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SLO violations

Abstract—Distributed applications running inside cloud sys-
tems are prone to performance anomalies due to various rease
such as resource contentions, software bugs, and hardwaraif
ures. One big challenge for diagnosing an abnormal distribted
application is to pinpoint the faulty components. In this pger,
we present a black-box online fault localization system chdd
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FChain that can pinpoint faulty components immediately after a metries | o0 validation
performance anomaly is detected. FChain first discovers thenset }
time of abnormal behaviors at different components by distn- I Linux + Xen | Pinpointed faulty components

guishing the abnormal change point from many change points

caused by normal workload fluctuations. Faculty components fig 1. The overall architecture of the FChain system. Thédie slave

are then pinpointed based on theabnormal change propagation
patterns and inter-component dependency relationships. FChain
performs runtime validation to further filter out false alar ms.
We have implemented FChain on top of the Xen platform and
tested it using several benchmark applications (RUBIS, Haaop,
and IBM System S). Our experimental results show that FChain
can quickly pinpoint the faulty components with high accuracy

continuously collects system-level metrics (e.g., CPUmmbigy) on different
application VMs running inside the cloud and learns normatttation
patterns. When a SLO violation is detected, the FChain masiggers
all related FChain slaves to look for abnormal change poifite FChain
master then pinpoints faulty components based on the chpoigé timing
information and inter-component dependencies. FCham @dsforms online
validation to remove possible false alarms.

within a few seconds. FChain can achieve up to 90% higher
precision and 20% higher recall than existing schemes. FCha
is non-intrusive and light-weight, which imposes less tharl%
overhead to the cloud system.

not perform any intrusive tracing in the cloud system and
only relies on low-level system metrics (e.g., CPU, mem-
ory, network statistics) that can be easily obtained from th
I. INTRODUCTION guest OS or hypervisor. FChain does not assume any prior

Infrastructure as a Service (laaS) clouds [1], [2] alloi@PPplication knowledge, which makes it practical for laaS
multiple tenants to share a common physical computingsafreclouds. Moreover, FChain does not require any training data
tructure in a cost-effective way. However, applicationsmng for anomalies, which can diagnose both previously seen and
inside the laaS cloud are prone to performance anomaliés sy@seen performance anomalies. Figure 1 shows the overall
as service level objective (SLO) violations due to varioes-r architecture of the FChain system.
sons such as resource contentions, software bugs, or hardwaWhen a performance anomaly is detected, FChain first
failures. It is particularly challenging to localize theufey discovers abnormal changes at all system metrics of dif-
components in a complex distributed application that cissiferent components. Next, FChain extracts abnormal change
of many inter-dependent components. propagation paths for the diagnosed performance anomaly

Previous work on distributed system debugging can @&d localizes the faulty components based on the abnormal
categorized as white-box, grey-box, or black-box techesqu change propagation patterns. Our design is based on two
White-box and grey-box techniques (e.g., [3]-[5]) requirkey observations: 1) performance anomalies often marafest
modifications or instrumentations to applications or utydeg abnormal system metric fluctuations that are distinctivenfr
middleware platforms. Those intrusive techniques often inthe normal fluctuation patterns; and 2) the abnormal system
pose significant runtime overhead and are difficult to dgplopetric changes often start from the faulty components aewl th
which make them impractical for performingnline fault propagate to other non-faulty components via inter-corepon
localization in the production laaS clouds. Existing bk  interactions.
techniques [6]-[8] mostly focus on anomaly detection or sys To achieve robust fault localization, FChain needs to ad-
tem metric attribution. In contrast, our goal is to pinpdiilty ~dress a challenging problem: how to distinguish the abnbrma
components in a distributed application. Other schemes [9Jhange point that marks the onset of the fault manifestation
[11] only work for certain types of faults or applicationseW from many other change points that are caused by normal
will discuss related work in detail in Section V. workload fluctuations. It is insufficient to use a fixed filtegi

In this paper, we present FChain, a black-box online fauhreshold since some applications are inherently moremimna
localization system for diagnosing performance anomaliesthan others. To address this problem, FChain captures the
laaS clouds. FChain can pinpoint faulty componeémtsedi- normal fluctuation patterns using online system metric ealu
ately after a performance anomaly is detected. FChain doadiction models [12] and usegpeedictabilitymetric to iden-
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tify abnormal fluctuations. As we will show later in Section

11, this abnormal change detection scheme can achieveshigh

accuracy than traditional anomaly detection schemes [10].
Due to inter-component interactions, abnormal changes in s
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N2
the faulty component(s) .often propagate to pther .normal Clionmt | UPP ¢
components. If we examine each component in an isolated workload PdcketS@
way, we might produce many false alarms by mistakenly generator
pinpointing normal components as faulty ones. Our previous
work [13] has shown that it is feasible to pinpoint faulty o ;
components by sorting all affected components based on thggl-tZbro/;:;‘gt’e“;agl‘g%”?ﬁep;gft’;%eg'ﬂ o 1BM Ifﬁte’}"hi g?gggé;?oen
fault manifestation time and identifying the componenttwit px; . 'pE, is caused by the back-pressure effect.
the earliest manifestation time as the faulty one. Howewer,
observe that it is insufficient to only rely on the chronotadi
order to perform fault localization since we may derive $purA. System Overview
ous abnormal change propagations between two independent
components. To address the problem, FChain integrates th
dependency relationships with the fault propagation mealel
achieve more accurate pinpointing than existing schemes.

This paper makes the following contributions:

t

EChain is decentralized consisting of a set of slave modules

(i.e., normal fluctuation modeling, abnormal change point

selection) and master modules (i.e., integrated faultrdiarg,

. X . L online pinpointing validation), shown by Figure 1. The gav

¢ Wetpres]?nt IFChaln, ? plractslcallllnz fauII:tCIEcgllzgtlon modules run inside the domain 0 of different cloud nodeseavhil
system for large-scale laas clouds. ain does Nt master modules run on dedicated servers. FChain treats

require any intrusive application monitoring, which can,ch guest virtual machine (VM) as one component.
diagnose both previously seen and unseen anomalies.

« We describe a predictability-based abnormal change point! he normal fluctuation modeling module continuously mon-
selection scheme that can distinguish abnormal chanié@ys the system metrics for each VM to capture its normal
points that are related to the fault manifestation frofuctuation pattern. We employ a light-weight online leagi
those normal change points that are caused by norm®del [12] to continuously learn the evolving pattern of
workload fluctuations. each system metric value. If the change is caused by normal

« We introduce a new integrated fault localization schenéorkload fluctuations, the prediction model must have seen
considering both fault propagation patterns and intefnd learned the change before. Thus, the prediction errors o
component dependencies to achieve higher pinpointiﬂbose normal change points will be small. In contrast, the
accuracy. fluctuations caused by faults are not captured by the online

We have implemented FChain on top of the Xen p|(,:1.nconlﬁarning model, which will probably incur high prediction
and tested it on NCSU's Virtual Computing Lab (VCL) [2], errors.

production cloud computing system that operates in a simila When a performance anomaly (e.g., SLO violations) is
way as Amazon EC2 [1]. We conducted extensive experimenttstected, the FChain master is invoked to pinpoint the faulty
using a set of common faults and different types of appléomponents in the failing distributed application. The Bibh
cations (IBM System S data stream processing system [ldiaster first contacts the slaves on all related distributesish
Hadoop [15], and RUBIS online auction benchmark [16]}o identify whether a component exhibits abnormal changes
Our experimental results show that: 1) FChain can achieve apd when the abnormal change begins. If the performance
to 90% higher precision and 20% higher recall than existirmnomaly occurs at timg,, the FChain slaves check a window
black-box fault localization schemes; 2) FChain can coteple([t,—W, t,]) (e.g.,W = 100) of recent metric values befote.

the fault localization within a few seconds and works fofhe abnormal change point selection module uses the normal
different types of applications; and 3) FChain is light-glei fluctuation model to filter out those change points that are
imposing less than 1% CPU overhead during system runtiroeused by normal workload fluctuations.

exetr:]unon. ‘i , ed a5 foll Sect The integrated fault diagnosis module comprehensively
T € rest of t € paper IS organized as Tollows. ection I\ amines the abnormal change point information from all
descnbes_the design of th_e FChaln_ system. Section IlI ptesecomponents and the inter-component dependency informatio
our experimental e\{aluat|on. Section IV compares our WOEB pinpoint the culprit component(s). FChain first derivies t

with related work. Finally, the paper concludes in Sectian Vobnormal change propagation pattern in the examined dis-

II. SYSTEM DESIGN tributed application by sorting the timestamps of the abradr
In this section, we first present an overview of the FChain
system. We then describe the abnormal change point identific

tion algor'thm and the 'ntegrated faU|ty component pinpog INote that FChain focuses on fault localization rather tharfggmance
scheme. anomaly detection that has been addressed by previouseawgrki17], [18]).
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Fig. 3. Abnormal change point selection for the DiskWritetmieeof a faulty
map node and the CPU usage metric of a normal reduce node im@opla
sorting application.

Fig. 4. Expected prediction error for the CPU usage metri@atual-core
host.

and change magnitude outlier detection to filter some normal
change points [13]. However, it is insufficient to only rely
smoothing and outlier detection to select abnormal chang
oints since some metrics (e.g., the “Disk Write” metric in
igure 3) have large variations during normal execution.
FChain uses a predictability metric to achieve robust ab-
normal change point selection. We employ an online learning
. Mhodel [12] to continuously learn the change pattern of each
ponentPEs at time ¢, and then to the componeRlk; at system metric. The online learning model can capture the

time t3. Sincet; < 1> < 5, FChain pinpointsPE; as the . njrign probability between different metric valuesngs
suspicious root cause component. Note that our scheme dge

: K led bout th lication includi discrete time Markov chain model. Intuitively, the value
.TO taSSlljme alr;g:h r?ovvle ge a Oltjh EI ap:(pt:ca '%n mc(t; "Wnsition patterns at a normal change point should be able
'S topology. ain leverages the black-box dependengyy,q captured by the online learning model and thus easier
dlscovery tool [11] to .fllter out spurious abnormal chang% predict. We calculate a prediction error for each outlier
propagatlons bgtween mdependent _com_po_nents.- . change point by comparing the predicted value with its true

Finally, FChain performs online pinpointing validation-us

. ; ) ) 4 o value. If the prediction error is high, we consider this wutl
ing the dynamic resource scaling technique in a similar W@ﬁange point as an abnormal change point. However, it is a

as [20]. S'.”°e FChaln MONILOTS various system Merics,nt g, g problem to pick a proper prediction error threkl
not only pinpoint faulty components but also identify WhICI'1‘or filtering normal change points since some metrics (e.g.,

systgm metrics are related to the fault. Wg can then adjustathb rsty ones) are inherently harder to predict than otheds an
metrics on the faulty components to validate the accuracy Vzry from application to application. Thus, it will be imise
the pinpointing results by observing the resource adjustmefo apply a fixed filtering threshold '

impact to the application’s SLO violation status. To address this problem, FChain dynamically computes a
proper prediction error threshold for each change poinethas

] o . on the burstiness of the time series surrounding the change
To localize the faulty components, FChain first examinegyint The intuition behind our scheme is that a bursty roetri

i) which compongntaexhibit__abnormal changes in differentg expected to have a higher prediction error than a non-
system-level metrics; and ifvhen those abnormal changesy sty metric. Thus, we want to use a higher prediction error
start. As mentioned before, system-level metrics are Wi  {hreshold when the metric values are bursty. Specifically, w
fluctuating under dynamic workloads. If we apply standargyract a small window of time series data surrounding the
change point detection algorithms, we often discover MaBkange pointr;: X = z,_q, ..., 7140 (€.9.,Q = 20 seconds)
change points. For example, Figure 3 shows the set of changgy anply the fast Fourier transform (FFT) algorithm &n
points d'SCOVG“red on the P'Sk Write” metric of a map task, determine the coefficients that represent the amplitide o
node and the_ C_PU usage metric of a reduce ta;k node INb8ch frequency component. We consider thekdp.g., 90%)
Hadoop aplphcatlon, using the common change point detectifequencies in the frequency spectrum as high frequencies.
algorithm “CUSUM + Bootstrap” [21]. We can see manywe apply inverse FFT over the high frequency components
change points are just random peak and bottom values, whighsy nihesize the burst signal. We then use the burst signal
are not actually related to the fault. We can use Smoom'%gnitude (e.g., 90th percentile of the burst value) as the

expected prediction error for the change paint If the real
2Since FChain relies on timing information to infer abnornwlange P P ge pari

propagations, we synchronize the clocks of all hosts ugiegnetwork time predlctlon _err(_)r exceeds the eXpeCted pred'Ct'On eI’I’C_B', th
protocol (NTP), which has an error of less than 0.1 ms in LANd &ess change point is selected as one abnormal change point. For
than 5 ms on the I_nternet [19]. In our experiments, we obstraeall of the example, Figure 4 illustrates the expected predictionrerro
anomaly propagation delays between two dependent comizoaen at least L .

several seconds. Therefore, our system can tolerate simall gkews (i.e., for a. SYStem met_nc t.'me series. We car_1 .See that the _eXpeCted
tens of milliseconds). prediction error is higher when the original time series are

change points of different componeRt&or example, Figure

2 shows the abnormal change propagation path in a sam
IBM System S application consisting of seven distribute

components called processing elements (PEs). The appﬁcag
consists of one faulty componeftEs with a memory leak
bug. The memory usage metric FE3 shows the abnormal
change at time;. The anomaly first propagates to the co

B. Abnormal Change Point Selection



= true abnormal change propagation

—» spurious abnormal change propagation as the faulty component since it has the earliest fault man-

—» application dependency path ifestation. We continue to examine the other components in
@) faulty component the chain following the time order. If the fault manifesteti
 t=200s time of the next component is close to the pinpointed com-

ponent (e.g., time differenc€ 2 seconds), we infer that the
Client | 410, o component’s abnqrmal behavior is probably not caused by the
workload anomaly propagation but a concurrent fault that occurs at a
generator similar time. Thus, we will pinpoint this component as one
faulty component as well.

If all the application components contain fault manifesta-
Fig. 5. Faulty component pinpointing for the RUBIS onlinecion tions and the changes at all the components follow the same
benchmark application. upward or downward trend, FChain infers that the perforreanc

bursty, and is lower when the time series become stable.@Romaly is probably caused by some external factors such
Figure 3, our scheme correctly filters out the outlier chan@$ Workload increases (i.e., upward trend) or a NFS server
point on the normal reduce node and only selects the abnorigblem (i.e., downward trend). In this case, FChain will
change point on the faulty map node. not pinpoint any component within the application as faulty
After identifying a component exhibiting any abnormaf\lthough previous work [32] has also addressed the problem
change, we need to know when the abnormal change staffs distinguishing workload changes from anomalies within
During our experiments, we found that the selected abnornfalsingle component, our work provides workload change
change point sometimes resides in the middle of the fa@gtection for distributed applications.
manifestation process instead of at the beginning, depgndi We may derive spurious abnormal change propagations
on the evolving pattern of the fault manifestation (e.gadyral Petween independent components. For example, in Figure 5,
change or bursty change). Thus, FChain performs tange¥y¢ Will derive an abnormal change propagation path from
based rollback to identify the precise start time of the amad  the application server 1 to the application server 2 based on
change. Specifically, starting from the abnormal changatpoithe timestamps of their abnormal change points. However,
we compare the tangent of the current change point wifiS propagation actually does not exist. We propose to use
that of its preceding change point. If their values are clodater-componentdependency relationships to filter outisps
(e.g.,< 0.1), we roll back to the preceding change point. Wropagation paths. For each suspicious component that con-
repeat the roll-back process until the tangents of two adjac tains the abnormal change point, we examine whether there
change points are distinct. If a component has multipleiceetris @ path in the dependency graph from any pinpointed faulty
exhibiting abnormal changes, we pick the earliest abnornf@mponents to this component. If no path in the dependency
change start time as the component's abnormal change séi@Ph can be found, we pinpoint this component as a faulty one

time. since the anomaly propagation is unlikely and the compdment
o anomalous behavior must have been caused by an independent
C. Integrated Faulty Component Pinpointing fault. We leverage previous black-box dependency disgover

Our faulty component pinpointing algorithm consists ofools [11] to discover inter-component dependengies.
three steps: 1) deriving the abnormal change propagatiorHowever, we cannot solely rely on the dependency in-
paths in the examined distributed application by sorting tHormation for fault localization since the abnormal change
start time of abnormal changes at different components; @opagation does not always follow the dependency path.
pinpointing faulty components based on the selected abalorrRor example, in RUBIS, the faulty application server can
change propagation paths; and 3) refining pinpointing tesutause its upstream component (the web server) to exhibit
by filtering out spurious abnormal change propagation patabnormal behavior due to back-pressureeffect, that is, a
using inter-component dependency information. For exampfaulty component might cause its upstream component to
Figure 5 shows the pinpointing process for the RUBIS onlirghow anomalous behavibif we only rely on the dependency
auction benchmark application [16]. information, we will pinpoint the normal web server as the
If the abnormal change onset time ©f is earlier than that faulty component and miss the true culprit component, that i
of C3, we say that the abnormal change propagates from tie application server. Our experimental results in Sactib
componeniC; to the componen€s. For example, in Figure will confirm this observation.
5, the application server 1 starts to exhibit abnormal ckang We also found that existing network trace based depen-
at time¢; = 200 seconds and the database server starts to
show abnormal Change at tintg = 210. Thus, we can infer 3To achieve high accuracy, the black-box dependency sch&mdsnyo
. accumulate sufficient amount of network trace data [11].kilycthe appli-
that the abnormal change starts at the application served1 @ation dependency information rarely change during apfiin runtime. We

propagates to the database server. perform the dependency discovery offline and store the tegula file for
To pinpoint faulty components, FChain first sorts all th@tfr reference. _ _ o
The cause of the back-pressure varies among differentcagiplnis. One

components Into a chain based on their fault man'feStat'g&nmon reason is that after the input buffer of the faulty ponent becomes

time. We first pinpoint the source component in this chaiill, it forces the upstream component to drop data or pauseegsing.



dency discovery scheme fails to discover any dependenmogrked when the job does not make any progress for more
information in the data stream processing system [14]. Tkigan 30 seconds.

reason is that the dependency discovery algorithm relies oBM System S: We use the commercial high-performance
the gap between network packets to separate network flowlata stream processing system [14], System S, developed by
However, the stream application processes continuous dH&1. In our experiments, we used a tax calculation appli-
packets, which do not contain gaps between network packetation, one of the sample applications provided by System S
Note that FChain can still pinpoint faulty components based product distribution. The topology of the System S appiaat

the abnormal change propagation paths when the dependdacshown in Figure 2. Each PE runs in a separate guest VM.
information is unavailable. In contrast, the dependently-o In order to evaluate our system under workloads with realist
scheme will fail the fault localization task for distribdte time variations, we used the workload intensity observed in
stream processing systems. the ClarkNet web server trace beginning at 1995-08-28(0.0
from the IRCache Internet traffic archive [23] to modulate th
data arrival rate. We measured the average per-tuple mioges

We have implemented the FChain system on top of thiene and an SLO violation is marked if the average processing
Xen platform [22], and conducted extensive experiments ugme is larger than a pre-defined threshold (e.g., 20ms).
ing the RUBIS multi-tier online auction benchmark (EJB Fault injection. We inject different faults (e.g., common
version) [16], the IBM System S data stream processimpftware bugs, bottleneck) during an application runtiBech
system [14], and the Hadoop MapReduce framework [15pplication run lasts one hour. We inject one fault at a
In this section, we first describe our evaluation methodplogandom time instant to test FChain under different workload
followed by the experiment results. conditions. For each fault, we use 30 to 40 application runs.

. We test both single-component faults and multi-component
A. Evaluation Methodology concurrent faults.

Our experiments were conducted on the NCSU’s Virtual For RUBIS, single-component faults include: MgmLeak
Computing Lab (VCL), a production cloud computing infraswe start the program that has a memory leak bug in the
tructure that operates in a similar ways as Amazon EC2 [MM running the database server; €puHog a CPU-bound
All the VCL hosts used in our experiments have a dual-coprogram competed CPU with the database server inside the
Xeon 3.00GHz CPU, 4GB memory, and 30GB disk, whickame VM; and 3)NetHog we use httperf [24] tool to
are connected to Gigabit networks. Each host runs 64 bénd a large number of HTTP requests to the web server.
CentOS 5.2 with Xen 3.0.3. The guest VMs also run 64 bMulti-component concurrent faults include: DffloadBug
CentOS 5.2. FChain monitors each guest VM from DomaintBe application server 1 wants to offload some EJBs to the
using thel i bxenst at andl i bvi rt libraries. Monitored application server 2. However, the program bug (JIRA #JBAS-
metrics are cpu usage, memory usage, network in, netwd42) in the application server 1 makes the remote server
out, disk read, and disk write. The metric sampling inteisal lookup return the local server binding by mistake; and 2)
1 second. To evaluate FChain in multi-tenant cloud computiiBBug a load balancing bug (mofk 1.2.30) causes the web
environments, we run three benchmark systems concurrergyver to dispatch requests unevenly. These two faultseate r
on the same set of VCL hosts. We first describe the benchmadtware bugs found in the JBoss and Apache load balancer
systems used in our experiments as follows. software.

RUBIS online auction benchmark: We use the three-tier For Hadoop, we injected concurrent faults in all the map
online auction benchmark system RUBIS (EJB version). Thedes: 1)Concurrent MemLeakwe injected a memory leak
topology of the RUBIS system is shown in Figure 5. Wéug into all the map tasks, which allocated memory from the
run each application component in one guest VM. In ordéeap without releasing; 2ZFoncurrent CpuHogwe injected
to evaluate our system under workloads with realistic timen infinite loop bug in all the map tasks; and Gdncurrent
variations, we use a client workload generator that emsilat®iskHog we start a disk I/O intensive program in the Domain
the workload intensity observed in the NASA web served of each host running the map tasks.
trace beginning at 00:00:00 July 1, 1995 from the IRCacheFor System S, we inject the following single-component
Internet traffic archive [23] to modulate the request rate @dults: 1JMemLeak We inject a small snippet of code that has
our RUBIS benchmark. The client workload generator alsbmemory leak bug into a randomly selected PECpuHog
tracks the response time of the HTTP requests it made. AnCPU-bound program competes CPU with a PE within the
SLO violation is marked if the average request response timeme VM; 3) Bottleneck we make one randomly selected
is larger thanl00ms. PE the bottleneck by setting a low CPU cap over the PE.

Hadoop: We run Hadoop sorting application, one of th&'he multi-component concurrent faults includeCgncurrent
sample applications provided by the Hadoop distributidme T MemLeak we start the memory leak program simultaneously
application consists of three map nodes and six reduce nodestwo randomly selected PEs; and €pncurrent CpuHog
The data size we process is 12GB, which is generated usimg start the CPU intensive program simultaneously in two
the RandomWriter application. We measure the progrese scaandomly selected PEs.
of the job by calling the Hadoop API. An SLO violation is We compare FChain with a set of existing black-box fault

IIl. EXPERIMENTAL EVALUATION



MemLeak

localization schemes: "
1) Histogram: This scheme computes an anomaly score oel
for each system-level metric using Kullback-Leibler diver ¢ oel
gence [25] between the histogram of the most recent data
contained in the same look-back window as FChain and the |
histogram of the whole data. It then pinpoints abnormal com-Z‘z’ ] ol ] ol ]
ponents based on the anoma|y scores. We vary the anoma|y'o.o 02 04 06 08 1.0 700 02 04 06 08 1.0 700 02 04 06 08 1.0
score threshold to show the tradeoff between the true pesiti | ey Ve e s R S S e |
rate and the false positive rate. This scheme has been used by
previous work for detecting anomalies (e.g., [10]). Fig. 6. Fault localization accuracy comparison for the irmpmponent
2) NetMedic [9]: It is a recently developed application-faults for RUBIS.
agnostic multi-metric fault localization tool. The abnam
component pinpointing is based on the application topology
and the inter-component impact learned from the historical "]
data. This scheme needs to assume the knowledge of the gﬁf’
plication topology. For estimating the inter-componenpaut, § *
we use the same 1800 seconds of recent data as specified
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[9]. Different from FChain, NetMedic just gives a ranked lis | 1 ° 2
of all components based on their likelihood of being thetfaul %0 02 o4 05 08 10 0o 02 04 06 o8 10 %0 02 o4 06 08 10
components. We first pinpoint the top impact component as the Recall Recall Recall

} —O— Histogram —— NetMedic —<— Topology —— Dependency —>— PAL —%— FChain \

faulty component. We also pinpoint the following comporsent
whose impact difference with the top ranked component i lemg. 7.  Fault localization accuracy comparison for the Ermpmponent
than a certain thresholil We adjust the value af to show the faults for System S.

tradeoff between the true positive rate and the false pesiti

rate that can be achieved by NetMedic. . i .
3) Topology: This scheme assumes the knowledge of irults that can be achieved by this scheme. We compare FChain

application topology. It first detects abnormal componen‘@th this fixed f||t_er|n_g scheme to show the effectiveness of
using the outlier change point detection algorithm devetbp OUr burst based filtering scheme.
in our previous work PAL [13]. It then pinpoints faulty To quantify the accuracy of differe.nt fault Iocalization.
components based on the topology information, that is,éf tigchemes, we use the standard precision and recall metrics.
abnormal componert; depends on the abnormal component€t Nip, Nyn and Ny, denote the number of true positives
C1, we pinpointC; as the faulty component. By comparingcorrectly pinpoint a faulty component), false negativessé
FChain with this scheme, we want to show that it is insuffitie® faulty component), and false positives (pinpoint a normal
to just consider the application topology for pinpointimgilty COmponent as faulty), respectively. We calculate the preci
components. and recall metrics in the standard way as follows,

4) Dependency Instead of assuming the application topol- o 1o Ne,
ogy knowledge, this scheme uses the black-box dependency Frecision = vaeca” =N TN (1)
discovery tool [11] to dynamically extract the inter-comgeot e tp
dependency information. It first detects abnormal compteiVe evaluate the accuracy of different pinpointing algorith
using the same outlier change point detection algorithnhas tusing the commonly used “receiver operating charactefisti
Topology scheme. It then pinpoints faulty components basé8OC) curve whose X-axis and Y-axis show the recall and
on the discovered dependency information. If no dependergcision, respectively. A perfect pinpointing schemeuitio
information is discovered, this scheme will output all there  achieve 100% precision and 100% recall.
ponents that have outlier change points as faulty compenent In our experiments, we configure the FChain system as
By comparing FChain with this scheme, we want to show thédllows. We set the look-back windowi() to be 100 seconds
it is insufficient to just rely on the dependency informatfon for all the tested faults except the DiskHog fault in the
pinpointing faulty components. Hadoop application. The reason is that the DiskHog fault

5) PAL [13]: This is the initial version of our change propatakes much longer time to manifest than the other faults.
gation based fault localization system. However, difféefesm The 100 seconds look-back window will not cover the initial
FChain, PAL does not perform predictability-based abndrmstage of the fault manifestation. Thus, we used a longer-look
change point selection or consider the dependency infeawsmatback window (500 seconds) for the DiskHog fault. We use
in fault localization. It also does not support online vatidn. a concurrency threshold of 2 seconds to classify concurrent

6) Fixed-Filtering: This scheme uses the same pinpointinfaults, that is, if the abnormal change point time diffeenc
algorithm as FChain except that it employs a fixed predictidretween two components is less than 2 seconds, we consider
error filtering threshold to select the abnormal changetpointhese two components as concurrent faulty components. The
We varied the filtering threshold to show different accureey burst extraction windowy is set as 20 seconds. We use the



top 90% frequencies to synthesize the burst signal and ese thFigure 7 shows the fault localization accuracy comparison
90th percentile of the burst value as the expected predicticesults for the System S single component faults. Similar
error. We found those parameter configurations work well féo the RUBIS experiments, FChain consistently achieves the
all the applications tested in our experiments. We also gond highest precision and recall values for all the tested $atlhe
sensitivity study on those parameters and will show thelt®sudependency discovery scheme fails to detect any dependency
in Section IlI-F. relationship for System S due to the reason mentioned in
Section II-C. Thus, the Dependency scheme pinpointed all th

components that have outlier change points. This is reabgn w

Figure 6 shows the pinpointing accuracy results for RUBife pependency scheme has low precision for all the cases.
under three single-component faults. We observe that FChgi,e Topology scheme does not perform well for the MemHog
consistently achieves the highest precision and recaéilfthe  5ng the bottleneck faults because of the same back-pressure
faults. We observe that the Histogram scheme does not wogltiem mentioned in the RUBIS results. We also observe that
well for the CpuHog and NetHog faults that manifest very)| ihe schemes have low precision for the bottleneck faie
quickly. The reason is that when the performance anomalyason js that the fault propagates very quickly due to high-
is detected, the histogram of the recent data has not shoyp,ghput communication between stream processing com-
significant difference from the histogram of all historicklta ponents. Thus, it is difficult to distinguish single-compan

yet since the fault manifestation duration is very shorte Thaults from concurrent multi-component faults, which eips
histogram scheme works better for gradually changing sfau{x,hy the precision is low. Luckily, we can use the online

such as memory leak although it is still less accurate thgBjigation to quickly remove those false alarms, which will
FChain. We observe that NetMedic could not achieve higdy, shown in Section 111-D.

accuracy during this set of experiments. After examining th
logs, we found that the pinpointing errors are caused byamseC. Multi-Component Concurrent Fault Localization Results

states that make the system assign inaccurate impact Yaluesyye now evaluate FChain using multi-component concurrent
During the fault injection, the faulty component and theesth ¢, its. Figures 8, 9, and 10 show the pinpointing accuracy
affected components often have a state that is not presentda,its for RUBIS System S, and Hadoop, respectively.

the historical data. In contrast, we observe that FChairots N \y,e gbserve that FChain consistently achieves high precisio

susceptible to the problem of unseen values. _and recall results in all the tested cases except the cagurr
By employing predictability-based filtering and Ieverag;mCPUHOg in System S. After examining the log file, we find

dependency information, FChain effectively removesévaht o giagnosis errors are mostly caused by the side-effect of
change points ca_\used py normal workload fluctuations. Thlé‘?noothing. Although our previous work [13] showed that

FChain can achieve higher accuracy than the other change,oihing helps to remove the random noise in the raw
point based schemes such as Topology, Dependency, and F\bnitoring data, smoothing in this case causes the time of
Since the dependency discovery scheme accurately identifigs apnormal change point in the affected normal component
all the dependencies in the RUBIS system, the Dependengypecome earlier than those of true culprit components. We

scheme has the same accuracy as the Topology scheme infhisy (o perform adaptive smoothing to address this problem,
case. Particularly, the Topology and the Dependency schemgich is part of our on-going work.

have very onv accuracy for the MemHog and CpuHog faults. Compared to RUBIS and System S, Hadoop is much more
The reason is that we injected those two faults at the daabggnamic with highly fluctuating system metrics. In this gase
server that is the last tier in the RU_B|S system. We observ simple change point detection schemes such as PAL have
the "back-pressure” symptom mentioned in Section II-C. Thg,; accuracy, especially for the CpuHog and DiskHog faults.
faulty database server causes its upstream componentéhe y 1o Hadoop experiments, we inject faults into all the map
server or the application server) to exhibit anomalous behg,,qes that are the first components in the topology order.
iors. If we perform pinpointing based on the dependency §f,¢ “nack-pressure” problem does not exist in this case.
topology, we will mistakenly pinpoint the upstream compane s eyplains why Topology and Dependency achieve high
of the culprit component as the faulty one. We injected the.., oy NetMedic also achieves high precision and recall
NetHog fault in the web server that is the first tier in RUBIS, ;) ,es in the MemLeak and CPUHog faults. The reason is
Thus, both Topology and Dependency perform well since e, the default high impact value for unseen states hagpen t
back-pressure problem does not exist. In contrast, FCIsaingh, correct. However, for the DiskHog fault, the default high
not sensitive to the location of the faulty component, whicf, ¢t value is incorrect, which causes NetMedic to have low

can achieve high accuracy for all situations. Although Aha .o\ racy. In contrast, FChain can handle previously unseen
also considers the dependency information, we observe th)af,es and consistently achieve high accuracy.
when a fault propagates back to the upstream components, its

impact becomes smaller. The abnormal change point satectid. Online Pinpointing Validation Results

step can effectively filter out those change points. We now evaluate our online validation scheme. We pick two
SNetMedic assigns a default high impact value (0.8) to an egeecting MOSt challenging faults where all the schemes do not perform
to the abnormal component with a previously unseen state. well. They are the Bottleneck fault and the concurrent CpgiHo

B. Single-Component Fault Localization Results
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Fig. 9. Fault localization accuracy comparison for the iredimponent faults

in System S. Figure 12 shows the accuracy of the Fixed-Filtering schemme f
Concurrent MemLeak Concurrent CPUHog Concurrent DiskHog @ subset of faults in RUBIS and Hadoop. We observe that the
1.0 Fixed-Filtering scheme is very sensitive to the predictoror
0.8 filtering threshold value. In contrast, FChain can autooadit
S o8 s s infer the optimal (or near optimal) filtering threshold bagan
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the FChain scheme with the online pinpointing validation
activated. Note that the results for the FChain scheme shown TABLE |

PRECISION(P)AND RECALL (R) VALUES UNDER DIFFERENT

before are the results achieved by FChain without the online
CONFIGURATIONS OF THE KEYFCHAIN PARAMETERS.

validation. We observe that our online validation scheme ca

succgssfully remove most_false alarms for these two faults\yie have conducted sensitivity study to evaluate the impact
FChain can quickly identify the true faulty component(sy¢ key FChain system parameters to its pinpointing accuracy
by properly scaling the right resource metric. However, ofe to space limitations, we only show a subset of our results
current online validation scheme cannot help to improve the Taple | with the optimal parameter settings highlightad i
recall value, which is part of our on-going work. bold. Overall, we found that FChain is not sensitive to dfe
parameter values. We observe that FChain can achieve the
optimal performance using default setting (100 secondk-loo
We now compare FChain with the Fixed-Filtering schemé&ack window, 2 seconds concurrency threshold) for all the
Due to space limitations, we only show a subset of our resultssted faults except one case that is the look-back window

E. Comparison with Fixed Filtering Schemes



System Modules CPU cost : : : :

VM monitoring (6 afiributes) |1.03E0,00 miliseconds will cause their system to_ralse false alarms. In comparison
Normal fluctuation modeling  [22.9+ 2 milliseconds FCham_ls more robust to different types of faults and waakllo
(1000 samples) fluctuations.

Abnormal change point selectiof$02.4 4+ 105.2 milliseconds To achieve black-box diagnosis, researchers have also ex-
I(r%?e% ;?;ndplfz)lt diagnosis 29 4+ 1 microseconds plored various passive network traffic monitoring and asialy
Online validation (per-componelp - 1 seconds techniques such as Sherlock [11], Orion [26], SNAP [27].

However, those analysis schemes can only achieve coarse-
grained machine-level fault localization. Additionalturing
our experiments, we found that previous network trace aimly
techniques cannot handle continuous data stream process-
size for the DiskHog fault in Hadoop. The reason has beémy applications due to the lack of gaps between packets
described in Section IlI-A. Generally, the look-back wimdo for extracting different network flows. Project5 [28] and
should be long enough to capture the fault manifestatioB2EProf [29] performed cross-correlations between messag
We are currently investigating an adaptive look-back wimdotraces to derive causal paths in multi-tier distributedeyss.
configuration scheme by examining the metric changing spe®#AP5 [30] extends the black-box causal path analysis to
support wide-area distributed systems. Orion [26] disc®ve
dependencies from network traffic using packet headers and
We now evaluate the overhead of the FChain system. Takilming information based on the observation that the traffic
Il lists the CPU cost of each key module in FChain. Weelay distribution between dependent services often é@shib
observe that most modules in FChain is light-weight. Thigpical spikes. LWT [31] proposed to discover the similarit
most computation-intensive module is the abnormal changkthe CPU usage patterns between different VMs to ex-
point selection component, which is triggered only whemact the dependency relationships between different VMs.
a performance anomaly occurs. FChain also distributes tHewever, as shown in our experiments, dependency-based
change point computation load on different hosts and erscufault localization techniques are not robust, which can enak
them in parallel to achieve scalability. The online validat frequent pinpointing mistakes due to various reasons,(e.g.
takes about 30 seconds for each component since we néesl“back pressure” effect in distributed applicationsnooon
some time to observe scaling impact for deciding whether wetwork services pinpointed as culprits). Furthermoréstimg
have made a pinpointing error. However, the online valatati dependency discovery techniques need to accumulate a large
is only performed on those suspicious components pinpbintgmount of trace data to achieve reasonable accuracy. lRartic
by the integrated fault diagnosis module. The FChain daemiainly, network trace based techniques only support request
running inside the Domain 0 of each host imposes less than #¥d-reply types of applications, which fail to discover any
CPU load and consumes about 3MB memory during norm@pendency in continuously running applications such & da
execution. stream processing systems. In contrast, FChain providgseon
fault localization, which does not require any training alat
for anomalies or a large amount of training data for normal
Our work is first closely related to previous black-boxehaviors. FChain is fast, which can quickly localize fault
fault localization schemes. For example, NetMedic [9] prazomponents with high accuracy after the performance anomal
vided detailed application-agnostic fault diagnosis ariéng is detected.
inter-component impact. NetMedic first needs to assume theA flurry of research work has proposed to use end-to-end
knowledge of the application topology. To perform impadracing for distributed system debugging. Magpie [3] is a
estimation, NetMedic needs to find a historical state that riequest extraction and workload modelling tool that caorméc
similar to the current state for each component. However, fiine-grained system events and correlate those events asing
previously unseen anomalies, we might not be able to findapplication specific event schema to capture the control flow
historical state that is similar to the current state forféndty and resource consumption of each request. Pinpoint [4ftake
components. Under those circumstances, NetMedic assignequest-oriented approach to tag each call with a requelsy 1D
default high impact value, which sometimes lead to inadeuranodifying middleware platform and applies statistical hoats
diagnosis results as shown in Section Ill. In comparisotg identify components that are highly correlated with il
FChain can diagnose previously unseen anomalies and dosgiests. Monitor [33] tracks the requests exchanged legtwe
not assume any prior application knowledge. Oliner et &l] [1components in the system and performs probabilistic disigno
proposed to compute anomaly scores using the histogram ap-the potential anomalous components. X-Trace [5] is an
proach and correlates the anomaly scores of different compritegrated cross-layer, cross-application tracing fraork,
nents to infer the inter-component influence graph. As showrhich tags all network operations resulting from a paracul
in Section Ill, it is difficult for the histogram-based andsna task with the same task identifier to construct a task tree.
detection to perform online fault localization over sudigen Spectroscope [34] can diagnose performance anomalies by
manifesting faults. Moreover, unrelated components care hacomparing request flows from two executions. In contrast,
indirect correlations caused by workload fluctuations, olhi our approach does not require any instrumentation to the

TABLE I
FCHAIN OVERHEAD MEASUREMENTS.

G. FChain System Overhead Measurements

IV. RELATED WORK



application or middleware platform to collect request flows[6]
Thus, it is much easier to deploy FChain in large-scale 1aaS
clouds. 7]
Blacksheep [35] correlates the change point of systeni-leve
metrics (e.g., cpu usage) with the change in count of Hadoo[g]
application states (i.e., events extracted from logs oaNat

I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. €ha
“Correlating Instrumentation Data to System States: A @od Block
for Automated Diagnosis and Control,” @SD|, 2004.

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kellydah Fox,
“Capturing, indexing, clustering, and retrieving systenstdry,” in
SOSP 2005.

S. Duan, S. Babu, and K. Munagala, “Fa: A system for autorga
failure diagnosis,” inlCDE, 2009.

odes and TaskTrackers) to detect and diagnose the anomaligss. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Paglayel V. Bahl,

in a Hadoop cluster. Kahuna-BB [36] correlates black-b(mdz 0
(system-level metrics) and white-box data (Hadoop cons &
logs) across different nodes of a MapReduce cluster toifgent[11]
faulty nodes. In comparison, FChain is a black-box faulalec
ization system, which is application-agnostic withoutuieipg

any knowledge about the application internals. We beliba¢ t
FChain is more practical and attractive for laaS cloud syste [13]
than previous white-box or gray-box techniques. [14]

[12]

V. CONCLUSION [15]

In this paper, we have presented FChain, a robust blaﬁ(%]

box online fault localization system for laaS cloud com-
puting infrastructures. FChain can quickly pinpoint fault[lg]
components immediately after the performance anomaly IS
detected. FChain provides a novel predictability-based d&o]
normal change point selection scheme that can accuratglai
identify the onset time of the abnormal behaviors at diffiere
components processing dynamic workloads. FChain combines
both the abnormal change propagation knowledge and {RY
inter-component dependency information to achieve robL[§§]
fault localization. FChain can further remove false alabyis [23]
performing online validation. We have implemented FChain ({24]
top of the Xen platform and conducted extensive experinhenta
evaluation using IBM System S data stream processing syst¢za]
Hadoop, and RUBIS online auction benchmark. Our exper-
imental results show that FChain can achieve much highe,
accuracy (i.e., up to 90% higher precision and up to 20%
higher recall) than existing schemes. FChain is light-lreig
and non-intrusive, which makes it practical for large-edabS
cloud computing infrastructures.
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