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Abstract—Distributed applications running inside cloud sys-
tems are prone to performance anomalies due to various reasons
such as resource contentions, software bugs, and hardware fail-
ures. One big challenge for diagnosing an abnormal distributed
application is to pinpoint the faulty components. In this paper, we
present a black-box online fault localization system called FChain
that can pinpoint faulty components immediately after a perfor-
mance anomaly is detected. FChain first discovers the onset time
of abnormal behaviors at different components by distinguishing
the abnormal change point from many change points caused
by normal workload fluctuations. Faulty components are then
pinpointed based on the abnormal change propagation patterns
and inter-component dependency relationships. FChain performs
runtime validation to further filter out false alarms. We have
implemented FChain on top of the Xen platform and tested
it using several benchmark applications (RUBiS, Hadoop, and
IBM System S). Our experimental results show that FChain can
quickly pinpoint the faulty components with high accuracy within
a few seconds. FChain can achieve up to 90% higher precision
and 20% higher recall than existing schemes. FChain is non-
intrusive and light-weight, which imposes less than 1% overhead
to the cloud system.

I. INTRODUCTION

Infrastructure as a Service (IaaS) clouds [1], [2] allow

multiple tenants to share a common physical computing infras-

tructure in a cost-effective way. However, applications running

inside the IaaS cloud are prone to performance anomalies such

as service level objective (SLO) violations due to various rea-

sons such as resource contentions, software bugs, or hardware

failures. It is particularly challenging to localize the faulty

components in a complex distributed application that consists

of many inter-dependent components.

Previous work on distributed system debugging can be

categorized as white-box, grey-box, or black-box techniques.

White-box and grey-box techniques (e.g., [3]–[5]) require

modifications or instrumentations to applications or underlying

middleware platforms. Those intrusive techniques often im-

pose significant runtime overhead and are difficult to deploy,

which make them impractical for performing online fault

localization in the production IaaS clouds. Existing black-box

techniques [6]–[8] mostly focus on anomaly detection or sys-

tem metric attribution. In contrast, our goal is to pinpoint faulty

components in a distributed application. Other schemes [9]–

[11] only work for certain types of faults or applications. We

will discuss related work in detail in Section IV.

In this paper, we present FChain, a black-box online fault

localization system for diagnosing performance anomalies in

IaaS clouds. FChain can pinpoint faulty components immedi-

ately after a performance anomaly is detected. FChain does
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Fig. 1. The overall architecture of the FChain system. The FChain slave
continuously collects system-level metrics (e.g., CPU, memory) on different
application VMs running inside the cloud and learns normal fluctuation
patterns. When a SLO violation is detected, the FChain master triggers
all related FChain slaves to look for abnormal change points. The FChain
master then pinpoints faulty components based on the change point timing
information and inter-component dependencies. FChain also performs online
validation to remove possible false alarms.

not perform any intrusive tracing in the cloud system and

only relies on low-level system metrics (e.g., CPU, mem-

ory, network statistics) that can be easily obtained from the

guest OS or hypervisor. FChain does not assume any prior

application knowledge, which makes it practical for IaaS

clouds. Moreover, FChain does not require any training data

for anomalies, which can diagnose both previously seen and

unseen performance anomalies. Figure 1 shows the overall

architecture of the FChain system.

When a performance anomaly is detected, FChain first

discovers abnormal changes at all system metrics of dif-

ferent components. Next, FChain extracts abnormal change

propagation paths for the diagnosed performance anomaly

and localizes the faulty components based on the abnormal

change propagation patterns. Our design is based on two

key observations: 1) performance anomalies often manifest as

abnormal system metric fluctuations that are distinctive from

the normal fluctuation patterns; and 2) the abnormal system

metric changes often start from the faulty components and then

propagate to other non-faulty components via inter-component

interactions.

To achieve robust fault localization, FChain needs to ad-

dress a challenging problem: how to distinguish the abnormal

change point that marks the onset of the fault manifestation

from many other change points that are caused by normal

workload fluctuations. It is insufficient to use a fixed filtering

threshold since some applications are inherently more dynamic

than others. To address this problem, FChain captures the

normal fluctuation patterns using online system metric value

prediction models [12] and uses a predictability metric to iden-



tify abnormal fluctuations. As we will show later in Section

III, this abnormal change detection scheme can achieve higher

accuracy than traditional anomaly detection schemes [10].

Due to inter-component interactions, abnormal changes in

the faulty component(s) often propagate to other normal

components. If we examine each component in an isolated

way, we might produce many false alarms by mistakenly

pinpointing normal components as faulty ones. Our previous

work [13] has shown that it is feasible to pinpoint faulty

components by sorting all affected components based on their

fault manifestation time and identifying the component with

the earliest manifestation time as the faulty one. However, we

observe that it is insufficient to only rely on the chronological

order to perform fault localization since we may derive spuri-

ous abnormal change propagations between two independent

components. To address the problem, FChain integrates the

dependency relationships with the fault propagation model to

achieve more accurate pinpointing than existing schemes.

This paper makes the following contributions:

• We present FChain, a practical online fault localization

system for large-scale IaaS clouds. FChain does not

require any intrusive application monitoring, which can

diagnose both previously seen and unseen anomalies.

• We describe a predictability-based abnormal change point

selection scheme that can distinguish abnormal change

points that are related to the fault manifestation from

those normal change points that are caused by normal

workload fluctuations.

• We introduce a new integrated fault localization scheme

considering both fault propagation patterns and inter-

component dependencies to achieve higher pinpointing

accuracy.

We have implemented FChain on top of the Xen platform

and tested it on NCSU’s Virtual Computing Lab (VCL) [2], a

production cloud computing system that operates in a similar

way as Amazon EC2 [1]. We conducted extensive experiments

using a set of common faults and different types of appli-

cations (IBM System S data stream processing system [14],

Hadoop [15], and RUBiS online auction benchmark [16]).

Our experimental results show that: 1) FChain can achieve up

to 90% higher precision and 20% higher recall than existing

black-box fault localization schemes; 2) FChain can complete

the fault localization within a few seconds and works for

different types of applications; and 3) FChain is light-weight,

imposing less than 1% CPU overhead during system runtime

execution.

The rest of the paper is organized as follows. Section II

describes the design of the FChain system. Section III presents

our experimental evaluation. Section IV compares our work

with related work. Finally, the paper concludes in Section V.

II. SYSTEM DESIGN

In this section, we first present an overview of the FChain

system. We then describe the abnormal change point identifica-

tion algorithm and the integrated faulty component pinpointing

scheme.
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Fig. 2. Abnormal change propagation in an IBM System S application. The
fault propagates along the path: PE3 → PE6 → PE2. The propagation
PE6 → PE2 is caused by the back-pressure effect.

A. System Overview

FChain is decentralized consisting of a set of slave modules

(i.e., normal fluctuation modeling, abnormal change point

selection) and master modules (i.e., integrated fault diagnosis,

online pinpointing validation), shown by Figure 1. The slave

modules run inside the domain 0 of different cloud nodes while

the master modules run on dedicated servers. FChain treats

each guest virtual machine (VM) as one component.

The normal fluctuation modeling module continuously mon-

itors the system metrics for each VM to capture its normal

fluctuation pattern. We employ a light-weight online learning

model [12] to continuously learn the evolving pattern of

each system metric value. If the change is caused by normal

workload fluctuations, the prediction model must have seen

and learned the change before. Thus, the prediction errors on

those normal change points will be small. In contrast, the

fluctuations caused by faults are not captured by the online

learning model, which will probably incur high prediction

errors.

When a performance anomaly (e.g., SLO violations) is

detected1, the FChain master is invoked to pinpoint the faulty

components in the failing distributed application. The FChain

master first contacts the slaves on all related distributed hosts

to identify whether a component exhibits abnormal changes

and when the abnormal change begins. If the performance

anomaly occurs at time tv, the FChain slaves check a window

([tv−W, tv]) (e.g., W = 100) of recent metric values before tv.

The abnormal change point selection module uses the normal

fluctuation model to filter out those change points that are

caused by normal workload fluctuations.

The integrated fault diagnosis module comprehensively

examines the abnormal change point information from all

components and the inter-component dependency information

to pinpoint the culprit component(s). FChain first derives the

abnormal change propagation pattern in the examined dis-

tributed application by sorting the timestamps of the abnormal

1Note that FChain focuses on fault localization rather than performance
anomaly detection that has been addressed by previous work(e.g., [17], [18]).
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Fig. 3. Abnormal change point selection for the DiskWrite metric of a faulty
map node and the CPU usage metric of a normal reduce node in a Hadoop
sorting application.

change points of different components.2 For example, Figure

2 shows the abnormal change propagation path in a sample

IBM System S application consisting of seven distributed

components called processing elements (PEs). The application

consists of one faulty component PE3 with a memory leak

bug. The memory usage metric of PE3 shows the abnormal

change at time t1. The anomaly first propagates to the com-

ponent PE6 at time t2 and then to the component PE2 at

time t3. Since t1 < t2 < t3, FChain pinpoints PE3 as the

suspicious root cause component. Note that our scheme does

not assume any knowledge about the application including

its topology. FChain leverages the black-box dependency

discovery tool [11] to filter out spurious abnormal change

propagations between independent components.

Finally, FChain performs online pinpointing validation us-

ing the dynamic resource scaling technique in a similar way

as [20]. Since FChain monitors various system metrics, it can

not only pinpoint faulty components but also identify which

system metrics are related to the fault. We can then adjust those

metrics on the faulty components to validate the accuracy of

the pinpointing results by observing the resource adjustment

impact to the application’s SLO violation status.

B. Abnormal Change Point Selection

To localize the faulty components, FChain first examines

i) which components exhibit abnormal changes in different

system-level metrics; and ii) when those abnormal changes

start. As mentioned before, system-level metrics are inherently

fluctuating under dynamic workloads. If we apply standard

change point detection algorithms, we often discover many

change points. For example, Figure 3 shows the set of change

points discovered on the “Disk Write” metric of a map task

node and the “CPU usage” metric of a reduce task node in a

Hadoop application, using the common change point detection

algorithm “CUSUM + Bootstrap” [21]. We can see many

change points are just random peak and bottom values, which

are not actually related to the fault. We can use smoothing

2Since FChain relies on timing information to infer abnormal change
propagations, we synchronize the clocks of all hosts using the network time
protocol (NTP), which has an error of less than 0.1 ms in LANs and less
than 5 ms on the Internet [19]. In our experiments, we observe that all of the
anomaly propagation delays between two dependent components are at least
several seconds. Therefore, our system can tolerate small time skews (i.e.,
tens of milliseconds).
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Fig. 4. Expected prediction error for the CPU usage metric on a dual-core
host.

and change magnitude outlier detection to filter some normal

change points [13]. However, it is insufficient to only rely

on smoothing and outlier detection to select abnormal change

points since some metrics (e.g., the “Disk Write” metric in

Figure 3) have large variations during normal execution.

FChain uses a predictability metric to achieve robust ab-

normal change point selection. We employ an online learning

model [12] to continuously learn the change pattern of each

system metric. The online learning model can capture the

transition probability between different metric values using

a discrete time Markov chain model. Intuitively, the value

transition patterns at a normal change point should be able

to be captured by the online learning model and thus easier

to predict. We calculate a prediction error for each outlier

change point by comparing the predicted value with its true

value. If the prediction error is high, we consider this outlier

change point as an abnormal change point. However, it is a

non-trivial problem to pick a proper prediction error threshold

for filtering normal change points since some metrics (e.g.,

bursty ones) are inherently harder to predict than others and

vary from application to application. Thus, it will be imprecise

to apply a fixed filtering threshold.

To address this problem, FChain dynamically computes a

proper prediction error threshold for each change point based

on the burstiness of the time series surrounding the change

point. The intuition behind our scheme is that a bursty metric

is expected to have a higher prediction error than a non-

bursty metric. Thus, we want to use a higher prediction error

threshold when the metric values are bursty. Specifically, we

extract a small window of time series data surrounding the

change point xt: X = xt−Q, ..., xt+Q (e.g., Q = 20 seconds)

and apply the fast Fourier transform (FFT) algorithm on X

to determine the coefficients that represent the amplitude of

each frequency component. We consider the top k (e.g., 90%)

frequencies in the frequency spectrum as high frequencies.

We apply inverse FFT over the high frequency components

to synthesize the burst signal. We then use the burst signal

magnitude (e.g., 90th percentile of the burst value) as the

expected prediction error for the change point xt. If the real

prediction error exceeds the expected prediction error, the

change point is selected as one abnormal change point. For

example, Figure 4 illustrates the expected prediction errors

for a system metric time series. We can see that the expected

prediction error is higher when the original time series are
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bursty, and is lower when the time series become stable. In

Figure 3, our scheme correctly filters out the outlier change

point on the normal reduce node and only selects the abnormal

change point on the faulty map node.

After identifying a component exhibiting any abnormal

change, we need to know when the abnormal change starts.

During our experiments, we found that the selected abnormal

change point sometimes resides in the middle of the fault

manifestation process instead of at the beginning, depending

on the evolving pattern of the fault manifestation (e.g., gradual

change or bursty change). Thus, FChain performs tangent-

based rollback to identify the precise start time of the abnormal

change. Specifically, starting from the abnormal change point,

we compare the tangent of the current change point with

that of its preceding change point. If their values are close

(e.g., < 0.1), we roll back to the preceding change point. We

repeat the roll-back process until the tangents of two adjacent

change points are distinct. If a component has multiple metrics

exhibiting abnormal changes, we pick the earliest abnormal

change start time as the component’s abnormal change start

time.

C. Integrated Faulty Component Pinpointing

Our faulty component pinpointing algorithm consists of

three steps: 1) deriving the abnormal change propagation

paths in the examined distributed application by sorting the

start time of abnormal changes at different components; 2)

pinpointing faulty components based on the selected abnormal

change propagation paths; and 3) refining pinpointing results

by filtering out spurious abnormal change propagation paths

using inter-component dependency information. For example,

Figure 5 shows the pinpointing process for the RUBiS online

auction benchmark application [16].

If the abnormal change onset time of C1 is earlier than that

of C2, we say that the abnormal change propagates from the

component C1 to the component C2. For example, in Figure

5, the application server 1 starts to exhibit abnormal change

at time t1 = 200 seconds and the database server starts to

show abnormal change at time t3 = 210. Thus, we can infer

that the abnormal change starts at the application server 1 and

propagates to the database server.

To pinpoint faulty components, FChain first sorts all the

components into a chain based on their fault manifestation

time. We first pinpoint the source component in this chain

as the faulty component since it has the earliest fault man-

ifestation. We continue to examine the other components in

the chain following the time order. If the fault manifestation

time of the next component is close to the pinpointed com-

ponent (e.g., time difference ≤ 2 seconds), we infer that the

component’s abnormal behavior is probably not caused by the

anomaly propagation but a concurrent fault that occurs at a

similar time. Thus, we will pinpoint this component as one

faulty component as well.

If all the application components contain fault manifesta-

tions and the changes at all the components follow the same

upward or downward trend, FChain infers that the performance

anomaly is probably caused by some external factors such

as workload increases (i.e., upward trend) or a NFS server

problem (i.e., downward trend). In this case, FChain will

not pinpoint any component within the application as faulty.

Although previous work [22] has also addressed the problem

of distinguishing workload changes from anomalies within

a single component, our work provides workload change

detection for distributed applications.

We may derive spurious abnormal change propagations

between independent components. For example, in Figure 5,

we will derive an abnormal change propagation path from

the application server 1 to the application server 2 based on

the timestamps of their abnormal change points. However,

this propagation actually does not exist. We propose to use

inter-component dependency relationships to filter out spurious

propagation paths. For each suspicious component that con-

tains the abnormal change point, we examine whether there

is a path in the dependency graph from any pinpointed faulty

components to this component. If no path in the dependency

graph can be found, we pinpoint this component as a faulty one

since the anomaly propagation is unlikely and the component’s

anomalous behavior must have been caused by an independent

fault. We leverage previous black-box dependency discovery

tools [11] to discover inter-component dependencies.3

However, we cannot solely rely on the dependency in-

formation for fault localization since the abnormal change

propagation does not always follow the dependency path.

For example, in RUBiS, the faulty application server can

cause its upstream component (the web server) to exhibit

abnormal behavior due to a back-pressure effect, that is, a

faulty component might cause its upstream component to

show anomalous behavior.4 If we only rely on the dependency

information, we will pinpoint the normal web server as the

faulty component and miss the true culprit component, that is,

the application server. Our experimental results in Section III

will confirm this observation.

We also found that existing network trace based depen-

3To achieve high accuracy, the black-box dependency scheme needs to
accumulate sufficient amount of network trace data [11]. Luckily, the appli-
cation dependency information rarely change during application runtime. We
perform the dependency discovery offline and store the results in a file for
later reference.

4The cause of the back-pressure varies among different applications. One
common reason is that after the input buffer of the faulty component becomes
full, it forces the upstream component to drop data or pause processing.



dency discovery scheme fails to discover any dependency

information in the data stream processing system [14]. The

reason is that the dependency discovery algorithm relies on

the gap between network packets to separate network flows.

However, the stream application processes continuous data

packets, which do not contain gaps between network packets.

Note that FChain can still pinpoint faulty components based on

the abnormal change propagation paths when the dependency

information is unavailable. In contrast, the dependency-only

scheme will fail the fault localization task for distributed

stream processing systems.

III. EXPERIMENTAL EVALUATION

We have implemented the FChain system on top of the

Xen platform [23], and conducted extensive experiments us-

ing the RUBiS multi-tier online auction benchmark (EJB

version) [16], the IBM System S data stream processing

system [14], and the Hadoop MapReduce framework [15].

In this section, we first describe our evaluation methodology

followed by the experiment results.

A. Evaluation Methodology

Our experiments were conducted on the NCSU’s Virtual

Computing Lab (VCL), a production cloud computing infras-

tructure that operates in a similar ways as Amazon EC2 [1].

All the VCL hosts used in our experiments have a dual-core

Xeon 3.00GHz CPU, 4GB memory, and 30GB disk, which

are connected to Gigabit networks. Each host runs 64 bit

CentOS 5.2 with Xen 3.0.3. The guest VMs also run 64 bit

CentOS 5.2. FChain monitors each guest VM from Domain 0

using the libxenstat and libvirt libraries. Monitored

metrics are cpu usage, memory usage, network in, network

out, disk read, and disk write. The metric sampling interval is

1 second. To evaluate FChain in multi-tenant cloud computing

environments, we run three benchmark systems concurrently

on the same set of VCL hosts. We first describe the benchmark

systems used in our experiments as follows.

RUBiS online auction benchmark: We use the three-tier

online auction benchmark system RUBiS (EJB version). The

topology of the RUBiS system is shown in Figure 5. We

run each application component in one guest VM. In order

to evaluate our system under workloads with realistic time

variations, we use a client workload generator that emulates

the workload intensity observed in the NASA web server

trace beginning at 00:00:00 July 1, 1995 from the IRCache

Internet traffic archive [24] to modulate the request rate of

our RUBiS benchmark. The client workload generator also

tracks the response time of the HTTP requests it made. An

SLO violation is marked if the average request response time

is larger than 100ms.

Hadoop: We run Hadoop sorting application, one of the

sample applications provided by the Hadoop distribution. The

application consists of three map nodes and six reduce nodes.

The data size we process is 12GB, which is generated using

the RandomWriter application. We measure the progress score

of the job by calling the Hadoop API. An SLO violation is

marked when the job does not make any progress for more

than 30 seconds.

IBM System S: We use the commercial high-performance

data stream processing system [14], System S, developed by

IBM. In our experiments, we used a tax calculation appli-

cation, one of the sample applications provided by System S

product distribution. The topology of the System S application

is shown in Figure 2. Each PE runs in a separate guest VM.

In order to evaluate our system under workloads with realistic

time variations, we used the workload intensity observed in

the ClarkNet web server trace beginning at 1995-08-28:00.00

from the IRCache Internet traffic archive [24] to modulate the

data arrival rate. We measured the average per-tuple processing

time and an SLO violation is marked if the average processing

time is larger than a pre-defined threshold (e.g., 20ms).

Fault injection. We inject different faults (e.g., common

software bugs, bottleneck) during an application runtime. Each

application run lasts one hour. We inject one fault at a

random time instant to test FChain under different workload

conditions. For each fault, we use 30 to 40 application runs.

We test both single-component faults and multi-component

concurrent faults.

For RUBiS, single-component faults include: 1) MemLeak:

we start the program that has a memory leak bug in the

VM running the database server; 2) CpuHog: a CPU-bound

program competed CPU with the database server inside the

same VM; and 3) NetHog: we use httperf [25] tool to

send a large number of HTTP requests to the web server.

Multi-component concurrent faults include: 1) OffloadBug:

the application server 1 wants to offload some EJBs to the

application server 2. However, the program bug (JIRA #JBAS-

1442) in the application server 1 makes the remote server

lookup return the local server binding by mistake; and 2)

LBBug: a load balancing bug (mod jk 1.2.30) causes the web

server to dispatch requests unevenly. These two faults are real

software bugs found in the JBoss and Apache load balancer

software.

For Hadoop, we injected concurrent faults in all the map

nodes: 1) Concurrent MemLeak: we injected a memory leak

bug into all the map tasks, which allocated memory from the

heap without releasing; 2) Concurrent CpuHog: we injected

an infinite loop bug in all the map tasks; and 3) Concurrent

DiskHog: we start a disk I/O intensive program in the Domain

0 of each host running the map tasks.

For System S, we inject the following single-component

faults: 1)MemLeak: We inject a small snippet of code that has

a memory leak bug into a randomly selected PE; 2) CpuHog:

a CPU-bound program competes CPU with a PE within the

same VM; 3) Bottleneck: we make one randomly selected

PE the bottleneck by setting a low CPU cap over the PE.

The multi-component concurrent faults include: 1) Concurrent

MemLeak: we start the memory leak program simultaneously

in two randomly selected PEs; and 2) Concurrent CpuHog:

we start the CPU intensive program simultaneously in two

randomly selected PEs.

We compare FChain with a set of existing black-box fault



localization schemes:

1) Histogram: This scheme computes an anomaly score

for each system-level metric using Kullback-Leibler diver-

gence [26] between the histogram of the most recent data

contained in the same look-back window as FChain and the

histogram of the whole data. It then pinpoints abnormal com-

ponents based on the anomaly scores. We vary the anomaly

score threshold to show the tradeoff between the true positive

rate and the false positive rate. This scheme has been used by

previous work for detecting anomalies (e.g., [10]).

2) NetMedic [9]: It is a recently developed application-

agnostic multi-metric fault localization tool. The abnormal

component pinpointing is based on the application topology

and the inter-component impact learned from the historical

data. This scheme needs to assume the knowledge of the ap-

plication topology. For estimating the inter-component impact,

we use the same 1800 seconds of recent data as specified in

[9]. Different from FChain, NetMedic just gives a ranked list

of all components based on their likelihood of being the faulty

components. We first pinpoint the top impact component as the

faulty component. We also pinpoint the following components

whose impact difference with the top ranked component is less

than a certain threshold δ. We adjust the value of δ to show the

tradeoff between the true positive rate and the false positive

rate that can be achieved by NetMedic.

3) Topology: This scheme assumes the knowledge of the

application topology. It first detects abnormal components

using the outlier change point detection algorithm developed

in our previous work PAL [13]. It then pinpoints faulty

components based on the topology information, that is, if the

abnormal component C2 depends on the abnormal component

C1, we pinpoint C1 as the faulty component. By comparing

FChain with this scheme, we want to show that it is insufficient

to just consider the application topology for pinpointing faulty

components.

4) Dependency: Instead of assuming the application topol-

ogy knowledge, this scheme uses the black-box dependency

discovery tool [11] to dynamically extract the inter-component

dependency information. It first detects abnormal components

using the same outlier change point detection algorithm as the

Topology scheme. It then pinpoints faulty components based

on the discovered dependency information. If no dependency

information is discovered, this scheme will output all the com-

ponents that have outlier change points as faulty components.

By comparing FChain with this scheme, we want to show that

it is insufficient to just rely on the dependency information for

pinpointing faulty components.

5) PAL [13]: This is the initial version of our change propa-

gation based fault localization system. However, different from

FChain, PAL does not perform predictability-based abnormal

change point selection or consider the dependency information

in fault localization. It also does not support online validation.

6) Fixed-Filtering: This scheme uses the same pinpointing

algorithm as FChain except that it employs a fixed prediction

error filtering threshold to select the abnormal change points.

We varied the filtering threshold to show different accuracy re-

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 Histogram  NetMedic  Topology  Dependency  PAL  FChain
Recall

Pr
ec

is
io

n

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

Pr
ec

is
io

n

Recall
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

Pr
ec

is
io

n

Recall

NetHogMemLeak  CPUHog

Fig. 6. Fault localization accuracy comparison for the single-component
faults for RUBiS.
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Fig. 7. Fault localization accuracy comparison for the single-component
faults for System S.

sults that can be achieved by this scheme. We compare FChain

with this fixed filtering scheme to show the effectiveness of

our burst based filtering scheme.

To quantify the accuracy of different fault localization

schemes, we use the standard precision and recall metrics.

Let Ntp, Nfn and Nfp denote the number of true positives

(correctly pinpoint a faulty component), false negatives (miss

a faulty component), and false positives (pinpoint a normal

component as faulty), respectively. We calculate the precision

and recall metrics in the standard way as follows,

Precision =
Ntp

Ntp +Nfp

, Recall =
Ntp

Ntp +Nfn

(1)

We evaluate the accuracy of different pinpointing algorithms

using the commonly used “receiver operating characteristic”

(ROC) curve whose X-axis and Y-axis show the recall and

precision, respectively. A perfect pinpointing scheme should

achieve 100% precision and 100% recall.

In our experiments, we configure the FChain system as

follows. We set the look-back window (W ) to be 100 seconds

for all the tested faults except the DiskHog fault in the

Hadoop application. The reason is that the DiskHog fault

takes much longer time to manifest than the other faults.

The 100 seconds look-back window will not cover the initial

stage of the fault manifestation. Thus, we used a longer look-

back window (500 seconds) for the DiskHog fault. We use

a concurrency threshold of 2 seconds to classify concurrent

faults, that is, if the abnormal change point time difference

between two components is less than 2 seconds, we consider

these two components as concurrent faulty components. The

burst extraction window Q is set as 20 seconds. We use the



top 90% frequencies to synthesize the burst signal and use the

90th percentile of the burst value as the expected prediction

error. We found those parameter configurations work well for

all the applications tested in our experiments. We also conduct

sensitivity study on those parameters and will show the results

in Section III-F.

B. Single-Component Fault Localization Results

Figure 6 shows the pinpointing accuracy results for RUBiS

under three single-component faults. We observe that FChain

consistently achieves the highest precision and recall for all the

faults. We observe that the Histogram scheme does not work

well for the CpuHog and NetHog faults that manifest very

quickly. The reason is that when the performance anomaly

is detected, the histogram of the recent data has not shown

significant difference from the histogram of all historical data

yet since the fault manifestation duration is very short. The

histogram scheme works better for gradually changing faults

such as memory leak although it is still less accurate than

FChain. We observe that NetMedic could not achieve high

accuracy during this set of experiments. After examining the

logs, we found that the pinpointing errors are caused by unseen

states that make the system assign inaccurate impact values.5

During the fault injection, the faulty component and the other

affected components often have a state that is not present in

the historical data. In contrast, we observe that FChain is not

susceptible to the problem of unseen values.

By employing predictability-based filtering and leveraging

dependency information, FChain effectively removes irrelevant

change points caused by normal workload fluctuations. Thus,

FChain can achieve higher accuracy than the other change

point based schemes such as Topology, Dependency, and PAL.

Since the dependency discovery scheme accurately identifies

all the dependencies in the RUBiS system, the Dependency

scheme has the same accuracy as the Topology scheme in this

case. Particularly, the Topology and the Dependency schemes

have very low accuracy for the MemHog and CpuHog faults.

The reason is that we injected those two faults at the database

server that is the last tier in the RUBiS system. We observed

the “back-pressure” symptom mentioned in Section II-C. The

faulty database server causes its upstream component (the web

server or the application server) to exhibit anomalous behav-

iors. If we perform pinpointing based on the dependency or

topology, we will mistakenly pinpoint the upstream component

of the culprit component as the faulty one. We injected the

NetHog fault in the web server that is the first tier in RUBiS.

Thus, both Topology and Dependency perform well since the

back-pressure problem does not exist. In contrast, FChain is

not sensitive to the location of the faulty component, which

can achieve high accuracy for all situations. Although FChain

also considers the dependency information, we observe that

when a fault propagates back to the upstream components, its

impact becomes smaller. The abnormal change point selection

step can effectively filter out those change points.

5NetMedic assigns a default high impact value (0.8) to an edge connecting
to the abnormal component with a previously unseen state.

Figure 7 shows the fault localization accuracy comparison

results for the System S single component faults. Similar

to the RUBiS experiments, FChain consistently achieves the

highest precision and recall values for all the tested faults. The

dependency discovery scheme fails to detect any dependency

relationship for System S due to the reason mentioned in

Section II-C. Thus, the Dependency scheme pinpointed all the

components that have outlier change points. This is reason why

the Dependency scheme has low precision for all the cases.

The Topology scheme does not perform well for the MemHog

and the bottleneck faults because of the same back-pressure

problem mentioned in the RUBiS results. We also observe that

all the schemes have low precision for the bottleneck fault. The

reason is that the fault propagates very quickly due to high-

throughput communication between stream processing com-

ponents. Thus, it is difficult to distinguish single-component

faults from concurrent multi-component faults, which explains

why the precision is low. Luckily, we can use the online

validation to quickly remove those false alarms, which will

be shown in Section III-D.

C. Multi-Component Concurrent Fault Localization Results

We now evaluate FChain using multi-component concurrent

faults. Figures 8, 9, and 10 show the pinpointing accuracy

results for RUBiS, System S, and Hadoop, respectively.

We observe that FChain consistently achieves high precision

and recall results in all the tested cases except the concurrent

CPUHog in System S. After examining the log file, we find

the diagnosis errors are mostly caused by the side-effect of

smoothing. Although our previous work [13] showed that

smoothing helps to remove the random noise in the raw

monitoring data, smoothing in this case causes the time of

the abnormal change point in the affected normal component

to become earlier than those of true culprit components. We

need to perform adaptive smoothing to address this problem,

which is part of our on-going work.

Compared to RUBiS and System S, Hadoop is much more

dynamic with highly fluctuating system metrics. In this case,

the simple change point detection schemes such as PAL have

low accuracy, especially for the CpuHog and DiskHog faults.

In the Hadoop experiments, we inject faults into all the map

nodes that are the first components in the topology order.

The “back-pressure” problem does not exist in this case.

This explains why Topology and Dependency achieve high

accuracy. NetMedic also achieves high precision and recall

values in the MemLeak and CPUHog faults. The reason is

that the default high impact value for unseen states happen to

be correct. However, for the DiskHog fault, the default high

impact value is incorrect, which causes NetMedic to have low

accuracy. In contrast, FChain can handle previously unseen

values and consistently achieve high accuracy.

D. Online Pinpointing Validation Results

We now evaluate our online validation scheme. We pick two

most challenging faults where all the schemes do not perform

well. They are the Bottleneck fault and the concurrent CpuHog
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Fig. 8. Fault localization accuracy comparison for the multi-component faults
in RUBiS.
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Fig. 9. Fault localization accuracy comparison for the multi-component faults
in System S.
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Fig. 10. Fault localization accuracy comparison for the multi-component
faults in Hadoop.

fault in System S. Figure 11 shows the pinpointing accuracy

results for different schemes. The “FChain+VAL” denotes

the FChain scheme with the online pinpointing validation

activated. Note that the results for the FChain scheme shown

before are the results achieved by FChain without the online

validation. We observe that our online validation scheme can

successfully remove most false alarms for these two faults.

FChain can quickly identify the true faulty component(s)

by properly scaling the right resource metric. However, our

current online validation scheme cannot help to improve the

recall value, which is part of our on-going work.

E. Comparison with Fixed Filtering Schemes

We now compare FChain with the Fixed-Filtering scheme.

Due to space limitations, we only show a subset of our results.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 Histogram  NetMedic  Topology
 Dependency  PAL  FChain  FChain+VAL

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

P
re

ci
si

on

Recall

Concurrent CPUHogBottleneck  

Fig. 11. Online validation effectiveness for two challenging System S faults.
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Fig. 12. Fault localization accuracy comparison with the Fixed-Filtering
scheme for LBBug in RUBiS and DiskHog in Hadoop.

Figure 12 shows the accuracy of the Fixed-Filtering scheme for

a subset of faults in RUBiS and Hadoop. We observe that the

Fixed-Filtering scheme is very sensitive to the prediction error

filtering threshold value. In contrast, FChain can automatically

infer the optimal (or near optimal) filtering threshold based on

the burstiness in the metric values.

F. Sensitivity Study

FChain parameters NetHog CPUHog Diskhog

RUBiS System S Hadoop

Look-back 100 P=1, R=1 P=0.97, R=1 P=0.56, R=0.63
window W 300 P=0.98, R=1 P=0.95, R=0.95 P=0.88, R=0.9
(sec) 500 P=0.98, R=1 P=0.92, R=0.95 P=0.88, R=0.92

Concurrency 2 P=1, R=1 P=0.97, R=1 P=0.88, R=0.92

threhold 5 P=1, R=1 P=0.93, R=1 P=0.88, R=0.88
(sec) 10 P=0.97, R=1 P=0.93, R=1 P=0.83, R=0.88

TABLE I
PRECISION (P) AND RECALL (R) VALUES UNDER DIFFERENT

CONFIGURATIONS OF THE KEY FCHAIN PARAMETERS.

We have conducted sensitivity study to evaluate the impact

of key FChain system parameters to its pinpointing accuracy.

Due to space limitations, we only show a subset of our results

in Table I with the optimal parameter settings highlighted in

bold. Overall, we found that FChain is not sensitive to different

parameter values. We observe that FChain can achieve the

optimal performance using default setting (100 seconds look-

back window, 2 seconds concurrency threshold) for all the

tested faults except one case that is the look-back window



System Modules CPU cost

VM monitoring (6 attributes) 1.03±0.09 milliseconds
Normal fluctuation modeling 22.9 ± 2 milliseconds
(1000 samples)
Abnormal change point selection 602.4 ± 105.2 milliseconds
(100 samples)
Integrated fault diagnosis 22 ± 1 microseconds
Online validation (per-component) 30 ± 1 seconds

TABLE II
FCHAIN OVERHEAD MEASUREMENTS.

size for the DiskHog fault in Hadoop. The reason has been

described in Section III-A. Generally, the look-back window

should be long enough to capture the fault manifestation.

We are currently investigating an adaptive look-back window

configuration scheme by examining the metric changing speed.

G. FChain System Overhead Measurements

We now evaluate the overhead of the FChain system. Table

II lists the CPU cost of each key module in FChain. We

observe that most modules in FChain is light-weight. The

most computation-intensive module is the abnormal change

point selection component, which is triggered only when

a performance anomaly occurs. FChain also distributes the

change point computation load on different hosts and executes

them in parallel to achieve scalability. The online validation

takes about 30 seconds for each component since we need

some time to observe scaling impact for deciding whether we

have made a pinpointing error. However, the online validation

is only performed on those suspicious components pinpointed

by the integrated fault diagnosis module. The FChain daemon

running inside the Domain 0 of each host imposes less than 1%

CPU load and consumes about 3MB memory during normal

execution.

IV. RELATED WORK

Our work is first closely related to previous black-box

fault localization schemes. For example, NetMedic [9] pro-

vided detailed application-agnostic fault diagnosis by learning

inter-component impact. NetMedic first needs to assume the

knowledge of the application topology. To perform impact

estimation, NetMedic needs to find a historical state that is

similar to the current state for each component. However, for

previously unseen anomalies, we might not be able to find a

historical state that is similar to the current state for the faulty

components. Under those circumstances, NetMedic assign a

default high impact value, which sometimes lead to inaccurate

diagnosis results as shown in Section III. In comparison,

FChain can diagnose previously unseen anomalies and does

not assume any prior application knowledge. Oliner et al. [10]

proposed to compute anomaly scores using the histogram ap-

proach and correlates the anomaly scores of different compo-

nents to infer the inter-component influence graph. As shown

in Section III, it is difficult for the histogram-based anomaly

detection to perform online fault localization over suddenly

manifesting faults. Moreover, unrelated components can have

indirect correlations caused by workload fluctuations, which

will cause their system to raise false alarms. In comparison,

FChain is more robust to different types of faults and workload

fluctuations.

To achieve black-box diagnosis, researchers have also ex-

plored various passive network traffic monitoring and analysis

techniques such as Sherlock [11], Orion [27], SNAP [28].

However, those analysis schemes can only achieve coarse-

grained machine-level fault localization. Additionally, during

our experiments, we found that previous network trace analysis

techniques cannot handle continuous data stream process-

ing applications due to the lack of gaps between packets

for extracting different network flows. Project5 [29] and

E2EProf [30] performed cross-correlations between message

traces to derive causal paths in multi-tier distributed systems.

WAP5 [31] extends the black-box causal path analysis to

support wide-area distributed systems. Orion [27] discovers

dependencies from network traffic using packet headers and

timing information based on the observation that the traffic

delay distribution between dependent services often exhibits

typical spikes. LWT [32] proposed to discover the similarity

of the CPU usage patterns between different VMs to ex-

tract the dependency relationships between different VMs.

However, as shown in our experiments, dependency-based

fault localization techniques are not robust, which can make

frequent pinpointing mistakes due to various reasons (e.g.,

the “back pressure” effect in distributed applications, common

network services pinpointed as culprits). Furthermore, existing

dependency discovery techniques need to accumulate a large

amount of trace data to achieve reasonable accuracy. Particu-

larly, network trace based techniques only support request-

and-reply types of applications, which fail to discover any

dependency in continuously running applications such as data

stream processing systems. In contrast, FChain provides online

fault localization, which does not require any training data

for anomalies or a large amount of training data for normal

behaviors. FChain is fast, which can quickly localize faulty

components with high accuracy after the performance anomaly

is detected.

A flurry of research work has proposed to use end-to-end

tracing for distributed system debugging. Magpie [3] is a

request extraction and workload modelling tool that can record

fine-grained system events and correlate those events using an

application specific event schema to capture the control flow

and resource consumption of each request. Pinpoint [4] takes a

request-oriented approach to tag each call with a request ID by

modifying middleware platform and applies statistical methods

to identify components that are highly correlated with failed

requests. Monitor [33] tracks the requests exchanged between

components in the system and performs probabilistic diagnosis

on the potential anomalous components. X-Trace [5] is an

integrated cross-layer, cross-application tracing framework,

which tags all network operations resulting from a particular

task with the same task identifier to construct a task tree.

Spectroscope [34] can diagnose performance anomalies by

comparing request flows from two executions. In contrast,

our approach does not require any instrumentation to the



application or middleware platform to collect request flows.

Thus, it is much easier to deploy FChain in large-scale IaaS

clouds.

Blacksheep [35] correlates the change point of system-level

metrics (e.g., cpu usage) with the change in count of Hadoop

application states (i.e., events extracted from logs of DataN-

odes and TaskTrackers) to detect and diagnose the anomalies

in a Hadoop cluster. Kahuna-BB [36] correlates black-box data

(system-level metrics) and white-box data (Hadoop console

logs) across different nodes of a MapReduce cluster to identify

faulty nodes. In comparison, FChain is a black-box fault local-

ization system, which is application-agnostic without requiring

any knowledge about the application internals. We believe that

FChain is more practical and attractive for IaaS cloud systems

than previous white-box or gray-box techniques.

V. CONCLUSION

In this paper, we have presented FChain, a robust black-

box online fault localization system for IaaS cloud com-

puting infrastructures. FChain can quickly pinpoint faulty

components immediately after the performance anomaly is

detected. FChain provides a novel predictability-based ab-

normal change point selection scheme that can accurately

identify the onset time of the abnormal behaviors at different

components processing dynamic workloads. FChain combines

both the abnormal change propagation knowledge and the

inter-component dependency information to achieve robust

fault localization. FChain can further remove false alarms by

performing online validation. We have implemented FChain on

top of the Xen platform and conducted extensive experimental

evaluation using IBM System S data stream processing system,

Hadoop, and RUBiS online auction benchmark. Our exper-

imental results show that FChain can achieve much higher

accuracy (i.e., up to 90% higher precision and up to 20%

higher recall) than existing schemes. FChain is light-weight

and non-intrusive, which makes it practical for large-scale IaaS

cloud computing infrastructures.
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