PREPARE: Predictive Performance Anomaly
Prevention for Virtualized Cloud Systems

Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu Chitra Venkatramani, Deepak Rajan
North Carolina State University IBM T. J. Watson Research
Raleigh, NC, USA Hawthorne, NY, USA
Email: {ytan2,hcnguye3,zsheh@®ncsu.edu, gu@csc.ncsu.edu Email: {chitrav,drajan@us.ibm.com

Abstract—Virtualized cloud systems are prone to perfor- techniques. Second, the cloud management system wishes
mance anomalies due to various reasons such as resourcag automatica”y prevent any performance anoma|y in order

contentions, software bugs, and hardware failures. In this 1 minimize the financial penalty. As a result, traditional
paper, we present a novelPREdictive Perfprmance Anqmaly reactive anomalv management is often insufficient
pREvention (PREPARE) system that provides automatic per- y g '

formance anomaly prevention for virtualized cloud computing
infrastructures. PREPARE integrates online anomaly predc-
tion, learning-based cause inference, and predictive pr&ntion
actuation to minimize the performance anomaly penalty
without human intervention. We have implemented PREPARE
on top of the Xen platform and tested it on the NCSU's Virtual
Computing Lab using a commercial data stream processing
system (IBM System S) and an online auction benchmark
(RUBIS). The experimental results show that PREPARE can
effectively prevent performance anomalies while imposindpw
overhead to the cloud infrastructure.

Index Terms—performance anomaly prevention, online
anomaly prediction, cloud computing

In this paper, we present a novel PREdictive Performance
Anomaly pREvention (PREPARE) system for virtualized
cloud systems. PREPARE integratadline anomaly pre-
diction andvirtualization-based prevention techniques (e.qg.,
elastic resource scaling [4], [5] and live VM migration [6])
to automatically prevent performance anomalies in cloud
systems. PREPARE applies statistical learning algorithms
over system-level metrics (e.g., CPU, memory, network
I/O statistics) to achieve two objectives: &grly anomaly
detection that can raise advance anomaly alerts before
a performance anomaly happens; and 2) coarse-grained

anomaly cause inference that can pinpoint faulty VMs
and infer the system metrics that are related to the per-
formance anomaly. Based on the informative prediction
Infrastructure-as-a-Service (laaS) cloud systems [1] gbsults, PREPARE leverages virtualization technologies t
low users to lease resources in a pay-as-you-go fashig@rform VM perturbations for automatically preventing-per
Cloud systems provide application service providers (ASP&rmance anomalies. PREPARE also performs false alarm
with a more cost-effective solution than in-house commutirfiitering and prevention effectiveness validation to cope

by obviating the need for ASPs to own and maintain @ith online anomaly prediction errors. Specifically, this
complicated physical computing infrastructure. Sinceidlo paper makes the following contributions:

systems are often shared by multiple users, virtualization
technologies [2], [3] are used to achieve isolation among
different users. However, applications running inside the
cloud are prone to performance anomalies due to various
reasons such as resource contentions, software bugs, and
hardware failures. Although application developers often
perform rigorous debugging offline, many tough bugs only
manifest during large-scale runs. It will be a daunting i o X
task for system administrators to manually keep track of onlln.e anomaly predlct|0n using only system-levgl
the execution status of many virtual machines (VMs) all metrics b_y integrating the 2-dependent Markov chain
the time. Moreover, manual diagnosis can cause prolonged Model with the tree-augmented Bayesian networks
service level objective (SLO) violation time, which is afte (TAN) model. . I

associated with big financial penalty. « We mtr(_)duce .several preventlorj v_al|dat|on schemes to

It is challenging to diagnose and prevent performance cope with online anomaly prediction errors.

anomalies in virtualized cloud computing environments. We have implemented a prototype of PREPARE on top
First, the application running inside the laaS cloud ofteof the Xen platform [2]. We have deployed and tested
appears as a black-box to the cloud service provid®REPARE on NCSU's virtual computing lab (VCL) [7]
which makes it infeasible to obtain detailed measuremertkat operates in a similar way as Amazon EC2 [1]. We
about the application and apply previous intrusive diagnogonducted extensive experiments by running real diseibut

I. INTRODUCTION

« We present PREPARE, a prediction-driven perfor-
mance anomaly prevention system for virtualized
cloud computing infrastructures. PREPARE is non-
intrusive and application-agnostic, which can be read-
ily applied to any application running inside the laaS
cloud.

« We show how to achieve accurate and informative

Application SLO violation information

systems (IBM System S data stream processing applica-
tions [8] and the online auction benchmark system RU
BiS [9]) inside the VCL. Our experimental results show
that PREPARE can significantly reduce SLO violation
time by up to 97% compared to the traditional reactive
intervention scheme. Our anomaly prediction model ca
predict a range of performance anomalies with sufficien
lead time for the system to take preventive actions in

|—— ==
Resource | PREPARE l

usage |

Online anomaly prediction ‘

Alert*

‘ Online anomaly cause inference ‘

VM +
application

)

Dom0

Xen hypervisor

Faulty componentsl Relevant attributes

‘ Predictive prevention actuation ‘

time. Our prototype implementation shows that PREPARE | | _______ |
is feasible and imposes negligible overhead for the cloud@ VM monitoring Resomros soalme M miaration
system. ' ¢ £

The rest of the paper is organized as follows. Section I Fig. 1. Overall architecture of the PREPARE system.
describes the design details of PREPARE. Section llI
presents the experimental evaluation. Section IV compamegernal tool to keep track of whether the application SLO is
our work with related work. Section V discusses the limviolated. Our current prototype adopts the latter approach
itations of the PREPARE system and possible extensionsTo minimize the performance anomaly penalty, PRE-

Finally, the paper concludes in Section VI. PARE aims at triggering proper preventive actidyefore
the application starts to experience performance anomalie
Il. SYSTEM DESIGN (i.e., SLO violations). To achieve this goal, we build

In this section, we first provide an overview of oumlan online anomaly prediction model for each distributed
approach. We then describe our online anomaly predictiapplication component (i.e., VM). The online anomaly
and cause inference algorithms followed by the predictioprediction module should be able to foresee impending

driven prevention actuation schemes. performance anomalies with a certdiead time, which
_ provides the opportunity to steer the system away from the
A. Approach Overview abnormal state. To achieve practical anomaly management

PREPARE is built on top of the Xen virtualization platfor virtualized cloud systems, the prediction component
form, which consists of four major modules: 1) VM mon-only relies on system-level metrics (e.g., CPU, memory,
itoring, 2) online anomaly prediction, 3) online anomalyetwork traffic, disk I/O) that can be collected via hypervi-
cause inference, and 4) predictive prevention actuatisur or guest OS. Our anomaly prediction model combines
which is illustrated by Figure 1. attribute value prediction and multi-variant anomaly slas

The VM monitoring module continuously tracks systemfication to raise early alarms [10], [11]. The metric value
level metrics (e.g. CPU usage, free memory, network traffiprediction can estimate the value distribution of an afteb
disk 1/O statistics) of different VMs using a pre-definect a future time. The multi-variant classifier can map a
sampling interval (e.g. 5 seconds). Traditional system-moset of future attribute measurements into the probalslitie
itoring tools often run within the guest VM. However, theof “normal” or “abnormal” states to achieve classification
responsiveness of the monitoring tool can be affected whewer the future predicted metric values. In PREPARE, we
the application VM experiences performance anomaliesse the 2-dependent Markov model as the attribute value
Furthermore, it might be difficult to implant the monitoringpredictor and the tree-augmented Bayesian networks (TAN)
tool inside a guest VM in practice due to privacy concernmodel [12] as the anomaly classifier.

To achieve better accuracy and robustness, PREPARBJpon receiving a set of anomaly alerts, PREPARE first
strives to collect guest VM information from outside asries to filter out those false alarms caused by transient
much as possible. resource spikes or inaccurate measurements. After the

Most virtualization platforms provide interfaces that alanomaly alert is confirmed, PREPARE performs anomaly
low the hypervisor (or domain O in the Xen platform [2])cause inference to identify faulty VMs and related system
to extract guest VM's system-level metrics from outsidemetrics. Since PREPARE maintains per-VM anomaly pre-
PREPARE use$ibxenstat to monitor guest VM's resource diction models, we can infer which VMs are the faulty ones
usage from domain 0. However, it is challenging to extrably checking which prediction models raise anomaly alerts.
the memory usage information of guest VMs from outsidgloreover, we leverage the attribute selection capability o
in Xen since the memory utilization is only known to thehe TAN model to rank the contribution of each system-
OS within each guest VM. Thus, if we want to monitotevel metric to the predicted anomaly.
the application’s memory usage metric, we need to install aFinally, PREPARE triggers proper prevention actions
simple memory monitoring daemon (e.g., through/iirec to steer the system away from the SLO violation state.
interface in Linux) within the guest VM to get the memonSince PREPARE targets virtualized cloud computing en-
usage statistics. In addition, our system also needs to kneinonments, we develop virtualization-based prevention
whether the application is experiencing any SLO violatiotechniques. Currently, PREPARE supports elastic VM re-
PREPARE can either rely on the application itself or asource scaling [4], [5] and live VM migration [6] as the

SLO state (C) = abnormal for fluctuating attributes. The attribute value prediction
model is periodically update with new data measurements
to adapt to dynamic systems.
Residual C To prevent performance anomalies, PREPARE needs to
know not only when a performance anomaly will appear
(=014 Nein but also which system-level metrics are attributed to the
(L=31) (LL‘fg})) (=040 anomaly. Although our previous work [10] has shown that
naive Bayesian can achieve good anomaly classification ac-
L :attrbute’s impact strength curacy, it cannot provide the metric attribution infornoati
@ : most relevant attribute . .
accurately. To address this problem, PREPARE incorporates
Fig. 3. Attribute selection using Fhe Tree-Augmented Na?ve (TAN) Bayesian network_ [12]
the TAN model. into the anomaly prediction model. The TAN model is an
extension of the naive Bayesian model by further taking
anomaly prevention actions. For example, if the perfoglependencies among attributes into account. It can gjassif
mance anomaly is caused by insufficient memory, PRE-System state into normal or abnormal and give a ranked
PARE dynamically increases the memory allocation to tHist of metrics that are mostly related to the anomaly.
faulty VM to prevent the performance anomaly. After a By combining the metric value prediction and anomaly
prevention action is triggered, we perform effectivenessassification, our anomaly predictor performs classiiicat
validation to deal with black-box diagnosis mistakes. over future data to foresee whether the application will
o enter the anomaly state in a look-ahead window (e.g.,
B. Per-VM Anomaly Prediction Model 120 seconds). PREPARE will raise an anomaly alert for
PREPARE maintains one anomaly prediction model fa distributed application as long as any of the applicasion’
each application VM. Our anomaly prediction model conmper-VM anomaly predictor raises an alert. To maintain
bines attribute value prediction and multi-variant angmalper-VM anomaly prediction models, PREPARE relies on
classification to raise early alarms [10], [11]. Most previpreviously developed fault localization techniques [{B%]
ous learning-based anomaly detection schemes [12] tremidentify the faulty VMs and train the corresponding per-
a distributed application as one monolithic entity, whicWM anomaly predictors.
suffer from two major problems. First, we cannot distin- Since the TAN model is a supervised learning method,
guish which components are attributed to the performanae need to train the TAN model with labelled data (i.e.,
anomaly. Second, as we will show in Section lll, theneasurements with normal or abnormal labels). PREPARE
prediction accuracy of one monolithic model is significgntlsupports automatic runtime data labeling by matching
worse than that of per-component model since the attributee timestamps of system-level metric measurements and
value prediction errors accumulate as we include the &t O violation logs. By using the supervised classification
tributes of all components into one model. method, PREPARE can only detect previously seen (or
In our previous work [10], we used the simple Markovecurrent) anomalies. However, it is straightforward to
chain model for attribute value prediction and the naivextend PREPARE to support unknown anomalies by replac-
Bayesian model for anomaly classification, which has seing the supervised classification method with unsupervised
eral limitations. First, the simple Markov chain model aszlassifiers (e.g., clustering and outlier detection).
sumes that the changing behavior of each attribute value is
strictly a Markov process, that is, the conditional prokighi C Online Anomaly Cause Inference
distribution of a future value only depends on the current Upon receiving an anomaly alert, PREPARE first per-
value but not any past value. However, in practice, not dthrms false alarm filtering to avoid triggering unnecessary
attributes follow the Markov property. For example, if arpreventions. We use a simple majority voting scheme to
attribute value exhibits a sinusoidal pattern, we need filter the false alarms. This scheme is based on the obser-
rely on both the current value and the previous value t@tion that real anomaly symptoms often persist for some
determine whether the attribute value on an increasingeslaiime while most of false alarms are caused by transient
or a decreasing slope. To address this problem, we usaral sporadic resource spikes. Thus, PREPARE triggers
two-dependent Markov chain model for each attribute. Byrevention actions only after receiving at leésalerts in
using this model, transitions from each value depend dime receni?’ predictions. Different combinations &f and
both the current value and the prior value. W represent the tradeoff between the filtering effectiveness
Figure 2 shows the transition diagram of an example 2nd alert timeliness. We sétto be 3 andiW to be 4 in
dependent Markov chain model for an attribute whose valogrr experiments for achieving low false alarm rate.
is discretized into three single states. We can constrnet ni - After confirming a performance anomaly alert for a
combined states after combining every two single statesdistributed application, PREPARE performs a fast diag-
transform a non-Markovian attribute into a Markovian onenostic inference that answers two key questions: 1) which
Such conversion can improve the value prediction accuragigtributed application VMs are faulty; and 2) which system

Fig. 2. 2-dependent Markov
model for attribute value predic-
tion.

metrics on those faulty VMs are mostly related to the preurrently supports CPU and memory scaling. For example,
dicted performance anomaly. Since our system maintaifishe prediction modules raise alerts on two VMs and the
per-VM anomaly prediction models, we can easily infepinpointed attributes are memory and CPU respectively,
which VMs are faulty by checking which prediction model$?REPARE will trigger the memory scaling on the first VM
raise the alert. However, it is insufficient to just knowand CPU scaling on the second VM. We can also leverage
which VMs are faulty. Although we can try some simplistidive VM migration to prevent performance anomalies by
approaches such as migrating the faulty VM to anotheelocating the faulty VM to a host with desired resources.
idle host, we may not only fail to resolve the performancedowever, compared to migration, resource scaling is more
anomaly but also introduce excessive overhead (e.g., fight-weight and less intrusive. Thus, PREPARE strives to
VM migration costs). first use resource scaling to alleviate performance anamaly
To further identify the most relevant system metrics ttf the scaling prevention is ineffective or cannot be applie
the predicted anomaly for accurate anomaly preventiayje to insufficient resources on the local host, PREPARE
our system leverages the attribute selection capability wfill trigger live VM migration to relocate the faulty VM
the TAN classifier [12]. The TAN classifier can quantifyto a different host with matching resources [15].
the influence of each system attribute on the “abnormal” Online anomaly prediction are rarely perfect in practice,
classification result using a probabilistic model. Specifivhich may miss predictions, raise false alarms, or pinpoint
cally, we can derive the following mathematical form tavrong faulty VMs and fault-related system metrics. If
decide the TAN classifier's choice. This form is a sunthe anomaly predictor fails to raise advance alert for a
of terms, each of which involves the probability that th@appened anomaly, PREPARE will trigger the prevention
value of an attributea; occurs in each class lab&l' action after the application’s SLO violation is detecteul. |
(i.e., “abnormal”(1) or “normal”(0)) given the value of itsthis case, the prevention is performed reactively rathan th
parent attributes,,. A sum greater than zero generates aproactively. To handle false alarfmand metric pinpointing
“abnormal” classification result: mistakes, PREPARE performs online validation to check
P(ailap,,C =1) P(C=1) the effectiveness of the triggered prevention action. This
Zlog {m] +10gm >0 (1) s achieved by checking the anomaly alerts and compar-
@ L ing the resource usage before and after the prevention
We defineL; as the strength of the attributg’s impact action. If the prediction models stop sending any anomaly
on the TAN classifier's decision. We can extrdgt from alert (i.e., SLO violation is gone), it means that we have
Equation (1): successfully avoided or corrected a performance anomaly.
Plasla,,,C = 1) Otherwise, PREPARE builds a look-back window and look-
L] (2) ahead window for each prevention. The look-back window
Plailap,,C = 0) provides statistics of the resource usage shortly befae th
A larger value ofL; for an attributea; suggests that; prevention and the look-ahead window provides statistics o
is more relevant to the predicted anomaly. Figure 3 showse resource usage shortly after the prevention. Intujtive
an attribute selection example in which the “Free Memf the application resource usage does not change after a
attribute has the largest influence on the predicted anomadyevention action, it means that the prevention does not
One tricky issue is to distinguish a workload change froiimave any effect. The system will try other prevention action
some internal faults. Intuitively, if an anomaly is cause(e.g., scaling the next metric in the list of related metrics
by external factors such as a workload change, all tigovided by the TAN model) until the performance anomaly
application components will be affected. Thus, we should gone.
observe changes in some system metrics on all the appli-
cation components. Based on this observation, PREPARE IIl. EXPERIMENTAL EVALUATION
can infer a workload change by checking whether all the we have implemented the PREPARE system on top of
application components have change points in some systggh, and conducted extensive experiments using the IBM
metrics simultaneously [13]. System S data stream processing system [8] and the RUBIS
online auction benchmark (EJB version) [9]. In this section

o we first describe our experiment setup. We then present the
After pinpointing the faulty VMs and the relevant metyperimental results.

rics, PREPARE triggers proper anomaly prevention actions.
Since PREPARE targets virtualized cloud environments, Experiment setup

we focus on hypervisor-based prevention techniques. PRE—Our experiments were conducted on the NCSU?'s virtual

PARE currently supports two types of prevention actiongbmputing lab (VCL) [7]. Each VCL host has a dual-core

1). elagtic VM resource _scaling [4]. 15, and_ 2) live VM Xeon 3.00GHz CPU, 4GB memory, and runs CentOS 5.2
migration [6]. The elastic VM resource scaling system can

dynam'ca”y adJUSt the allocation of a §peCIfIC resource t01AIthough our majority voting scheme can filter out some falems,
the faulty VMs to mitigate the anomaly impact. Our systena cannot completely remove all false alarms.

L; =log [

D. Predictive Prevention Actuation

In the experiments using RUBIS, we injected the follow-
ing faults: 1)memory leak: we start a program that has a
memory leak bug in the VM running the database server;
2) CPU hog: we start a CPU-bound program that competes
CPU with the database server inside the same VM; and 3)
bottleneck: we gradually increase the workload until hitting
the capacity limit of the bottleneck component that is the
database server in RUBIS.

Evaluation methodology. We compare our approach
with 1) reactive intervention that triggers anomaly inter-
vention actions when a SLO violation is detected. This
approach leverages the same anomaly cause inference and

Client | Y0P
workload [
generator

(VM2)

(VM3) (VM8)

(VM4) (VM5) (VM7)

Fig. 4. The topology of the System S application.

: Http
Client K .
workload "eduesty/ Web prevention actuation modules as PREPARE. However, the
generator fundamental difference is that all these actions are trigije

only after a SLO violation has already occurred; and 2)
without intervention that does not perform any intervention
to the faulty application. The sampling interval of the
Fig. 5. The topology of the RUBIS application. system-level metrics is configured to be 5 seconds. We
define SLO violation time as the total time during which
o the application’s SLO is violated. Thus, we evaluate the
64-bit with Xen 3.0.3. The guest VMs also run CentOS 5.&kectiveness of different anomaly management schemes by
64-bit. o ~ comparing the SLO violation time. Shorter SLO violation
Case study distributed systemsTo test our system with ime indicates a better anomaly management. Furthermore,
real distributed systems, we used IBM System S [8] ange use true positive ratel; and false alarm ratels to
RUBIS [9] (EJB version) benchmarks. quantify the accuracy of the anomaly prediction model. Let
System S is a commercial high-performance data stream =N, Nip, and Ny, denote the true positive number,
processing system. Each System S application consistsiaike negative number, false positive number, and true

a set of inter-connectegrocessing elements calledPEs. In negative number, respectively. We defidg: and A in
our experiments, we used a tax-calculation applicatios, 0g standard way as follows,

of the sample applications provided by System S product N N
distribution. Figure 4 shows the application topology used Ap=—"" _ Ap— -
in the experiments. A SLO violation is marked if either Nip + Nen Nip + Nin
InputRate/Output Rate < 0.95 or the average per-tuple B. Experiment results
processing time is larger than 20ms. We run each PE in aFigure 6 shows the SLO violation time experienced by
guest VM. System S and RUBIS under different faults. In this set
RUBIS is a three-tier online auction benchmark. Figure §f experiments, we use the elastic VM resource scaling
shows the topology of the RUBIS application used in thes the prevention action. Both PREPARE and the reactive
experiments. The client workload generator also tracks tirgervention scheme perform the cause inference and vali-
response time of the HTTP requests it made. A SL@ation to automatically identify the right system metriatth
violation is marked if the average request response tirsaould be adjusted. Each experiment run lasts from 1200
is larger thar200ms. In order to evaluate our system undetb 1800 seconds. Since the current prototype of PREPARE
dynamic workloads with realistic time variations, we usedan only handle recurrent anomalies, we inject two faults
a client workload generator that emulates the workloasf the same type and each fault injection lasts about 300
intensity observed in the NASA web server trace beginning:conds. Our prediction model learns the anomaly during
at 00:00:00 July 1, 1995 from the IRCache Internet traffiie first fault injection and starts to make prediction for
archive [16]. the second injected fault. We repeat each experiment five
Fault injection. In the experiments using System S, wéimes. We report both mean and standard deviation for
injected the following faults: 1)nemory leak: we inject a the SLO violation time. The results show that PREPARE
memory leak bug in a randomly selected PE. The faultan significantly reduce the SLO violation time by 90-
PE performs continuous memory allocations but forgets 89% compared to the “without intervention” scheme. By
release the allocated memory; €PU hog: we introduce achieving early detection using the anomaly prediction,
an infinite loop bug in a randomly selected PE; and 3REPARE outperforms the reactive intervention scheme by
bottleneck: we gradually increase the workload until hittingreducing the SLO violation time by 25-97%. PREPARE
the CPU capacity limit of the bottleneck PE that is the firsichieves more significant SLO conformance improvement
PE to be overloaded (i.e., PE6 in Figure 4, a sink PE thitr the memory leak and bottleneck faults than the CPU
intensively sends processed data tuples to the network)hog fault. The reason is that both the memory leak fault

3)

[1 Without intervention [Reactive intervention I PREPARE

50 152 196 50 301 301 50 110 213

] € €

S 40 8 40 8 4o

8) D

8 @8 K>

@ @ @

£30 £ a0 £ 30

s S S

E=] = =

320 2 20 2 20

=

9 S S

@A D [22]

~ 10 o 10 o 10

& 54 54

g o 5 o % o

<
System S RUBIS System S RUBIS System S RUBIS
a) Memory leak b) CPU hog c) Bottleneck

Fig. 6. SLO violation time comparison using the elastic VMaerce scaling as the prevention action.

? 30 o GRRaR A -©-Without intervention 5 % = -©-Without intervention
S SR 2 -Reactive intervention| 2 > Reactive intervention
% 25 ;: PREPARE 2 20 I ;: PREPARE
& £ 200 g [£ 200
220 = 215 %
S [= [
¥ 2 150 2 @ 150
<15 g < 5
5 & 510 &
210 8 100 2 g 100
o -©-Without intervention 5 KAA B 25 -©-Without intervention 5
S 5 ~*-Reactive intervention| Z SOk wE N\ 2 ~*-Reactive intervention z %0 x N
2 < VOB / WYY, 2
F o PREPARE oS F PREPARE e
0
0 100 200 300 0O 100 200 300 400 0 100 200 300 400 GO 100 200 300 400 500 600
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(a) Memory leak (System S) (b) Memory leak (RUBIS) (c) CPU hog (System S) (d) CPU hog (RUBIS)

Fig. 7. Sampled SLO metric trace comparison using the eld8# resource scaling as the prevention action.

and the bottleneck fault exhibit gradual changing behavior Figure 7(c) and Figure 7(d) show the system throughput
in some system-level metrics, which gives opportunity fartomparison in the presence of a CPU hog fault for System
PREPARE to make more accurate and earlier predictidd.and RUBIS, respectively. We observe that both PREPARE
In contrast, the CPU hog fault often manifests suddenignd the reactive intervention scheme can quickly alleviate
which makes it difficult to predict. the SLO violation using proper scaling since the CPU hog

Figure 7 shows the continuously sampled SLO metrigun manifest immediately int_o SLO violation. Howevgr,
traces for a subset of the tested faults in the above exp rBEPARE achieves only a little SLO conforr_nance im-
ments. Those trace results give us close-up views about gvement compared to the reac_'uve intervention scheme
effectiveness of different anomaly management schem .the CP_U hog fault. The_reason IS that the CPU hog faUIF
For System S, we present the throughput trace that sampq tgn mamfe_sts as sudden increase n the CPU usage metric,
the end-to-end stream system output rate in the number ich is difficult for PREPARE to raise early alarms.
produced result tuples per second. For RUBIS, we presenfNext, we repeat the same set of experiments but use the
the sampled average request response time trace. We chdiweé/M migration as the prevention action. Figure 8 shows
these two metrics since they can reflect the applicatioritse SLO violation time experienced by System S and RU-
SLO status during runtime. Figure 7(a) shows the syBiS under different anomaly faults. The results show that
tem throughput comparison in the presence of a memdPREPARE can effectively reduce the SLO violation time
leak fault for System S. We observe that PREPARE cdiry 88-99% compared to the “without intervention” scheme.
almost completely prevent the performance anomaly (i.€€pmpared to the reactive intervention scheme, PREPARE
throughput drop). In contrast, for the reactive intervemti can achieve 3-97% shorter SLO violation time. We also
approach, the application still has to suffer from a shodabserve that using live VM migration as the prevention
period of SLO violation during the beginning phase o&ction incurs longer SLO violation time in most cases.
the fault manifestation. Figure 7(b) shows the averadée reason is that the resource scaling often takes effect
request response time comparison for a memory leak fautmediately while the live VM migration takes around 8-15
in RUBIS. Similarly, the results show that PREPARE careconds to be effective if the migration is triggered before
effectively avoid SLO violation by maintaining the respensthe anomaly happens. If the live migration is triggered
time under the SLO violation threshold. For the reactiviate, the performance penalty will be even larger. Thus,
intervention approach, the application still has to exgrece PREPARE will choose to perform resource scaling first
a short period of SLO violations since the prevention acticand only trigger the migration if the scaling cannot be
is triggered after the SLO violation is detected. performed (i.e., insufficient resources on the local host).

[1 Without intervention [Reactive intervention I PREPARE

152 196 50 301 301 50 110 213

: L

30

[
[=]

40

+

w
=]

30

20 20

-
o

10

Average SLO violation time (seconds)
Average SLO violation time (seconds)

Average SLO violation time (seconds)
N
o

o

System S RUBIS System S RUBIS System S RUBIS
a) Memory leak b) CPU hog c) Bottleneck

Fig. 8. SLO violation time comparison using the live VM mitioa as the prevention action.

S| o | [Shbsneen]9 g | e

9 > ive i i o

g Reactive intervention é PREPARE 2 20ls & é PREPARE

b PREPARE o 17} o

730 g200 3 £

D[RRy i e B 515 °

E; . @ 150 2 g

<20 s < 10 s

5 2100 3 8

L = c " . " =

5 10 % 5 5 9W|thoyt mterventhn %

3 3: 5q¢‘6_ vl Ax)(‘ﬁ.,k‘w"‘,‘ﬁ 2 ~*Reactive intervention 3: »x%x)\/&

£ < A % £ PREPARE Sebesido X

o J F o x X%

0 50 100 150 200 0 100 200 300 400 500 0 100 200 300 400 100 200 300 400
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(a) Memory leak (System S) (b) Memory leak (RUBIS) (c) CPU hog (System S) (d) CPU hog (RUBIS)

Fig. 9. Sampled SLO metric trace comparison using the live Migration as the prevention action.

Figure 9 shows the continuously sampled SLO metric ™ m%\s\s\e_a\aﬂ\w
traces for a subset of the tested faults in the second set g 80 !
experiments. Figure 9(a) shows the system throughput corg 1 &[5 A per-componeny
parison for a memory leak fault in the System S. The resultz © A (per~componen) 2 G,AT(per_wmponem)
show that PREPARE can trigger the migration in advance t% 20 ,B,AF(per-componem)\/\ % 0 *A:(monolithic)
achieve the shortest SLO violation time. In contrast, the res ||sA (monalithic) & || oA monolithic)
active intervention scheme triggered the live VM migration 20j|-x-A(monolithic)) S VVEUIE ek O
after the performance anomaly already happened. Thus, tl e e R ;:E:,a——B-—g‘—"ﬁ“ﬂ"ﬂ'"D
migration takes much Ionger time_ to_finish. Moreover, the 5 10 15 20 25 Oevo(sggon%os) 45 5IO &l?_aihseaéowiznsd ogc)(ssesco‘rll%s)‘ls
performance of the running application has much smaller .

(a) Memory leak (System S) (b) CPU hog (RUBIS)

degradation during the early migration triggered by PRE-
PARE than that during the late migration triggered by theig. 10. Anomaly prediction accuracy comparison betweem fiar-
reactive intervention scheme. Figure 9(b) shows the agerg§mponent model and the monolithic model.

request response time comparison for a memory leak fault

in RUBIS. We observe that PREPARE can completely avojstedicted label (i.e. “abnormal” or “normal”) and the true

the SLO violation by triggering early migration. Figure P(Clabel for all the data samples in each dataset. The labels
and Figure 9(d) show the throughput comparison for a CP4je automatically produced by correlating the timestamps

hog fault in System S and RUBIS, respectively. Again, Wgf the measurement samples with the SLO violation logs,
observe that due to the limited predictability of the rethteszs described in Section 11-B.

attribute (i.e. CPU usage) during the fault manifestation,
the prevention efficacy of PREPARE degrades to that 8[1
the reactive intervention approach.

Figure 10 compares the prediction accuracy between
r per-VM prediction model scheme and the monolithic
prediction model scheme that incorporates the performance
To further quantify the accuracy of our anomaly predianetrics of all the application VMs into one single predictio
tion model, we conduct trace-driven experiments using tineodel. Due to the space limitation, we only show a subset
data collected in the above two sets of experiments. We caf- results. We observe that the prediction accuracy of
culated the prediction accuracy under different look-aheaur per-VM model is significantly better than that of the
windows for the second fault injection in each experimentonolithic model. The reason is that as the number of
We use the formula defined in Equation (3) to calculat&tributes increases, the attribute value predictionrsrro
the accuracy of our anomaly predictor by comparing theill accumulate. As a result, the classification accuracy

100 80, System Modules CPU cost

) % VM monitoring (13 attributes) 4.68+0.52 ms
8 60 ! Simple Markov model training (600 sample$1.0+:0.60 ms
& oS A (2-dep. Markov) 2-dep. Markov model training (600 sample¢$35.14-0.88 ms
y 60 =A, (2-dep. Markov) 2 BAT od P Mark TAN model training (600 samples) 4.0£0.02 ms
€ oA o-dep Markov)\\ § 401 | A (2-dep. Markov) Anomaly prediction 1.3+0.06 ms
g iAF (imple Mk g || oAy (simple Markoy CPU resource scaling 107.0+0.53 ms
® ol (simpe Merko) © 20t |-x-Ag (simple Markov) Memory resource scaling 116.0:2.39 ms

B TP X I Live VM migration (512MB Memory) 8.56+1.05 sec

A =¥IECH B T T T R

5 10 15 20 25 30 35 40 45 % 10 15 20 25 30 35 40 45 TABLE |

look-ahead window (seconds) look-ahead window (seconds)

PREPARE SSTEM OVERHEAD MEASUREMENTS
(a) Memory leak (System S) (b) Bottleneck (RUBIS)

Fig. 11. Anomaly prediction accuracy comparison betwees 2h Figure 13 compares the prediction accuracy under dif-

dependent Markov model and the simple Markov model. . . .
ferent sampling intervals of the performance metrics for

% - a bottleneck fault in RUBIS. We observe that 5 seconds

5 2 6 sampling interval can achieve the highest prediction accu-
601 [A (1 W=4) =g o ASOE\“\ racy. In comparison, too fine-grained monitoring (i.e., &-se
& || aadbern=g &7l ee) ond sampling interval) achieves lower prediction accuracy
> | |eA (k=2 w=2) > 40t | B-A¢(t sec) : ;
S a0 tezuns 8 sea s secs) especially under larger look-ahead windows. The reason
= -X- =2, W= =
3 A (k3 W=4) 3 307 a5 secs) is that the sampling interval also decides the step size of
Q T ' Q 11 . .
200 | 0 A (k=3 W=4) @ 20| A (10 secs) the Markov model that has limited accuracy for large step
AF(losecs) . g . . .
o Regge gt g predictions. In contrast, coarser grained monitoring,(L8
0 q seconds sampling interval) also achieves lower prediction
5 10 15 20 25 30 35 40 45 40 50

look-ahead window (seconds) ® ook-ahead wintlow (seconds) accuracy. The reason is that sampling system metrics less
frequently might not capture the pre-anomaly behaviors
Fig. 12. Anomaly prediction ac- Fig. 13. Anomaly prediction ac- accurately and thus leads to inaccurate predictions.
curacy comparison under differentcuracy comparison under different .
settings of the false alarm filteringsampling intervals for a bottleneck Fma”y’ we evaluate the overhead of the PREPARE
for a bottleneck fault in RUBIS. fault in RUBIS. system. Table | lists the CPU cost of each key module in the

)) o PREPARE system. The VM monitoring module runs within
over predicted values will degrade. Thus, it is necessafye domain 0 of each host, which collects 13 resource

to build per-VM anomaly prediction model for distributed, rihytes every five seconds. Each collection takes around
applications. o 1.3 milliseconds. The simple Markov model training takes
Figure 11 shows the anomaly prediction accuracy comground 61 milliseconds using 600 training data samples.in
parison between 2-dependent Markov model and simplgmparison, the 2-dependent Markov model training takes
Markov model for a subset of tested faults. We obsersgoynd 135 milliseconds using the same training samples.
that the 2-dependent Markov model can achieve higher pigse TAN model training takes around 4 milliseconds for
diction accuracy than the S|_mple Markov model, especiallyno training data samples. The anomaly prediction takes
under larger look-ahead windows. Note that although thg,ng 1.3 milliseconds, which includes the time of calcu-
trace-driven experiments show that our anomaly predictigting state probabilities, generating predicted clasela
models still produce significant number of false alarmgy, iferent look-ahead windows and performing attribute
most false alarms will be filtered by our continuity checkeection for each data sample. The time spent on perform-
and online validation schemes during runtime. ‘ing CPU or memory scaling is around 100 milliseconds.
~ PREPARE ftriggers prevention actions only after receivrhe |ive VM migration takes around 8 seconds to migrate
ing at leastk alerts in the recentl predictions for false gne vM with 512 MB memory. During the normal execu-
alarm filtering. Figure 12 compares the prediction accuragyn PREPARE imposes less than 1% CPU load in domain
under different settings of and W for a bottleneck fault g The memory consumption of PREPARE is around 3MB.
in RUBIS. We observe that a larger valuelofi.e.,k = 3) Fyrthermore, since PREPARE maintains per-VM anomaly
can effectively _f||ter out more f§l|§e alarms becaus_e it C3fediction models, different anomaly prediction models
tolerate sporadic anomaly predictions generated mistpkegan pe distributed on different cloud nodes for scalability

in a window of W. A larger value ofk also achieves gyerall, we believe that PREPARE is practical for online
slightly lower true positive rate. The reason is that itdegs = system anomaly management.

prevention actions slightly later when a persistent true

anomaly is about to happen. However, such small delay IV. RELATED WORK

(e.g., one or two sampling intervals) in prevention actions Recent work has shown that statistical machine learning
is negligible if PREPARE can achieve generous lead timechniques are useful for automatic system management.
We setk to be 3 andiW to be 4 for all the applications Cohen et al. proposed to use the TAN model to correlate
and faults tested in our experiments. low-level system metrics to high-level system states [12],

and capture the essential system characteristics called si Predictive system management has been studied under
natures [17]. Fox et al. proposed an anomaly detectidifferent contexts. Henriksson et. al [31] proposed a feed-
approach that considers both simple operational statistforward delay predictor that uses instantaneous measure-
and structural change in a complex distributed system [18hents to predict future delays on an Apache web server
Bodik et al. applied statistical machine learning teche&uand then dynamically changes the service rate to satisfy
to estimate the relationships among performance, worklodde delay specification according to the prediction results
and physical resources [19]. Shen et al. proposed a chafdereska et. al [32] proposed a “Whatif” interface to
profile based approach to detect system anomaly symptoemable a system to predict the performance impact of
by checking performance deviation between reference aexternal changes such as workload and hardware devices
target execution conditions [20]. Kaustubh et. al. propase using operational laws. Thomas et. al. [33] used auto-
model-driven integrated monitoring and recovery approacirrelation and cross-correlation to predict the workload
for distributed systems [21]. The authors proposed to uaed linear regression to predict the execution time of each
Bayesian estimation and Markov decision theory to choosemponent in the distributed stream processing system.
recovery actions according to a user-defined optimizatidiney proposed an early execution migration scheme based
criteria. In comparison, our work provides a nenline, on the workload and execution time predictions to alleviate
prediction-driven anomaly prevention framework by com-application hot-spots. In contrast, PREPARE provides a
bining online anomaly prediction with hypervisor-basecthore informed anomaly prediction scheme that can not
out-of-box VM preventions. Our approach is non-intrusivenly raise advance anomaly alerts with certain lead time
and application-agnostic, which makes it suitable for dlowbut also provide important cues about the anomaly causes.
computing environments. Moreover, PREPARE integrates the online anomaly predic-
Previous work has also developed various performanten with VM prevention techniques to achieve automatic
anomaly debugging techniques. Project5 [22] performa@homaly prevention for the cloud system.
cross-correlations between message traces to derivel causa
paths and identify performance bottlenecks. Cherkasova et
al. presented an integrated framework of using regressionfirst, PREPARE currently only works with recurrent
based transaction models and application performance siggpomalies. The reason is that we use the supervised learning
natures to detect anomalous application behavior [23hethod. It means that the model requires labeled histor-
Kahuna [24] provides a problem diagnosis approach faral training data to derive the anomaly classifier. Thus,
MapReduce systems by statistically comparing both blaB#lREPARE can only predict the anomalies that the model
box and white box data across different nodes. NAP [28hs already seen before. Furthermore, although PREPARE
collected network communication traces and applied quelsipports automatic runtime data labeling by correlatirgg th
ing theory to estimate the service time and waiting timiéme-series data samples with the SLO violation logs based
for identifying bottleneck components. Monalytics [26pn the timestamp information, it would be challenging to
combines monitoring and analysis for managing large-scalbtain labeled training data for large-scale cloud systems
data centers, and uses entropy-based anomaly detecliéa plan to extend PREPARE to handle unseen anomalies
method [27] to identify the anomalies. Chopstix [28] proby developing unsupervised anomaly prediction models.
vided a light-weight approximate data collection frame- Second, PREPARE performs coarse-grained black-box
work and diagnosis rules for troubleshooting a large-sca@omaly prediction and diagnosis (i.e., pinpointing the
production system. In comparison, PREPARE focuses &aulty components and the most relevant system metrics)
predicting system performance anomalies in advance aatd prevents performance anomalies by using the VM re-
providing pre-anomaly and coarse-grained debugging iseurce scaling and live VM migration techniques. However,
formation to actuate anomaly prevention actions. PREPARE is not intended to replace those fine-grained
Our work is also related to previous trial-and-error faglurfault localization and diagnosis tools (e.qg., pinpointimgs
management approach. Qin et al. presented Rx [29],0&faulty code). If the fault is deterministic (e.g., a mem-
system that helps system survive bugs by rolling backy leak bug), PREPARE can only temporarily avoid the
the program and re-executing it in modified environmentSLO violations. To completely remove the fault, we need
Similarly, Triage [30] leverages lightweight re-executio to integrate PREPARE with other fine-grained debugging
support to deal with production run bugs. However, theseols. However, PREPARE can delay the SLO violation
techniques require periodical system checkpointing asd spccurrence, which provides precious time for fine-grained
tem rollback for re-execution, which can bring significantiebugging.
overhead to the system. In comparison, PREPARE performsThird, PREPARE assumes that performance anomalies
predictive anomaly correction, which triggers VM preven-manifest in system-level metrics. Although our experimen-
tion actionsbefore the anomaly happens. Thus, PREPAREal study shows that this assumption is valid for most
does not need to pay the cost of checkpointing durirgerformance anomalies we have tested, there may still exist
normal execution and avoid expensive rollback to recovperformance anomalies that do not manifest as system-
from failure. level metric changes. Under those circumstances, black-

V. DISCUSSIONS

box approaches generally will not be effective. We neegb] “RUBIS Online Auction System,” http://rubis.ow2.org/
to |everage the white-box or grey-box diagnosis techniqu@§] X. Gu and H. Wang, “Online Anomaly Prediction for Rob@tster
to handle the anomalies.

[
Fourth, PREPARE currently needs to implant a light-

11

weight monitoring daemon within one guest VM to track it§-2]
memory usage information. However, these memory usage
statistics can either be inferred indirectly [34] or ob&in
by VM introspection techniques [35].

VI. CONCLUSION

(23]

[14]

We have presented the design and implementation of

the PREPARE system, a novel predictive performan

anomaly prevention system for virtualized cloud comp
ing infrastructure. PREPARE can predict recurrent perfoli6]
mance anomalies by combining attribute value predictiéW]
with supervised anomaly classification methods. PREPARE
builds per-VM prediction model and leverages the attribut&s]
attribution capability of the TAN classification method to

pinpoint faulty VMs and relevant system metrics. Based qigj
its black-box diagnosis results, PREPARE performs elastic

VM resource scaling or live VM migration to prevent th
performance anomalies. We have implemented PRE

fFS]

u_

e

PA

on top of the Xen platform and tested it on the NCSU’s
Virtual Computing Lab using real distributed systems (IB
System S stream processing system and RUBIS). Our
results show that PREPARE can effectively prevent tHe?]
performance anomalies caused by a set of common soft-
ware faults. PREPARE is light-weight and non-intrusivgzs)
which makes it an attractive practical anomaly management
solution for large-scale virtualized cloud computing asfr
tructures.

ACKNOWLEDGMENT

P

[24]

[25]

This work was sponsored in part by NSF CNS0915567
grant, NSF CNS0915861 grant, NSF CAREER Awar{6]
CNS1149445, U.S. Army Research Office (ARO) un-
der grant W911NF-10-1-0273, IBM Faculty Awards angbz
Google Research Awards. Any opinions expressed in this

paper are those of the authors and do not necessarily ref
the views of NSF, ARO, or U.S. Government. The autho

i

would like to thank the anonymous reviewers for their
insightful comments.

(1]
(2]

(3]
(4]
(5]
(6]

[7]
(8]

REFERENCES

“Amazon Elastic Compute Cloud,” http://aws.amazoméec?2/.

P. Barham and et al., “Xen and the Art of Virtualizationiri Proc.
of SOSP, 2003.

“VYMware Virtualization Technology,” http://www.vmwa.com/.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscaleaskt
resource scaling for multi-tenant cloud systems,Pioc. of SOCC,
2011.

Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastie-
Source Scaling for cloud systems,” ifroc. of CNSM, 2010.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Lichpa
I. Pratt, and A. Warfield, “Live migration of virtual machigg in
Proc. of NSDI, 2005.

“Virtual Computing Lab,” http://vcl.ncsu.edu/.

B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADEe
system s declarative stream processing enginé2tdc. of SGMOD,
2008.

[29]

[30]

(31]

[32]

(33]

[34]

(35]

Systems,” inProc. of ICDE, 2009.

] Y. Tan, X. Gu, and H. Wang, “Adaptive runtime anomaly giiction

for dynamic hosting infrastructures,” ifroc. of PODC, 2010.

I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S.a&h
“Correlating Instrumentation Data to System States: A @od
Block for Automated Diagnosis and Control,” igroc. of OSDI,
2004.

H. Nguyen, Y. Tan, and X. Gu, “PAL: Propagation-awaremmaly
localization for cloud hosted distributed applications)” Proc. of
SLAML, 2011.

E. Kiciman and A. Fox, “Detecting Application-Level faes in
Component-based Internet ServiceldFEE Transactions on Neural
Networks, 2005.

Z. Gong and X. Gu, “PAC: Pattern-driven Application Gofidation
for Efficient Cloud Computing,” inProc. of MASCOTS, 2010.

“The IRCache Project,” http://www.ircache.net/.

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kellyd &. Fox,
“Capturing, indexing, clustering, and retrieving systeistdry,” in
Proc. of SOSP, 2005.

A. Fox, E. Kiciman, and D. A. Patterson, “Combining sttal
monitoring and predictable recovery for self-managerhémtProc.
of WOSS, 2004.

P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and Patterson,
“Statistical machine learning makes automatic controctizal for
internet datacenters,,” iRroc. of HotCloud, 2009.

K. Shen, C. Stewart, C. Li, and X. Li, “Reference-driven
performance anomaly identification,” inProc. of SGMET-
RICSPerformance, 2009.

K. Joshi, M. Hiltunen, W. Sanders, and R. Schlichtingrdbabilistic
model-driven recovery in distributed system&EE Transactions on
Dependable and Secure Computing, 2010.

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, dan
A. Muthitacharoen, “Performance debugging for distrildusgstems
of black boxes,” inProc. of SOSP, 2003.

L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. SimiAu-
tomated anomaly detection and performance modeling of gnge
applications,”ACM Trans. Comput. Syst, vol. 27, no. 3, 2009.

J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and
P. Narasimhan, “Kahuna: Problem diagnosis for mapredase
cloud computing environments,” iRroc. of NOMS, 2010.

M. Ben-Yehuda, D. Breitgand, M. Factor, H. Kolodner,Kfavtsov,
and D. Pelleg, “Nap: a building block for remediating peni@nce
bottlenecks via black box network analysis,”Rnoc. of ICAC, 2009.
M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwand
M. Wolf, “Monalytics: online monitoring and analytics foranaging
large scale data centers,” Rroc. of ICAC, 2010.

C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, ‘f@nli
detection of utility cloud anomalies using metric disttibus,” in
Proc. of NOMS, 2010.

S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson
“Lightweight, high-resolution monitoring for troublesbiing pro-
duction systems,” irProc. of OSDI, 2008.

F. Qin, J. Tucek, and Y. Zhou, “Treating bugs as allesgiea safe
method to survive software failures,” iroc. of SOSP, 2005.

J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou, “Teiag
diagnosing production run failures at the user’s site,”Piroc. of
SOSP, 2007.

D. Henriksson, Y. Lu, and T. F. Abdelzaher, “Improvecegiction
for web server delay control,” ifProc. of ECRTS, 2004.

E. Thereska, D. Narayanan, and G. R. Ganger, “Towards se
predicting systems: What if you could ask "what-if"?” Proc. of
DEXA, 2005.

T. Repantis and V. Kalogeraki, “Hot-spot predictiondaalleviation
in distributed stream processing applications,Pnac. of DS\, 2008.
T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. YouBifack-
box and gray-box strategies for virtual machine migratiam,Proc.
of NSDI, 2007.

K. Nance, M. Bishop, and B. Hay, “Virtual machine intpestion:
Observation or interference®ecurity Privacy, |IEEE, vol. 6, no. 5,
pp. 32 -37, sept.-oct. 2008.

