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Abstract—In this paper, we present a stream-based mining Bottleneck Causes

algorithm for online anomaly prediction. Many real-world 1) Insufficient CPU?
applications such as data stream analysis requires contiraus 2) Insufficient memory?
cluster operation. Unfortunately, today's large-scale alster 3) Software bugs?
systems are still vulnerable to various software and hardwee {}
problems. System administrators are often overwhelmed by Back pressure , - ===~~~
the tasks of correcting various system anomalies such as *’ EIII]II]‘
processing bottlenecks (i.e., full stream buffers), resoue hot = =777 7T==< Datafoss \
spots, and service level objective (SLO) violations. Our amaly [T [T [T .
prediction scheme raises early alerts for impending system ‘ /
anomalies and suggests possible anomaly causes. Specifical T

we employ Bayesian classification methods to capture diffent
anomaly symptoms and infer anomaly causes. Markov models Fig. 1. Bottleneck anomaly in data stream processing system
are introduced to capture the changing patterns of differen
measurement metrics. More importantly, our scheme combing

Markov models and Bayesian classification methods to predic . .
when a system anomaly will appear in the foreseeable future task. To raise advance anomaly alerts, we need to contihuous

and what are the possible anomaly causes. To the best ofMonitor various system components using a set of metrics.
our knowledge, our work provides the first stream-based Given a training dataset of such measures, we may be able to
mining algorithm for predicting system anomalies. We have build a model to classify the current status of a system into
isnt“rgfmerr‘éi‘isc’;; agfdg&ihaﬁghgi‘jié?e'\é’ ngsséesr?ui déitributnﬂ two states: normal or abnormal. However, the real challenge
using fl?lly impler%wented aistributed data analysis gppligl‘%ns lies in classifying future datathat. IS, dgta we have not seen
processing real application workloads. Our experiments sbw Yet, SO that we can take preventive actions to steer thersyste
that our approach efficiently predicts and diagnoses seveta away from the impending anomaly situation. Furthermore, in
bottleneck anomalies with high accuracy while imposing low addition to be able to foresee the anomaly, we must also
overhead to the cluster system. be able to find out the probable causes of the anomaly, so
that we know what preventive actions to take. In this work,
we introduce a novel approach tassify future data for
Modern computer systems, especially distributed systenasiomaly predictionAlthough anomaly detection (e.g., [4]) has
have become more and more complicated. This complexiigen studied before, little research has addressed theaynom
inevitably makes the system management a challenging tagkediction problem, that is, giving the probability thatextain
Many emerging applications, such as data stream procesdiyyge of anomaly will appear before the system enters the
applications [14], [12], [3], [17], requires 24x7 contirug® anomaly state. Anomaly prediction requires the system to
system operation. Unfortunately, today's large-scalestelu perform online continuous classification on future dataiciwh
systems are still vulnerable to various software and harelwanotivates us to design a new stream-based mining algorithm.
problems that can cause system operation anomalies such da this work, we focus on predicting the bottleneck anomaly,
processing bottlenecks (i.e., full stream buffers) andiiser the most common anomaly in data stream processing clusters.
level objective (SLO) violations (e.g., response time500 A data stream processing application typically consists of
ms). System administrators are often overwhelmed by theset of processing components. Each component accepts
tasks of correcting system anomalies under time pressurgut data from its upstream component(s) and produces
In practice, many anomalies are still manually detected andtput data for its downstream component(s). A bottleneck
recovered, which can cause long service downtime. Thuppears in the distributed application when the input queue
it is imperative to provide automatic anomaly predictionf a component reaches its upper limit. For example, in
and correction for large-scale distributed systems toesehi Figure 1, the componen; becomes the bottleneck in
continuous system operation. the stream processing application. Bottlenecks occur due t
Anomaly prediction for complex systems is a challengingarious reasons, such as i) a processing component is given
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insufficient resources, ii) the input data rate exceeds than generate an anomaly alert such as “A bottleneck anomaly
processing capacity of the component, or iii) the componerdused by the reasaX will appear at the component; after
contains software bugs (e.g., memory leak, buffer managem&' time units with a probabilityP”. The system can take a
error). The negative impact of a bottleneck component ohetu proper alleviation actions based on the bottleneck alert.
the dropping of application data since its input buffer cgnn We have implemented the online anomaly prediction system
accept new data. If the bottleneck is not alleviated in tithe, within System S, a data stream management system developed
processing of the whole application will be stalled and euffat IBM which runs on a commercial cluster consisting of
from data loss. about 250 blade servers. We conduct experiments usingya full

Traditionally, bottleneck alleviation is achieved by loadmplemented distributed data analysis application preicgs
shedding [26] (i.e., dropping a subset of input data to redureal application workloads running on the cluster systef.[1
input workload) or load distribution [32], [16] (i.e., diftuting Our implementation experience and experiment resultsateve
workload among a set of replicated components). Howevegveral interesting findings: 1) albeit its simplicity, vai
those existing approaches have several limitations.,Ehsy Bayesian classifier can achieve high accuracy (i.e., up % 95
are carried out without knowing the underlying reasons thdetection rate and 10-20 % false alarm rate) for a range
cause the bottleneck. For example, if the bottleneck isexhuf bottleneck symptoms caused by common reasons such
by insufficient CPU, allocating more memory or disk resources insufficient CPU/memory resources and internal software
cannot alleviate the bottleneck. If the bottleneck is cduse bugs (e.g., memory leak); 2) the Markov models can be
bugs such as memory leak in component software, neittembined with the naive Bayesian classifier to efficiently
load shedding nor load distribution will help. Second, jweg predict future bottleneck incidents and give rather adeura
work performs bottleneck alleviation after a bottleneckwrs. bottleneck pending time estimation (i.e., up to 80% acayrac
If the bottleneck is not detected in time, the system mayesuffand 3) our analysis components are light-weight, whose
from damages such as losing important application data. ffaining time is within several hundreds of millisecondslan
address those problems, we propose a new bottleneck anomélpse online analysis time is less than 100 microseconds.
prediction solution that can raise alert for an impendinglthough our system implementation is still at its preliig
bottleneck anomaly, estimate bottleneck pending time, asthge, the experiments show that our approach is promising
provide possible bottleneck causes. for performing online anomaly prediction in cluster system

In this paper, we present a new stream-based miningThe paper is organized as follows. Section Il presents the
algorithm to achieve online anomaly prediction. Differéoim  problem and gives an overview of our approach. Section lIlI
anomaly detection, anomaly prediction requires us to perfo presents stream-based mining algorithms for online anpmal
continuous classification on future data. Our stream minimgediction. Section IV presents the prototype impleméonat
algorithm integrates naive Bayesian classification metinadi and experimental results. Section V compares our work with
Markov models to achieve the anomaly prediction goal. Ouelated work. The paper concludes in Section VI.
system continuously collects a set of runtime system-level
and application-level measurements (e.g., available CiRdJ a
memory on a host, CPU and memory consumption of aln this section, we formulate the problem and provide an
component, input/output data rates of a component). \Weerview of our approach.
use those measurement streams to train a set of Bayesian _
classifiers to capture thalistinct symptomsof different A Problem Formulation
bottlenecks caused by various reasons (e.g., insufficiBt,C  To achieve informed bottleneck prediction, the system seed
insufficient memory, memory leak bug). Our approach t® identify the underlying reason that causes the bottlkenec
based on the observation that bottlenecks caused by differExamining a single metric such as queue length is insufficien
reasons exhibit different anomaly symptoms. For exampke, tTo see this, consider a bottleneck caused by insufficient CPU
symptom of a bottleneck component caused by insufficient insufficient memory. In both cases, the queue length may
CPU (i.e., increasing CPU consumption) is different frore thgradually increase until it reaches the maximum capacity.
symptom of a bottleneck component caused by the memd®pnsequently, it is impossible to identify the bottleneekise
leak bug (i.e., increasing memory consumption). by examining the queue length alone. However, there ara ofte

To achieve classification on future data, we employ Markaxther metrics that can differentiate the causes of bottlene
models to capture the changing patterns of different mela- this case, available free memory and available CPU time
surement metrics that are used as features by the Bayesiemtwo such metrics. Therefore, we want to build a bottlenec
classifiers. In this study, we use discrete-time Markovitha classifier that incorporates multiple metrics called feagithat
with a finite number of states. For continuous values, wean collectively capture the distinctive symptoms of diffat
discretize them into finite number of bins. Through Markowottlenecks.
chains, we predict the values of each metric for the riext As atoy example, Figure 2 shows a two-dimensional feature
time units. The Bayesian classifier is then used to predet thpace where anomaly symptoms of three different causes
probability of different anomaly symptoms by combining thébottlenecks caused by insufficient CPU, insufficient mgmor
metric values. Thus, our online anomaly prediction systear both insufficient CPU and insufficient memory) form three
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Feature X Host Metrics Description
4 Amomaly symptom A AVAILCPU percentage of free CPU cycles
- T Amomaly symptom B FREEMEM available memory
( \ RN PAGEIN virtual page in rate
N —|_ —|_ | ( —|— \ PAGEOUT virtual page out rate
>~ _f, —|_\ MYFREEDISK free disk space
hree-step prediction Component Metrics Description
RXSDOS num. of received data objects
two-ste prediction ~ Amomaly symptom C TXSDOS num. of transmitted data objects
o N DPSDOS num. of dropped data objects
\ _|_ RXBYTES num. of received bytes
One-step prediction > - ! TXBYTES num. of transmitted bytes
current value UTIME process time spent in user mode;
> STIME process time spent in kernel mode
Feature Y ROUTING system data handling time
VMSIZE address space used by a compongnt
Fig. 2. Online anomaly prediction. VMLCK VM locked by the component
VMRSS VM resident set size
VMDATA VM usage of the heap
clusters. If we have enough labeled data in this featureespac VMSTK VM usage of the stack
: . VMEXE VM executable
we can learn a model to classify unlabeled points in the featu VMLIB VM Tibraries
space.
P . TABLE |
However, in order to foresee bottlenecks, we need to apply MONITORING METRICS

the classifier on future data. Thus, the first task is to ptedic
the future data. In Figure 2, we predict the position of a
point in the feature space in one, two and three time $teps

As it shows in the figure, one possible outcome is th%e apply the classifier on the predicted data. To this end, we

in three time stgps, the measurement point falls into tté?nploy Markov models to capture feature transition pagtern
cluster representing anomaly symptom B. If that outcome.l_his is indicated by Figure 3. Markov models have

has a Iargg probability, the_ system should rais_e alert that een used extensively in many fields to model stochastic
ano dmatd]}/ thth syn:ptomtrl]B will ?ccur af'ijer;[hree (;IrT?hSttiesglst: Brocesses [22]. In this study, we model each feature usieg on
predictieature vaiues, the System needs 1o model tne 'S discrete-time Markov-chain of a finite number of states, iehe

changing patterns of different feature values. Combiniath b each state represents a feature value (continuous valees ar

anomaly symptom classification and feature value prec'ﬁctiodiscretized into finite number of bins). The result of Markov
the system can perform online anomaly prediction, that i

formi | ‘ lassificati future dat Simulation is a region in the feature space, where each point
periorming anomaly Symptom classification on Tuture data. y, region is associated with a value, indicating the proibab

reaching that feature point.
Finally, we apply Bayesian classifier over data in the region
First, we learn different anomaly symptoms from historicafhis requires us to compute posterior probability for every
data (raining datg, which consists of records of a fixedpoint in the region, and then find the expected probability.
set of attributes. For system monitoring, the feature spate reduce computation complexity, we rely on the assumption
X consists of a set of system-level and application-levgiat feature values are independent. Although the assampti
measurements. Table | shows the feature metrics collecigchaive, it has been shown that naive Bayesian classifier is
in our system. We consider both i) host-level metrics sugfery effective in many situations.
as available memory, free CPU time, and free disk space,
and ii) component-level metrics such as input data rate, Ill. SYSTEM DESIGN
output data rate, data processing time, and component ngemorin this section, we present the design details of our stream-
usage values. We train naive Bayesian classifiers from thased mining algorithms for online anomaly prediction. We
data, because i) a Bayesian classifier can be trained véirgt describe a Bayesian classification approach to legrnin
efficiently, and ii) it produces posterior probabilitiesattcan different anomaly symptoms. Second, we present a scheme
be combined with feature predictions to perform predictivef using discrete-time Markov chain models to capture the
anomaly classification. changing patterns of different metric values. Finally, we
The classifier enables us to tell whether datmdicates an describe how to combine the above two schemes to predict
anomaly situation. However, the goal is tell whether theesys the cause and pending time for an anomaly.
will have bottleneck situation in the future. Since the data )
the future is not available, we need to predict future dataree A. Anomaly Learning
Given system measurements at the current time, our goal
1Each step represents a certain time interval, say 10 seconds is to find out whether and when an anomaly condition will

B. Overview of Our Approach
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Fig. 3. overview of our approach

occur in the foreseeable future. For each type of anomalhich is always 100% accurate, we may still have low quality
the training dataset consists of records in the forn{xafc), prediction if we have a very rough estimation xof

wherex is a vector of system measurements, ardYes/No In order to measure the certainty of our prediction, we
indicates whethex represents an anomaly condition. Thussimply compare the expected logarithmic posterior prdbabi

the model learned from the training dataset only enables tiss [7] for anomalyand normal

to predict whether the current datarepresents an anomaly

condition, instead of whether an anomaly will occur in the
future. Clearly, the value ofl§| indicates the confidence of our

To find out whether an anomaly condition will occur in grediction: the larger thé|, the more confident we are about
future time unit, let us assume we knai, the probability our prediction (eithemnomalyor norma)). Eq 3 is known as
density function ofx in that future time unit: the Q1 measure in [7]. For our study, we raise an alert of &utur

X ~ p(x) (1) anomalyjf 0 > d, whered is a constant value that represents
the confidence threshold of the alert.
In Section 1lI-B, we describe how to derid&, the probability = We need to choose a reasonable valuedofin system
density. For now, the question we want to answer is, given weonitoring, anomalyis a rare event: Most of the time the
know p(x), how to predict whether an anomaly will occur insystem isnormal state. In other words, we have
that future time unit.

Note that p(x) is different from the estimated prior
distribution p(X|D) that can be obtained from the training |t means, ifx covers a large feature spécehen only a
dataD. We consider each observationhas an independent small region in that feature space represemtemaly Value
sample from an unknown distribution, while we are able tg, is the prior difference of the likelihood, and usually < 0.
obtainp(x) through some estimation mechanism. In this casg,s, the expected difference in the future is larger thgrthen
we take advantage of the temporal locality of the data agg have reason to believe that the system is less healthy than
predict their feature values in the future time units froreith it normally is. Thus, we sei = d,, or, we raise an alert if
current values [7].

Expected ClassificationAssume we have a classifier that § = 0o ®)

outputs the posterior probabilities of anomaly/norma,, iit 4t is, when the difference between anomaly and normal
outputs P(C' = anomaly|x) and P(C' = normal|x) for & jikelihood in a future time unit is more significant than
give x. Eq (1) givesp(x), the distribution of feature values inj,gicated by their prior differences.
a future time, with which we compute the expected logarithmi naive Bayesian ClassifiefThe above reasoning is intuitive
posterior probabilities: and easy to understand. However, it can be computation-
ally challenging: according to Eq 2, in order to compute
Ex(log P(C' = c|x)) = /x(logP(C =c))px)dx (2) plog P(C = ¢|x)), we need to evaluat®(C = c|x) for
every possible in the multi-dimensional feature space. If the
('Jslmensionality is high, the computation will be very costly
even infeasible.
Ex (log P(anomaly|x)) > Ex (log P(normal|x)) To solve this problem, we make a naive assumption: each
o o ] metric is conditionally independent given the class labafish
A natural question is how good the prediction is? Since Wgis assumption, a very simple classifier, the naive Bayesia
are classifying unseen data, so the concern about preuici,ssifier, can be applied. In spite of its naive assumpiion,

quality comes more from our uncertainty about the futur@dafiag peen shown in many studies that the performance of naive
rather than from the quality of the classifier itself. In athe

words, even if we have an oracle classifier, or a classifiefthat is,p(x) > 0 for x in a large feature space

= FEx(log P(anomaly|x)) — Ex (log P(normal|x)) (3)

do = log P(anomaly) — log P(normal) < 0 (4)

We can thus make prediction about the future state. That
we predictanomalyif



Bayesian classifiers are competitive with other sophitgita only need to plug ip;(z), Vi into Eq 3. An alert is raised for
classifiers (such as decision trees, nearest-neighborogethtime ¢ if the feature distributions at timeé makesd > d. In
etc.) for a large variety of data sets [10], [18]. our experiments, we analyze the performance of the alert.
With naive Bayesian classifier, we have An important issue in system monitoring is that due to
p changing workload, any anomaly diagnose mechanism must
(x|c)P(c) ) ; . . . . L
0g = ———— (6) take into consideration the time-varying class distribatbf
> P(xle)P(c) anomaly and normal states. The topic of classifying time-
Once we plug it into Eq 3, the denominafe}, P(x|c) P(c) varying data streams has been well explored (e.g., [29], [30
will disappear in the log ratio. In other words, whether aerial [5]). However, we need to apply classifiers on unseen future
will be raised or not only depends on the relative value. Stata instead of current data. To this end, we adopt a finite-

Ex(log P(C|X)) = Ex (1

we ignore the denominator and derive the following. memory Markov-chain model and incrementally update its
parameters so that they reflect the characteristics of ths& mo
Ex [log(P(x[c)P(c))] = Ex log P(x|c) + Ex log P(c) recent data. The main idea is to maintain the Markov-chains
= EXZIOgP(xi|c) +log P(c) using a sliding window of the most recemt’ transitions
S and update the parameters of the Markov-chains when new

In this study, we assume the Markov-chains for different
system metrics are independent. That is, given the values of
= ZEX log P(xilc) +1og Pc)  J'system metric at current time, the distribution of its fieat
! values in the next time unit is independent of the distriimsi
Thus, instead of having to compuigx (log P(c|x)), we only of other system metrics. This assumption makes it easier for
need to comput&y, (log P(z;|c)), that is, instead of relying us to solve the problem numerically by using, e.g., Monte
on the joint density functioX ~ p(x), we only rely on the Carlo methods. More specifically, with the independence
distribution of each featur&’; ~ p(x;), which is much easier assumption, we can draw samples for each feature following
to obtain, and makes Eq 2 feasible to compute [7]. its own distribution, independent of other features. Witho
this assumption, we have to use some special Monte Carlo
sampling techniques [19], [31]. To study the cases in which
In Section IlI-A, we assumed that we know the featurthe feature distributions are dependent is among our future
distribution in a future time unit. Here, we discuss how tevork.
derive the future feature distribution. ]
Consider any system metric We discretize its values into C- Algorithms
M bins by equi-depth discretization. The reason we use equidn this section, we explain the Bayesian learning algorithm
depth discretization is that some system metrics haveeoutland the online alert generation algorithm more formally. We
values, which makes traditional equi-width discretizatioalso discuss how to judge the quality of the alerts generated
suboptimal. We then build a Markov-chain for that systery our algorithms.
metric, that is, we learn the state transition matfx for Bayesian LearningAlgorithm 1 is invoked periodically to
system metriec. Assume we know the feature value at titge train a Bayesian classifier for each anomaly type. In other
x =s;, 1 <i < M. The distribution of the feature value#@t words, it induces a set of binary classifief§,---,Cy}
is simplypo(x) = e;, wheree; is al x M unit row vector with so that for each unlabeled sampie C; will make a binary
1 at positioni and 0’s at other positions. The distribution of thelecision of whether or nat is a case of anomaly type

= Exlog P(x;|c) +log P(c) observations are available [7].

B. Evolving Feature Model

feature value in the next time unit is p1(z) = po(x) P, = Algorithm 1 simply computes the frequency of anomaly
e; P;. In the next time unit,, the distribution of the feature and normal cases for each attribute value (after equi-depth
value becomeps(z) = p1(z) P, = e; P2. discretization). However, in a small training dataset, waym

Thus, we have derived the feature value distributionzof find certain attribute values having zero frequengy:; =
for any time in the future: at time¢;, the distribution igp;(x). j|c¢) = 0. A testing sample with that feature value will always
Clearly, when becomes large, the distribution will converge tdvave zero posterior probability according to the Bayesid@. r
p(z) = m, wherer is the prior distribution (among the historicTo alleviate this problem, we assumes thererarémaginary
data based on which we have built the Markov-chain) of thmases whose feature values have equal probability of baing i
feature values. In other words, the probability of a certaisny bin (m-estimate). The likelihood probabilities using m
feature value in the next time unit is approximately theticat estimate is then computed as on line 11.
of its occurrence in the historic data. But, as the gap batwee Online Alert Generation: Algorithm 2 implements the
the current time and the time when we last investigated tbaline alert system. It takes system measures generated at
feature values becomes larger, the temporal correlatidin wequally spaced time interval (for example, each interva8 is
disappear. seconds), and decides if an alert should be raised. Algorith

Now, in order to answer the question whether and wheaturns an integer valueto indicate that the next anomaly is
an anomaly condition will occur in the foreseeable future, wikely to occur afters > 1 time units in the future. If the return



Algorithm 1 Bayesian Learning Algorithm

inputs: D: a dataset with class labels

inputs: bin;: number of equi-depth bins for attribute
inputs: m: m-estimator

outputs: logarithmic prior and likelihood probabilities

=

initialize all counters incount and count; to 0
: for all sample(x,¢) in D do
. discretizex by equi-depth binning, where the bound-
aries of bins are learned in a separate pass on the d
before Bayesian learning is started
count|c] < count[c] + 1
for all featurei in x do
count;[c][x;] «+ count;[c][z;] + 1 B
end for
end for
p(c) — log% for ¢ € {fail,normal}
10: for all value}' of feature: do Fig. 4. Case study distributed stream processing apmiitati
. o count;[c][xz;]+m/bin;
11 p(xl - -]|C> - lOg countlc]+m
12: end for
13: returnp(c) andp(z; = jlc), Ve, i, j we only evaluate the nex¥ steps, we have < N, and also
we only considerf < 2N (anomalies further into the future
have little predictability). We consider several cases.
nputs: %1 .x"....: a stream of system measurements 1) Next anomaly is withinN' time units; no alert is
inputs: N: number of future time units covered by the alert gene_rated, or an glert IS genergted after the apomaly,
outputs: alert thatis, f < s. This is afalse negativease, as we either
fail to raise an alert for an imminent anomaly, or fail to
1: update Markov-chains’ state transition matrices for each raise an alert early enough.
(x",x"*1) pair 2) No anomaly withinN time units; no alert is generated.
2051 This is apparently @&rue negativecase.

3: while s < N do . . . . .
4:  computep(z¥), the value distribution of theth feature in the 3) Alert is generated; no anomaly withinV time units.

N

© e N Ok

Algorithm 2 Online Alert Algorithm

k

s future time unit, based on the current valuf and P?, This is. a false positivecase. We take unnecessary
where P; is the state transition matrix for featuie premonition.

5. compute expected logarithmic posteridk (log P(c|x)) using 4) Alert is generated; next anomaly occurs after the
Eq 6 _ ) ) generated alert, that is < f. This is atrue positive

6: computes for time units using Eq 3 case

7 if § >0 then : N ) o

8: return s The true/false positive/negative statistics enable us to

9: end if compute detection rates and false alarm rates. Note that

10 s« s+1
11: end while
12: return0

because the purpose of generating alerts is to enable us to
take premonition, we do not insist that the predicted angmal
and the real anomaly coincide at same time unit. Instead, as
long as the real anomaly occurs after the alert (within 2N),
. . : : . we consider it as a true positive classification. Howeveg, th
value is 0, it means no anomaly is predicted to happen Wlthén .

. . ._distance between the alert and the real anomaly is also an
up to N time units in the future. Note that for presentation

simolicity. the alaorithm shown above is for detectin 0n|mp0rtant indication of the quality of the alert. As we want
Implictty, Y o . 9 9Nk e distance be as short as possible. Our experiments presen

single anomaly type. However, it is straightforward to nfgdi both detection rate, false alarm rate, and the distandstatat

it to provide alert for all anomaly types. ' '

Quality of Alerts: In order to evaluate the quality of the IV. SYSTEM EVALUATION
alerts generated by Algorithm 2, we must know when real i
anomalies happen in the future. We run Algorithm 2 on &+ /Mplementation
labeled dataset, and compare the relative positions ofsaler We have implemented the online anomaly prediction system
and real anomaly occurrences. within IBM System S [17], a large-scale data stream pro-
At any time, we decide if an alert should be raised toessing system running on a commercial cluster consisting
indicate that there will be an anomaly time units away. of 250 blade servers. Each server host has dual Intel Xeon
Assume the real next anomaly jstime units aways. Since 3.2GHZ CPUs and 2 to 4 GB memory. All of our experiments
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try to use those features that can be easily collected throug
operating systems and middleware infrastructure. Table | i
Section 1I-B lists the major metrics collected in our system
The host-level metrics (e.g., available CPU, available g

are acquired by querying the OS interface (e.g.,/the oc
interface). The component-specific metrics (e.g., inipot
data rates, CPU/memory consumptions) are collected via the
stream processing middleware infrastructure. For example
the middleware acquires the input/output data rates of a
component by sniffing the input/output data traffic going
through the component’s input/output ports. The middlewar
also maintains a mapping from the component identifier to
the process identifier so that it can acquire the resource
consumption information of the component by querying
the / proc interface. Thus, the online anomaly prediction
system can easily acquire the component-level metrics from

500 550 600 650 700 750 800 850 900 950 1000
system cpu time (ms)

1000F, o P r.,,,] AR T T T o q
508 | | | L m AL L Il
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queue length

1000
0 A L A Il Il

500 550 600 650 700 750 800 850 900 950 1000

the middleware system without requiring extra application
instrumentation. Figure 5 illustrates the runtime valuéso
partial set of the metrics for a component that experiences
a bottleneck problem caused by insufficient memory. We
observe that the bottleneck exists during time periods 59[5
650], [720,800], and [900, 950]. From those metric values,
online anomaly prediction learns both normal component
behavior and different bottleneck symptoms. To achieve low
overhead metric monitoring, our system leverages its own
bottleneck prediction capability to achieve adaptive imetr
sampling. For each monitored component whose state is
predicted as normal, we use a low sampling rate since
normal samples are mostly redundant. If the component is
predicted to become a bottleneck in a foreseeable futuee, th
system increases the sampling rate to collect more precise
measurements since failure samples are much more rarer than
are conducted on the cluster system. We test our systagrmal samples.
using DAC (Disaster Assistance Claim monitoring), a fully Data Logging: The online anomaly prediction system
implemented data stream processing applications prowessielectively logs a subset of received metric measuremiats t
real application workloads. The DAC application consistill be used as the training data for updating classifiersoie
of 51 fully implemented software components running odriginal measurement data can be used as training data, we
35 hosts, illustrated by Figure 4. DAC is a multi-modaheed to annotate the measurement data with proper labeds. Th
stream analytic and monitoring application. Inspired bg thsystem can label each measurement samples as “bottleneck-
observation that various kinds of frauds seem to have alwayssitive” or “bottleneck-negative” based on the queue te
been committed against any disaster assistance progra@®, DAe component. If the queue length has reached its uppéy-lim
aims to identify, in real time before money is dispensed, (#)e component is considered to become a bottleneck in the
the processed claims that are fraudulent or unfairly toeatdistributed application. To distinguish real bottlenecklgem
and (b) the problematic agents and their accomplices engag®m transient load spikes, we may want to delay the failure
in illegal activities. The input workloads consist of var® labelling slightly. The system labels the measurement data
real application traces such as voice-over-IP convensgtioas bottleneck-positive if it sees the component’s inputugue
email logs, news feeds, and news videos. Although we ugefull for several consecutive time units. In particulare w
data stream applications in our experiments, our approage majority voting over the last’ time instants. Therefore,
is applicable to many other distributed applications sush ahen a new set of measurements arrives, we estimate the
workflow processing, multi-tier enterprise applicatiomsd corresponding label. In order to decide whether to label the
composite web services. measurement as bottleneck-positive at timere examine the
Metric Stream Collection:To achieve self-learning systemqueue lengthQ:_w 1, ..., Qt_l,&. If more thanW/2 of
management, we deploy monitoring components on distiibutdhose queue lengths are full, we label the measurement data
hosts to collect runtime distributed system metrics. Tdeagh as bottleneck-positive.
generality, we strive to avoid complicated applicationtrins To diagnose the bottleneck causes, the classifiers also need
mentation to acquire detailed measurement data. Instead, the system to provide some measurements annotated with
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Fig. 5. Metric values of several bottleneck anomaly ocawes.



different reasons that cause the bottleneck. Thus, we a&m trcomponent The join component continuously correlates data
different classifiers to capture the symptoms of differesit b from different streams using a pre-defined join conditioor. F
tlenecks. Essentially, we rely on human examination to mequvideo streams, the join predicate is to find similar videasse
accurate bottleneck cause labels. The system administrato among different news videos. For network traffic streams, th
application developers can retrieve the log data annotaittd join predicate is to find network packets with common source
bottleneck-negative or bottleneck-positive labels. Heher can and destination IP addresses.
diagnose the bottleneck causes and add the bottleneck cauges we mentioned before, component bottlenecks can be
labels into the log data. In addition, we can leverage previocaused by different reasons. In our experiments, we test our
metric attribution [8] and history clustering techniqu&$ fo  system on four bottleneck causesirigufficient CPUwe start
acquire the bottleneck cause label more easily. a CPU-intensive component on the same host to compete the
Decentralized system architecturdMe implemented the CPU resource with the monitored component;ir®ufficient
online anomaly prediction system using a fully distributechemory we start a memory-bound component on the same
architecture to achieve scalability. The system consistsset host to grab memory resource from the monitored component;
of metric monitoring components and measurement analy8is insufficient CPU & insufficient memorywe start both
components. We run one monitoring daemon process at e&dPU-bound and memory-bound background workloads to
distributed host in the cluster to collect the measurementske the monitored component become the bottleneck in the
for the host and all the components running on the hosfpplication; and 4)component software bughe monitored
We create one analysis component (i.e., predictive battlen component contains a memory leak bug where its memory
classifier) to continuously predict and diagnose bottlkneconsumption accumulates as the component executes the
failure for each application component. If one applicatiohuggy code segment that keep forgetting to free memory.
component has multiple similar replicas, we can empldie raise bottleneck alarms based on the criterion explained
one analysis component to track the status of the replica Section Ill. Each measurement in the testing dataset is
group. The analysis components are the major resoudenotated with its true labels. By comparing the predictive
consumers in our system. To achieve low-overhead systelassification results and true labels, we calculate thebaum
management, online anomaly prediction strives to exptiié i of true positivesVy, where a bottleneck failure happens after
cluster resources for performing data collection and aislythe predicted time interval, the number of true negati¥es
tasks. We first decouples the monitoring and analysis taskéiere no bottleneck happens and no alarm is raised, the
Thus, we can run the analysis task on a different hostmber of false-positivesVy, where a bottleneck happen
from the monitoring task that is typically required to be cobefore the system raises any alarm, and the numbe¥pf
located with the monitored component. Second, we implememihere an alarm is raised but no bottleneck happens after the
analysis component migration mechanism to dynamicalfyedicted time interval. Following the standard definitiore
place them on the lightly-loaded hosts with most abunddat iccan calculate the true positive ratg, and false positived ,,
resources. To avoid imposing extra overhead to the systeas,follows,
we adopt an opportunistic algorithm to perform dynamic Ny 4 Nep -
anaIy_sgs component placement. Each _hc_)st can acquire ttie loa tp Nip + N’ fr = Nip + Nin 7
conditions about a set of hosts by “sniffing” the measuremeet
metrics collected by its local analysis component. When the o o
host discovers other hosts that have more idle resourcas thaFi9uré 6-9 shows the predictive bottleneck classification
itself, it can offload some of its analysis components to mofécuracy achieved by our system for the bottleneck join

Results and Analysis

lightly-loaded hosts. components caused by lacking sufficient CPU resource,
lacking sufficient memory resource, lacking both CPU and
B. Experiment Setup memory resources, and a memory leak bug, respectively.rin ou

In our experiments, we deploy the online anomaly predi€@se study distributed application, there are six remtgin
tion system in our cluster system by running a monitoringPMpPonents that run on different hosts. Those join compisnen
daemon process on each host and dynamically creatigfform the same operation on similar input workload, which
analysis components for all running application compogenfXibit similar but not identical behavior. In our experine
We test our system using the DAC application [11] describd¢€ inject different faults (e.g., insufficient CPU, insuiiot
in Section IV-A. The input workloads used by the applicatiof*®mory; insufficient CPU and memory, and memory leak
are real application data by replaying a set of trace fildwg) at different time instants to mgke those join compoment
such as wide-area TCP traffic flows taken from the InternBCOMe processing bottlenecks in the studied distributed
Traffic Archive [1] and news video streams taken from Nis#Pplication. We use the log data of one join component ta trai
TRECVID dataset [2]. In our experiments, each applicatiqtﬁ'e Bayesian gla55|f|er qnd Markov models. We then use the
run lasts about 5000 seconds. We inject bottleneck faults iffluced Bayesian classifier and Markov models to predict and
some components at different time instants to test whetHlipgnose the bottleneck failure of the other five components

OIUI‘ system can ralsg alert for compor)ent bottlenecks _W'th3We also conduct experiments on other types of components.rd@sults
high accuracy. We will show the prediction results for a joishow similar trend, which are omitted here due to spacediiit.
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When we classify whether the current component behavidassification result, the analysis component will prodace
exhibits insufficient CPU bottleneck symptom, we only neeglositive predictive classification result.
to invoke the Bayesian classifier. Thus, the two curvesin Figure 6-9, the two curves, marked with “true positive
marked with “true positive rate (current)” and “false pogt rate (future)” and “false positive rate (future)”, show the
rate (current)” show the Bayesian classification accuraeyassification accuracy for future metric values. Overall,
Overall, the results show that naive Bayesian classifioatan our system can still achieve reasonably good classification
achieve good classification accuracy for different botifn accuracy for future metric values. We observe that the ifiess
symptoms. generally has lower true positive rate for future valuestha

We then combine the Markov models and Bayesian clasf current values. The reason is that even if the classifier
fier to perform predictive bottleneck classification forute issues an alarm for an impending bottleneck but the bottlene
measurement data. In this set of experiments, the lookeahé@ppens before the predicted time instant, we still comsidz
window includes 10 intervals and each interval is 3 secoimds.the classifier makes a false negative error. We also observe
our experiments, the default metric sampling rate is ongogamthat the classifier can have lower false positive rate fanrtut
per three seconds. In order words, the analysis compongrasurements than for current measurements. The reason is
takes the current values of all monitored metrics and ptedi¢hat if the classifier predicts that a bottleneck will happen
their future values in the next 10 time intervals using thet a future time instant, we consider the classifier gives
Markov models. We then classify the state of those predictigorrect prediction if the bottleneck appears anytime withie
feature values using the Bayesian classifier. We can derivéogkahead window after the time
final classification probability (Equation 3) and decide hiee We now evaluate the system’s performance on estimating
to raise alert based on Equation 5. If any of the predictagréut the bottleneck pending time for different bottleneck syomps
measurements within the lookahead window gives a positicaused by four different reasons, illustrated by Figures 10
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13. We calculate the time difference between the predictadd naive Bayesian classifier training time. We observettieat
bottleneck time and true bottleneck time. For example, tbtal training time is within several hundreds of millisacis.

the system predicts that a bottleneck symptom will appearEigure 15 shows the cumulative distribution of mean préaict

the k’th time interval within the lookahead window and thdime (including both markov prediction time and Bayesian
real bottleneck happens at the'th time interval, the time classification time) collected in different experiment sun
difference is calculated byn — k. If the time difference is The results show that our prediction algorithm is fast, Whic
zero, it means that the bottleneck appears in the exact tineguires tens of micro-seconds. Compared to the measutemen
interval predicted by the system. Similar to the previouso$e collection period that is typically more than one second, ou
experiments, the look-ahead window includes 10 intervatk aclassification time is well-qualified for performing botileck
each interval is 3 seconds. In Figures 10-13, the X-axis shofailure prediction. Using biased sampling, a large-scate d
the time difference and the Y-axis shows the proportion ef thributed application like our case study distributed agations
bottleneck predictions within the time difference bucké&e with 51 components running on 35 hosts consumes about
observe that the system can give accurate bottleneck pend2d0MB storage space to log its execution time for 24 hours,
time estimation in most cases. Moreover, we prefer makinghich is relatively small compared to the storage capadity o
positive time difference mistakes to making negative timmodern cluster server hosts.

difference mistakes since it has less negative impact that a

bottleneck happens after the predicted time interval. V. RELATED WORK

We also evaluate the overhead of the online anomalyWe apply classifiers on a future data distribution instead of
prediction system. Figure 14 shows the cumulative distidiou on current data. A related work in the data mining domain
of mean training time collected in different experimentsunis load shedding in classifying data streams [7], [6], where
The training time includes both Markov model training timeesources (e.g., CPU time) are directed to analyzing data th



! T — metrics for performance diagnosis [8]. Parekh et al. coexbar
0.9r i different classification methods to discover bottleneckriog
0.8 in the configuration of multi-tier enterprise applicatidi24l].
07 j Zhang et al. proposed to use ensembles of models for
f diagnosing performance problems [33]. Cohen et al. prapose
_50'67 ;f | a clustering approach to capture the essential chardateris
205 / 1 of a system state for problem diagnosis [9]. Powers et al.
=0.4r explored different statistical multi-variate methods &rfprm
03 /z* l performance prediction for enterprise system [25]. Gniatly
ozl /* | al. proposed program-counter-based classification schéme
ol S optimize buffer caching [13]. Mirza et al. proposed machine
' /X \ —— training time [ learning based algorithms to predict TCP throughput [21].
P50 200 220 240 260 280 Mesnier et al. proposed a new relative fitness model for

modelling the performance of storage devices using reigmess
trees [20]. Different from the above work, our research
focuses on developingtream-based mining algorithrfor

online anomaly prediction. To the best of our knowledge,

time (ms)

Fig. 14. Anomaly prediction model training time.

1 ‘ {f-« ‘ it is the first stream-based mining algorithm that combines
0.9f { feature value prediction and anomaly symptom classifinatio
08k T for online system anomaly prediction.

07 | Our work is also related to performance monitoring and
cluster management work. Stardust is a fine-grained system
506 J( instrumentation framework that can collect end-to-enddsa
'*cg 05 \ of requests in distributed systems and provide query iaterf
=04t j for performance metrics [27]. Software rejuvenation is a
03 M proactive failure management technique that uses Stachast
sl | Reward Nets to model and analyze cluster systems, which

' | can periodically stops a running software, clean_s its maker
0.1 ; ‘ — prediction time { state, and restarts it to prevent u_nexpected failures due to

0, = o0 % 200 20 300 software aging [28]. Our system is complementary to the

above work and can benefit from previous performance
monitoring techniques. We can also combine the online
anomaly prediction scheme with the software rejuvenation
technique to alleviate the processing bottlenecks initiged
applications. For example, if our system predicts a bodibén
can improve the quality of classification. Since the goabis will appear in the distributed application and the bottighne
avoid analysing unnecessary data, predicting data disioib is caused by software aging, we can invoke the software
is required. However, in anomaly prevention, we are morejuvenation to alleviate the bottleneck.
interested in knowing when the system is going to enter
an unfavorable state, and whether the gap is long enough
to make preventive actions. In [15], we have presented anin many applications such as robust control of complicated
initial design of the online anomaly prediction system, evhi systems, it is essential to raise alert in advance so that the
adapts decision tree classifiers for online anomaly priedict system can steer away from impending disasters or failures.
However, classification alone cannot provide time-to-aalym This requires us to mine data that has not arrived yet. In our
estimation. In contrast, this work combines metric valugork, we derive a distribution of the future data based on
prediction with state classification, which can not onlydice the current data, and instead of classify the data, we yassi
how likely an anomaly symptom will appear, but also whethe distribution. To the best of our knowledge, this work
the predicted anomaly will appear. makes the first attempt to apply statistical machine legrnin
Recently, statistical machine learning methods are usegtthods on predicting bottleneck anomalies in distributed
for autonomic system management. SMART [23] studietdiata stream processing systems. We have tested our system
different nonparametric statistical approaches for mtétj using fully implemented distributed data analysis appiies
disk failures. Since prediction errors of disk failure haprocessing real application workloads. Our experimentsvsh
significant penalty, SMART focuses on feature selection ¢bat online anomaly prediction can predict and diagnose a
as to avoid false-alarms as much as possible. Cohen etrahge of bottleneck anomaly symptoms with high accuracy.
proposed to apply Tree Augmented Bayesian Networks @ur system is feasible for large-scale cluster systems and
correlate system-level metrics with high-level performen imposes low-overhead to the system.

time (us)

Fig. 15. Online prediction time.

VI. CONCLUSION
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