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Abstract—In this paper, we present a stream-based mining
algorithm for online anomaly prediction. Many real-world
applications such as data stream analysis requires continuous
cluster operation. Unfortunately, today’s large-scale cluster
systems are still vulnerable to various software and hardware
problems. System administrators are often overwhelmed by
the tasks of correcting various system anomalies such as
processing bottlenecks (i.e., full stream buffers), resource hot
spots, and service level objective (SLO) violations. Our anomaly
prediction scheme raises early alerts for impending system
anomalies and suggests possible anomaly causes. Specifically,
we employ Bayesian classification methods to capture different
anomaly symptoms and infer anomaly causes. Markov models
are introduced to capture the changing patterns of different
measurement metrics. More importantly, our scheme combines
Markov models and Bayesian classification methods to predict
when a system anomaly will appear in the foreseeable future
and what are the possible anomaly causes. To the best of
our knowledge, our work provides the first stream-based
mining algorithm for predicting system anomalies. We have
implemented our approach within the IBM System S distributed
stream processing cluster, and conducted case study experiments
using fully implemented distributed data analysis applications
processing real application workloads. Our experiments show
that our approach efficiently predicts and diagnoses several
bottleneck anomalies with high accuracy while imposing low
overhead to the cluster system.

I. I NTRODUCTION

Modern computer systems, especially distributed systems,
have become more and more complicated. This complexity
inevitably makes the system management a challenging task.
Many emerging applications, such as data stream processing
applications [14], [12], [3], [17], requires 24x7 continuous
system operation. Unfortunately, today’s large-scale cluster
systems are still vulnerable to various software and hardware
problems that can cause system operation anomalies such as
processing bottlenecks (i.e., full stream buffers) and service
level objective (SLO) violations (e.g., response time> 500
ms). System administrators are often overwhelmed by the
tasks of correcting system anomalies under time pressure.
In practice, many anomalies are still manually detected and
recovered, which can cause long service downtime. Thus,
it is imperative to provide automatic anomaly prediction
and correction for large-scale distributed systems to achieve
continuous system operation.

Anomaly prediction for complex systems is a challenging
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Fig. 1. Bottleneck anomaly in data stream processing system.

task. To raise advance anomaly alerts, we need to continuously
monitor various system components using a set of metrics.
Given a training dataset of such measures, we may be able to
build a model to classify the current status of a system into
two states: normal or abnormal. However, the real challenge
lies in classifying future data, that is, data we have not seen
yet, so that we can take preventive actions to steer the system
away from the impending anomaly situation. Furthermore, in
addition to be able to foresee the anomaly, we must also
be able to find out the probable causes of the anomaly, so
that we know what preventive actions to take. In this work,
we introduce a novel approach toclassify future data for
anomaly prediction. Although anomaly detection (e.g., [4]) has
been studied before, little research has addressed the anomaly
prediction problem, that is, giving the probability that a certain
type of anomaly will appear before the system enters the
anomaly state. Anomaly prediction requires the system to
perform online continuous classification on future data, which
motivates us to design a new stream-based mining algorithm.

In this work, we focus on predicting the bottleneck anomaly,
the most common anomaly in data stream processing clusters.
A data stream processing application typically consists of
a set of processing components. Each component accepts
input data from its upstream component(s) and produces
output data for its downstream component(s). A bottleneck
appears in the distributed application when the input queue
of a component reaches its upper limit. For example, in
Figure 1, the componentC3 becomes the bottleneck in
the stream processing application. Bottlenecks occur due to
various reasons, such as i) a processing component is given



insufficient resources, ii) the input data rate exceeds the
processing capacity of the component, or iii) the component
contains software bugs (e.g., memory leak, buffer management
error). The negative impact of a bottleneck component includes
the dropping of application data since its input buffer cannot
accept new data. If the bottleneck is not alleviated in time,the
processing of the whole application will be stalled and suffer
from data loss.

Traditionally, bottleneck alleviation is achieved by load
shedding [26] (i.e., dropping a subset of input data to reduce
input workload) or load distribution [32], [16] (i.e., distributing
workload among a set of replicated components). However,
those existing approaches have several limitations. First, they
are carried out without knowing the underlying reasons that
cause the bottleneck. For example, if the bottleneck is caused
by insufficient CPU, allocating more memory or disk resource
cannot alleviate the bottleneck. If the bottleneck is caused by
bugs such as memory leak in component software, neither
load shedding nor load distribution will help. Second, previous
work performs bottleneck alleviation after a bottleneck occurs.
If the bottleneck is not detected in time, the system may suffer
from damages such as losing important application data. To
address those problems, we propose a new bottleneck anomaly
prediction solution that can raise alert for an impending
bottleneck anomaly, estimate bottleneck pending time, and
provide possible bottleneck causes.

In this paper, we present a new stream-based mining
algorithm to achieve online anomaly prediction. Differentfrom
anomaly detection, anomaly prediction requires us to perform
continuous classification on future data. Our stream mining
algorithm integrates naive Bayesian classification methodand
Markov models to achieve the anomaly prediction goal. Our
system continuously collects a set of runtime system-level
and application-level measurements (e.g., available CPU and
memory on a host, CPU and memory consumption of a
component, input/output data rates of a component). We
use those measurement streams to train a set of Bayesian
classifiers to capture thedistinct symptomsof different
bottlenecks caused by various reasons (e.g., insufficient CPU,
insufficient memory, memory leak bug). Our approach is
based on the observation that bottlenecks caused by different
reasons exhibit different anomaly symptoms. For example, the
symptom of a bottleneck component caused by insufficient
CPU (i.e., increasing CPU consumption) is different from the
symptom of a bottleneck component caused by the memory
leak bug (i.e., increasing memory consumption).

To achieve classification on future data, we employ Markov
models to capture the changing patterns of different mea-
surement metrics that are used as features by the Bayesian
classifiers. In this study, we use discrete-time Markov-chains
with a finite number of states. For continuous values, we
discretize them into finite number of bins. Through Markov-
chains, we predict the values of each metric for the nextk
time units. The Bayesian classifier is then used to predict the
probability of different anomaly symptoms by combining the
metric values. Thus, our online anomaly prediction system

can generate an anomaly alert such as “A bottleneck anomaly
caused by the reasonX will appear at the componentCi after
T time units with a probabilityP ”. The system can take a
proper alleviation actions based on the bottleneck alert.

We have implemented the online anomaly prediction system
within System S, a data stream management system developed
at IBM which runs on a commercial cluster consisting of
about 250 blade servers. We conduct experiments using a fully
implemented distributed data analysis application processing
real application workloads running on the cluster system [11].
Our implementation experience and experiment results reveal
several interesting findings: 1) albeit its simplicity, naive
Bayesian classifier can achieve high accuracy (i.e., up to 95%
detection rate and 10-20 % false alarm rate) for a range
of bottleneck symptoms caused by common reasons such
as insufficient CPU/memory resources and internal software
bugs (e.g., memory leak); 2) the Markov models can be
combined with the naive Bayesian classifier to efficiently
predict future bottleneck incidents and give rather accurate
bottleneck pending time estimation (i.e., up to 80% accuracy);
and 3) our analysis components are light-weight, whose
training time is within several hundreds of milliseconds and
whose online analysis time is less than 100 microseconds.
Although our system implementation is still at its preliminary
stage, the experiments show that our approach is promising
for performing online anomaly prediction in cluster systems.

The paper is organized as follows. Section II presents the
problem and gives an overview of our approach. Section III
presents stream-based mining algorithms for online anomaly
prediction. Section IV presents the prototype implementation
and experimental results. Section V compares our work with
related work. The paper concludes in Section VI.

II. PRELIMINARY

In this section, we formulate the problem and provide an
overview of our approach.

A. Problem Formulation

To achieve informed bottleneck prediction, the system needs
to identify the underlying reason that causes the bottleneck.
Examining a single metric such as queue length is insufficient.
To see this, consider a bottleneck caused by insufficient CPU
or insufficient memory. In both cases, the queue length may
gradually increase until it reaches the maximum capacity.
Consequently, it is impossible to identify the bottleneck cause
by examining the queue length alone. However, there are often
other metrics that can differentiate the causes of bottlenecks.
In this case, available free memory and available CPU time
are two such metrics. Therefore, we want to build a bottleneck
classifier that incorporates multiple metrics called features that
can collectively capture the distinctive symptoms of different
bottlenecks.

As a toy example, Figure 2 shows a two-dimensional feature
space where anomaly symptoms of three different causes
(bottlenecks caused by insufficient CPU, insufficient memory,
or both insufficient CPU and insufficient memory) form three



Fig. 2. Online anomaly prediction.

clusters. If we have enough labeled data in this feature space,
we can learn a model to classify unlabeled points in the feature
space.

However, in order to foresee bottlenecks, we need to apply
the classifier on future data. Thus, the first task is to predict
the future data. In Figure 2, we predict the position of a
point in the feature space in one, two and three time steps1.
As it shows in the figure, one possible outcome is that,
in three time steps, the measurement point falls into the
cluster representing anomaly symptom B. If that outcome
has a large probability, the system should raise alert that an
anomaly with symptom B will occur after three time steps. To
predict feature values, the system needs to model the statistical
changing patterns of different feature values. Combining both
anomaly symptom classification and feature value prediction,
the system can perform online anomaly prediction, that is,
performing anomaly symptom classification on future data.

B. Overview of Our Approach

First, we learn different anomaly symptoms from historical
data (training data), which consists of records of a fixed
set of attributes. For system monitoring, the feature space
X consists of a set of system-level and application-level
measurements. Table I shows the feature metrics collected
in our system. We consider both i) host-level metrics such
as available memory, free CPU time, and free disk space,
and ii) component-level metrics such as input data rate,
output data rate, data processing time, and component memory
usage values. We train naive Bayesian classifiers from the
data, because i) a Bayesian classifier can be trained very
efficiently, and ii) it produces posterior probabilities that can
be combined with feature predictions to perform predictive
anomaly classification.

The classifier enables us to tell whether datax indicates an
anomaly situation. However, the goal is tell whether the system
will have bottleneck situation in the future. Since the dataof
the future is not available, we need to predict future data before

1Each step represents a certain time interval, say 10 seconds.

Host Metrics Description
AVAILCPU percentage of free CPU cycles
FREEMEM available memory

PAGEIN virtual page in rate
PAGEOUT virtual page out rate

MYFREEDISK free disk space
Component Metrics Description

RXSDOS num. of received data objects
TXSDOS num. of transmitted data objects
DPSDOS num. of dropped data objects

RXBYTES num. of received bytes
TXBYTES num. of transmitted bytes

UTIME process time spent in user mode.
STIME process time spent in kernel mode

ROUTING system data handling time
VMSIZE address space used by a component
VMLCK VM locked by the component
VMRSS VM resident set size

VMDATA VM usage of the heap
VMSTK VM usage of the stack
VMEXE VM executable
VMLIB VM libraries

TABLE I
MONITORING METRICS.

we apply the classifier on the predicted data. To this end, we
employ Markov models to capture feature transition patterns.

This is indicated by Figure 3. Markov models have
been used extensively in many fields to model stochastic
processes [22]. In this study, we model each feature using one
discrete-time Markov-chain of a finite number of states, where
each state represents a feature value (continuous values are
discretized into finite number of bins). The result of Markov
simulation is a region in the feature space, where each pointin
the region is associated with a value, indicating the probability
reaching that feature point.

Finally, we apply Bayesian classifier over data in the region.
This requires us to compute posterior probability for every
point in the region, and then find the expected probability.
To reduce computation complexity, we rely on the assumption
that feature values are independent. Although the assumption
is naive, it has been shown that naive Bayesian classifier is
very effective in many situations.

III. SYSTEM DESIGN

In this section, we present the design details of our stream-
based mining algorithms for online anomaly prediction. We
first describe a Bayesian classification approach to learning
different anomaly symptoms. Second, we present a scheme
of using discrete-time Markov chain models to capture the
changing patterns of different metric values. Finally, we
describe how to combine the above two schemes to predict
the cause and pending time for an anomaly.

A. Anomaly Learning

Given system measurements at the current time, our goal
is to find out whether and when an anomaly condition will
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Fig. 3. overview of our approach

occur in the foreseeable future. For each type of anomaly,
the training dataset consists of records in the form of(x, c),
wherex is a vector of system measurements, andc = Y es/No
indicates whetherx represents an anomaly condition. Thus,
the model learned from the training dataset only enables us
to predict whether the current datax represents an anomaly
condition, instead of whether an anomaly will occur in the
future.

To find out whether an anomaly condition will occur in a
future time unit, let us assume we knowX, the probability
density function ofx in that future time unit:

X ∼ p(x) (1)

In Section III-B, we describe how to deriveX, the probability
density. For now, the question we want to answer is, given we
know p(x), how to predict whether an anomaly will occur in
that future time unit.

Note that p(x) is different from the estimated prior
distribution p(x|D) that can be obtained from the training
dataD. We consider each observation inD as an independent
sample from an unknown distribution, while we are able to
obtainp(x) through some estimation mechanism. In this case,
we take advantage of the temporal locality of the data and
predict their feature values in the future time units from their
current values [7].

Expected Classification:Assume we have a classifier that
outputs the posterior probabilities of anomaly/normal, i.e., it
outputsP (C = anomaly|x) and P (C = normal|x) for a
give x. Eq (1) givesp(x), the distribution of feature values in
a future time, with which we compute the expected logarithmic
posterior probabilities:

EX(log P (C = c|x)) =

∫

x

(log P (C = c|x))p(x)dx (2)

We can thus make prediction about the future state. That is,
we predictanomalyif

EX(log P (anomaly|x)) ≥ EX(log P (normal|x))

A natural question is how good the prediction is? Since we
are classifying unseen data, so the concern about prediction
quality comes more from our uncertainty about the future data
rather than from the quality of the classifier itself. In other
words, even if we have an oracle classifier, or a classifier

which is always 100% accurate, we may still have low quality
prediction if we have a very rough estimation ofx.

In order to measure the certainty of our prediction, we
simply compare the expected logarithmic posterior probabili-
ties [7] for anomalyandnormal:

δ = EX(log P (anomaly|x))− EX(log P (normal|x)) (3)

Clearly, the value of|δ| indicates the confidence of our
prediction: the larger the|δ|, the more confident we are about
our prediction (eitheranomalyor normal). Eq 3 is known as
the Q1 measure in [7]. For our study, we raise an alert of future
anomalyif δ ≥ d, whered is a constant value that represents
the confidence threshold of the alert.

We need to choose a reasonable value ofd. In system
monitoring, anomaly is a rare event: Most of the time the
system isnormal state. In other words, we have

δ0 = log P (anomaly)− log P (normal) < 0 (4)

It means, ifx covers a large feature space2, then only a
small region in that feature space representsanomaly. Value
δ0 is the prior difference of the likelihood, and usuallyδ0 < 0.
If δ, the expected difference in the future is larger thanδ0, then
we have reason to believe that the system is less healthy than
it normally is. Thus, we setd = δ0, or, we raise an alert if

δ ≥ δ0 (5)

that is, when the difference between anomaly and normal
likelihood in a future time unit is more significant than
indicated by their prior differences.

Naive Bayesian Classifier:The above reasoning is intuitive
and easy to understand. However, it can be computation-
ally challenging: according to Eq 2, in order to compute
EX(log P (C = c|x)), we need to evaluateP (C = c|x) for
every possiblex in the multi-dimensional feature space. If the
dimensionality is high, the computation will be very costlyor
even infeasible.

To solve this problem, we make a naive assumption: each
metric is conditionally independent given the class labels. With
this assumption, a very simple classifier, the naive Bayesian
classifier, can be applied. In spite of its naive assumption,it
has been shown in many studies that the performance of naive

2that is,p(x) > 0 for x in a large feature space



Bayesian classifiers are competitive with other sophisticated
classifiers (such as decision trees, nearest-neighbor methods,
etc.) for a large variety of data sets [10], [18].

With naive Bayesian classifier, we have

EX(log P (c|x)) = EX

(

log
P (x|c)P (c)

∑

c P (x|c)P (c)

)

(6)

Once we plug it into Eq 3, the denominator
∑

c P (x|c)P (c)
will disappear in the log ratio. In other words, whether an alert
will be raised or not only depends on the relative value. So
we ignore the denominator and derive the following.

EX [log(P (x|c)P (c))] = EX log P (x|c) + EX log P (c)

= EX

∑

i

log P (xi|c) + log P (c)

=
∑

i

EX log P (xi|c) + log P (c)

=
∑

i

EXi
log P (xi|c) + log P (c)

Thus, instead of having to computeEX(log P (c|x)), we only
need to computeEXi

(log P (xi|c)), that is, instead of relying
on the joint density functionX ∼ p(x), we only rely on the
distribution of each featureXj ∼ p(xj), which is much easier
to obtain, and makes Eq 2 feasible to compute [7].

B. Evolving Feature Model

In Section III-A, we assumed that we know the feature
distribution in a future time unit. Here, we discuss how to
derive the future feature distribution.

Consider any system metricx. We discretize its values into
M bins by equi-depth discretization. The reason we use equi-
depth discretization is that some system metrics have outlier
values, which makes traditional equi-width discretization
suboptimal. We then build a Markov-chain for that system
metric, that is, we learn the state transition matrixPx for
system metricx. Assume we know the feature value at timet0:
x = si, 1 ≤ i ≤M . The distribution of the feature value att0
is simplyp0(x) = ei, whereei is a1×M unit row vector with
1 at positioni and 0’s at other positions. The distribution of the
feature value in the next time unitt1 is p1(x) = p0(x)Px =
eiPx. In the next time unitt2, the distribution of the feature
value becomesp2(x) = p1(x)Px = eiP

2
x .

Thus, we have derived the feature value distribution ofx
for any time in the future: at timeti, the distribution ispi(x).
Clearly, wheni becomes large, the distribution will converge to
p(x) = π, whereπ is the prior distribution (among the historic
data based on which we have built the Markov-chain) of the
feature values. In other words, the probability of a certain
feature value in the next time unit is approximately the fraction
of its occurrence in the historic data. But, as the gap between
the current time and the time when we last investigated the
feature values becomes larger, the temporal correlation will
disappear.

Now, in order to answer the question whether and when
an anomaly condition will occur in the foreseeable future, we

only need to plug inpi(x), ∀i into Eq 3. An alert is raised for
time t if the feature distributions at timet makesδ > d. In
our experiments, we analyze the performance of the alert.

An important issue in system monitoring is that due to
changing workload, any anomaly diagnose mechanism must
take into consideration the time-varying class distribution of
anomaly and normal states. The topic of classifying time-
varying data streams has been well explored (e.g., [29], [30],
[5]). However, we need to apply classifiers on unseen future
data instead of current data. To this end, we adopt a finite-
memory Markov-chain model and incrementally update its
parameters so that they reflect the characteristics of the most
recent data. The main idea is to maintain the Markov-chains
using a sliding window of the most recentW transitions
and update the parameters of the Markov-chains when new
observations are available [7].

In this study, we assume the Markov-chains for different
system metrics are independent. That is, given the values of
a system metric at current time, the distribution of its feature
values in the next time unit is independent of the distributions
of other system metrics. This assumption makes it easier for
us to solve the problem numerically by using, e.g., Monte
Carlo methods. More specifically, with the independence
assumption, we can draw samples for each feature following
its own distribution, independent of other features. Without
this assumption, we have to use some special Monte Carlo
sampling techniques [19], [31]. To study the cases in which
the feature distributions are dependent is among our future
work.

C. Algorithms

In this section, we explain the Bayesian learning algorithm
and the online alert generation algorithm more formally. We
also discuss how to judge the quality of the alerts generated
by our algorithms.

Bayesian Learning:Algorithm 1 is invoked periodically to
train a Bayesian classifier for each anomaly type. In other
words, it induces a set of binary classifiers{C1, · · · , Ck}
so that for each unlabeled samplex, Ci will make a binary
decision of whether or notx is a case of anomaly typei.

Algorithm 1 simply computes the frequency of anomaly
and normal cases for each attribute value (after equi-depth
discretization). However, in a small training dataset, we may
find certain attribute values having zero frequency:p(xi =
j|c) = 0. A testing sample with that feature value will always
have zero posterior probability according to the Bayesian rule.
To alleviate this problem, we assumes there arem imaginary
cases whose feature values have equal probability of being in
any bin (m-estimate). The likelihood probabilities using m-
estimate is then computed as on line 11.

Online Alert Generation: Algorithm 2 implements the
online alert system. It takes system measures generated at
equally spaced time interval (for example, each interval is3
seconds), and decides if an alert should be raised. Algorithm 2
returns an integer values to indicate that the next anomaly is
likely to occur afters ≥ 1 time units in the future. If the return



Algorithm 1 Bayesian Learning Algorithm
inputs: D: a dataset with class labels
inputs: bini: number of equi-depth bins for attributei
inputs: m: m-estimator
outputs: logarithmic prior and likelihood probabilities

1: initialize all counters incount andcounti to 0
2: for all sample(x, c) in D do
3: discretizex by equi-depth binning, where the bound-

aries of bins are learned in a separate pass on the data
before Bayesian learning is started

4: count[c]← count[c] + 1
5: for all featurei in x do
6: counti[c][xi]← counti[c][xi] + 1
7: end for
8: end for
9: p(c)← log count[c]

P

c
count[c] for c ∈ {fail,normal}

10: for all valuej of featurei do
11: p(xi = j|c)← log counti[c][xi]+m/bini

count[c]+m
12: end for
13: returnp(c) andp(xi = j|c), ∀c, i, j

Algorithm 2 Online Alert Algorithm

inputs: x
1, · · · ,xk, · · · : a stream of system measurements

inputs: N : number of future time units covered by the alert
outputs: alert

1: update Markov-chains’ state transition matrices for each
(xk,xk+1) pair

2: s← 1
3: while s < N do
4: computep(xk

i ), the value distribution of thei-th feature in the
sth future time unit, based on the current valuexk

i and P s

i ,
wherePi is the state transition matrix for featurei

5: compute expected logarithmic posteriorEX(log P (c|x)) using
Eq 6

6: computeδ for time unit s using Eq 3
7: if δ ≥ δ0 then
8: returns
9: end if

10: s← s + 1
11: end while
12: return0

value is 0, it means no anomaly is predicted to happen within
up to N time units in the future. Note that for presentation
simplicity, the algorithm shown above is for detecting one
single anomaly type. However, it is straightforward to modify
it to provide alert for all anomaly types.

Quality of Alerts: In order to evaluate the quality of the
alerts generated by Algorithm 2, we must know when real
anomalies happen in the future. We run Algorithm 2 on a
labeled dataset, and compare the relative positions of alerts
and real anomaly occurrences.

At any time, we decide if an alert should be raised to
indicate that there will be an anomalys time units away.
Assume the real next anomaly isf time units aways. Since

Fig. 4. Case study distributed stream processing application.

we only evaluate the nextN steps, we haves < N , and also
we only considerf < 2N (anomalies further into the future
have little predictability). We consider several cases.

1) Next anomaly is withinN time units; no alert is
generated, or an alert is generated after the anomaly,
that is,f < s. This is afalse negativecase, as we either
fail to raise an alert for an imminent anomaly, or fail to
raise an alert early enough.

2) No anomaly withinN time units; no alert is generated.
This is apparently atrue negativecase.

3) Alert is generated; no anomaly within2N time units.
This is a false positivecase. We take unnecessary
premonition.

4) Alert is generated; next anomaly occurs after the
generated alert, that iss < f . This is a true positive
case.

The true/false positive/negative statistics enable us to
compute detection rates and false alarm rates. Note that
because the purpose of generating alerts is to enable us to
take premonition, we do not insist that the predicted anomaly
and the real anomaly coincide at same time unit. Instead, as
long as the real anomaly occurs after the alert (within 2N),
we consider it as a true positive classification. However, the
distance between the alert and the real anomaly is also an
important indication of the quality of the alert. As we want
the distance be as short as possible. Our experiments present
both detection rate, false alarm rate, and the distance statistics.

IV. SYSTEM EVALUATION

A. Implementation

We have implemented the online anomaly prediction system
within IBM System S [17], a large-scale data stream pro-
cessing system running on a commercial cluster consisting
of 250 blade servers. Each server host has dual Intel Xeon
3.2GHZ CPUs and 2 to 4 GB memory. All of our experiments
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Fig. 5. Metric values of several bottleneck anomaly occurrences.

are conducted on the cluster system. We test our system
using DAC (Disaster Assistance Claim monitoring), a fully
implemented data stream processing applications processing
real application workloads. The DAC application consists
of 51 fully implemented software components running on
35 hosts, illustrated by Figure 4. DAC is a multi-modal
stream analytic and monitoring application. Inspired by the
observation that various kinds of frauds seem to have always
been committed against any disaster assistance program, DAC
aims to identify, in real time before money is dispensed, (a)
the processed claims that are fraudulent or unfairly treated
and (b) the problematic agents and their accomplices engaged
in illegal activities. The input workloads consist of various
real application traces such as voice-over-IP conversations,
email logs, news feeds, and news videos. Although we use
data stream applications in our experiments, our approach
is applicable to many other distributed applications such as
workflow processing, multi-tier enterprise applications,and
composite web services.

Metric Stream Collection:To achieve self-learning system
management, we deploy monitoring components on distributed
hosts to collect runtime distributed system metrics. To achieve
generality, we strive to avoid complicated application instru-
mentation to acquire detailed measurement data. Instead, we

try to use those features that can be easily collected through
operating systems and middleware infrastructure. Table I in
Section II-B lists the major metrics collected in our system.
The host-level metrics (e.g., available CPU, available memory)
are acquired by querying the OS interface (e.g., the/proc
interface). The component-specific metrics (e.g., input/output
data rates, CPU/memory consumptions) are collected via the
stream processing middleware infrastructure. For example,
the middleware acquires the input/output data rates of a
component by sniffing the input/output data traffic going
through the component’s input/output ports. The middleware
also maintains a mapping from the component identifier to
the process identifier so that it can acquire the resource
consumption information of the component by querying
the /proc interface. Thus, the online anomaly prediction
system can easily acquire the component-level metrics from
the middleware system without requiring extra application
instrumentation. Figure 5 illustrates the runtime values of a
partial set of the metrics for a component that experiences
a bottleneck problem caused by insufficient memory. We
observe that the bottleneck exists during time periods of [550,
650], [720,800], and [900, 950]. From those metric values,
online anomaly prediction learns both normal component
behavior and different bottleneck symptoms. To achieve low-
overhead metric monitoring, our system leverages its own
bottleneck prediction capability to achieve adaptive metric
sampling. For each monitored component whose state is
predicted as normal, we use a low sampling rate since
normal samples are mostly redundant. If the component is
predicted to become a bottleneck in a foreseeable future, the
system increases the sampling rate to collect more precise
measurements since failure samples are much more rarer than
normal samples.

Data Logging: The online anomaly prediction system
selectively logs a subset of received metric measurements that
will be used as the training data for updating classifiers. Before
original measurement data can be used as training data, we
need to annotate the measurement data with proper labels. The
system can label each measurement samples as “bottleneck-
positive” or “bottleneck-negative” based on the queue length of
the component. If the queue length has reached its upper-limit,
the component is considered to become a bottleneck in the
distributed application. To distinguish real bottleneck problem
from transient load spikes, we may want to delay the failure
labelling slightly. The system labels the measurement data
as bottleneck-positive if it sees the component’s input queue
is full for several consecutive time units. In particular, we
use majority voting over the lastW time instants. Therefore,
when a new set of measurements arrives, we estimate the
corresponding label. In order to decide whether to label the
measurement as bottleneck-positive at timet, we examine the
queue lengthQt−W+1, . . . , Qt−1, ℓ̂t. If more thanW/2 of
those queue lengths are full, we label the measurement data
as bottleneck-positive.

To diagnose the bottleneck causes, the classifiers also need
the system to provide some measurements annotated with



different reasons that cause the bottleneck. Thus, we can train
different classifiers to capture the symptoms of different bot-
tlenecks. Essentially, we rely on human examination to acquire
accurate bottleneck cause labels. The system administrators or
application developers can retrieve the log data annotatedwith
bottleneck-negative or bottleneck-positive labels. He orshe can
diagnose the bottleneck causes and add the bottleneck cause
labels into the log data. In addition, we can leverage previous
metric attribution [8] and history clustering techniques [9] to
acquire the bottleneck cause label more easily.

Decentralized system architecture:We implemented the
online anomaly prediction system using a fully distributed
architecture to achieve scalability. The system consists of a set
of metric monitoring components and measurement analysis
components. We run one monitoring daemon process at each
distributed host in the cluster to collect the measurements
for the host and all the components running on the host.
We create one analysis component (i.e., predictive bottleneck
classifier) to continuously predict and diagnose bottleneck
failure for each application component. If one application
component has multiple similar replicas, we can employ
one analysis component to track the status of the replica
group. The analysis components are the major resource
consumers in our system. To achieve low-overhead system
management, online anomaly prediction strives to exploit idle
cluster resources for performing data collection and analysis
tasks. We first decouples the monitoring and analysis tasks.
Thus, we can run the analysis task on a different host
from the monitoring task that is typically required to be co-
located with the monitored component. Second, we implement
analysis component migration mechanism to dynamically
place them on the lightly-loaded hosts with most abundant idle
resources. To avoid imposing extra overhead to the system,
we adopt an opportunistic algorithm to perform dynamic
analysis component placement. Each host can acquire the load
conditions about a set of hosts by “sniffing” the measurement
metrics collected by its local analysis component. When the
host discovers other hosts that have more idle resources than
itself, it can offload some of its analysis components to more
lightly-loaded hosts.

B. Experiment Setup

In our experiments, we deploy the online anomaly predic-
tion system in our cluster system by running a monitoring
daemon process on each host and dynamically creating
analysis components for all running application components.
We test our system using the DAC application [11] described
in Section IV-A. The input workloads used by the application
are real application data by replaying a set of trace files
such as wide-area TCP traffic flows taken from the Internet
Traffic Archive [1] and news video streams taken from NIST
TRECVID dataset [2]. In our experiments, each application
run lasts about 5000 seconds. We inject bottleneck faults in
some components at different time instants to test whether
our system can raise alert for component bottlenecks with
high accuracy. We will show the prediction results for a join

component3. The join component continuously correlates data
from different streams using a pre-defined join condition. For
video streams, the join predicate is to find similar video scenes
among different news videos. For network traffic streams, the
join predicate is to find network packets with common source
and destination IP addresses.

As we mentioned before, component bottlenecks can be
caused by different reasons. In our experiments, we test our
system on four bottleneck causes: 1)insufficient CPU: we start
a CPU-intensive component on the same host to compete the
CPU resource with the monitored component; 2)insufficient
memory: we start a memory-bound component on the same
host to grab memory resource from the monitored component;
3) insufficient CPU& insufficient memory: we start both
CPU-bound and memory-bound background workloads to
make the monitored component become the bottleneck in the
application; and 4)component software bug: the monitored
component contains a memory leak bug where its memory
consumption accumulates as the component executes the
buggy code segment that keep forgetting to free memory.
We raise bottleneck alarms based on the criterion explained
in Section III. Each measurement in the testing dataset is
annotated with its true labels. By comparing the predictive
classification results and true labels, we calculate the number
of true positivesNtp where a bottleneck failure happens after
the predicted time interval, the number of true negativesNtn

where no bottleneck happens and no alarm is raised, the
number of false-positivesNfp where a bottleneck happen
before the system raises any alarm, and the number ofNfn

where an alarm is raised but no bottleneck happens after the
predicted time interval. Following the standard definition, we
can calculate the true positive rateAtp and false positiveAfp

as follows,

Atp =
Ntp

Ntp + Nfn
, Afp =

Nfp

Nfp + Ntn
(7)

C. Results and Analysis

Figure 6-9 shows the predictive bottleneck classification
accuracy achieved by our system for the bottleneck join
components caused by lacking sufficient CPU resource,
lacking sufficient memory resource, lacking both CPU and
memory resources, and a memory leak bug, respectively. In our
case study distributed application, there are six replicated join
components that run on different hosts. Those join components
perform the same operation on similar input workload, which
exhibit similar but not identical behavior. In our experiments,
we inject different faults (e.g., insufficient CPU, insufficient
memory, insufficient CPU and memory, and memory leak
bug) at different time instants to make those join components
become processing bottlenecks in the studied distributed
application. We use the log data of one join component to train
the Bayesian classifier and Markov models. We then use the
induced Bayesian classifier and Markov models to predict and
diagnose the bottleneck failure of the other five components.

3We also conduct experiments on other types of components. The results
show similar trend, which are omitted here due to space limitation.
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Fig. 6. Predictive classification accuracy for insufficientCPU
bottlenecks.
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Fig. 7. Predictive classification accuracy for insufficientmemory
bottlenecks.
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Fig. 8. Predictive classification accuracy for insufficientCpu and
memory bottlenecks.
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Fig. 9. Predictive classification accuracy for memory leak bottlenecks.

When we classify whether the current component behavior
exhibits insufficient CPU bottleneck symptom, we only need
to invoke the Bayesian classifier. Thus, the two curves
marked with “true positive rate (current)” and “false positive
rate (current)” show the Bayesian classification accuracy.
Overall, the results show that naive Bayesian classification can
achieve good classification accuracy for different bottleneck
symptoms.

We then combine the Markov models and Bayesian classi-
fier to perform predictive bottleneck classification for future
measurement data. In this set of experiments, the look-ahead
window includes 10 intervals and each interval is 3 seconds.In
our experiments, the default metric sampling rate is one sample
per three seconds. In order words, the analysis component
takes the current values of all monitored metrics and predicts
their future values in the next 10 time intervals using the
Markov models. We then classify the state of those predictive
feature values using the Bayesian classifier. We can derive a
final classification probability (Equation 3) and decide whether
to raise alert based on Equation 5. If any of the predicted future
measurements within the lookahead window gives a positive

classification result, the analysis component will producea
positive predictive classification result.

In Figure 6-9, the two curves, marked with “true positive
rate (future)” and “false positive rate (future)”, show the
classification accuracy for future metric values. Overall,
our system can still achieve reasonably good classification
accuracy for future metric values. We observe that the classifier
generally has lower true positive rate for future values than
for current values. The reason is that even if the classifier
issues an alarm for an impending bottleneck but the bottleneck
happens before the predicted time instant, we still consider that
the classifier makes a false negative error. We also observe
that the classifier can have lower false positive rate for future
measurements than for current measurements. The reason is
that if the classifier predicts that a bottleneck will happen
at a future time instantt, we consider the classifier gives
correct prediction if the bottleneck appears anytime within the
lookahead window after the timet.

We now evaluate the system’s performance on estimating
the bottleneck pending time for different bottleneck symptoms
caused by four different reasons, illustrated by Figures 10-
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Fig. 10. Bottleneck pending time estimation for insufficient Cpu
bottlenecks.
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Fig. 11. Bottleneck pending time estimation for insufficient memory
bottlenecks.
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Fig. 12. Bottleneck pending time estimation for insufficient Cpu and
memory bottlenecks.
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Fig. 13. Bottleneck pending time estimation for memory leak
bottlenecks.

13. We calculate the time difference between the predicted
bottleneck time and true bottleneck time. For example, if
the system predicts that a bottleneck symptom will appear at
the k′th time interval within the lookahead window and the
real bottleneck happens at them′th time interval, the time
difference is calculated bym − k. If the time difference is
zero, it means that the bottleneck appears in the exact time
interval predicted by the system. Similar to the previous set of
experiments, the look-ahead window includes 10 intervals and
each interval is 3 seconds. In Figures 10-13, the X-axis shows
the time difference and the Y-axis shows the proportion of the
bottleneck predictions within the time difference bucket.We
observe that the system can give accurate bottleneck pending
time estimation in most cases. Moreover, we prefer making
positive time difference mistakes to making negative time
difference mistakes since it has less negative impact that a
bottleneck happens after the predicted time interval.

We also evaluate the overhead of the online anomaly
prediction system. Figure 14 shows the cumulative distribution
of mean training time collected in different experiment runs.
The training time includes both Markov model training time

and naive Bayesian classifier training time. We observe thatthe
total training time is within several hundreds of milliseconds.
Figure 15 shows the cumulative distribution of mean prediction
time (including both markov prediction time and Bayesian
classification time) collected in different experiment runs.
The results show that our prediction algorithm is fast, which
requires tens of micro-seconds. Compared to the measurement
collection period that is typically more than one second, our
classification time is well-qualified for performing bottleneck
failure prediction. Using biased sampling, a large-scale dis-
tributed application like our case study distributed applications
with 51 components running on 35 hosts consumes about
240MB storage space to log its execution time for 24 hours,
which is relatively small compared to the storage capacity of
modern cluster server hosts.

V. RELATED WORK

We apply classifiers on a future data distribution instead of
on current data. A related work in the data mining domain
is load shedding in classifying data streams [7], [6], where
resources (e.g., CPU time) are directed to analyzing data that
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can improve the quality of classification. Since the goal is to
avoid analysing unnecessary data, predicting data distribution
is required. However, in anomaly prevention, we are more
interested in knowing when the system is going to enter
an unfavorable state, and whether the gap is long enough
to make preventive actions. In [15], we have presented an
initial design of the online anomaly prediction system, which
adapts decision tree classifiers for online anomaly prediction.
However, classification alone cannot provide time-to-anomaly
estimation. In contrast, this work combines metric value
prediction with state classification, which can not only predict
how likely an anomaly symptom will appear, but also when
the predicted anomaly will appear.

Recently, statistical machine learning methods are used
for autonomic system management. SMART [23] studied
different nonparametric statistical approaches for predicting
disk failures. Since prediction errors of disk failure has
significant penalty, SMART focuses on feature selection so
as to avoid false-alarms as much as possible. Cohen et al.
proposed to apply Tree Augmented Bayesian Networks to
correlate system-level metrics with high-level performance

metrics for performance diagnosis [8]. Parekh et al. compared
different classification methods to discover bottleneck metrics
in the configuration of multi-tier enterprise applications[24].
Zhang et al. proposed to use ensembles of models for
diagnosing performance problems [33]. Cohen et al. proposed
a clustering approach to capture the essential characteristic
of a system state for problem diagnosis [9]. Powers et al.
explored different statistical multi-variate methods to perform
performance prediction for enterprise system [25]. Gniadyet
al. proposed program-counter-based classification schemes to
optimize buffer caching [13]. Mirza et al. proposed machine
learning based algorithms to predict TCP throughput [21].
Mesnier et al. proposed a new relative fitness model for
modelling the performance of storage devices using regression
trees [20]. Different from the above work, our research
focuses on developingstream-based mining algorithmfor
online anomaly prediction. To the best of our knowledge,
it is the first stream-based mining algorithm that combines
feature value prediction and anomaly symptom classification
for online system anomaly prediction.

Our work is also related to performance monitoring and
cluster management work. Stardust is a fine-grained system
instrumentation framework that can collect end-to-end traces
of requests in distributed systems and provide query interface
for performance metrics [27]. Software rejuvenation is a
proactive failure management technique that uses Stochastic
Reward Nets to model and analyze cluster systems, which
can periodically stops a running software, cleans its internal
state, and restarts it to prevent unexpected failures due to
software aging [28]. Our system is complementary to the
above work and can benefit from previous performance
monitoring techniques. We can also combine the online
anomaly prediction scheme with the software rejuvenation
technique to alleviate the processing bottlenecks in distributed
applications. For example, if our system predicts a bottleneck
will appear in the distributed application and the bottleneck
is caused by software aging, we can invoke the software
rejuvenation to alleviate the bottleneck.

VI. CONCLUSION

In many applications such as robust control of complicated
systems, it is essential to raise alert in advance so that the
system can steer away from impending disasters or failures.
This requires us to mine data that has not arrived yet. In our
work, we derive a distribution of the future data based on
the current data, and instead of classify the data, we classify
the distribution. To the best of our knowledge, this work
makes the first attempt to apply statistical machine learning
methods on predicting bottleneck anomalies in distributed
data stream processing systems. We have tested our system
using fully implemented distributed data analysis applications
processing real application workloads. Our experiments show
that online anomaly prediction can predict and diagnose a
range of bottleneck anomaly symptoms with high accuracy.
Our system is feasible for large-scale cluster systems and
imposes low-overhead to the system.
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