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Abstract—Virtualized cloud systems are prone to perfor-
mance anomalies due to various reasons such as resource
contentions, software bugs, and hardware failures. In this
paper, we present a novelPREdictive Performance Anomaly
pREvention (PREPARE) system that provides automatic per-
formance anomaly prevention for virtualized cloud computing
infrastructures. PREPARE integrates online anomaly predic-
tion, learning-based cause inference, and predictive prevention
actuation to minimize the performance anomaly penalty
without human intervention. We have implemented PREPARE
on top of the Xen platform and tested it on the NCSU’s Virtual
Computing Lab using a commercial data stream processing
system (IBM System S) and an online auction benchmark
(RUBiS). The experimental results show that PREPARE can
effectively prevent performance anomalies while imposinglow
overhead to the cloud infrastructure.

Index Terms—performance anomaly prevention, online
anomaly prediction, cloud computing

I. I NTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud systems [1] al-
low users to lease resources in a pay-as-you-go fashion.
Cloud systems provide application service providers (ASPs)
with a more cost-effective solution than in-house computing
by obviating the need for ASPs to own and maintain a
complicated physical computing infrastructure. Since cloud
systems are often shared by multiple users, virtualization
technologies [2], [3] are used to achieve isolation among
different users. However, applications running inside the
cloud are prone to performance anomalies due to various
reasons such as resource contentions, software bugs, and
hardware failures. Although application developers often
perform rigorous debugging offline, many tough bugs only
manifest during large-scale runs. It will be a daunting
task for system administrators to manually keep track of
the execution status of many virtual machines (VMs) all
the time. Moreover, manual diagnosis can cause prolonged
service level objective (SLO) violation time, which is often
associated with big financial penalty.

It is challenging to diagnose and prevent performance
anomalies in virtualized cloud computing environments.
First, the application running inside the IaaS cloud often
appears as a black-box to the cloud service provider,
which makes it infeasible to obtain detailed measurements
about the application and apply previous intrusive diagnosis

techniques. Second, the cloud management system wishes
to automatically prevent any performance anomaly in order
to minimize the financial penalty. As a result, traditional
reactive anomaly management is often insufficient.

In this paper, we present a novel PREdictive Performance
Anomaly pREvention (PREPARE) system for virtualized
cloud systems. PREPARE integratesonline anomaly pre-
diction andvirtualization-based prevention techniques (e.g.,
elastic resource scaling [4], [5] and live VM migration [6])
to automatically prevent performance anomalies in cloud
systems. PREPARE applies statistical learning algorithms
over system-level metrics (e.g., CPU, memory, network
I/O statistics) to achieve two objectives: 1)early anomaly
detection that can raise advance anomaly alerts before
a performance anomaly happens; and 2) coarse-grained
anomaly cause inference that can pinpoint faulty VMs
and infer the system metrics that are related to the per-
formance anomaly. Based on the informative prediction
results, PREPARE leverages virtualization technologies to
perform VM perturbations for automatically preventing per-
formance anomalies. PREPARE also performs false alarm
filtering and prevention effectiveness validation to cope
with online anomaly prediction errors. Specifically, this
paper makes the following contributions:

• We present PREPARE, a prediction-driven perfor-
mance anomaly prevention system for virtualized
cloud computing infrastructures. PREPARE is non-
intrusive and application-agnostic, which can be read-
ily applied to any application running inside the IaaS
cloud.

• We show how to achieve accurate and informative
online anomaly prediction using only system-level
metrics by integrating the 2-dependent Markov chain
model with the tree-augmented Bayesian networks
(TAN) model.

• We introduce several prevention validation schemes to
cope with online anomaly prediction errors.

We have implemented a prototype of PREPARE on top
of the Xen platform [2]. We have deployed and tested
PREPARE on NCSU’s virtual computing lab (VCL) [7]
that operates in a similar way as Amazon EC2 [1]. We
conducted extensive experiments by running real distributed



systems (IBM System S data stream processing applica-
tions [8] and the online auction benchmark system RU-
BiS [9]) inside the VCL. Our experimental results show
that PREPARE can significantly reduce SLO violation
time by up to 97% compared to the traditional reactive
intervention scheme. Our anomaly prediction model can
predict a range of performance anomalies with sufficient
lead time for the system to take preventive actions in
time. Our prototype implementation shows that PREPARE
is feasible and imposes negligible overhead for the cloud
system.

The rest of the paper is organized as follows. Section II
describes the design details of PREPARE. Section III
presents the experimental evaluation. Section IV compares
our work with related work. Section V discusses the lim-
itations of the PREPARE system and possible extensions.
Finally, the paper concludes in Section VI.

II. SYSTEM DESIGN

In this section, we first provide an overview of our
approach. We then describe our online anomaly prediction
and cause inference algorithms followed by the prediction-
driven prevention actuation schemes.

A. Approach Overview

PREPARE is built on top of the Xen virtualization plat-
form, which consists of four major modules: 1) VM mon-
itoring, 2) online anomaly prediction, 3) online anomaly
cause inference, and 4) predictive prevention actuation,
which is illustrated by Figure 1.

The VM monitoring module continuously tracks system-
level metrics (e.g. CPU usage, free memory, network traffic,
disk I/O statistics) of different VMs using a pre-defined
sampling interval (e.g. 5 seconds). Traditional system mon-
itoring tools often run within the guest VM. However, the
responsiveness of the monitoring tool can be affected when
the application VM experiences performance anomalies.
Furthermore, it might be difficult to implant the monitoring
tool inside a guest VM in practice due to privacy concerns.
To achieve better accuracy and robustness, PREPARE
strives to collect guest VM information from outside as
much as possible.

Most virtualization platforms provide interfaces that al-
low the hypervisor (or domain 0 in the Xen platform [2])
to extract guest VM’s system-level metrics from outside.
PREPARE useslibxenstat to monitor guest VM’s resource
usage from domain 0. However, it is challenging to extract
the memory usage information of guest VMs from outside
in Xen since the memory utilization is only known to the
OS within each guest VM. Thus, if we want to monitor
the application’s memory usage metric, we need to install a
simple memory monitoring daemon (e.g., through the/proc
interface in Linux) within the guest VM to get the memory
usage statistics. In addition, our system also needs to know
whether the application is experiencing any SLO violation.
PREPARE can either rely on the application itself or an
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Fig. 1. Overall architecture of the PREPARE system.

external tool to keep track of whether the application SLO is
violated. Our current prototype adopts the latter approach.

To minimize the performance anomaly penalty, PRE-
PARE aims at triggering proper preventive actionsbefore
the application starts to experience performance anomalies
(i.e., SLO violations). To achieve this goal, we build
an online anomaly prediction model for each distributed
application component (i.e., VM). The online anomaly
prediction module should be able to foresee impending
performance anomalies with a certainlead time, which
provides the opportunity to steer the system away from the
abnormal state. To achieve practical anomaly management
for virtualized cloud systems, the prediction component
only relies on system-level metrics (e.g., CPU, memory,
network traffic, disk I/O) that can be collected via hypervi-
sor or guest OS. Our anomaly prediction model combines
attribute value prediction and multi-variant anomaly classi-
fication to raise early alarms [10], [11]. The metric value
prediction can estimate the value distribution of an attribute
at a future time. The multi-variant classifier can map a
set of future attribute measurements into the probabilities
of “normal” or “abnormal” states to achieve classification
over the future predicted metric values. In PREPARE, we
use the 2-dependent Markov model as the attribute value
predictor and the tree-augmented Bayesian networks (TAN)
model [12] as the anomaly classifier.

Upon receiving a set of anomaly alerts, PREPARE first
tries to filter out those false alarms caused by transient
resource spikes or inaccurate measurements. After the
anomaly alert is confirmed, PREPARE performs anomaly
cause inference to identify faulty VMs and related system
metrics. Since PREPARE maintains per-VM anomaly pre-
diction models, we can infer which VMs are the faulty ones
by checking which prediction models raise anomaly alerts.
Moreover, we leverage the attribute selection capability of
the TAN model to rank the contribution of each system-
level metric to the predicted anomaly.

Finally, PREPARE triggers proper prevention actions
to steer the system away from the SLO violation state.
Since PREPARE targets virtualized cloud computing en-
vironments, we develop virtualization-based prevention
techniques. Currently, PREPARE supports elastic VM re-
source scaling [4], [5] and live VM migration [6] as the
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Fig. 2. 2-dependent Markov
model for attribute value predic-
tion.

SLO state (C) = abnormal

Residual CPU

(L = 1.4) NetOut

(L = -0.14)
NetIn

(L = 0.40)Load1

(L = 2.0)

 L : attribute’s impact strength

: most relevant attribute 

Free Mem

(L = 3.1)
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the TAN model.

anomaly prevention actions. For example, if the perfor-
mance anomaly is caused by insufficient memory, PRE-
PARE dynamically increases the memory allocation to the
faulty VM to prevent the performance anomaly. After a
prevention action is triggered, we perform effectiveness
validation to deal with black-box diagnosis mistakes.

B. Per-VM Anomaly Prediction Model

PREPARE maintains one anomaly prediction model for
each application VM. Our anomaly prediction model com-
bines attribute value prediction and multi-variant anomaly
classification to raise early alarms [10], [11]. Most previ-
ous learning-based anomaly detection schemes [12] treat
a distributed application as one monolithic entity, which
suffer from two major problems. First, we cannot distin-
guish which components are attributed to the performance
anomaly. Second, as we will show in Section III, the
prediction accuracy of one monolithic model is significantly
worse than that of per-component model since the attribute
value prediction errors accumulate as we include the at-
tributes of all components into one model.

In our previous work [10], we used the simple Markov
chain model for attribute value prediction and the naive
Bayesian model for anomaly classification, which has sev-
eral limitations. First, the simple Markov chain model as-
sumes that the changing behavior of each attribute value is
strictly a Markov process, that is, the conditional probability
distribution of a future value only depends on the current
value but not any past value. However, in practice, not all
attributes follow the Markov property. For example, if an
attribute value exhibits a sinusoidal pattern, we need to
rely on both the current value and the previous value to
determine whether the attribute value on an increasing slope
or a decreasing slope. To address this problem, we use a
two-dependent Markov chain model for each attribute. By
using this model, transitions from each value depend on
both the current value and the prior value.

Figure 2 shows the transition diagram of an example 2-
dependent Markov chain model for an attribute whose value
is discretized into three single states. We can construct nine
combined states after combining every two single states to
transform a non-Markovian attribute into a Markovian one.
Such conversion can improve the value prediction accuracy

for fluctuating attributes. The attribute value prediction
model is periodically update with new data measurements
to adapt to dynamic systems.

To prevent performance anomalies, PREPARE needs to
know not only when a performance anomaly will appear
but also which system-level metrics are attributed to the
anomaly. Although our previous work [10] has shown that
naive Bayesian can achieve good anomaly classification ac-
curacy, it cannot provide the metric attribution information
accurately. To address this problem, PREPARE incorporates
the Tree-Augmented Naive (TAN) Bayesian network [12]
into the anomaly prediction model. The TAN model is an
extension of the naive Bayesian model by further taking
dependencies among attributes into account. It can classify
a system state into normal or abnormal and give a ranked
list of metrics that are mostly related to the anomaly.

By combining the metric value prediction and anomaly
classification, our anomaly predictor performs classification
over future data to foresee whether the application will
enter the anomaly state in a look-ahead window (e.g.,
120 seconds). PREPARE will raise an anomaly alert for
a distributed application as long as any of the application’s
per-VM anomaly predictor raises an alert. To maintain
per-VM anomaly prediction models, PREPARE relies on
previously developed fault localization techniques [13],[14]
to identify the faulty VMs and train the corresponding per-
VM anomaly predictors.

Since the TAN model is a supervised learning method,
we need to train the TAN model with labelled data (i.e.,
measurements with normal or abnormal labels). PREPARE
supports automatic runtime data labeling by matching
the timestamps of system-level metric measurements and
SLO violation logs. By using the supervised classification
method, PREPARE can only detect previously seen (or
recurrent) anomalies. However, it is straightforward to
extend PREPARE to support unknown anomalies by replac-
ing the supervised classification method with unsupervised
classifiers (e.g., clustering and outlier detection).

C. Online Anomaly Cause Inference

Upon receiving an anomaly alert, PREPARE first per-
forms false alarm filtering to avoid triggering unnecessary
preventions. We use a simple majority voting scheme to
filter the false alarms. This scheme is based on the obser-
vation that real anomaly symptoms often persist for some
time while most of false alarms are caused by transient
and sporadic resource spikes. Thus, PREPARE triggers
prevention actions only after receiving at leastk alerts in
the recentW predictions. Different combinations ofk and
W represent the tradeoff between the filtering effectiveness
and alert timeliness. We setk to be 3 andW to be 4 in
our experiments for achieving low false alarm rate.

After confirming a performance anomaly alert for a
distributed application, PREPARE performs a fast diag-
nostic inference that answers two key questions: 1) which
distributed application VMs are faulty; and 2) which system



metrics on those faulty VMs are mostly related to the pre-
dicted performance anomaly. Since our system maintains
per-VM anomaly prediction models, we can easily infer
which VMs are faulty by checking which prediction models
raise the alert. However, it is insufficient to just know
which VMs are faulty. Although we can try some simplistic
approaches such as migrating the faulty VM to another
idle host, we may not only fail to resolve the performance
anomaly but also introduce excessive overhead (e.g., the
VM migration costs).

To further identify the most relevant system metrics to
the predicted anomaly for accurate anomaly prevention,
our system leverages the attribute selection capability of
the TAN classifier [12]. The TAN classifier can quantify
the influence of each system attribute on the “abnormal”
classification result using a probabilistic model. Specifi-
cally, we can derive the following mathematical form to
decide the TAN classifier’s choice. This form is a sum
of terms, each of which involves the probability that the
value of an attributeai occurs in each class labelC
(i.e., “abnormal”(1) or “normal”(0)) given the value of its
parent attributeapi

. A sum greater than zero generates an
“abnormal” classification result:

∑

i

log

[

P (ai|api
, C = 1)

P (ai|api
, C = 0)

]

+ log
P (C = 1)

P (C = 0)
> 0 (1)

We defineLi as the strength of the attributeai’s impact
on the TAN classifier’s decision. We can extractLi from
Equation (1):

Li = log

[

P (ai|api
, C = 1)

P (ai|api
, C = 0)

]

(2)

A larger value ofLi for an attributeai suggests thatai

is more relevant to the predicted anomaly. Figure 3 shows
an attribute selection example in which the “Free Mem”
attribute has the largest influence on the predicted anomaly.

One tricky issue is to distinguish a workload change from
some internal faults. Intuitively, if an anomaly is caused
by external factors such as a workload change, all the
application components will be affected. Thus, we should
observe changes in some system metrics on all the appli-
cation components. Based on this observation, PREPARE
can infer a workload change by checking whether all the
application components have change points in some system
metrics simultaneously [13].

D. Predictive Prevention Actuation

After pinpointing the faulty VMs and the relevant met-
rics, PREPARE triggers proper anomaly prevention actions.
Since PREPARE targets virtualized cloud environments,
we focus on hypervisor-based prevention techniques. PRE-
PARE currently supports two types of prevention actions:
1) elastic VM resource scaling [4], [5], and 2) live VM
migration [6]. The elastic VM resource scaling system can
dynamically adjust the allocation of a specific resource to
the faulty VMs to mitigate the anomaly impact. Our system

currently supports CPU and memory scaling. For example,
if the prediction modules raise alerts on two VMs and the
pinpointed attributes are memory and CPU respectively,
PREPARE will trigger the memory scaling on the first VM
and CPU scaling on the second VM. We can also leverage
live VM migration to prevent performance anomalies by
relocating the faulty VM to a host with desired resources.
However, compared to migration, resource scaling is more
light-weight and less intrusive. Thus, PREPARE strives to
first use resource scaling to alleviate performance anomaly.
If the scaling prevention is ineffective or cannot be applied
due to insufficient resources on the local host, PREPARE
will trigger live VM migration to relocate the faulty VM
to a different host with matching resources [15].

Online anomaly prediction are rarely perfect in practice,
which may miss predictions, raise false alarms, or pinpoint
wrong faulty VMs and fault-related system metrics. If
the anomaly predictor fails to raise advance alert for a
happened anomaly, PREPARE will trigger the prevention
action after the application’s SLO violation is detected. In
this case, the prevention is performed reactively rather than
proactively. To handle false alarms1 and metric pinpointing
mistakes, PREPARE performs online validation to check
the effectiveness of the triggered prevention action. This
is achieved by checking the anomaly alerts and compar-
ing the resource usage before and after the prevention
action. If the prediction models stop sending any anomaly
alert (i.e., SLO violation is gone), it means that we have
successfully avoided or corrected a performance anomaly.
Otherwise, PREPARE builds a look-back window and look-
ahead window for each prevention. The look-back window
provides statistics of the resource usage shortly before the
prevention and the look-ahead window provides statistics of
the resource usage shortly after the prevention. Intuitively,
if the application resource usage does not change after a
prevention action, it means that the prevention does not
have any effect. The system will try other prevention actions
(e.g., scaling the next metric in the list of related metrics
provided by the TAN model) until the performance anomaly
is gone.

III. E XPERIMENTAL EVALUATION

We have implemented the PREPARE system on top of
Xen, and conducted extensive experiments using the IBM
System S data stream processing system [8] and the RUBiS
online auction benchmark (EJB version) [9]. In this section,
we first describe our experiment setup. We then present the
experimental results.

A. Experiment setup

Our experiments were conducted on the NCSU’s virtual
computing lab (VCL) [7]. Each VCL host has a dual-core
Xeon 3.00GHz CPU, 4GB memory, and runs CentOS 5.2

1Although our majority voting scheme can filter out some falsealarms,
it cannot completely remove all false alarms.
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64-bit with Xen 3.0.3. The guest VMs also run CentOS 5.2
64-bit.

Case study distributed systems.To test our system with
real distributed systems, we used IBM System S [8] and
RUBiS [9] (EJB version) benchmarks.

System S is a commercial high-performance data stream
processing system. Each System S application consists of
a set of inter-connectedprocessing elements calledPEs. In
our experiments, we used a tax-calculation application, one
of the sample applications provided by System S product
distribution. Figure 4 shows the application topology used
in the experiments. A SLO violation is marked if either
InputRate/OutputRate < 0.95 or the average per-tuple
processing time is larger than 20ms. We run each PE in a
guest VM.

RUBiS is a three-tier online auction benchmark. Figure 5
shows the topology of the RUBiS application used in the
experiments. The client workload generator also tracks the
response time of the HTTP requests it made. A SLO
violation is marked if the average request response time
is larger than200ms. In order to evaluate our system under
dynamic workloads with realistic time variations, we used
a client workload generator that emulates the workload
intensity observed in the NASA web server trace beginning
at 00:00:00 July 1, 1995 from the IRCache Internet traffic
archive [16].

Fault injection. In the experiments using System S, we
injected the following faults: 1)memory leak: we inject a
memory leak bug in a randomly selected PE. The faulty
PE performs continuous memory allocations but forgets to
release the allocated memory; 2)CPU hog: we introduce
an infinite loop bug in a randomly selected PE; and 3)
bottleneck: we gradually increase the workload until hitting
the CPU capacity limit of the bottleneck PE that is the first
PE to be overloaded (i.e., PE6 in Figure 4, a sink PE that
intensively sends processed data tuples to the network).

In the experiments using RUBiS, we injected the follow-
ing faults: 1)memory leak: we start a program that has a
memory leak bug in the VM running the database server;
2) CPU hog: we start a CPU-bound program that competes
CPU with the database server inside the same VM; and 3)
bottleneck: we gradually increase the workload until hitting
the capacity limit of the bottleneck component that is the
database server in RUBiS.

Evaluation methodology. We compare our approach
with 1) reactive intervention that triggers anomaly inter-
vention actions when a SLO violation is detected. This
approach leverages the same anomaly cause inference and
prevention actuation modules as PREPARE. However, the
fundamental difference is that all these actions are triggered
only after a SLO violation has already occurred; and 2)
without intervention that does not perform any intervention
to the faulty application. The sampling interval of the
system-level metrics is configured to be 5 seconds. We
defineSLO violation time as the total time during which
the application’s SLO is violated. Thus, we evaluate the
effectiveness of different anomaly management schemes by
comparing the SLO violation time. Shorter SLO violation
time indicates a better anomaly management. Furthermore,
we use true positive rateAT and false alarm rateAF to
quantify the accuracy of the anomaly prediction model. Let
Ntp, Nfn, Nfp, andNtn denote the true positive number,
false negative number, false positive number, and true
negative number, respectively. We defineAT and AF in
a standard way as follows,

AT =
Ntp

Ntp + Nfn

, AF =
Nfp

Nfp + Ntn

(3)

B. Experiment results

Figure 6 shows the SLO violation time experienced by
System S and RUBiS under different faults. In this set
of experiments, we use the elastic VM resource scaling
as the prevention action. Both PREPARE and the reactive
intervention scheme perform the cause inference and vali-
dation to automatically identify the right system metric that
should be adjusted. Each experiment run lasts from 1200
to 1800 seconds. Since the current prototype of PREPARE
can only handle recurrent anomalies, we inject two faults
of the same type and each fault injection lasts about 300
seconds. Our prediction model learns the anomaly during
the first fault injection and starts to make prediction for
the second injected fault. We repeat each experiment five
times. We report both mean and standard deviation for
the SLO violation time. The results show that PREPARE
can significantly reduce the SLO violation time by 90-
99% compared to the “without intervention” scheme. By
achieving early detection using the anomaly prediction,
PREPARE outperforms the reactive intervention scheme by
reducing the SLO violation time by 25-97%. PREPARE
achieves more significant SLO conformance improvement
for the memory leak and bottleneck faults than the CPU
hog fault. The reason is that both the memory leak fault
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Fig. 6. SLO violation time comparison using the elastic VM resource scaling as the prevention action.
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Fig. 7. Sampled SLO metric trace comparison using the elastic VM resource scaling as the prevention action.

and the bottleneck fault exhibit gradual changing behavior
in some system-level metrics, which gives opportunity for
PREPARE to make more accurate and earlier prediction.
In contrast, the CPU hog fault often manifests suddenly,
which makes it difficult to predict.

Figure 7 shows the continuously sampled SLO metric
traces for a subset of the tested faults in the above experi-
ments. Those trace results give us close-up views about the
effectiveness of different anomaly management schemes.
For System S, we present the throughput trace that samples
the end-to-end stream system output rate in the number of
produced result tuples per second. For RUBiS, we present
the sampled average request response time trace. We choose
these two metrics since they can reflect the application’s
SLO status during runtime. Figure 7(a) shows the sys-
tem throughput comparison in the presence of a memory
leak fault for System S. We observe that PREPARE can
almost completely prevent the performance anomaly (i.e.,
throughput drop). In contrast, for the reactive intervention
approach, the application still has to suffer from a short
period of SLO violation during the beginning phase of
the fault manifestation. Figure 7(b) shows the average
request response time comparison for a memory leak fault
in RUBiS. Similarly, the results show that PREPARE can
effectively avoid SLO violation by maintaining the response
time under the SLO violation threshold. For the reactive
intervention approach, the application still has to experience
a short period of SLO violations since the prevention action
is triggered after the SLO violation is detected.

Figure 7(c) and Figure 7(d) show the system throughput
comparison in the presence of a CPU hog fault for System
S and RUBiS, respectively. We observe that both PREPARE
and the reactive intervention scheme can quickly alleviate
the SLO violation using proper scaling since the CPU hog
fault manifest immediately into SLO violation. However,
PREPARE achieves only a little SLO conformance im-
provement compared to the reactive intervention scheme
for the CPU hog fault. The reason is that the CPU hog fault
often manifests as sudden increase in the CPU usage metric,
which is difficult for PREPARE to raise early alarms.

Next, we repeat the same set of experiments but use the
live VM migration as the prevention action. Figure 8 shows
the SLO violation time experienced by System S and RU-
BiS under different anomaly faults. The results show that
PREPARE can effectively reduce the SLO violation time
by 88-99% compared to the “without intervention” scheme.
Compared to the reactive intervention scheme, PREPARE
can achieve 3-97% shorter SLO violation time. We also
observe that using live VM migration as the prevention
action incurs longer SLO violation time in most cases.
The reason is that the resource scaling often takes effect
immediately while the live VM migration takes around 8-15
seconds to be effective if the migration is triggered before
the anomaly happens. If the live migration is triggered
late, the performance penalty will be even larger. Thus,
PREPARE will choose to perform resource scaling first
and only trigger the migration if the scaling cannot be
performed (i.e., insufficient resources on the local host).
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Fig. 8. SLO violation time comparison using the live VM migration as the prevention action.
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(c) CPU hog (System S)
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Fig. 9. Sampled SLO metric trace comparison using the live VMmigration as the prevention action.

Figure 9 shows the continuously sampled SLO metric
traces for a subset of the tested faults in the second set of
experiments. Figure 9(a) shows the system throughput com-
parison for a memory leak fault in the System S. The results
show that PREPARE can trigger the migration in advance to
achieve the shortest SLO violation time. In contrast, the re-
active intervention scheme triggered the live VM migration
after the performance anomaly already happened. Thus, the
migration takes much longer time to finish. Moreover, the
performance of the running application has much smaller
degradation during the early migration triggered by PRE-
PARE than that during the late migration triggered by the
reactive intervention scheme. Figure 9(b) shows the average
request response time comparison for a memory leak fault
in RUBiS. We observe that PREPARE can completely avoid
the SLO violation by triggering early migration. Figure 9(c)
and Figure 9(d) show the throughput comparison for a CPU
hog fault in System S and RUBiS, respectively. Again, we
observe that due to the limited predictability of the related
attribute (i.e. CPU usage) during the fault manifestation,
the prevention efficacy of PREPARE degrades to that of
the reactive intervention approach.

To further quantify the accuracy of our anomaly predic-
tion model, we conduct trace-driven experiments using the
data collected in the above two sets of experiments. We cal-
culated the prediction accuracy under different look-ahead
windows for the second fault injection in each experiment.
We use the formula defined in Equation (3) to calculate
the accuracy of our anomaly predictor by comparing the
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Fig. 10. Anomaly prediction accuracy comparison between the per-
component model and the monolithic model.

predicted label (i.e. “abnormal” or “normal”) and the true
label for all the data samples in each dataset. The labels
are automatically produced by correlating the timestamps
of the measurement samples with the SLO violation logs,
as described in Section II-B.

Figure 10 compares the prediction accuracy between
our per-VM prediction model scheme and the monolithic
prediction model scheme that incorporates the performance
metrics of all the application VMs into one single prediction
model. Due to the space limitation, we only show a subset
of results. We observe that the prediction accuracy of
our per-VM model is significantly better than that of the
monolithic model. The reason is that as the number of
attributes increases, the attribute value prediction errors
will accumulate. As a result, the classification accuracy
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Fig. 11. Anomaly prediction accuracy comparison between the 2-
dependent Markov model and the simple Markov model.
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Fig. 12. Anomaly prediction ac-
curacy comparison under different
settings of the false alarm filtering
for a bottleneck fault in RUBiS.
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Fig. 13. Anomaly prediction ac-
curacy comparison under different
sampling intervals for a bottleneck
fault in RUBiS.

over predicted values will degrade. Thus, it is necessary
to build per-VM anomaly prediction model for distributed
applications.

Figure 11 shows the anomaly prediction accuracy com-
parison between 2-dependent Markov model and simple
Markov model for a subset of tested faults. We observe
that the 2-dependent Markov model can achieve higher pre-
diction accuracy than the simple Markov model, especially
under larger look-ahead windows. Note that although the
trace-driven experiments show that our anomaly prediction
models still produce significant number of false alarms,
most false alarms will be filtered by our continuity check
and online validation schemes during runtime.

PREPARE triggers prevention actions only after receiv-
ing at leastk alerts in the recentW predictions for false
alarm filtering. Figure 12 compares the prediction accuracy
under different settings ofk andW for a bottleneck fault
in RUBiS. We observe that a larger value ofk (i.e., k = 3)
can effectively filter out more false alarms because it can
tolerate sporadic anomaly predictions generated mistakenly
in a window of W . A larger value ofk also achieves
slightly lower true positive rate. The reason is that it triggers
prevention actions slightly later when a persistent true
anomaly is about to happen. However, such small delay
(e.g., one or two sampling intervals) in prevention actions
is negligible if PREPARE can achieve generous lead time.
We setk to be 3 andW to be 4 for all the applications
and faults tested in our experiments.

System Modules CPU cost
VM monitoring (13 attributes) 4.68±0.52 ms
Simple Markov model training (600 samples)61.0±0.60 ms
2-dep. Markov model training (600 samples)135.1±0.88 ms
TAN model training (600 samples) 4.0±0.02 ms
Anomaly prediction 1.3±0.06 ms
CPU resource scaling 107.0±0.53 ms
Memory resource scaling 116.0±2.39 ms
Live VM migration (512MB Memory) 8.56±1.05 sec

TABLE I
PREPARE SYSTEM OVERHEAD MEASUREMENTS.

Figure 13 compares the prediction accuracy under dif-
ferent sampling intervals of the performance metrics for
a bottleneck fault in RUBiS. We observe that 5 seconds
sampling interval can achieve the highest prediction accu-
racy. In comparison, too fine-grained monitoring (i.e., 1 sec-
ond sampling interval) achieves lower prediction accuracy,
especially under larger look-ahead windows. The reason
is that the sampling interval also decides the step size of
the Markov model that has limited accuracy for large step
predictions. In contrast, coarser grained monitoring (i.e., 10
seconds sampling interval) also achieves lower prediction
accuracy. The reason is that sampling system metrics less
frequently might not capture the pre-anomaly behaviors
accurately and thus leads to inaccurate predictions.

Finally, we evaluate the overhead of the PREPARE
system. Table I lists the CPU cost of each key module in the
PREPARE system. The VM monitoring module runs within
the domain 0 of each host, which collects 13 resource
attributes every five seconds. Each collection takes around
1.3 milliseconds. The simple Markov model training takes
around 61 milliseconds using 600 training data samples.In
comparison, the 2-dependent Markov model training takes
around 135 milliseconds using the same training samples.
The TAN model training takes around 4 milliseconds for
600 training data samples. The anomaly prediction takes
around 1.3 milliseconds, which includes the time of calcu-
lating state probabilities, generating predicted class labels
for different look-ahead windows and performing attribute
selection for each data sample. The time spent on perform-
ing CPU or memory scaling is around 100 milliseconds.
The live VM migration takes around 8 seconds to migrate
one VM with 512 MB memory. During the normal execu-
tion, PREPARE imposes less than 1% CPU load in domain
0. The memory consumption of PREPARE is around 3MB.
Furthermore, since PREPARE maintains per-VM anomaly
prediction models, different anomaly prediction models
can be distributed on different cloud nodes for scalability.
Overall, we believe that PREPARE is practical for online
system anomaly management.

IV. RELATED WORK

Recent work has shown that statistical machine learning
techniques are useful for automatic system management.
Cohen et al. proposed to use the TAN model to correlate
low-level system metrics to high-level system states [12],



and capture the essential system characteristics called sig-
natures [17]. Fox et al. proposed an anomaly detection
approach that considers both simple operational statistics
and structural change in a complex distributed system [18].
Bodik et al. applied statistical machine learning techniques
to estimate the relationships among performance, workload,
and physical resources [19]. Shen et al. proposed a change
profile based approach to detect system anomaly symptoms
by checking performance deviation between reference and
target execution conditions [20]. Kaustubh et. al. proposed a
model-driven integrated monitoring and recovery approach
for distributed systems [21]. The authors proposed to use
Bayesian estimation and Markov decision theory to choose
recovery actions according to a user-defined optimization
criteria. In comparison, our work provides a newonline,
prediction-driven anomaly prevention framework by com-
bining online anomaly prediction with hypervisor-based
out-of-box VM preventions. Our approach is non-intrusive
and application-agnostic, which makes it suitable for cloud
computing environments.

Previous work has also developed various performance
anomaly debugging techniques. Project5 [22] performed
cross-correlations between message traces to derive causal
paths and identify performance bottlenecks. Cherkasova et
al. presented an integrated framework of using regression-
based transaction models and application performance sig-
natures to detect anomalous application behavior [23].
Kahuna [24] provides a problem diagnosis approach for
MapReduce systems by statistically comparing both black
box and white box data across different nodes. NAP [25]
collected network communication traces and applied queue-
ing theory to estimate the service time and waiting time
for identifying bottleneck components. Monalytics [26]
combines monitoring and analysis for managing large-scale
data centers, and uses entropy-based anomaly detection
method [27] to identify the anomalies. Chopstix [28] pro-
vided a light-weight approximate data collection frame-
work and diagnosis rules for troubleshooting a large-scale
production system. In comparison, PREPARE focuses on
predicting system performance anomalies in advance and
providing pre-anomaly and coarse-grained debugging in-
formation to actuate anomaly prevention actions.

Our work is also related to previous trial-and-error failure
management approach. Qin et al. presented Rx [29], a
system that helps system survive bugs by rolling back
the program and re-executing it in modified environments.
Similarly, Triage [30] leverages lightweight re-execution
support to deal with production run bugs. However, these
techniques require periodical system checkpointing and sys-
tem rollback for re-execution, which can bring significant
overhead to the system. In comparison, PREPARE performs
predictive anomaly correction, which triggers VM preven-
tion actionsbefore the anomaly happens. Thus, PREPARE
does not need to pay the cost of checkpointing during
normal execution and avoid expensive rollback to recover
from failure.

Predictive system management has been studied under
different contexts. Henriksson et. al [31] proposed a feed-
forward delay predictor that uses instantaneous measure-
ments to predict future delays on an Apache web server
and then dynamically changes the service rate to satisfy
the delay specification according to the prediction results.
Thereska et. al [32] proposed a “Whatif” interface to
enable a system to predict the performance impact of
external changes such as workload and hardware devices
using operational laws. Thomas et. al. [33] used auto-
correlation and cross-correlation to predict the workload
and linear regression to predict the execution time of each
component in the distributed stream processing system.
They proposed an early execution migration scheme based
on the workload and execution time predictions to alleviate
application hot-spots. In contrast, PREPARE provides a
more informed anomaly prediction scheme that can not
only raise advance anomaly alerts with certain lead time
but also provide important cues about the anomaly causes.
Moreover, PREPARE integrates the online anomaly predic-
tion with VM prevention techniques to achieve automatic
anomaly prevention for the cloud system.

V. D ISCUSSIONS

First, PREPARE currently only works with recurrent
anomalies. The reason is that we use the supervised learning
method. It means that the model requires labeled histor-
ical training data to derive the anomaly classifier. Thus,
PREPARE can only predict the anomalies that the model
has already seen before. Furthermore, although PREPARE
supports automatic runtime data labeling by correlating the
time-series data samples with the SLO violation logs based
on the timestamp information, it would be challenging to
obtain labeled training data for large-scale cloud systems.
We plan to extend PREPARE to handle unseen anomalies
by developing unsupervised anomaly prediction models.

Second, PREPARE performs coarse-grained black-box
anomaly prediction and diagnosis (i.e., pinpointing the
faulty components and the most relevant system metrics)
and prevents performance anomalies by using the VM re-
source scaling and live VM migration techniques. However,
PREPARE is not intended to replace those fine-grained
fault localization and diagnosis tools (e.g., pinpointinglines
of faulty code). If the fault is deterministic (e.g., a mem-
ory leak bug), PREPARE can only temporarily avoid the
SLO violations. To completely remove the fault, we need
to integrate PREPARE with other fine-grained debugging
tools. However, PREPARE can delay the SLO violation
occurrence, which provides precious time for fine-grained
debugging.

Third, PREPARE assumes that performance anomalies
manifest in system-level metrics. Although our experimen-
tal study shows that this assumption is valid for most
performance anomalies we have tested, there may still exist
performance anomalies that do not manifest as system-
level metric changes. Under those circumstances, black-



box approaches generally will not be effective. We need
to leverage the white-box or grey-box diagnosis techniques
to handle the anomalies.

Fourth, PREPARE currently needs to implant a light-
weight monitoring daemon within one guest VM to track its
memory usage information. However, these memory usage
statistics can either be inferred indirectly [34] or obtained
by VM introspection techniques [35].

VI. CONCLUSION

We have presented the design and implementation of
the PREPARE system, a novel predictive performance
anomaly prevention system for virtualized cloud comput-
ing infrastructure. PREPARE can predict recurrent perfor-
mance anomalies by combining attribute value prediction
with supervised anomaly classification methods. PREPARE
builds per-VM prediction model and leverages the attribute
attribution capability of the TAN classification method to
pinpoint faulty VMs and relevant system metrics. Based on
its black-box diagnosis results, PREPARE performs elastic
VM resource scaling or live VM migration to prevent the
performance anomalies. We have implemented PREPARE
on top of the Xen platform and tested it on the NCSU’s
Virtual Computing Lab using real distributed systems (IBM
System S stream processing system and RUBiS). Our
results show that PREPARE can effectively prevent the
performance anomalies caused by a set of common soft-
ware faults. PREPARE is light-weight and non-intrusive,
which makes it an attractive practical anomaly management
solution for large-scale virtualized cloud computing infras-
tructures.
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