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Dynamically adjusting the number of virtual machines " [ Resource | de(r;%nd prejsl:gre
(VMs) assigned to a cloud application to keep up with s monlonng S =
load changes and interference from other uses typically||| appiication — Senve po
requires detailed application knowledge and an ability to prediction
know the future, neither of which are readily available Sewerp;l;l -
to infrastructure service providers or application owners \ Linux + KVM \ manager
The result is that systems need to be over-provisione

(costly), or risk missing their performance Service Level Figure 1: The overall structure of the AGILE system. The

Objectives (SLOs) and have to pay penalties (aISOAGILE slave continuously monitors the resource usage of

COStIY)'_ AGILE dgals with both issues: it uses Wavfalejtsdifferent servers running inside local VMs. The AGILE maste

to provide a medium-term resource demand predictionyg|iects the monitor data to predict future resource demand
with enough lead time to start up new application serverrhe AGILE master maintains a dynamic resource pressure
instances before performance falls short, and it usemodel for each application using online profiling. We use the
dynamic VM cloning to reduce application startup times.term server poolto refer to the set of application VMs that
Tests using RUBIS and Google cluster traces show thagprovide the same replicated service. Based on the resource
AGILE can predict varying resource demands over thedemand prediction result and the resource pressure model,
medium-term with up to 3.42 better true positive rate the AGILE master invokes the server pool manager to add or
and 0.34 the false positive rate than existing schemes€MOV€ SEIVers.

Given a target SLO violation rate, AGILE can efficiently
handle dynamic application workloads, reducing both

i ) ) X sources to give to an application within a single host.
penalties and user dissatisfaction.

But distributed resource scaling (e.g., adding or remov-
ing servers) is more difficult because of the latencies
1 Introduction involved. For example, the mean instantiation latency
in Amazon EC2 is around 2 minutes [8], and it may then
Elastic resource provisioning is one of the most attractivetake a while for the new server instance to warm up: in
features provided by Infrastructure as a Service (laaSpur experiments, it takes another 2 minutes for a Cassan-
clouds [2]. Unfortunately, deciding when to get more dra server [4] to reach its maximum throughput. Thus,
resources, and how many to get, is hard in the face oft is insufficient to apply previous short-term (i.e., less
dynamically-changing application workloads and servicethan a minute) prediction techniques to the distributed
level objectives (SLOs) that need to be met. Existingresource scaling system.
commercial laaS clouds such as Amazon EC2 [2] de- In this paper, we present our solution: AGILE, a
pend on the user to specify the conditions for addingpractical elastic distributed resource scaling system for
or removing servers. However, workload changes andaaS cloud infrastructures. Figure 1 shows its overall
interference from other co-located applications make thistructure. AGILE provides medium-term resource de-
difficult. mand predictions for achieving enough time to scale up
Previous work [19, 39] has proposed prediction-driventhe server pool before the application SLO is affected by
resource scaling schemes for adjusting how many rethe increasing workload. AGILE leverages pre-copy live



cloning to replicate running VMs to achieve immediate Trainine CPU demand Pdfz:q':fjtf;‘:
performance scale up. In contrast to previous resource raining emand trace
demand prediction schemes[19, 18], AGILE can achieve
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Contributions
We make the following contributions in this paper. ‘

e We present a wavelet-based resource demand pr

Training - - - Predicted

. . . . - _PI'—'_igure 2: Wavelet decomposition of an Apache web server
diction algorithm that achieves higher prediction ac PU demand under a real web server workload from the

curacy than prewous Schemes when looking ahea larkNet web server [24]. The original signal is decomposed

for up to 2 minutes: the time it takes for AGILE t0 g four detailed signals from scale 1 to 4 and one approxi-

clone a VM. mation signal using Haar wavelets. At each scale, the dotted
e We describe a resource pressure model that caline shows the predicted signal for the next future 16 sesond

determine the amount of resources required to keet time t = 32 second.

an application’s SLO violation rate below a target

0, .
(e.g., 5%). o 2 AGILE system design
e We show how these predictions can be used to clone

VMs proactively before overloads occur, and how |n this section, we first describe our medium-term re-
dynamic memory-copy rates can minimize the costsource demand prediction scheme. By “medium-term”,
of cloning while still completing the copy intime.  \we mean up to 2 minutes (i.e., 60 sampling intervals
M given a 2-second sampling interval). We then introduce
virtualization platform [27]. We conducted extensive our online resource pressure modeling system for map-

ping SLO requirements to proper resource allocation.

experiments using the RUBIS multi-tier online auction . . :
Next, we describe the dynamic server pool scaling mech-
benchmark, the Cassandra key-value store system, and . o .
nism using live VM cloning.

resource usage traces collected on a Google cluster [20?.
Our results show that AGILE’s wavelet-based resource
demand predictor can achieve up to 3«4better true 2.1 Medium-Term Resource demand pre-
positive rate and 0.34 the false positive rate than diction using Wavelets

previous schemes on predicting overload states for real , , .
workload patterns. AGILE can efficiently handle chang-~CILE provides online resource demand prediction

ing application workloads while meeting target SLO vi- using a sliding windowD (e.g., D = 6000 seconds)

olation rates. The dynamic copy-rate scheme complete@f _recent resource usage datg: AGILE_does not re-
uire advance application profiling or white-box/grey-

the cloning before the application enters the overloacﬂ " ; )
ox application modeling. Instead, it employsvelet

state with minimum disturbance to the running system. ‘ ke i di dictions:
AGILE is light-weight: its slave modules impose less transforms{1] to make its medium-term predictions: at

than 1% CPU overhead each sampling instamt predicting the resource demand
' over the prediction window of leng¥¥ (e.g.,W = 120

We have implemented AGILE on top of the KV



seconds). The basic idea is to first decompose the 40, Web server tier Database tier
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original resource demand time series into a set of wavelet S

based signals. We then perform predictions for each £ *| g

decomposed signal separately. Finally, we synthesize the g 20| £ 20

futureI resodurce demand by addlilng up all the indiviollual ZE o] % 0 oF

signal predictions. Figure 2 illustrates our wavelet- % s = .

based prediction results for an Apache web server's CPU 3 Qo oo gt |

demand trace. Resource pressure (%) Resource pressure (%)
Wavelet transforms decompose a signal into a set of Resource pressure model

wavelets at increasing scales. Wavelets at higher scales = Sample data for building the model

have larger duration, representing the original signal at ° Real data observed in experiments

coarser granularities. Each scalecorresponds to a

. . ; Fi 3: D ically derived CPU del
wavelet duration ol seconds, typicallyj = 2'. For gure ynamicaly cerive resourcee pressure moae’s

le. in Fi 5 h | le 1 2 2mapping from the resource pressure level to the SLO vialatio
example, in Figure 2, each wavelet at scale 1 covers rate using online profiling for RUBIS web server and database

seconds while each wavelet at scale 4 covérs-26  senver. The profiling time for constructing one resourcespre
seconds. After removing all the lower scale signalSsyre model is about 10 to 20 minutes.
calleddetailed signalérom the original signal, we obtain
a smoothed version of the original signal called the
approximation signal For example, in Figure 2, the that results in the smallest Euclidean distance between
original CPU demand signal is decomposed into fourthe approximation signal and the original signal. Then,
detailed signals from scale 1 to 4, and one approximatio\GILE sets the number of values to be predicted for the
signal. Then the prediction of the original signal is approximation signal to 1. It does this by choosing the
synthesized by adding up the predictions of these deconrumber of scales for the wavelet transforms. Given a
posed signals. look-ahead windowV, letU denote the number of scales
Wavelet transforms can use different basis functionge.g., scale of the approximation signal). Then, we have
such as the Haar and Daubechies wavelets [1]. IW/2Y =1, orU = [log,(W)]. For example, in Figure 2,
contrast, Fourier transforms [6] can only use the sinusoidhe look-ahead window is 16 seconds, so AGILE sets the
as the basis function, which only works well for cyclic maximum scale ttJ = [log,(16)] = 4.
resource demand traces. Thus, wavelet transforms have We can use different prediction algorithms for predict-
advantages over Fourier transforms in analyzing acycliéng wavelet values at different scales. In our current pro-
patterns. totype, we use a simple Markov model based prediction
The scale signal is a series of independent non- scheme presented in [19].
overlapping chunks of time, each with duration df 2
(e.g., the time intervals [0-8), [8—1_6))_. We need topredict2 2 Online resource pressure modeling
W/2' values to construct the scalesignal in the look-
ahead windowV as adding one value will increase the AGILE needs to pick an appropriate resource allocation
length of the scalésignal by 2. to meet the application’s SLO. One way to do this would
Since each wavelet in the higher scale signal has &e to predict the input workload [21] and infer the future
larger duration, we have fewer values to predict forresource usage by constructing a model that can map
higher scale signals given the same look-ahead windownput workload (e.g., request rate, request type mix) into
Thus, it is easier to achieve accurate predictions fothe resource requirements to meet an SLO. However,
higher scale signals as fewer prediction iterations ardhis approach often requires significant knowledge of the
needed. For example, in Figure 2, suppose the lookapplication, which is often unavailable in laaS clouds
ahead window is 16 seconds, we only need to predict Bnd might be privacy sensitive, and building an accurate
value for the approximation signal but we need to predictworkload-to-resource demand model is nontrivial [22].
8 values for the scale 1 detail signal. Instead, AGILE predicts an application’s resource
Wavelet transforms have two key configuration pa-usage, and then uses an application-agnassource
rameters: 1) the wavelet function to use, and 2) thepressuremodel to map the application’s SLO violation
number of scales. AGILE dynamically configures theserate target (e.g.<< 5%) into a maximum resource pres-
two parameters in order to minimize the predictionsure to maintain. Resource pressure is the ratio of
error. Since the approximation signal has fewer values téesource usage to allocation. Note that it is necessary to
predict, we want to maximize the similarity between theallocate a little more resources than predicted in order to
approximation signal and the original signal. For eachaccommodate transient workload spikes and leave some
sliding windowD, AGILE selects the wavelet function headroom for the application to demonstrate a need for



more resources [39, 33, 31]. We use online profiling
to derive a resource pressure model for each application
tier. For example, Figure 3 shows the relationship be-
tween CPU resource pressure and the SLO violation rate
for the two tiers in RUBIS, and the model that AGILE
fits to the data. If the user requires the SLO violation rate
to be no more than 5%, the resource pressure of the web
server tier should be kept below 78% and the resource
pressure of the database tier below 77%.

The resource pressure.model is applic_atilon SF_’eCiﬁCFigure 4: Performance of a new Cassandra server using
and may change at runtime due to variations in thegjtferent server instantiation mechanisms in KVM. All mea-
workload mix. For example, in RUBIS, a workload surements start at the time of receiving a new server cloning
with more write requests may require more CPU thanrequest. We expect post-copy live cloning would behave
the workload with more browse requests. To deal withsimilar to cold cloning.
both issues, AGILE generates the model dynamically at

runtime with an application-agnostic scheme that uses . .
online profiling and curve fitting. 2.3 Dynamic server pool scaling

The first step in building a new mapping function o, technique for scaling up the server pool when

is to collect a few pairs of resource pressure and SLQyerj0ad is predicted distinguishes itself from previous
violation rates by adjusting the application’s resource,, [28, 8] in terms of agility: servers can be dy-

allocation (and hence resource pressure) using the Linug, mically added with little interference, provide near
cgr oups interface. If the application consists of multi- ;.\ 1adiate performance scale-up, and low bandwidth
ple tiers, the profiling is performed tier by tier; when one ¢ using adaptive copy rate configuration.

tier is being profiled, the other tiers are allocated suffi- thare are multiple approaches to instantiate a new
cientresources to make sure that they are not bOttleneCképplication server:

If the application’s SLO is affected by multiple types of
resources (e.g., CPU, memory), we profile each type of
resource separately while allocating sufficient amounts . o
of all the other resource types. We average the resource2: €old cloning create a snapshot of the application
pressures of all the servers in the profiled tier and pair VM beforehand and then instantiate a new server
the mean resource pressure with the SLO violation rate  USing the snapshot.

w
=3
=3
S

2000+

1000+ —=— Booting from scratch
—e— Cold cloning
—— AGILE live cloning

50 100 150 200
Time (s)

=

Throughput (ops/sec)

(=]

1. Boot from scratch create a new VM and start the
OS and application from the beginning.

collected during a profiling interval (e.g., 1 minute). 3. Post-copy live clonin§R8]: instantiate a new server
AGILE fits the profiling data against a set of polyno- by cloning one of the currently running VMs, start
mials with different orders (from 2 to 16 in our experi- it immediately after instantiation and use demand

ment) and selects the best fitting curve using the least-  paging for memory copy.

square error. We set the maximum order to 16 to avoid 4. Pre-copy live cloninginstantiate a new server from
overfitting. At runtime, AGILE continuously monitors an already running VM. The new server is started
the current resource pressure and SLO violation rate, and  after almost all the memory has been copied.
updates the resource pressure model with the new data. If

the mapping function changes significantly (e.g., due toAGILE uses the last of these, augmented with rate
variations in the workload mix), and the approximation control over the data transfer to achieve rapid perfor-
error exceeds a pre-defined threshold (e.g., 5%), AGILENance scale-up, minimize interference with the source
replaces the current model with a new one. Since wé/Ms, and avoid storing and maintaining VM snapshots.
need to adjust the resource allocation gradually and waifigure 4 shows the throughput of a new Cassandra
for the application to become stable to get a good modeServer [4] using different server instantiation schemes.
it takes about 10 to 20 minutes for AGILE to derive a newAGILE allows the new instance to reach its maximum
resource pressure model from scratch using the onlin@erformance immediately, while the others take about
profiling scheme. To avoid frequent model retraining,2 Minutes to warm up. Note that AGILE triggers the
AGILE maintains a set of models and dynamically se-live cloning beforethe application enters the overload
lects the best model for the current workload. ThisState, so its performance is still good during the pre-copy
is useful for applications that have distinct phases ofhase, as we will show later.

operation. A new model is built and added only if the Our live VM cloning scheme is similar to previous

approximation errors of all current models exceed theVM/process migration systems [13, 51]. In the pre-copy
threshold. phase, the dirty memory pages of the source VM are



copied iteratively in multiple rounds without stopping the to the NetworkConfiguregvent so that it can configure
source VM. A stop-and-copy phase, where the sourcéself to use its new IP address. The source VM can
VM is paused temporarily, is used for transferring the subscribe to thé&toppingevent that is triggered when
remaining dirty pages. A typical pause is within 1 the cloning enters the stop-and-copy phase, so that it
second. can notify a front-end load balancer to buffer some
AGILE also performs disk cloning to make the new user requests (e.g., write requests). Each VM image
VM independent of the source VM. In laaS clouds, theis associated with an XML configuration file specifying
VM’s disk is typically located on a networked storage what to invoke on each cloning event.
device. Because a full disk image is typically large Minimizing unhelpful cloning. Since live cloning
and would take a long time to copy, AGILE performs takes resources, we want to avoid triggering unnecessary
incremental disk cloningising QEMU Copy On Write  cloning on transient workload spikes: AGILE will only
(QCOW). When we pause the source VM to perform thetrigger cloning if the overload is predicted more than
final round of memory copy, we make the disk image of(e.g. k=3) consecutive times. Similarly, AGILE cancels
the source VM a read-only base image, and build twocloning if the overload is predicted to be gone more than
incremental (copy-on-write) images for the source VM k consecutive times. Furthermore, if the overload state
and the new VM. We can associate the new incrementakill end before the new VM becomes ready, we should
image with the source VM on-the-fly without restarting not trigger cloning.
the VM by redirecting the disk image driver at the To do this, AGILE checks whether an overload con-
hypervisor level. This is transparent to the guest OS oflition will appear in the look ahead windoft;t +W].
the source VM. We want to ignore those transient overload states that
Because live VM cloning makes the new VM instance will be gone before the cloning can be completed. Let
inherit all the state from the source VM, which includes Trm < W denote the required minimum lead time that
the IP address, the new VM may immediately send ouAGILE’s predictor needs to raise an alert in advance
network packets using the same IP address as the sourf@ the cloning to complete before the system enters the
VM, causing duplicate network packets and applicationoverload state. AGILE will ignore those overload alarms
errors. To avoid this, AGILE first disconnects the that only appear in the windoli,t + Trmi] but disappear
network interface of the new VM, clears the network in the window(t 4+ Trmi,t +W]. Furthermore, cloning is
buffer, and then reconnects the network interface of theriggered only if the overload state is predicted to last

new VM with a new IP address. for at leastQ seconds in the windowt + Trmi,t +W]
AGILE introduces two features to live VM cloning. O<Q<W—-Trm) -
Adaptive copy rate configuration. AGILE uses the The least-loaded server in the pool is used as the

minimum copy rate that can finish the cloning beforesource VM to be cloned. AGILE also supports concur-
the overload is predicted to staf,§, and adjusts this rent cloning where it creates multiple new servers at the
dynamically based on how much data needs to be transame time. Different source servers are used to avoid
ferred. This uses the minimal network bandwidth, andoverloading any one of them.
minimizes impact on the source machine and application. Online prediction algorithms can raise false alarms.
If the new application server configuration takes To address this issue, AGILE continuously checks
Teontig S€CONS, the cloning must finish withigone = whether previously predicted overload states still exist.
To — Teontig-  Intuitively, the total size of transferred Intuitively, as the system approaches the start of the over-
memory should equal the original memory size plus thdoad state, the prediction should become more accurate.
amount of memory that is modified while the cloning If the overload state is no longer predicted to occur, the
is taking place. Suppose the VM is usib memory  cloning operation will be canceled; if this can be done
pages, and the desired copy rate iggecopy Pages per during the pre-copy phase, it won't affect the application
second. We havepagecopy X Telone= M =+ Idirty X Tclone or the source VM.
From this, we haverpagecopy = M/Tcione+ dirty.  TO
estimate the page-dirty rate, we continuously sample th
actual page-dirtying rate and use an exponential movin

average of these values as the estimated value. AGILE, implemented AGILE on top of the KVM virtual-
will also adjust the copy rate if the predicted overload;,ation platform, in which each VM runs as a KVM

timeTo changes. _ _ process. This lets AGILE monitor the VM’s resource
Event-driven application auto-configuration. AG- usage through the Linuxproc interface. AGILE

ILE allows VMs to subscribe to critical events that periodically samples system-level metrics such as CPU

occur during the live cloning process to achieve aUto'consumption, memory allocation, network traffic, and

configuration. For example, the new VM can subscribey;sy 1/0 statistics. To implement pre-copy live cloning,

S% Experimental evaluation



we modified KVM to add a new KVM hypervisor mod- ~ Parameter RUBIS  Google data

. . . Input data window D) 6000 seconds 250 hours
ule qnd an mterface in tH&VM noni t_or _that supports | ;ok-ahead window\) 120 seconds 5 hours
starting, stopping a clone, and adjusting the memory sampling interval T) 2 seconds 5 minutes
copy rate. AGILE controls the resources allocated to Total trace length one day 29 days

Nt ; ; Overload duration threshol@j 20 seconds 25 minutes
application VMs through the Linuggr oups interface. Response time SLO 100 ms NA

We evaluated our KVM implementation of AGILE
using the RUBIS online auction benchmark (PHP ver- , ,
sion) [38] and the Apache Cassandra key-value storgable 1: Summary of parameter values used in our experiments
0.6.13 [4]. We also tested our prediction algorithm using
Google cluster data [20]. This section describes our..

. achine to get the usage for that machine. These
experiments and results.

traces represent various realistic workload patterns. The
. sampling interval in the Google cluster is 5 minutes and
3.1 Experiment methodology the trace lasts 29 days.

. . Table 1 shows the parameter values used in our
Our experiments were conducted on a cloud testbed ”&xperiments. We also performed comparisons under

our I?(b W't; 513£)Gr|1_|odes. Each glg.u; node has gltgjsdaiﬁerentthreshold values by varyimy W, andQ, which
COre A€ON £.5515H2 Processor, of>15 memory an 9PIhow similar trends. Note that we used consistently
network bandwidth, and runs 64 bit CentOS 6.2 W|thIar erD, W, and Q values for the Google trace data
KVM 0.12.1.2. Each guest VM runs 64 bit CentOS 5.2 9 b 9

. ; . . because the sampling interval of the Google data (5
W'th one virtual CPU core and 2GiB memory. .Th's S.etUpminutes) is significantly larger than what we used in the
is enough to host our test benchmarks at their maximu

workload "kusis experiments (2 seconds).
Our experiments on RUBIS focus on the CPU re- To evaluate the accuracy of our wavelet-based

) rediction scheme, we compare it against the best
source, as that appears to be the bottleneck in oup P g

. : Liternatives we could find: PRESS [19] and auto-
setup since all the RUBIS components have low mem0r¥egression [9]. These have been shown to achieve

consumption. To evaluate AGILE under Workloadshigher accuracy and lower overheads than other

Vn\glit:uigavl:/sotrlﬁlct;z::jeir:/taerr;ztiltonzl'os\,\éervl;ei?] anigsyeﬁ': feearl'alternatives. We calculate the overload-prediction
y 1;slccuracy as follows. The predictor is deemed to

world web traces [24] to modulate the request rate 0raise a valid overload alarm if the overload state

:he RUtB'tS. be?igg‘grg% gg(;/go(;gj CéuE:gAwebbserver(e.g” when the resource pressure is bigger than the
race starting a e ’(_) WED SEIVET, erioad threshold) is predicted earlier than the required
trace beginning at 1995-07-01:00.00; (3) EPAwebserveF‘ninimum lead time Trmi). Otherwise, we call the
trace starting at 1995-08-29:23.53; and (4) ClarkNet weh RML- '

server trace beginning at 1995-08-28:00.00. These trac;predlctmn a false negative. Note that we only consider

2 . ) Rose overload states that last at led@3t seconds
represent realistic load variations over time observe Section 2.3). Moreover, we require that the prediction
from well-known web sites. The resource usage is o :

. ) odel accurately estimates when the overload will start,
collected every 2 seconds. We perform flne-grameoln y

. . - fso we compare the predicted alarm time with the true
sampling for precise resource usage prediction and ef-

. ) ) verload start time to calculatepaediction time error If
e e = e ol prcicton tme aor s smal (23T
e e say the predictor raises a correct alarm. Otherwise,
be'(oz\?use (;i:fferentlt-ype.s O]; rﬁ?u:‘ﬁts are genere:jted. q we say the predictor raises a false alarm.
predic(?tie(l)% mst?(;?ﬁemugselgsaasliaingewriﬁzgvvrc(i‘ si;g]oe;n We use the S _tandard metricts,_le pos ftive ratg(AT)
. : and false positive rate(Ag), given in equation 1.
recent resource usage (i.e., from D to t) and predicts

. . Ptrue, Pfa|se, Ntrue, and Nfa|se denOte the number Of
]Elijteurefrroeriotutrg? _?_?Nm)an(\j/\?elr:;g:;?g;f{riiggﬁ;gﬁ\;v 6 true positives, false positives, true negatives, and false

negatives, respectively.

times.
We also tested our prediction algorithm using real Prue Psaise
system resource usage data collected on a Google Ar = Prue + Nfalse - Pratset Nerue 1)

cluster [20] to evaluate its accuracy on predicting

machine overloads. To do this, we extracted CPU A service provider can either rely on the application
and memory usage traces from 100 machines randomligself or an external tool [5] to tell whether the applicatio
selected from the Google cluster data. We then aggrega®LO is being violated. In our experiments, we adopted
the resource usages of all the tasks running on a givethe latter approach. With the RUBIS benchmark, the
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WorldCup NASA  EPA  ClarkNet live VM cloning if the resource pressure exceeds
) 65% and 80%. This allows us to evaluate the effects
of the resource pressure model.

Figure 5: CPU demand prediction accuracy comparison forNote that thereactive and PRESSschemes use the

RUBIS web server driven by one-day request traces of differe AGILE same resource pressure model to decide the

real web servers witfirm = 60 and 100 seconds. resource pressure threshold for the target 5% SLO
violation rate.

workload generator tracks the response time of the HTTP ]
requests it makes. The SLO violation rate is the fraction3.2 Experimental results

of requests that have response time larger than a Pr%rediction accuracy results.In this set of experiments,

defined SLO threshold. In our experiments, this was_ o cloning is performed. Figure 5 shows the overload

100ms, the 99th percentile of observed response t'meﬁrediction accuracy comparisons for RUBIS driven by

slrJgirsung;g?irzzr:gsgﬁrl():gtrfotﬂztrAag:;eV\\f\(/ee(tz;O:edrl\J/gtrct)ilé rdi1‘ferent real workload traces. We test the prediction
: system with different lead time requiremen .
and the MySQL database tier. Y N i)

. . The results show that our wavelet prediction scheme is
For comparison, we e_llsq |mplement§d a set Ofstatistically significantly better than the PRESS scheme
alternative resource provisioning schemes: and the auto-regression scheme (the independent two-
 No scaling A non-elastic resource provisioning sample t-test indicatep-value < 0.01). Particularly,
scheme that cannot change the size of the servehe wavelet scheme can improve the true positive rate
pool, which is fixed at 1 server as this is sufficient by up to 3.4 and reduce the false positive rate by
for the average resource demand. up to 0.4k. The accuracy of the PRESS and auto-
e Reactive This scheme triggers live VM cloning regression schemes suffers as the number of iterations
when it observes that the application has becoméncreases, errors accumulate, and the correlation between
overloaded. It uses a fixed memory-copy rate, andhe prediction model and the actual resource demand
for a fair comparison, we set this to the average copybecomes weaker. This is especially so for ClarkNet, the
rate used by AGILE so that both schemes incur amost dynamic of the four traces.
similar network cost for cloning. In the above prediction accuracy figure, we consider
e PRESS Instead of using the wavelet-based the predictor raises a correct alarm if the absolute
prediction algorithm, PRESS uses a Markov+FFTprediction time error is less thad 3-Ts. We further
resource demand prediction algorithm [19] to compare the distributions of the absolute prediction time

predict future overload state and triggers live error among different schemes. Figure 6 compares
cloning when an overload state is predicted tothe cumulative distribution functions of the absolute

occur. PRESS uses the same false alarm filteringprediction time error among different schemes. We
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Figure 8: Prediction accuracy comparison for 100 Google

Figure 7: Prediction accuracy for 100 Google cluster CPU
cluster memory traces.

traces withTrp = 100 and 150 minutes. The bottom and top
of the box represent 25th and 75th percentile values, the end

f the whisk t 10th and 90th til lues. . .
ot the Whiskers represen an percentiie valles.  overall SLO violationrate denotes the percentage of

requests that have response times larger than the SLO

observe that AGILE achieves much lower predictionViolation threshold (e.g., 100ms) during the experiment
time error (78% alarms have 0 absolute prediction timgUn- SLO violationtimeis the total time in which SLO
error) than auto-regression (34% alarms have 0 absolutdolation rate (collected every 5 seconds) exceeds the
prediction time error) and PRESS (46% alarms havd@rget (e.g., 5%). We observe that AGILE consistently
0 absolute prediction time error). Other traces showachieves the lowest SLO violation rate and shortest
similar trend, which are omitted due to space limitation. SLO violation time. Under the@o scalingscheme, the
Figure 7 and Figure 8 show the prediction accuracy2PPplication suffers from high SLO violation rate and
for the CPU and memory usage traces on 100 machind@"g SLO violation time in both the web server tier
in a Google cluster. The overload threshold is set to thénd the database tier scaling experiments. fBagtive
70th percentile of all values in each trace. We observécheme mitigates this by triggering live cloning to create
that the wavelet scheme again consistently outperform@ New server after the overload condition is detected,
the PRESS scheme and the auto-regression scheme wit since the application is already overloaded when
up to 2.1x better true positive rate and 0.84he false the scaling is triggered, the application still experience
positive rate. a high SLO violation rate for a significant time. The
Overload handling results. Next, we evaluate how FixThreshold-80%scheme triggers the scaling too late,
well AGILE handles overload using dynamic server pool €SPecially in the database experiment and thus does
scaling. The experiment covers 7000 seconds of &0t show any noticeable improvement compared to
RUBIS run driven by the ClarkNet web server trace. TheWithout scaling. Using a lower thresholixThreshold-
first 6000 seconds are used for training and no cloning i$5% improves the SLO violation rate but at a higher
performed. The overload state starts at about t = 65004€SOUrce cost: resource pressure is maintained at 65%
When examining the effects of scaling on different tiersWhile AGILE maintains the resource pressure at 75%.
in RUBIS, we limit the scaling to one tier and allocate N contrast, AGILE predicts the overload state in
sufficient resources to the other tier. We repeat eac@dvance, and successfully completes live cloning before
experiment 3 times. the application enters the overload state. With more
Figure 9 shows the overall results of different schemes@ccurate predictions, AGILE also outperforms PRESS by
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Table 2: Amount of memory moved during cloning for & 401 éé@é%%%
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Figure 10 shows detailed performance measurements 0 30 100150 200
for the web server tier during the above experiment. We Average response time (ms)
sample the average response time every second and plot (b) During cloning

the cumulative distribution functions for the whole run

and during cloning. From Figure 10(a), we can seerigyre 10: Scaling up the RUBIS web server tier from 1 server
that the response time for most requests meets the SL§J 2 servers under a dynamic workload following the ClarkNet
when using the AGILE system. In contrast, if no scalingtrace. (a) Overall CDF denotes the whole experimentb)

is performed, the application suffers from a significantDuring cloningdenotes the period in which the scaling is being
increase in response time. Figure 10(b) shows that akxecuted. AGILE always triggers scaling earlier than other
the scaling schemes, except AGILE, cause much worséchemes.

performance during the cloning process: the application

is overloaded and many requests suffer from a large

response time until a new server is started. In contraslt,he amount of the memory in use at the source VM.

using AGILE, the application experiences little responseWe also te§ted A_G”‘E under_differenF (?verload_pending
e deadlines (i.e., target time to finish cloning) and

time increase since the application has not yet entered th K whether the cloni finish within th di
overload state. Figure 11 shows the equivalent results fop 1ECK W ether the cloning can finis \.N't In the pen ng
the database server and has similar trends. time. Figure 14 shows that our dynamic copy-rate setting

Figure 12 and Figure 13 show the SLO violation can accurately control the cloning time under different

rate timeline of RUBIS application under the ClarkNet deadlines. . . .

workload. Compared to other schemes, AGILE triggers W_e measured. the tlme_ spentin th_e d|-fferent stages of
scaling before the system enters the overload staté.he live VM cloning for dlffer_ent apphcatlon_s (Tqble 3).
Under the reactive scheme, the live cloning is executeds‘S expected, pre-copy dominates the c_:Ionl_ng time (tens
when the system is already overloaded, which causes %f seconds),_whlle the stop-and-cqpy tlm_e s only 0.1s,
significant impact to the application performance duringSO the downtime of the source VM is negligible.

the cloning time. Although PRESS can predict the, Overhead results_. we f_iTSt present _the ov_erhead
overload state in advance, the lead time is not Iondmposed by our online profiling mechanism. Figure 15

enough for cloning to finish before the application is ShO\,N.S theltlmehne of the average response time during
overloaded. pro_f|l|ng. F|_g_ure 16 shows the performance |_mpact of the
Dynamic copy-rate configuration results. Table 2 online profiling on the average response time over the

shows the amount of memory moved during cloning forperiod of 6 hours, in which AGILE performs profiling

different applications. AGILE moved at most 1.5 times three t|mes._ Overa_lll, the ovgrhead measurements show
that AGILE is practical for online system management.
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under the ClarkNet workload.

Application Pre-copy Stop-and-copy Configuration
RUBIS Webserver 31.21.1s 0.10£0.01s 16.8:0.6s
RUBIS Database 334 0.9s 0.10£0.01s 17.8:0.8s 4 Related Work
Cassandra 31511s 0.10+0.01s 17.5-09s

AGILE is built on top of previous work on resource
Table 3: Time spent in the different stages of live VM Cloning demand prediction, performance modeling, and VM
cloning. Most previous work on server pool scaling
(e.g., [29, 17]) adopts eeactiveapproach while AGILE

We also evaluated the overhead of the AGILE systemy, o ;e aprediction-drivensolution that allows the

The AGILE slave process on each cloud node imposegy o 16 start new instances before SLO violation
less than 1% CPU overhead. The most computauonal%ccurs

intensive component is the prediction module that runs Previous work has proposed white-box or grey-box
?n the r;asteijr_ r;_odet._ Tat?le XSPLOSSPQESOQIme(;ra'r:m%pproaches to addressing the problem of cluster sizing.
iMme and prediction ime for =  and auto- 24 stisizer [22] combines job profiling, black-box and
regression schemes. AGILE has similar overheads at t hite-box models, and simulation to compute an optimal
master node as does PRESS. The auto-regression schem&ster size for z;l specific MapReduce job. Verma

is faster, however its accuracy is much worse thanet al. [47] proposed a MapReduce resource sizing

QG.ILE' Clea:h{, thtes_e .COStS St':: ne_ed o bedrgducefl (?'g'gamework that profiles the application on a smaller data
y Incrementalretraining mechanisms and decentralizedy o, applies linear regression scaling rules to generate

masters), and we hope to work on this in the future. a set of resource provisioning plans. The SCADS
director framework [44] used a model-predictive control
(MPC) framework to make cluster sizing decisions based
on the current workload state, current data layout, and

10
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Table 4: Prediction model training time and the prediction < {;g"”
time comparison between AGILE, PRESS, and auto-regression < 04 T
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S 604
2
predicted SLO violation. Huber et al. [23] presented & 401
a self-adaptive resource management algorithm which 2
leverages workload prediction and a performance = 20 Overall performance without profiling
. . . , = —o— Overall performance with profiling
model [7] that predicts application’s performance g & |« During profiling
under different configurations and workloads. In O 00—

. . L 10 15 20 25 30 35 40 45
contrast, AGILE does not require any prior application

knowledge. Average response time (ms)

Ptre\?(t)rl:s WO:k [536. 26, 33’ 3:[6’ 34, 29] has”appil.ed Figure 16: Profiling overhead for the RUBIS system under the
controf theory 10 achieve adaptive resource alloCalion e,y Net workload. Profiling occurs every two hours.

Such approaches often have parameters that need to be
specified or tuned offline for different applications or . ) . _
workloads. The feedback control system also require@uto-regression to drive dynamic resource allocation
a feedback signal that is stable and well correlated witfl€Cisions. Gmach et al. [18] used a Fourier transform-
SLO measurement. Choosing suitable feedback signafi@sed scheme to perform offline extraction of long-term
for different applications is a non-trivial task [29]. Othe CY¢lic workload patterns. Andrzejak et al. [3] employed a
projects used statistical learning methods [41, 42, 15, 40§enetic algorithm and fuzzy logic to address the problem
or queueing theory [46, 45, 14] to estimate the impactthaV'ng little t_ral_nlng dat_a_. G_andh|_et al. [1_6] gomblned
of different resource allocation policies. Overdriver]4g |0ng-term predictive provisioning using periodic pattern
used offline profiling to learn the memory overload V\{|th §hort—term reactive provisioning to minimize SLO
probability of each VM to select different mitigation Violations and energy consumption. ~Matsunaga et
strategies: using migration for sustained overloads oft- [30] investigated several machine learning techniques
network memory for transient overloads. Those modeld©” Predicting spatio-temporal resource utilization.
need to be built and calibrated in advance. Moreover” RESS [19] developed a hybrid online resource demand
the resource allocation system needs to make certaifédiction model that combines a Markov model and
assumptions about the application and the running® fast Fourier transform-based technique. —Previous
platform (e.g., input data size, cache size processo‘?red'Ct'on schemes either focus on short-term prediction
speed), which often is impractical in a virtualized, multi- ©7 N€€d to assume cyclic workload patterns. In contrast,
tenant laaS cloud system. AGILE focuses on medium-term prediction and works
Trace-driven resource demand prediction has beefPr arbitrary workload patterns. ,

applied to several dynamic resource allocation problems. VM cloning has been used to support elastic cloud
Rolia et al. [37] described a resource demand predictiofoMPuting.  SnowFlock [28] provides a fast VM
scheme that multiplies recent resource usage by Ipstantiation scheme using on-demand paging. However,
burst factor to provide some headroom. Chandra e{he new instance suffers from an extended performance
al. [11] developed a prediction framework based onvarmup period while the working set is copied over from

11



the origin. Kaleidoscope [8] uses fractional VM cloning accurate overload predictions.

with VM state coloring to prefetch semantically-related Our resource pressure model profiling can be triggered
regions. Although our current prototype uses full pre-either periodically or by workload mix changes. To
copy, AGILE could readily work with fractional pre- make AGILE more intelligent, we plan to incorporate
copy too: prediction-driven live cloning and dynamic workload change detection mechanism [32, 12] in
copy rate adjustment can be applied to both caseAGILE. Upon detecting a workload change, AGILE
Fractional pre-copy could be especially useful if thestarts a new profiling phase to build a new resource
overload duration is predicted to be short. Dolly [10] pressure model for the current workload type.

proposed a proactive database provisioning scheme that

f:reates a new database instance in advqnce from a d%( Conclusion

image snapshot and replays the transaction log to bring

the new instance to the latest state. However, Dolly didag|LE is an application-agnostic, prediction-driven,

not provide any performance predictions, and the newisiributed resource scaling system for laaS clouds.
instance created from an image snapshot may need someyses wavelets to provide medium-term performance

warmup time. In contrast, the new instance created byyedictions; it provides an automatically-determined
AGILE canreach its peak performance immediately after,odel of how an application’s performance relates to

start. . _ the resources it has available; and it implements a way
Local resource scaling (e.g., [39]) or live VM 4 cloning VMs that minimizes application startup time.
migration [13, 50, 49, 25] can also relieve local, per-Together, these allow AGILE to predict performance
server application overloads, but distributed resourceyroblems far enough in advance that they can be avoided.
scaling will be needed if the workload exceeds the T3 minimize the impact of cloning a VM, AGILE
maximum capacity of any single server. Although copies memory at a rate that completes the clone just
previous work [39, 50] has used overload predictionpefore the new VM is needed. AGILE performs

to proactively trigger local resource scaling or Iive continyous prediction validation to detect false alarms
VM migration, AGILE addresses the specific challenges; g cancels unnecessary cloning.

of using predictions in distributed resource scaling. \ye implemented AGILE on top of the KVM
Compared to local resource scaling and migrationyjralization platform, and conducted experiments
clonlng_re_qulres longer Ie_ad time and is more sensitive,nder a number of time-varying application loads
to prediction accuracy, since we need to pay the coSkerived from real-life web workload traces and real
of maintaining extra servers. AGILE provides medium- resource usage traces. Our results show that AGILE can
term predictions to tackle this challenge. significantly reduce SLO violations when compared to

existing resource scaling schemes. Finally, AGILE is
5 Future Work lightweight, which makes it practical for laaS clouds.

Although AGILE showed its practicality and efficiency 7 Acknowledgement
in experiments, there are several limitations which we
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pressure model to consider other resources such agant W911NF-10-1-0273, IBM Faculty Awards and
memory, network bandwidth, and disk 1/O. There aregoogle Research Awards. Any opinions expressed in
two ways to build a multi-resource model. We can build this paper are those of the authors and do not necessarily

one resource pressure model for each resource separat@itiect the views of NSF, ARO, or U.S. Government.
or build a single resource pressure model incorporating

all of them. We plan to explore both approaches a”dReferences
compare them.

AGILE currently uses resource capping (a Linux [1] N.A. Aliand R. H. Paul.Multiresolution signal
cgroups feature) to achieve performance isolation decompositionAcademic Press, 2000.
among different VMs [39]. Although we observed that 3] amazon Elastic Compute Cloud.
the resource capping scheme works well for common http://aws. amazon. conf ec2/ .
bottleneck resources such as CPU and memory, thergs) o andrzejak, S. Graupner, and S. Plantikow. Predicting
may still exist interference among co-located VMs [52]. resource demand in dynamic utility computing
We need to take such interference into account to build  environments. IMutonomic and Autonomous Systems
more precise resource pressure models and achieve more  2006.

12



(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Apache Cassandra Database.
http://cassandra. apache. org/.

M. Ben-Yehuda, D. Breitgand, M. Factor, H. Kolodner,
V. Kravtsov, and D. Pelleg. NAP: a building block for
remediating performance bottlenecks via black box
network analysis. IMCAC, 2009.

E. Brigham and R. Morrow. The fast Fourier transform.
IEEE Spectrum1967.

F. Brosig, N. Huber, and S. Kounev. Automated
extraction of architecture-level performance models of
distributed component-based systemsAutomated
Software Engineerin2011.

R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi,
M. Hiltunen, A. Lagar-Cavilla, and E. de Lara.
Kaleidoscope: cloud micro-elasticity via VM state
coloring. InEuroSys2011.

E. S. Buneci and D. A. Reed. Analysis of application
heartbeats: Learning structural and temporal features in
time series data for identification of performance
problems. InSupercomputing?2008.

E. Cecchet, R. Singh, U. Sharma, and P. Shenoy. Dolly:
virtualization-driven database provisioning for the aou
In VEE, 2011.

(19]

(20]

(21]

(22]

(23]

(24]

(25]

A. Chandra, W. Gong, and P. Shenoy. Dynamic resource[og)

allocation for shared data centers using online
measurements. IIWQoS 2003.

L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and

E. Smirni. Anomaly? application change? or workload
change? towards automated detection of application
performance anomaly and change Dependable
Systems and Networkz008.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. IINSDI, 2005.

R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M.
Vahdat. Model-based resource provisioning in a web
service utility. INUSENIX Symposium on Internet
Technologies and Systen2903.

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox,
M. Jordan, and D. Patterson. Predicting multiple metrics
for queries: better decisions enabled by machine
learning. Ininternational Conference on Data
Engineering 2009.

A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and

M. Marwah. Minimizing data center sla violations and
power consumption via hybrid resource provisioning. In
Green Computing Conference and Worksh@d 1.

A. Gandhi, M. Harchol-Balter, R. Raghunathan, and
M. Kozuch. Autoscale: Dynamic, robust capacity
management for multi-tier data centers.Thansactions
on Computer System2012.

D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Capacity management and demand prediction for next
generation data centers. limternational Conference on
Web Service2007.

13

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems. In
International Conference on Network and Service
Management2010.

Google cluster-usage traces: format + scheme
(2011.11.08 externalht t p: / / goo. gl / 5uJdri .

N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-adaptive workload classification and forecasting for
proactive resource provisioning. International
Conference on Performance Engineeri2§13.

H. Herodotou, F. Dong, and S. Babu. No one (cluster)
size fits all: automatic cluster sizing for data-intensive
analytics. InSoCG 2011.

N. Huber, F. Brosig, and S. Kounev. Model-based
self-adaptive resource allocation in virtualized
environments. IrSoftware Engineering for Adaptive and
Self-Managing System2011.

The IRCache Project.
http://wmv. ircache. net/.

C. Isci, J. Liu, B. Abali, J. Kephart, and J. Kouloheris.
Improving server utilization using fast virtual machine
migration. InIBM Journal of Research and
Development2011.

E. Kalyvianaki, T. Charalambous, and S. Hand.
Self-adaptive and self-configured CPU resource
provisioning for virtualized servers using Kalman filters.
In ICAC, 20009.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the linux virtual machine monitor. Ihinux
Symposium2007.

H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,

P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. IEuroSys2009.

H. C. Lim, S. Babu, and J. S. Chase. Automated control
for elastic storage. IfCAC, 2010.

A. Matsunaga and J. Fortes. On the use of machine
learning to predict the time and resources consumed by
applications. IrCluster, Cloud and Grid Computing
2010.

A. Neogi, V. R. Somisetty, and C. Nero. Optimizing the
cloud infrastructure: tool design and a case study.
International IBM Cloud Academy Conferen@912.

H. Nguyen, Z. Shen, Y. Tan, and X. Gu. FChain: Toward
black-box online fault localization for cloud systems. In
ICDCS 2013.

Oracle. Best practices for database consolidation in
private clouds, 2012.

http://wwmv. oracl e. com t echnet wor k/

dat abase/ f ocus- ar eas/ dat abase- cl oud/
dat abase- cons- best - practi ces- 1561461.
pdf .

P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z.Wang, S. Singhal, and A. Merchant. Automated



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

control of multiple virtualized resources. EuroSys [52] X.Zhang, E. Tune, R. Hagmann, R. J. V. Gokhale, and

20009.
P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,

S. Singhal, A. Merchant, and K. Salem. Adaptive control [53]

of virtualized resources in utility computing
environments. IfEuroSys2007.

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury,

T. Jayram, and J. Bigus. Using control theory to achieve
service level objectives in performance management. In
Real-Time System2002.

J. Rolia, L. Cherkasova, M. Arlitt, and V. Machiraju.
Supporting application quality of service in shared
resource poolsCommunications of the ACNM006.

RUBIS Online Auction System.
http://rubis.ow2. org/.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale:
elastic resource scaling for multi-tenant cloud systems.
In SoCG 2011.

P. Shivam, S. Babu, and J. Chase. Active and accelerated
learning of cost models for optimizing scientific
applications. InVLDB, 2006.

P. Shivam, S. Babu, and J. S. Chase. Learning
application models for utility resource planning. In
ICAC, 2006.

C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar
from 15 cents: cross-platform management for internet
services. INJSENIX ATC2008.

Y. Tan, V. Venkatesh, and X. Gu. Resilient
self-compressive monitoring for large-scale hosting
infrastructures. IMPDS 2012.

B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I.
Jordan, and D. A. Patterson. The SCADS director:
scaling a distributed storage system under stringent
performance requirements. FAST, 2011.

B. Urgaonkar and A. Chandra. Dynamic provisioning of
multi-tier internet applications. ICAC, 2005.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier internet
services and its applications. BIGMETRICS2005.

A. Verma, L. Cherkasova, and R. Campbell. Resource
provisioning framework for MapReduce jobs with
performance goals. IMiddlewarg 2011.

D. Williams, H. Jamjoom, Y. Liu, and H. Weatherspoon.
Overdriver: Handling memory overload in an
oversubscribed cloud. MEE, 2011.

D. Williams, H. Jamjoom, and H. Weatherspoon. The
Xen-Blanket: virtualize once, run everywhere. In
Eurosys 2012.

T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and gray-box strategies for virtual
machine migration. IINSDI, 2007.

E. Zayas. Attacking the process migration bottlendok.
SOSR1987.

14

J. Wilkes. Cpi2: Cpu performance isolation for shared
compute clusters. |Burosys 2013.

X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia,

S. Singhal, B. McKee, C. Hyser, D. Gmach, R. Gardner,
T. Christian, and L. Cherkasova. 1000 Islands:
integrated capacity and workload management for the
next generation data center. I[RAC, 2008.



