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Abstract—Distributed applications running inside cloud sys-
tems are prone to performance anomalies due to various reasons
such as resource contentions, software bugs, and hardware fail-
ures. One big challenge for diagnosing an abnormal distributed
application is to pinpoint the faulty components. In this paper,
we present a black-box online fault localization system called
FChain that can pinpoint faulty components immediately after a
performance anomaly is detected. FChain first discovers theonset
time of abnormal behaviors at different components by distin-
guishing the abnormal change point from many change points
caused by normal workload fluctuations. Faculty components
are then pinpointed based on theabnormal change propagation
patterns and inter-component dependency relationships. FChain
performs runtime validation to further filter out false alar ms.
We have implemented FChain on top of the Xen platform and
tested it using several benchmark applications (RUBiS, Hadoop,
and IBM System S). Our experimental results show that FChain
can quickly pinpoint the faulty components with high accuracy
within a few seconds. FChain can achieve up to 90% higher
precision and 20% higher recall than existing schemes. FChain
is non-intrusive and light-weight, which imposes less than1%
overhead to the cloud system.

I. I NTRODUCTION

Infrastructure as a Service (IaaS) clouds [1], [2] allow
multiple tenants to share a common physical computing infras-
tructure in a cost-effective way. However, applications running
inside the IaaS cloud are prone to performance anomalies such
as service level objective (SLO) violations due to various rea-
sons such as resource contentions, software bugs, or hardware
failures. It is particularly challenging to localize the faulty
components in a complex distributed application that consists
of many inter-dependent components.

Previous work on distributed system debugging can be
categorized as white-box, grey-box, or black-box techniques.
White-box and grey-box techniques (e.g., [3]–[5]) require
modifications or instrumentations to applications or underlying
middleware platforms. Those intrusive techniques often im-
pose significant runtime overhead and are difficult to deploy,
which make them impractical for performingonline fault
localization in the production IaaS clouds. Existing black-box
techniques [6]–[8] mostly focus on anomaly detection or sys-
tem metric attribution. In contrast, our goal is to pinpointfaulty
components in a distributed application. Other schemes [9]–
[11] only work for certain types of faults or applications. We
will discuss related work in detail in Section IV.

In this paper, we present FChain, a black-box online fault
localization system for diagnosing performance anomaliesin
IaaS clouds. FChain can pinpoint faulty componentsimmedi-
ately after a performance anomaly is detected. FChain does
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Fig. 1. The overall architecture of the FChain system. The FChain slave
continuously collects system-level metrics (e.g., CPU, memory) on different
application VMs running inside the cloud and learns normal fluctuation
patterns. When a SLO violation is detected, the FChain master triggers
all related FChain slaves to look for abnormal change points. The FChain
master then pinpoints faulty components based on the changepoint timing
information and inter-component dependencies. FChain also performs online
validation to remove possible false alarms.

not perform any intrusive tracing in the cloud system and
only relies on low-level system metrics (e.g., CPU, mem-
ory, network statistics) that can be easily obtained from the
guest OS or hypervisor. FChain does not assume any prior
application knowledge, which makes it practical for IaaS
clouds. Moreover, FChain does not require any training data
for anomalies, which can diagnose both previously seen and
unseen performance anomalies. Figure 1 shows the overall
architecture of the FChain system.

When a performance anomaly is detected, FChain first
discovers abnormal changes at all system metrics of dif-
ferent components. Next, FChain extracts abnormal change
propagation paths for the diagnosed performance anomaly
and localizes the faulty components based on the abnormal
change propagation patterns. Our design is based on two
key observations: 1) performance anomalies often manifestas
abnormal system metric fluctuations that are distinctive from
the normal fluctuation patterns; and 2) the abnormal system
metric changes often start from the faulty components and then
propagate to other non-faulty components via inter-component
interactions.

To achieve robust fault localization, FChain needs to ad-
dress a challenging problem: how to distinguish the abnormal
change point that marks the onset of the fault manifestation
from many other change points that are caused by normal
workload fluctuations. It is insufficient to use a fixed filtering
threshold since some applications are inherently more dynamic
than others. To address this problem, FChain captures the
normal fluctuation patterns using online system metric value
prediction models [12] and uses apredictabilitymetric to iden-



tify abnormal fluctuations. As we will show later in Section
III, this abnormal change detection scheme can achieve higher
accuracy than traditional anomaly detection schemes [10].

Due to inter-component interactions, abnormal changes in
the faulty component(s) often propagate to other normal
components. If we examine each component in an isolated
way, we might produce many false alarms by mistakenly
pinpointing normal components as faulty ones. Our previous
work [13] has shown that it is feasible to pinpoint faulty
components by sorting all affected components based on their
fault manifestation time and identifying the component with
the earliest manifestation time as the faulty one. However,we
observe that it is insufficient to only rely on the chronological
order to perform fault localization since we may derive spuri-
ous abnormal change propagations between two independent
components. To address the problem, FChain integrates the
dependency relationships with the fault propagation modelto
achieve more accurate pinpointing than existing schemes.

This paper makes the following contributions:
• We present FChain, a practicalonline fault localization

system for large-scale IaaS clouds. FChain does not
require any intrusive application monitoring, which can
diagnose both previously seen and unseen anomalies.

• We describe a predictability-based abnormal change point
selection scheme that can distinguish abnormal change
points that are related to the fault manifestation from
those normal change points that are caused by normal
workload fluctuations.

• We introduce a new integrated fault localization scheme
considering both fault propagation patterns and inter-
component dependencies to achieve higher pinpointing
accuracy.

We have implemented FChain on top of the Xen platform
and tested it on NCSU’s Virtual Computing Lab (VCL) [2], a
production cloud computing system that operates in a similar
way as Amazon EC2 [1]. We conducted extensive experiments
using a set of common faults and different types of appli-
cations (IBM System S data stream processing system [14],
Hadoop [15], and RUBiS online auction benchmark [16]).
Our experimental results show that: 1) FChain can achieve up
to 90% higher precision and 20% higher recall than existing
black-box fault localization schemes; 2) FChain can complete
the fault localization within a few seconds and works for
different types of applications; and 3) FChain is light-weight,
imposing less than 1% CPU overhead during system runtime
execution.

The rest of the paper is organized as follows. Section II
describes the design of the FChain system. Section III presents
our experimental evaluation. Section IV compares our work
with related work. Finally, the paper concludes in Section V.

II. SYSTEM DESIGN

In this section, we first present an overview of the FChain
system. We then describe the abnormal change point identifica-
tion algorithm and the integrated faulty component pinpointing
scheme.
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Fig. 2. Abnormal change propagation in an IBM System S application. The
fault propagates along the path:PE3 → PE6 → PE2. The propagation
PE6 → PE2 is caused by the back-pressure effect.

A. System Overview

FChain is decentralized consisting of a set of slave modules
(i.e., normal fluctuation modeling, abnormal change point
selection) and master modules (i.e., integrated fault diagnosis,
online pinpointing validation), shown by Figure 1. The slave
modules run inside the domain 0 of different cloud nodes while
the master modules run on dedicated servers. FChain treats
each guest virtual machine (VM) as one component.

The normal fluctuation modeling module continuously mon-
itors the system metrics for each VM to capture its normal
fluctuation pattern. We employ a light-weight online learning
model [12] to continuously learn the evolving pattern of
each system metric value. If the change is caused by normal
workload fluctuations, the prediction model must have seen
and learned the change before. Thus, the prediction errors on
those normal change points will be small. In contrast, the
fluctuations caused by faults are not captured by the online
learning model, which will probably incur high prediction
errors.

When a performance anomaly (e.g., SLO violations) is
detected1, the FChain master is invoked to pinpoint the faulty
components in the failing distributed application. The FChain
master first contacts the slaves on all related distributed hosts
to identify whether a component exhibits abnormal changes
and when the abnormal change begins. If the performance
anomaly occurs at timetv, the FChain slaves check a window
([tv−W, tv]) (e.g.,W = 100) of recent metric values beforetv.
The abnormal change point selection module uses the normal
fluctuation model to filter out those change points that are
caused by normal workload fluctuations.

The integrated fault diagnosis module comprehensively
examines the abnormal change point information from all
components and the inter-component dependency information
to pinpoint the culprit component(s). FChain first derives the
abnormal change propagation pattern in the examined dis-
tributed application by sorting the timestamps of the abnormal

1Note that FChain focuses on fault localization rather than performance
anomaly detection that has been addressed by previous work(e.g., [17], [18]).
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Fig. 3. Abnormal change point selection for the DiskWrite metric of a faulty
map node and the CPU usage metric of a normal reduce node in a Hadoop
sorting application.

change points of different components.2 For example, Figure
2 shows the abnormal change propagation path in a sample
IBM System S application consisting of seven distributed
components called processing elements (PEs). The application
consists of one faulty componentPE3 with a memory leak
bug. The memory usage metric ofPE3 shows the abnormal
change at timet1. The anomaly first propagates to the com-
ponentPE6 at time t2 and then to the componentPE2 at
time t3. Since t1 < t2 < t3, FChain pinpointsPE3 as the
suspicious root cause component. Note that our scheme does
not assume any knowledge about the application including
its topology. FChain leverages the black-box dependency
discovery tool [11] to filter out spurious abnormal change
propagations between independent components.

Finally, FChain performs online pinpointing validation us-
ing the dynamic resource scaling technique in a similar way
as [20]. Since FChain monitors various system metrics, it can
not only pinpoint faulty components but also identify which
system metrics are related to the fault. We can then adjust those
metrics on the faulty components to validate the accuracy of
the pinpointing results by observing the resource adjustment
impact to the application’s SLO violation status.

B. Abnormal Change Point Selection

To localize the faulty components, FChain first examines
i) which componentsexhibit abnormal changes in different
system-level metrics; and ii)when those abnormal changes
start. As mentioned before, system-level metrics are inherently
fluctuating under dynamic workloads. If we apply standard
change point detection algorithms, we often discover many
change points. For example, Figure 3 shows the set of change
points discovered on the “Disk Write” metric of a map task
node and the “CPU usage” metric of a reduce task node in a
Hadoop application, using the common change point detection
algorithm “CUSUM + Bootstrap” [21]. We can see many
change points are just random peak and bottom values, which
are not actually related to the fault. We can use smoothing

2Since FChain relies on timing information to infer abnormalchange
propagations, we synchronize the clocks of all hosts using the network time
protocol (NTP), which has an error of less than 0.1 ms in LANs and less
than 5 ms on the Internet [19]. In our experiments, we observethat all of the
anomaly propagation delays between two dependent components are at least
several seconds. Therefore, our system can tolerate small time skews (i.e.,
tens of milliseconds).
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Fig. 4. Expected prediction error for the CPU usage metric ona dual-core
host.

and change magnitude outlier detection to filter some normal
change points [13]. However, it is insufficient to only rely
on smoothing and outlier detection to select abnormal change
points since some metrics (e.g., the “Disk Write” metric in
Figure 3) have large variations during normal execution.

FChain uses a predictability metric to achieve robust ab-
normal change point selection. We employ an online learning
model [12] to continuously learn the change pattern of each
system metric. The online learning model can capture the
transition probability between different metric values using
a discrete time Markov chain model. Intuitively, the value
transition patterns at a normal change point should be able
to be captured by the online learning model and thus easier
to predict. We calculate a prediction error for each outlier
change point by comparing the predicted value with its true
value. If the prediction error is high, we consider this outlier
change point as an abnormal change point. However, it is a
non-trivial problem to pick a proper prediction error threshold
for filtering normal change points since some metrics (e.g.,
bursty ones) are inherently harder to predict than others and
vary from application to application. Thus, it will be imprecise
to apply a fixed filtering threshold.

To address this problem, FChain dynamically computes a
proper prediction error threshold for each change point based
on the burstiness of the time series surrounding the change
point. The intuition behind our scheme is that a bursty metric
is expected to have a higher prediction error than a non-
bursty metric. Thus, we want to use a higher prediction error
threshold when the metric values are bursty. Specifically, we
extract a small window of time series data surrounding the
change pointxt: X = xt−Q, ..., xt+Q (e.g.,Q = 20 seconds)
and apply the fast Fourier transform (FFT) algorithm onX

to determine the coefficients that represent the amplitude of
each frequency component. We consider the topk (e.g., 90%)
frequencies in the frequency spectrum as high frequencies.
We apply inverse FFT over the high frequency components
to synthesize the burst signal. We then use the burst signal
magnitude (e.g., 90th percentile of the burst value) as the
expected prediction error for the change pointxt. If the real
prediction error exceeds the expected prediction error, the
change point is selected as one abnormal change point. For
example, Figure 4 illustrates the expected prediction errors
for a system metric time series. We can see that the expected
prediction error is higher when the original time series are
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Fig. 5. Faulty component pinpointing for the RUBiS online auction
benchmark application.

bursty, and is lower when the time series become stable. In
Figure 3, our scheme correctly filters out the outlier change
point on the normal reduce node and only selects the abnormal
change point on the faulty map node.

After identifying a component exhibiting any abnormal
change, we need to know when the abnormal change starts.
During our experiments, we found that the selected abnormal
change point sometimes resides in the middle of the fault
manifestation process instead of at the beginning, depending
on the evolving pattern of the fault manifestation (e.g., gradual
change or bursty change). Thus, FChain performs tangent-
based rollback to identify the precise start time of the abnormal
change. Specifically, starting from the abnormal change point,
we compare the tangent of the current change point with
that of its preceding change point. If their values are close
(e.g.,< 0.1), we roll back to the preceding change point. We
repeat the roll-back process until the tangents of two adjacent
change points are distinct. If a component has multiple metrics
exhibiting abnormal changes, we pick the earliest abnormal
change start time as the component’s abnormal change start
time.

C. Integrated Faulty Component Pinpointing

Our faulty component pinpointing algorithm consists of
three steps: 1) deriving the abnormal change propagation
paths in the examined distributed application by sorting the
start time of abnormal changes at different components; 2)
pinpointing faulty components based on the selected abnormal
change propagation paths; and 3) refining pinpointing results
by filtering out spurious abnormal change propagation paths
using inter-component dependency information. For example,
Figure 5 shows the pinpointing process for the RUBiS online
auction benchmark application [16].

If the abnormal change onset time ofC1 is earlier than that
of C2, we say that the abnormal change propagates from the
componentC1 to the componentC2. For example, in Figure
5, the application server 1 starts to exhibit abnormal change
at time t1 = 200 seconds and the database server starts to
show abnormal change at timet3 = 210. Thus, we can infer
that the abnormal change starts at the application server 1 and
propagates to the database server.

To pinpoint faulty components, FChain first sorts all the
components into a chain based on their fault manifestation
time. We first pinpoint the source component in this chain

as the faulty component since it has the earliest fault man-
ifestation. We continue to examine the other components in
the chain following the time order. If the fault manifestation
time of the next component is close to the pinpointed com-
ponent (e.g., time difference≤ 2 seconds), we infer that the
component’s abnormal behavior is probably not caused by the
anomaly propagation but a concurrent fault that occurs at a
similar time. Thus, we will pinpoint this component as one
faulty component as well.

If all the application components contain fault manifesta-
tions and the changes at all the components follow the same
upward or downward trend, FChain infers that the performance
anomaly is probably caused by some external factors such
as workload increases (i.e., upward trend) or a NFS server
problem (i.e., downward trend). In this case, FChain will
not pinpoint any component within the application as faulty.
Although previous work [32] has also addressed the problem
of distinguishing workload changes from anomalies within
a single component, our work provides workload change
detection for distributed applications.

We may derive spurious abnormal change propagations
between independent components. For example, in Figure 5,
we will derive an abnormal change propagation path from
the application server 1 to the application server 2 based on
the timestamps of their abnormal change points. However,
this propagation actually does not exist. We propose to use
inter-component dependency relationships to filter out spurious
propagation paths. For each suspicious component that con-
tains the abnormal change point, we examine whether there
is a path in the dependency graph from any pinpointed faulty
components to this component. If no path in the dependency
graph can be found, we pinpoint this component as a faulty one
since the anomaly propagation is unlikely and the component’s
anomalous behavior must have been caused by an independent
fault. We leverage previous black-box dependency discovery
tools [11] to discover inter-component dependencies.3

However, we cannot solely rely on the dependency in-
formation for fault localization since the abnormal change
propagation does not always follow the dependency path.
For example, in RUBiS, the faulty application server can
cause its upstream component (the web server) to exhibit
abnormal behavior due to aback-pressureeffect, that is, a
faulty component might cause its upstream component to
show anomalous behavior.4 If we only rely on the dependency
information, we will pinpoint the normal web server as the
faulty component and miss the true culprit component, that is,
the application server. Our experimental results in Section III
will confirm this observation.

We also found that existing network trace based depen-

3To achieve high accuracy, the black-box dependency scheme needs to
accumulate sufficient amount of network trace data [11]. Luckily, the appli-
cation dependency information rarely change during application runtime. We
perform the dependency discovery offline and store the results in a file for
later reference.

4The cause of the back-pressure varies among different applications. One
common reason is that after the input buffer of the faulty component becomes
full, it forces the upstream component to drop data or pause processing.



dency discovery scheme fails to discover any dependency
information in the data stream processing system [14]. The
reason is that the dependency discovery algorithm relies on
the gap between network packets to separate network flows.
However, the stream application processes continuous data
packets, which do not contain gaps between network packets.
Note that FChain can still pinpoint faulty components basedon
the abnormal change propagation paths when the dependency
information is unavailable. In contrast, the dependency-only
scheme will fail the fault localization task for distributed
stream processing systems.

III. E XPERIMENTAL EVALUATION

We have implemented the FChain system on top of the
Xen platform [22], and conducted extensive experiments us-
ing the RUBiS multi-tier online auction benchmark (EJB
version) [16], the IBM System S data stream processing
system [14], and the Hadoop MapReduce framework [15].
In this section, we first describe our evaluation methodology
followed by the experiment results.

A. Evaluation Methodology

Our experiments were conducted on the NCSU’s Virtual
Computing Lab (VCL), a production cloud computing infras-
tructure that operates in a similar ways as Amazon EC2 [1].
All the VCL hosts used in our experiments have a dual-core
Xeon 3.00GHz CPU, 4GB memory, and 30GB disk, which
are connected to Gigabit networks. Each host runs 64 bit
CentOS 5.2 with Xen 3.0.3. The guest VMs also run 64 bit
CentOS 5.2. FChain monitors each guest VM from Domain 0
using thelibxenstat andlibvirt libraries. Monitored
metrics are cpu usage, memory usage, network in, network
out, disk read, and disk write. The metric sampling intervalis
1 second. To evaluate FChain in multi-tenant cloud computing
environments, we run three benchmark systems concurrently
on the same set of VCL hosts. We first describe the benchmark
systems used in our experiments as follows.

RUBiS online auction benchmark: We use the three-tier
online auction benchmark system RUBiS (EJB version). The
topology of the RUBiS system is shown in Figure 5. We
run each application component in one guest VM. In order
to evaluate our system under workloads with realistic time
variations, we use a client workload generator that emulates
the workload intensity observed in the NASA web server
trace beginning at 00:00:00 July 1, 1995 from the IRCache
Internet traffic archive [23] to modulate the request rate of
our RUBiS benchmark. The client workload generator also
tracks the response time of the HTTP requests it made. An
SLO violation is marked if the average request response time
is larger than100ms.

Hadoop: We run Hadoop sorting application, one of the
sample applications provided by the Hadoop distribution. The
application consists of three map nodes and six reduce nodes.
The data size we process is 12GB, which is generated using
the RandomWriter application. We measure the progress score
of the job by calling the Hadoop API. An SLO violation is

marked when the job does not make any progress for more
than 30 seconds.

IBM System S: We use the commercial high-performance
data stream processing system [14], System S, developed by
IBM. In our experiments, we used a tax calculation appli-
cation, one of the sample applications provided by System S
product distribution. The topology of the System S application
is shown in Figure 2. Each PE runs in a separate guest VM.
In order to evaluate our system under workloads with realistic
time variations, we used the workload intensity observed in
the ClarkNet web server trace beginning at 1995-08-28:00.00
from the IRCache Internet traffic archive [23] to modulate the
data arrival rate. We measured the average per-tuple processing
time and an SLO violation is marked if the average processing
time is larger than a pre-defined threshold (e.g., 20ms).

Fault injection. We inject different faults (e.g., common
software bugs, bottleneck) during an application runtime.Each
application run lasts one hour. We inject one fault at a
random time instant to test FChain under different workload
conditions. For each fault, we use 30 to 40 application runs.
We test both single-component faults and multi-component
concurrent faults.

For RUBiS, single-component faults include: 1)MemLeak:
we start the program that has a memory leak bug in the
VM running the database server; 2)CpuHog: a CPU-bound
program competed CPU with the database server inside the
same VM; and 3)NetHog: we use httperf [24] tool to
send a large number of HTTP requests to the web server.
Multi-component concurrent faults include: 1)OffloadBug:
the application server 1 wants to offload some EJBs to the
application server 2. However, the program bug (JIRA #JBAS-
1442) in the application server 1 makes the remote server
lookup return the local server binding by mistake; and 2)
LBBug: a load balancing bug (modjk 1.2.30) causes the web
server to dispatch requests unevenly. These two faults are real
software bugs found in the JBoss and Apache load balancer
software.

For Hadoop, we injected concurrent faults in all the map
nodes: 1)Concurrent MemLeak: we injected a memory leak
bug into all the map tasks, which allocated memory from the
heap without releasing; 2)Concurrent CpuHog: we injected
an infinite loop bug in all the map tasks; and 3)Concurrent
DiskHog: we start a disk I/O intensive program in the Domain
0 of each host running the map tasks.

For System S, we inject the following single-component
faults: 1)MemLeak: We inject a small snippet of code that has
a memory leak bug into a randomly selected PE; 2)CpuHog:
a CPU-bound program competes CPU with a PE within the
same VM; 3) Bottleneck: we make one randomly selected
PE the bottleneck by setting a low CPU cap over the PE.
The multi-component concurrent faults include: 1)Concurrent
MemLeak: we start the memory leak program simultaneously
in two randomly selected PEs; and 2)Concurrent CpuHog:
we start the CPU intensive program simultaneously in two
randomly selected PEs.

We compare FChain with a set of existing black-box fault



localization schemes:
1) Histogram: This scheme computes an anomaly score

for each system-level metric using Kullback-Leibler diver-
gence [25] between the histogram of the most recent data
contained in the same look-back window as FChain and the
histogram of the whole data. It then pinpoints abnormal com-
ponents based on the anomaly scores. We vary the anomaly
score threshold to show the tradeoff between the true positive
rate and the false positive rate. This scheme has been used by
previous work for detecting anomalies (e.g., [10]).

2) NetMedic [9]: It is a recently developed application-
agnostic multi-metric fault localization tool. The abnormal
component pinpointing is based on the application topology
and the inter-component impact learned from the historical
data. This scheme needs to assume the knowledge of the ap-
plication topology. For estimating the inter-component impact,
we use the same 1800 seconds of recent data as specified in
[9]. Different from FChain, NetMedic just gives a ranked list
of all components based on their likelihood of being the faulty
components. We first pinpoint the top impact component as the
faulty component. We also pinpoint the following components
whose impact difference with the top ranked component is less
than a certain thresholdδ. We adjust the value ofδ to show the
tradeoff between the true positive rate and the false positive
rate that can be achieved by NetMedic.

3) Topology: This scheme assumes the knowledge of the
application topology. It first detects abnormal components
using the outlier change point detection algorithm developed
in our previous work PAL [13]. It then pinpoints faulty
components based on the topology information, that is, if the
abnormal componentC2 depends on the abnormal component
C1, we pinpointC1 as the faulty component. By comparing
FChain with this scheme, we want to show that it is insufficient
to just consider the application topology for pinpointing faulty
components.

4) Dependency: Instead of assuming the application topol-
ogy knowledge, this scheme uses the black-box dependency
discovery tool [11] to dynamically extract the inter-component
dependency information. It first detects abnormal components
using the same outlier change point detection algorithm as the
Topology scheme. It then pinpoints faulty components based
on the discovered dependency information. If no dependency
information is discovered, this scheme will output all the com-
ponents that have outlier change points as faulty components.
By comparing FChain with this scheme, we want to show that
it is insufficient to just rely on the dependency informationfor
pinpointing faulty components.

5) PAL [13]: This is the initial version of our change propa-
gation based fault localization system. However, different from
FChain, PAL does not perform predictability-based abnormal
change point selection or consider the dependency information
in fault localization. It also does not support online validation.

6) Fixed-Filtering: This scheme uses the same pinpointing
algorithm as FChain except that it employs a fixed prediction
error filtering threshold to select the abnormal change points.
We varied the filtering threshold to show different accuracyre-
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Fig. 6. Fault localization accuracy comparison for the single-component
faults for RUBiS.
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Fig. 7. Fault localization accuracy comparison for the single-component
faults for System S.

sults that can be achieved by this scheme. We compare FChain
with this fixed filtering scheme to show the effectiveness of
our burst based filtering scheme.

To quantify the accuracy of different fault localization
schemes, we use the standard precision and recall metrics.
Let Ntp, Nfn and Nfp denote the number of true positives
(correctly pinpoint a faulty component), false negatives (miss
a faulty component), and false positives (pinpoint a normal
component as faulty), respectively. We calculate the precision
and recall metrics in the standard way as follows,

Precision =
Ntp

Ntp + Nfp

, Recall =
Ntp

Ntp + Nfn

(1)

We evaluate the accuracy of different pinpointing algorithms
using the commonly used “receiver operating characteristic”
(ROC) curve whose X-axis and Y-axis show the recall and
precision, respectively. A perfect pinpointing scheme should
achieve 100% precision and 100% recall.

In our experiments, we configure the FChain system as
follows. We set the look-back window (W ) to be 100 seconds
for all the tested faults except the DiskHog fault in the
Hadoop application. The reason is that the DiskHog fault
takes much longer time to manifest than the other faults.
The 100 seconds look-back window will not cover the initial
stage of the fault manifestation. Thus, we used a longer look-
back window (500 seconds) for the DiskHog fault. We use
a concurrency threshold of 2 seconds to classify concurrent
faults, that is, if the abnormal change point time difference
between two components is less than 2 seconds, we consider
these two components as concurrent faulty components. The
burst extraction windowQ is set as 20 seconds. We use the



top 90% frequencies to synthesize the burst signal and use the
90th percentile of the burst value as the expected prediction
error. We found those parameter configurations work well for
all the applications tested in our experiments. We also conduct
sensitivity study on those parameters and will show the results
in Section III-F.

B. Single-Component Fault Localization Results

Figure 6 shows the pinpointing accuracy results for RUBiS
under three single-component faults. We observe that FChain
consistently achieves the highest precision and recall forall the
faults. We observe that the Histogram scheme does not work
well for the CpuHog and NetHog faults that manifest very
quickly. The reason is that when the performance anomaly
is detected, the histogram of the recent data has not shown
significant difference from the histogram of all historicaldata
yet since the fault manifestation duration is very short. The
histogram scheme works better for gradually changing faults
such as memory leak although it is still less accurate than
FChain. We observe that NetMedic could not achieve high
accuracy during this set of experiments. After examining the
logs, we found that the pinpointing errors are caused by unseen
states that make the system assign inaccurate impact values.5

During the fault injection, the faulty component and the other
affected components often have a state that is not present in
the historical data. In contrast, we observe that FChain is not
susceptible to the problem of unseen values.

By employing predictability-based filtering and leveraging
dependency information, FChain effectively removes irrelevant
change points caused by normal workload fluctuations. Thus,
FChain can achieve higher accuracy than the other change
point based schemes such as Topology, Dependency, and PAL.
Since the dependency discovery scheme accurately identifies
all the dependencies in the RUBiS system, the Dependency
scheme has the same accuracy as the Topology scheme in this
case. Particularly, the Topology and the Dependency schemes
have very low accuracy for the MemHog and CpuHog faults.
The reason is that we injected those two faults at the database
server that is the last tier in the RUBiS system. We observed
the “back-pressure” symptom mentioned in Section II-C. The
faulty database server causes its upstream component (the web
server or the application server) to exhibit anomalous behav-
iors. If we perform pinpointing based on the dependency or
topology, we will mistakenly pinpoint the upstream component
of the culprit component as the faulty one. We injected the
NetHog fault in the web server that is the first tier in RUBiS.
Thus, both Topology and Dependency perform well since the
back-pressure problem does not exist. In contrast, FChain is
not sensitive to the location of the faulty component, which
can achieve high accuracy for all situations. Although FChain
also considers the dependency information, we observe that
when a fault propagates back to the upstream components, its
impact becomes smaller. The abnormal change point selection
step can effectively filter out those change points.

5NetMedic assigns a default high impact value (0.8) to an edgeconnecting
to the abnormal component with a previously unseen state.

Figure 7 shows the fault localization accuracy comparison
results for the System S single component faults. Similar
to the RUBiS experiments, FChain consistently achieves the
highest precision and recall values for all the tested faults. The
dependency discovery scheme fails to detect any dependency
relationship for System S due to the reason mentioned in
Section II-C. Thus, the Dependency scheme pinpointed all the
components that have outlier change points. This is reason why
the Dependency scheme has low precision for all the cases.
The Topology scheme does not perform well for the MemHog
and the bottleneck faults because of the same back-pressure
problem mentioned in the RUBiS results. We also observe that
all the schemes have low precision for the bottleneck fault.The
reason is that the fault propagates very quickly due to high-
throughput communication between stream processing com-
ponents. Thus, it is difficult to distinguish single-component
faults from concurrent multi-component faults, which explains
why the precision is low. Luckily, we can use the online
validation to quickly remove those false alarms, which will
be shown in Section III-D.

C. Multi-Component Concurrent Fault Localization Results

We now evaluate FChain using multi-component concurrent
faults. Figures 8, 9, and 10 show the pinpointing accuracy
results for RUBiS, System S, and Hadoop, respectively.

We observe that FChain consistently achieves high precision
and recall results in all the tested cases except the concurrent
CPUHog in System S. After examining the log file, we find
the diagnosis errors are mostly caused by the side-effect of
smoothing. Although our previous work [13] showed that
smoothing helps to remove the random noise in the raw
monitoring data, smoothing in this case causes the time of
the abnormal change point in the affected normal component
to become earlier than those of true culprit components. We
need to perform adaptive smoothing to address this problem,
which is part of our on-going work.

Compared to RUBiS and System S, Hadoop is much more
dynamic with highly fluctuating system metrics. In this case,
the simple change point detection schemes such as PAL have
low accuracy, especially for the CpuHog and DiskHog faults.
In the Hadoop experiments, we inject faults into all the map
nodes that are the first components in the topology order.
The “back-pressure” problem does not exist in this case.
This explains why Topology and Dependency achieve high
accuracy. NetMedic also achieves high precision and recall
values in the MemLeak and CPUHog faults. The reason is
that the default high impact value for unseen states happen to
be correct. However, for the DiskHog fault, the default high
impact value is incorrect, which causes NetMedic to have low
accuracy. In contrast, FChain can handle previously unseen
values and consistently achieve high accuracy.

D. Online Pinpointing Validation Results

We now evaluate our online validation scheme. We pick two
most challenging faults where all the schemes do not perform
well. They are the Bottleneck fault and the concurrent CpuHog
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Fig. 8. Fault localization accuracy comparison for the multi-component faults
in RUBiS.
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Fig. 9. Fault localization accuracy comparison for the multi-component faults
in System S.
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Fig. 10. Fault localization accuracy comparison for the multi-component
faults in Hadoop.

fault in System S. Figure 11 shows the pinpointing accuracy
results for different schemes. The “FChain+VAL” denotes
the FChain scheme with the online pinpointing validation
activated. Note that the results for the FChain scheme shown
before are the results achieved by FChain without the online
validation. We observe that our online validation scheme can
successfully remove most false alarms for these two faults.
FChain can quickly identify the true faulty component(s)
by properly scaling the right resource metric. However, our
current online validation scheme cannot help to improve the
recall value, which is part of our on-going work.

E. Comparison with Fixed Filtering Schemes

We now compare FChain with the Fixed-Filtering scheme.
Due to space limitations, we only show a subset of our results.
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Fig. 11. Online validation effectiveness for two challenging System S faults.
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Fig. 12. Fault localization accuracy comparison with the Fixed-Filtering
scheme for LBBug in RUBiS and DiskHog in Hadoop.

Figure 12 shows the accuracy of the Fixed-Filtering scheme for
a subset of faults in RUBiS and Hadoop. We observe that the
Fixed-Filtering scheme is very sensitive to the predictionerror
filtering threshold value. In contrast, FChain can automatically
infer the optimal (or near optimal) filtering threshold based on
the burstiness in the metric values.

F. Sensitivity Study

FChain parameters NetHog CPUHog Diskhog
RUBiS System S Hadoop

Look-back 100 P=1, R=1 P=0.97, R=1 P=0.56, R=0.63
window W 300 P=0.98, R=1P=0.95, R=0.95P=0.88, R=0.9
(sec) 500 P=0.98, R=1P=0.92, R=0.95P=0.88, R=0.92
Concurrency2 P=1, R=1 P=0.97, R=1 P=0.88, R=0.92
threhold 5 P=1, R=1 P=0.93, R=1 P=0.88, R=0.88
(sec) 10 P=0.97, R=1P=0.93, R=1 P=0.83, R=0.88

TABLE I
PRECISION(P) AND RECALL (R) VALUES UNDER DIFFERENT

CONFIGURATIONS OF THE KEYFCHAIN PARAMETERS.

We have conducted sensitivity study to evaluate the impact
of key FChain system parameters to its pinpointing accuracy.
Due to space limitations, we only show a subset of our results
in Table I with the optimal parameter settings highlighted in
bold. Overall, we found that FChain is not sensitive to different
parameter values. We observe that FChain can achieve the
optimal performance using default setting (100 seconds look-
back window, 2 seconds concurrency threshold) for all the
tested faults except one case that is the look-back window



System Modules CPU cost
VM monitoring (6 attributes) 1.03±0.09 milliseconds
Normal fluctuation modeling 22.9± 2 milliseconds
(1000 samples)
Abnormal change point selection602.4± 105.2 milliseconds
(100 samples)
Integrated fault diagnosis 22 ± 1 microseconds
Online validation (per-component)30 ± 1 seconds

TABLE II
FCHAIN OVERHEAD MEASUREMENTS.

size for the DiskHog fault in Hadoop. The reason has been
described in Section III-A. Generally, the look-back window
should be long enough to capture the fault manifestation.
We are currently investigating an adaptive look-back window
configuration scheme by examining the metric changing speed.

G. FChain System Overhead Measurements

We now evaluate the overhead of the FChain system. Table
II lists the CPU cost of each key module in FChain. We
observe that most modules in FChain is light-weight. The
most computation-intensive module is the abnormal change
point selection component, which is triggered only when
a performance anomaly occurs. FChain also distributes the
change point computation load on different hosts and executes
them in parallel to achieve scalability. The online validation
takes about 30 seconds for each component since we need
some time to observe scaling impact for deciding whether we
have made a pinpointing error. However, the online validation
is only performed on those suspicious components pinpointed
by the integrated fault diagnosis module. The FChain daemon
running inside the Domain 0 of each host imposes less than 1%
CPU load and consumes about 3MB memory during normal
execution.

IV. RELATED WORK

Our work is first closely related to previous black-box
fault localization schemes. For example, NetMedic [9] pro-
vided detailed application-agnostic fault diagnosis by learning
inter-component impact. NetMedic first needs to assume the
knowledge of the application topology. To perform impact
estimation, NetMedic needs to find a historical state that is
similar to the current state for each component. However, for
previously unseen anomalies, we might not be able to find a
historical state that is similar to the current state for thefaulty
components. Under those circumstances, NetMedic assign a
default high impact value, which sometimes lead to inaccurate
diagnosis results as shown in Section III. In comparison,
FChain can diagnose previously unseen anomalies and does
not assume any prior application knowledge. Oliner et al. [10]
proposed to compute anomaly scores using the histogram ap-
proach and correlates the anomaly scores of different compo-
nents to infer the inter-component influence graph. As shown
in Section III, it is difficult for the histogram-based anomaly
detection to perform online fault localization over suddenly
manifesting faults. Moreover, unrelated components can have
indirect correlations caused by workload fluctuations, which

will cause their system to raise false alarms. In comparison,
FChain is more robust to different types of faults and workload
fluctuations.

To achieve black-box diagnosis, researchers have also ex-
plored various passive network traffic monitoring and analysis
techniques such as Sherlock [11], Orion [26], SNAP [27].
However, those analysis schemes can only achieve coarse-
grained machine-level fault localization. Additionally,during
our experiments, we found that previous network trace analysis
techniques cannot handle continuous data stream process-
ing applications due to the lack of gaps between packets
for extracting different network flows. Project5 [28] and
E2EProf [29] performed cross-correlations between message
traces to derive causal paths in multi-tier distributed systems.
WAP5 [30] extends the black-box causal path analysis to
support wide-area distributed systems. Orion [26] discovers
dependencies from network traffic using packet headers and
timing information based on the observation that the traffic
delay distribution between dependent services often exhibits
typical spikes. LWT [31] proposed to discover the similarity
of the CPU usage patterns between different VMs to ex-
tract the dependency relationships between different VMs.
However, as shown in our experiments, dependency-based
fault localization techniques are not robust, which can make
frequent pinpointing mistakes due to various reasons (e.g.,
the “back pressure” effect in distributed applications, common
network services pinpointed as culprits). Furthermore, existing
dependency discovery techniques need to accumulate a large
amount of trace data to achieve reasonable accuracy. Particu-
larly, network trace based techniques only support request-
and-reply types of applications, which fail to discover any
dependency in continuously running applications such as data
stream processing systems. In contrast, FChain provides online
fault localization, which does not require any training data
for anomalies or a large amount of training data for normal
behaviors. FChain is fast, which can quickly localize faulty
components with high accuracy after the performance anomaly
is detected.

A flurry of research work has proposed to use end-to-end
tracing for distributed system debugging. Magpie [3] is a
request extraction and workload modelling tool that can record
fine-grained system events and correlate those events usingan
application specific event schema to capture the control flow
and resource consumption of each request. Pinpoint [4] takes a
request-oriented approach to tag each call with a request IDby
modifying middleware platform and applies statistical methods
to identify components that are highly correlated with failed
requests. Monitor [33] tracks the requests exchanged between
components in the system and performs probabilistic diagnosis
on the potential anomalous components. X-Trace [5] is an
integrated cross-layer, cross-application tracing framework,
which tags all network operations resulting from a particular
task with the same task identifier to construct a task tree.
Spectroscope [34] can diagnose performance anomalies by
comparing request flows from two executions. In contrast,
our approach does not require any instrumentation to the



application or middleware platform to collect request flows.
Thus, it is much easier to deploy FChain in large-scale IaaS
clouds.

Blacksheep [35] correlates the change point of system-level
metrics (e.g., cpu usage) with the change in count of Hadoop
application states (i.e., events extracted from logs of DataN-
odes and TaskTrackers) to detect and diagnose the anomalies
in a Hadoop cluster. Kahuna-BB [36] correlates black-box data
(system-level metrics) and white-box data (Hadoop console
logs) across different nodes of a MapReduce cluster to identify
faulty nodes. In comparison, FChain is a black-box fault local-
ization system, which is application-agnostic without requiring
any knowledge about the application internals. We believe that
FChain is more practical and attractive for IaaS cloud systems
than previous white-box or gray-box techniques.

V. CONCLUSION

In this paper, we have presented FChain, a robust black-
box online fault localization system for IaaS cloud com-
puting infrastructures. FChain can quickly pinpoint faulty
components immediately after the performance anomaly is
detected. FChain provides a novel predictability-based ab-
normal change point selection scheme that can accurately
identify the onset time of the abnormal behaviors at different
components processing dynamic workloads. FChain combines
both the abnormal change propagation knowledge and the
inter-component dependency information to achieve robust
fault localization. FChain can further remove false alarmsby
performing online validation. We have implemented FChain on
top of the Xen platform and conducted extensive experimental
evaluation using IBM System S data stream processing system,
Hadoop, and RUBiS online auction benchmark. Our exper-
imental results show that FChain can achieve much higher
accuracy (i.e., up to 90% higher precision and up to 20%
higher recall) than existing schemes. FChain is light-weight
and non-intrusive, which makes it practical for large-scale IaaS
cloud computing infrastructures.
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