We provide a fast and efficient reference block searthe reference block information (e.g., block location, ithdex
algorithm inspired by similar techniques in the video cadinof the reference image within the training window) for each
area [23]. The idea is to greedily increase the search rarigeage block. Next, the management node sends the reference
to explore more candidate reference blocks and terminate thlock information to the corresponding monitoring agents.
search immediately when little compression improvement ca During the compression phase, each monitoring agent con-
be achieved. This search strategy can achieve good tradedffiously compares the current sample value of each at-
between search coverage and search overhead. tribute with the corresponding reference value that has bee

Specifically, the search algorithm follows dual-diamonteported to the management node in the reference block.
search patterns illustrated by Figure 5. The first pattern listhe difference is within the pre-defined error bound, the
a large diamond search patter(LDSP) that searches eightmonitoring agent will omit the report of its current value to
blocks surround the center block following a diamond shajpkee management node. Otherwise, the monitoring agent will
and the center block. The second pattern snall diamond send the current attribute value to the management node. On
search pattern(SDSP) that searches four blocks surroundinie management node side, if the management node does not
the center block which form a small diamond with the centeeceive the update from a monitoring agent during the ctirren
block. Our search algorithm repeatedly conduct LDSP searshmpling period, it assumes that it can infer the attribute
until the best reference block occurs at the center blockt,Nevalue using the attribute’s reference value. Otherwise, th
the search pattern is switched from LDSP to SDSP to fintdlanagement node will use the most recent value reported
the best reference block among the five blocks included lry the monitoring agent as the sample value for the current
SDSP. For example, in Figure 5, the search path includes tammpling period. One tricky situation is that the managamen
LDSPs and one SDSP. The arrows indicate the movementngide may not be able to distinguish between a failed node or
the diamond center. Finally, the red block in the refereneehealthy node that performs information compression when

image K is chosen as the best reference block. it does not receive updates from that node. We will further
In the worst case, LDSP needs to search all blocks dliscuss this in the next section.
the current image with a computation complexity@fM/?), The compression power of the OLIC system depends on

whereM denotes the number of blocks. However, in practicehe effectiveness of the reference blocks. Since distibut
we found that the search algorithm has sub-linear overhreadmonitoring data streams are often dynamic, the effectisene
most cases since the search process often terminates aftef the reference blocks may become weaker after a period of

few search rounds. time. The management node can calculate recent compression
) ) ratios achieved by the current reference block assignment
B. OLIC Compression Algorithm using Equation 1. The management node can trigger the

We now describe the detailed online compression algorithmeference block training periodically or when compression
of the OLIC system. The runtime operation of the OLIGatios fall below a certain threshold. Figure 6 shows the
system involves both the management node and all distdbufgseudo-code of the training phase and compression phase on



K: number of reference images usually the medoid of each cluster) as the representativerO

r: number of training rounds cluster members do not need to send their updates if the

Training() difference between their values and the cluster head isrwith

1. build (K + r) system images a predefined error bound; 3) themporal+spatialalgorithm

2. fori=1tor developped by our previous work ( the InfoTrack system) [19]

3. load images to (i + K — 1) as reference images that leverages both temporal and spatial correlations gmon

4. load the imagdi + K) as the current training image  attribute values from different nodes to suppress disteithu

5. 1un GS or LS to find best reference blocks monitoring traffic; and 4) theeighborsearch algorithm that

6. decide best reference blocks using majority voting L . .

7 send the reference block information back performs a similar online compression process as OLIC but
to corresponding monitoring agents its reference block search algorithm only examines eight

neighboring blocks and the co-located blocks in the refazen
Compression() images.

1. for each worker node at time

2. i (no update from this node) In most of our experiments, we trigger the online training al

3 if (this node has failed) gorithm yvith a fixed training interval ranging yvithin [20@Q]

4. reassign reference hosts for affected blocks system images. The number of reference imaffeand the

5  else number of training rounds are both set to be 3. The spatial
6. use the attribute’s reference value and the temporal+spatial approaches also use the samadrain
7. else interval to perform clustering periodically. We will conctu
8. use the most recent reported value

sensitivity studies to discuss the impact of these paramete

Fig. 6. OLIC algorithm on the management node. .
B. Trace Collection
To compare the performance of different compression algo-
rithms, we use real world distributed system monitoringadat
to drive our experiments. Both the monitoring agents and the
IV. SYSTEM EVALUATION management node are fully implemented with the monitoring
In this section, we first describe our system implementatidéfaces replayed at different monitoring agents.
details followed by the trace description. We then presedt a The VCL monitoring traces are collected by the production

the management node.

analyze our experimental results. VCL system using the IBM Tivoli monitoring software [11].
, The trace dataset contains various performance attrifates
A. Prototype Implementation 400 VCL nodes from Oct.18th, 2010 to Nov.3rd, 2010. The

We have implemented a prototype of the OLIC systegampling interval is five minutes. In our experiments, wé tes
and deployed it on: 1) the PlanetLab [20] that is a wideur algorithms on the IP statistics attribute (datagraeu/and
area network testbed, and 2) the NCSU virtual computingindows NT processor attribute (DPC queued/sec).
lab (VCL) [13] that is a production virtualized hosting iaf-  The PlanetLab data were collected by our distributed mon-
tructure similar to Amazon EC2 [1]. We deploy a monitoringtoring system [17], [19] deployed on 500 PlanetLab nodes.
agent on each host and run the management node progree monitoring agent on each node collected various system-
on a dedicated server in our lab as shown in Figure 1. Th&el attributes (i.e., intra-node attributes) that anegmrted by
server machine has configuration of Intel Core Duo CPile PlanetLab CoMon monitoring tool [10] (e.g., CPU load,
2.4 GHz with 4GB RAM. Each monitoring agent on théree memory, available CPU etc.) at a sampling interval of
PlanetLab collects about 66 attributes that are supporyed ten seconds. Each monitoring agent also periodically pings
the PlanetLab CoMon monitoring tool [10] (e.g., CPU loadsther nodes in the system to collect inter-node attributies s
free memory, available CPU). Each monitoring sensor algg network delay and bandwidth. We collected a dataset of
periodically pings other nodes in the system to collectrintéintra-node attributes containing 400 nodes from Jan. 2909
node attributes such as network delay and bandwidth. TieFeb.3rd, 2009. We collected another dataset of inteenod
monitoring agent on VCL host is connected to the IBM Tivolittributes containing 464 nodes from Oct.4th, 2009 to Gftt.6
Monitoring agent [11] that can collect hundreds of attrésut 2009.

For comparison, we also implemented several alternativeTo test inter-node attributes, we also used a real Internet
online compression algorithms: 1) tkemporalalgorithm that traffic matrices collected by previous research work from a
suppresses the monitoring updates if the last value can thgnsit network [22]. This dataset contains traffic masice
used to predict the current value within the pre-definedrerreampled every 15 minutes for a period of about four months.
bound; 2) thespatialalgorithm uses thé-medoids clustering  We also got a small sample of real application workload
algorithm [26] to group all monitored nodes into differentrace data from a Google cluster [21]. The dataset contains
groups. We elect one node in the group (i.e. cluster heagbrmalized CPU and memory usage attributes for more than

. _ - _ 30,000 different jobs, with a sampling interval of five miesit

We have implemented other temporal prediction algorithmshsas . . . .
Kalman filter, which however have very similar performancihvithe last We selected a subset of these JObS (|-e-' 1296 JObS) which
value based approach [19]. have larger variations in the raw data. Since different jobs
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Fig. 8. Compression ratio comparison for the VCL NT Processae. (Intra- Fig. 10. Compression ratio comparison for the PlanetLaérinbde delay
node attribute, 400 nodes, Mean: 45.4, Standard deviafiBr23, Sampling trace. (Inter-node attribute, 464 nodes, Mean: 241.8,datahdeviation: 58.9,
interval: 5 minutes, Total data size: 36MB) Sampling interval: 10 seconds, Total data size: 92GB)

have varied execution length in the original trace, we rigzba tributes on the PlanetLab. Each monitoring attribute isfgach
short jobs from randomized start points within the trace. Wavery 10 seconds and the whole trace lasts about six days.
also assume that those jobs are executed on different hostgigure 9(a) and Figure 9(b) shows the average compression re
sults and time-series compression ratio changes for Rlabet
free memory attribute trace. Different from the VCL dataset

We first present the compression comparison results usihg Planetlab monitoring data are more stable with smaller
the VCL monitoring datasets. Figure 7(a) shows the averagtandard deviations. Thus, we can see that the PlanetLab
compression ratio achieved by different schemes undeswsri monitoring data are much easier to be compressed with up
error bounds for the IP statistics attribute (datagrans$/seto 70-80% compression ratios. This also is the reason why
Figure 7(b) shows the compression ratio changes in timessetthe performance of all approaches are very close. However,
for different approaches under fixed error bound 0.01. The &LIC and temporal+spatial algorithms still perform bettean
tribute is sampled every five minutes, and the whole trade lathe temporal algorithm. We will show later that OLIC has
about 16 days. According to the statistics, this datasagliyn much lower overhead than the temporal+spatial algorithm.
fluctuating with a very large standard deviation. We obsenrurthermore, OLIC still performs the best under rigid error
that OLIC significantly outperforms all the other schemethwi bounds (e.g., 0.01).
more than 200% higher compression ratios under tight errorNext we present the compression results for PlanetLal-inter
bound requirements. The temporal algorithm can only aehienode delay dataset in Figure 10(a) and Figure 10(b). The size
very low compression ratios since the monitoring data aof this dataset (92GB) is much bigger than the other datasets
highly dynamic. The compression ratio fluctuation of OLIGMe observe that this dataset is also very stable and easy to
scheme in Figure 7(b) is caused by the variation degree ehahg compressed. OLIC can achieve 88% compression ratio
in the monitoring data. It indicates that that OLIC can fullyunder a very tight 0.01 error bound and 70% compression
explore the changing compressibility of the monitoringadtat ratio for lossless compression (i.e. O error bound). Theaea
maintain the highest compression ratio. Figure 8(a) andrEig is that the measured delay between two PlanetLab nodes are
8(b) show the compression result of NT processor attribuséable within certain period of time. We note that the inter-
(DPC Queued/sec) in the VCL processor statistics trace. Tihede metric shows better compression potential. However, i
results are consistent with those of the IP statistics trace is impractical to apply previous spatial-temporal cortiela

We then present the results of monitoring intra-node &b the inter-node metrics due to its high overhead. In cahtra

C. Results and Analysis
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is greatly increased.
We conduct sensitivity experiments to investigate the ichpa
of different parameters (i.e., block size, training intdrv

| reference image number, training rounds). Table | shows a

.%l .02 .03 .04 .05 .06 .07 .08 .09 .10 2 4 6 8 10 .
error bound time (hours) subset of results for the Google cluster CPU trace with the

(a) overall (b) error bound = 0.01 optimal parameter settings highlighted.
Fig. 12, Compression ratio comparison for the Google dusfe! trace First, block size decides the granularity of the search-algo
(Ilr?tlra-n;)de attri?)ute, 1296 nodes,pMean: 0.039, Stangambtibn: 0.026', rithms. A larger block size can reduce_ the number of search
Sampling interval: 5 minutes, Total data size: 86MB) steps and thus decrease the computational overhead. Howeve
under coarse granularity, it will lead to less accurate kloc
matching. On the other hand, a smaller block size performs
OLIC can easily achieve a very high compression ratio witfne-grained search but has limited search range. It is aks® |
little overhead. In our experiment, the spatial algorittook robust to noises in data (e.g., some transient similaditypur
around 6 minutes while OLIC only needs 50 milliseconds fasxperiments, we observe that block size 4x4 achieves the bes
one training period. performance.

Now we present the compression results for another inter-Second, we evaluate the impact of training interval. The
node attribute trace - Internet traffic matrices, shown lmuFé reference block training is triggered more frequently unde
11(a) and Figure 11(b). Again, we observe that the OLI& smaller training interval. The consequence is that we can
algorithm consistently outperforms the other algorithmero always have an accurate model. However, the overall com-
different error bound settings. In Figure 11(b), the fluttuga pression ratio will be affected since those images durirg th
compression ratio curve for OLIC indicates that OLIC catraining phase have zero compression ratio. In contrast, a
dynamically discover the best reference blocks to maintd@rger training interval can mitigate the negative effefctero
the highest compression ratio. compression ratio but runs the risk of losing referencelbloc

Next, we present the compression results for the CHtéshness. The normalized Google cluster CPU trace cantain
monitoring datasets from a Google cluster. Google norresliz7500 data samples and the sampling interval is five minutes.
original data using some secrete linear function for pgivad\Ve observe that training interval of 3000 minutes (i.e. 6atad
protection. However, the normalized data preserve theghasamples) achieves the best performance. It is also initegest
ing pattern of the original data. Figure 12(a) and Figurédl2(to observe that too small training interval (e.g., 150 masiit
show the compression result for the cpu attribute. Again, vigings even worse performance than using one training model
observe that the OLIC algorithm consistently outperforths d&om beginning to the end (i.e. 40000 minutes).
the other algorithms. Third, we alter the number of reference imagks and

As we have seen, OLIC achieves varying compressitraining rounds- in one training phase. The results show that
ratios because of the data variability among differentskstta  having more reference images and training rounds only bring
However, OLIC consistently outperforms other alternativenarginal performance gains.
schemes in all test cases. The fundamental reason is th& OLI Fourth, we look into the effect of different image organiza-
dynamically and intelligently explores much broader skardions for the intra-node attribute. We organize one imagegus
range than temporal and spatial approaches so that theechatifferent combinations of row and column sizes. We observe
of finding best reference blocks for higher compressiororatihat our diamond search algorithm is robust to differentgma
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60 sec monitoring (17.4%)

OLIC can finish one round training within tens of millisec-
onds, which well meet our online compression goal.
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V. RELATED WORK
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Distributed systems and network monitoring have been
extensively studied before. Previous work (e.g. AstroldiZg,
SDIMS [15], Mercury [27], SWORD [16]) has proposed to

QoS violation rate (%)

PN
o0 ©o

X

0

4 )
?’

0 2ime (inute)‘“’ 50 leverage hierarchical or decentralized architecturestoeae
scalable distributed monitoring. Chen et al. proposed an al
Fig. 13. A case for fine-grained monitoring. gebraic approach that selectively monitors a subset ofspath
to fully predict the loss rate and latency of all paths in an
Algorithm | Memory |  Training | Compression overlay network [28] with the assumption that the undedyin
OLIC 43 MB | 0.0510.021 s| 17.5£1.19 ms network topology is known. In contrast, our work focuses
Neighbor 38 MB | 0.047:0.022 5| 13.51:1.25 ms on monitoring an arbitrary distributed hosting infrastrur
Spatial 40MB | 400+190s | 12.89+1.43 ms , 9 y 'g inrasfire
TABLE I without any prior assumption about the monitored distebut
SYSTEM OVERHEAD COMPARISON FOR COMPRESSING AN INTERIODE SyStem' A . A A
ATTRIBUTE ON 464 R.ANETLAB HOSTS. Exploring correlation patterns among distributed data

sources have been studied under different context such as
sensor network monitoring [29]-[31], distributed everatck-

sizes since it has a flexible search pattern. ing [32], and resource discovery [33]. Several previous

We conducted a case study to qualify the benefit of fingrork [9], [18], including some of our own [19], has proposed
grained monitoring and the impact of approximation errqp leverage correlation patterns to reduce monitoring.cost
on the performance of QoS management . Figure 13 shomiscontrast, our work explores a new image-based online
the QoS provisioning performance of a dynamic resoureg@mpression approach to reducing distributed monitorireg-o
scaling system [6] under different monitoring granul@sti head. Zhang et al. proposed to leverage spatial and temporal
(i.e., 1 second v.s. 1 minute monitoring interval) for theB*®  correlations to infer missing values from other receivellies
online auction benchmark application. The resource sgalifh Internet traffic monitoring systems [34]. In comparison,
system dynamically adjusts the resource allocation bas@gr work addresses an orthogonal problem of reducing the
on the predicted application resource demand. The resougediection cost of known values.
demand predictor is trained using the sampled monitoringCompression techniques have been extensively studied in
data. We can see that fine-grained monitoring (one secoyideo streaming applications [35], [36]. Our work is inguir
sampling interval) can reduce QoS violation rate to 4.3%nfropy the video compression technique that encodes large video
17.4% achieved under a 1-minute sampling interval. We the@@ata at the source, transmits the compressed video data for
introduce a 0.05 approximation error and re-run the scalingver communication cost, and then decodes the compressed
experiments. We can see that the QoS violation rate is almgata at the receiver to restore the original data. However,
unaffected under a small approximation error. our work needs to address a set of new challenges since

Finally, we evaluate the overhead of different compressi@ur source data are distributed on different hosts that can
algorithms for compressing the inter-node network delay axperience transient or persistent failures from time noeti
tribute on 464 PlanetLab hosts in Table Il. For OLIC an®ffline data compression has been well studied. For example,
neighbor search algorithms, the training overhead indubde VPC3 [37] is an offline trace compression algorithm for large
time of searching best reference blocks during one trainitayg files, which utilizes value predictors to identify andlify
phase. For the spatial approach, the training overhead patterns in the log files so that compression/decompression
cludes the time of performing-medoids clustering during onebe achieved more effectively and faster. Flight data resmord
training phase. Since the training overhead of the tempofaB] is an online system call tracing tool with system call
algorithm is negligible, we did not show its overhead. Theompression support. In contrast, our work focuses on enlin
compression time includes the time of performing compogssicompression of dynamic metric values.
for one system image by using the reference block informatio
obtained during the training phase. We observe that both VI. CONCLUSIONS
OLIC and neighbor search algorithm have significantly semall In this paper, we have presented OLIC, a novel image-
training overhead than the spatial approach. The neightimsed online information compression framework for moni-
search algorithm is a bit faster than OLIC since its searnge&a toring large-scale hosting infrastructures. OLIC modelaps
is even smaller. However, we have already shown that thkots of the monitored distributed system using a sequence
compression performance of OLIC consistently outperfornad system images and apply light-weight online reference
the neighbor search algorithm for all datasets due to itadep block search schemes to compress distributed monitoritey da
search coverage. We observe that the memory consumptionstvteams. OLIC performs online reference block trainingngsi
all three approaches are around 40 MB. We also observe thatlual diamond reference block search algorithms inspired



by the video compression techniques. To the best of ouar]

knowledge, OLIC makes the first attempt to adopt an image-
based approach to achieving efficient distributed momitpri

[22]

traffic reduction. We have implemented the OLIC system and

deployed it on the PlanetLab and NCSU virtual computing 183!
(VCL). We conducted extensive experiments using a range of
real system monitoring data from PlanetLab, VCL, a Googfe4]
cluster, and a real Internet traffic matrix dataset. Ourqiyqte

implementation indicates that OLIC is practical and effitje

[25]

which can achieve the best compression performance with]
much lower overhead compared to previous schemes.
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