
AGILE: elastic distributed resource scaling
for Infrastructure-as-a-Service

Hiep Nguyen, Zhiming Shen, Xiaohui Gu
North Carolina State University

{hcnguye3,zshen5}@ncsu.edu, gu@csc.ncsu.edu

Sethuraman Subbiah
NetApp Inc.

sethu.subbiah@netapp.com

John Wilkes
Google Inc.

johnwilkes@google.com

Abstract

Dynamically adjusting the number of virtual machines
(VMs) assigned to a cloud application to keep up with
load changes and interference from other uses typically
requires detailed application knowledge and an ability to
know the future, neither of which are readily available
to infrastructure service providers or application owners.
The result is that systems need to be over-provisioned
(costly), or risk missing their performance Service Level
Objectives (SLOs) and have to pay penalties (also
costly). AGILE deals with both issues: it uses wavelets
to provide a medium-term resource demand prediction
with enough lead time to start up new application server
instances before performance falls short, and it uses
dynamic VM cloning to reduce application startup times.
Tests using RUBiS and Google cluster traces show that
AGILE can predict varying resource demands over the
medium-term with up to 3.42× better true positive rate
and 0.34× the false positive rate than existing schemes.
Given a target SLO violation rate, AGILE can efficiently
handle dynamic application workloads, reducing both
penalties and user dissatisfaction.

1 Introduction

Elastic resource provisioning is one of the most attractive
features provided by Infrastructure as a Service (IaaS)
clouds [2]. Unfortunately, deciding when to get more
resources, and how many to get, is hard in the face of
dynamically-changingapplication workloads and service
level objectives (SLOs) that need to be met. Existing
commercial IaaS clouds such as Amazon EC2 [2] de-
pend on the user to specify the conditions for adding
or removing servers. However, workload changes and
interference from other co-located applications make this
difficult.

Previous work [19, 39] has proposed prediction-driven
resource scaling schemes for adjusting how many re-

Host

VM +

application

VM controller

Linux + KVM

Resource

pressure

modeling

AGILE slave
Resource

demand

prediction
Resource

monitoring

Server addition/

removal

AGILE master

Server pool

prediction

Server pool scaling

manager

Figure 1: The overall structure of the AGILE system. The
AGILE slave continuously monitors the resource usage of
different servers running inside local VMs. The AGILE master
collects the monitor data to predict future resource demands.
The AGILE master maintains a dynamic resource pressure
model for each application using online profiling. We use the
term server poolto refer to the set of application VMs that
provide the same replicated service. Based on the resource
demand prediction result and the resource pressure model,
the AGILE master invokes the server pool manager to add or
remove servers.

sources to give to an application within a single host.
But distributed resource scaling (e.g., adding or remov-
ing servers) is more difficult because of the latencies
involved. For example, the mean instantiation latency
in Amazon EC2 is around 2 minutes [8], and it may then
take a while for the new server instance to warm up: in
our experiments, it takes another 2 minutes for a Cassan-
dra server [4] to reach its maximum throughput. Thus,
it is insufficient to apply previous short-term (i.e., less
than a minute) prediction techniques to the distributed
resource scaling system.

In this paper, we present our solution: AGILE, a
practical elastic distributed resource scaling system for
IaaS cloud infrastructures. Figure 1 shows its overall
structure. AGILE provides medium-term resource de-
mand predictions for achieving enough time to scale up
the server pool before the application SLO is affected by
the increasing workload. AGILE leverages pre-copy live

1

cloning to replicate running VMs to achieve immediate
performance scale up. In contrast to previous resource
demand prediction schemes [19, 18], AGILE can achieve
sufficient lead time without sacrificing prediction accu-
racy or requiring a periodic application workload.

AGILE uses online profiling and polynomial curve
fitting to provide a black-box performance model of the
application’s SLO violation rate for a given resource
pressure (i.e., ratio of the total resource demand to the
total resource allocation for the server pool). This model
is updated dynamically to adapt to environment changes
such as workload mix variations, physical hardware
changes, or interference from other users. This allows
AGILE to derive the proper resource pressure to maintain
to meet the application’s SLO target.

By combining the medium-term resource demand pre-
diction with the black-box performance model, AGILE
can predict whether an application will enter the overload
state and how many new servers should be added to avoid
this.

Contributions
We make the following contributions in this paper.

• We present a wavelet-based resource demand pre-
diction algorithm that achieves higher prediction ac-
curacy than previous schemes when looking ahead
for up to 2 minutes: the time it takes for AGILE to
clone a VM.

• We describe a resource pressure model that can
determine the amount of resources required to keep
an application’s SLO violation rate below a target
(e.g., 5%).

• We show how these predictions can be used to clone
VMs proactively before overloads occur, and how
dynamic memory-copy rates can minimize the cost
of cloning while still completing the copy in time.

We have implemented AGILE on top of the KVM
virtualization platform [27]. We conducted extensive
experiments using the RUBiS multi-tier online auction
benchmark, the Cassandra key-value store system, and
resource usage traces collected on a Google cluster [20].
Our results show that AGILE’s wavelet-based resource
demand predictor can achieve up to 3.42× better true
positive rate and 0.34× the false positive rate than
previous schemes on predicting overload states for real
workload patterns. AGILE can efficiently handle chang-
ing application workloads while meeting target SLO vi-
olation rates. The dynamic copy-rate scheme completes
the cloning before the application enters the overload
state with minimum disturbance to the running system.
AGILE is light-weight: its slave modules impose less
than 1% CPU overhead.

0 5 10 15 20 25 30 35 40 45
15
30
45

Synthesize

Predicted CPU
demand traceTraining CPU demand trace

Detail signal (scale 1)

Decompose

0 16 32 48
24
27
30
33

Approximation signal (scale 4)
0 16 32 48

-3
0
3

Detail signal (scale 4)
0 8 16 24 32 40 48

-3
0
3

Detail signal (scale 3)
0 4 8 12 16 20 24 28 32 36 40 44 48

-3
0
3

Time (s)

Detail signal (scale 2)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

-5
0
5

 Training Predicted

Figure 2: Wavelet decomposition of an Apache web server
CPU demand under a real web server workload from the
ClarkNet web server [24]. The original signal is decomposed
into four detailed signals from scale 1 to 4 and one approxi-
mation signal using Haar wavelets. At each scale, the dotted
line shows the predicted signal for the next future 16 seconds
at time t = 32 second.

2 AGILE system design

In this section, we first describe our medium-term re-
source demand prediction scheme. By “medium-term”,
we mean up to 2 minutes (i.e., 60 sampling intervals
given a 2-second sampling interval). We then introduce
our online resource pressure modeling system for map-
ping SLO requirements to proper resource allocation.
Next, we describe the dynamic server pool scaling mech-
anism using live VM cloning.

2.1 Medium-Term Resource demand pre-
diction using Wavelets

AGILE provides online resource demand prediction
using a sliding windowD (e.g., D = 6000 seconds)
of recent resource usage data. AGILE does not re-
quire advance application profiling or white-box/grey-
box application modeling. Instead, it employswavelet
transforms[1] to make its medium-term predictions: at
each sampling instantt, predicting the resource demand
over the prediction window of lengthW (e.g.,W = 120

2

seconds). The basic idea is to first decompose the
original resource demand time series into a set of wavelet
based signals. We then perform predictions for each
decomposed signal separately. Finally, we synthesize the
future resource demand by adding up all the individual
signal predictions. Figure 2 illustrates our wavelet-
based prediction results for an Apache web server’s CPU
demand trace.

Wavelet transforms decompose a signal into a set of
wavelets at increasing scales. Wavelets at higher scales
have larger duration, representing the original signal at
coarser granularities. Each scalei corresponds to a
wavelet duration ofLi seconds, typicallyLi = 2i . For
example, in Figure 2, each wavelet at scale 1 covers 21

seconds while each wavelet at scale 4 covers 24 = 16
seconds. After removing all the lower scale signals
calleddetailed signalsfrom the original signal, we obtain
a smoothed version of the original signal called the
approximation signal. For example, in Figure 2, the
original CPU demand signal is decomposed into four
detailed signals from scale 1 to 4, and one approximation
signal. Then the prediction of the original signal is
synthesized by adding up the predictions of these decom-
posed signals.

Wavelet transforms can use different basis functions
such as the Haar and Daubechies wavelets [1]. In
contrast, Fourier transforms [6] can only use the sinusoid
as the basis function, which only works well for cyclic
resource demand traces. Thus, wavelet transforms have
advantages over Fourier transforms in analyzing acyclic
patterns.

The scale signali is a series of independent non-
overlapping chunks of time, each with duration of 2i

(e.g., the time intervals [0-8), [8-16)). We need to predict
W/2i values to construct the scalei signal in the look-
ahead windowW as adding one value will increase the
length of the scalei signal by 2i .

Since each wavelet in the higher scale signal has a
larger duration, we have fewer values to predict for
higher scale signals given the same look-ahead window.
Thus, it is easier to achieve accurate predictions for
higher scale signals as fewer prediction iterations are
needed. For example, in Figure 2, suppose the look-
ahead window is 16 seconds, we only need to predict 1
value for the approximation signal but we need to predict
8 values for the scale 1 detail signal.

Wavelet transforms have two key configuration pa-
rameters: 1) the wavelet function to use, and 2) the
number of scales. AGILE dynamically configures these
two parameters in order to minimize the prediction
error. Since the approximation signal has fewer values to
predict, we want to maximize the similarity between the
approximation signal and the original signal. For each
sliding windowD, AGILE selects the wavelet function

60 70 80 90
0

10

20

30

40

 Resource pressure model
 Sample data for building the model
 Real data observed in experiments

Resource pressure (%)

SL
O

 v
io

la
tio

n
ra

te
 (%

)

60 70 80 90
0

10

20

30

40 Database tier

SL
O

 v
io

la
tio

n
ra

te
 (%

)

Resource pressure (%)

Web server tier

Figure 3: Dynamically derived CPU resource pressure models
mapping from the resource pressure level to the SLO violation
rate using online profiling for RUBiS web server and database
server. The profiling time for constructing one resource pres-
sure model is about 10 to 20 minutes.

that results in the smallest Euclidean distance between
the approximation signal and the original signal. Then,
AGILE sets the number of values to be predicted for the
approximation signal to 1. It does this by choosing the
number of scales for the wavelet transforms. Given a
look-ahead windowW, letU denote the number of scales
(e.g., scale of the approximation signal). Then, we have
W/2U = 1, orU = ⌈log2(W)⌉. For example, in Figure 2,
the look-ahead window is 16 seconds, so AGILE sets the
maximum scale toU = ⌈log2(16)⌉= 4.

We can use different prediction algorithms for predict-
ing wavelet values at different scales. In our current pro-
totype, we use a simple Markov model based prediction
scheme presented in [19].

2.2 Online resource pressure modeling

AGILE needs to pick an appropriate resource allocation
to meet the application’s SLO. One way to do this would
be to predict the input workload [21] and infer the future
resource usage by constructing a model that can map
input workload (e.g., request rate, request type mix) into
the resource requirements to meet an SLO. However,
this approach often requires significant knowledge of the
application, which is often unavailable in IaaS clouds
and might be privacy sensitive, and building an accurate
workload-to-resource demand model is nontrivial [22].

Instead, AGILE predicts an application’s resource
usage, and then uses an application-agnosticresource
pressuremodel to map the application’s SLO violation
rate target (e.g.,< 5%) into a maximum resource pres-
sure to maintain. Resource pressure is the ratio of
resource usage to allocation. Note that it is necessary to
allocate a little more resources than predicted in order to
accommodate transient workload spikes and leave some
headroom for the application to demonstrate a need for

3

more resources [39, 33, 31]. We use online profiling
to derive a resource pressure model for each application
tier. For example, Figure 3 shows the relationship be-
tween CPU resource pressure and the SLO violation rate
for the two tiers in RUBiS, and the model that AGILE
fits to the data. If the user requires the SLO violation rate
to be no more than 5%, the resource pressure of the web
server tier should be kept below 78% and the resource
pressure of the database tier below 77%.

The resource pressure model is application specific,
and may change at runtime due to variations in the
workload mix. For example, in RUBiS, a workload
with more write requests may require more CPU than
the workload with more browse requests. To deal with
both issues, AGILE generates the model dynamically at
runtime with an application-agnostic scheme that uses
online profiling and curve fitting.

The first step in building a new mapping function
is to collect a few pairs of resource pressure and SLO
violation rates by adjusting the application’s resource
allocation (and hence resource pressure) using the Linux
cgroups interface. If the application consists of multi-
ple tiers, the profiling is performed tier by tier; when one
tier is being profiled, the other tiers are allocated suffi-
cient resources to make sure that they are not bottlenecks.
If the application’s SLO is affected by multiple types of
resources (e.g., CPU, memory), we profile each type of
resource separately while allocating sufficient amounts
of all the other resource types. We average the resource
pressures of all the servers in the profiled tier and pair
the mean resource pressure with the SLO violation rate
collected during a profiling interval (e.g., 1 minute).

AGILE fits the profiling data against a set of polyno-
mials with different orders (from 2 to 16 in our experi-
ment) and selects the best fitting curve using the least-
square error. We set the maximum order to 16 to avoid
overfitting. At runtime, AGILE continuously monitors
the current resource pressure and SLO violation rate, and
updates the resource pressure model with the new data. If
the mapping function changes significantly (e.g., due to
variations in the workload mix), and the approximation
error exceeds a pre-defined threshold (e.g., 5%), AGILE
replaces the current model with a new one. Since we
need to adjust the resource allocation gradually and wait
for the application to become stable to get a good model,
it takes about 10 to 20 minutes for AGILE to derive a new
resource pressure model from scratch using the online
profiling scheme. To avoid frequent model retraining,
AGILE maintains a set of models and dynamically se-
lects the best model for the current workload. This
is useful for applications that have distinct phases of
operation. A new model is built and added only if the
approximation errors of all current models exceed the
threshold.

0 50 100 150 200
0

1000

2000

3000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Time (s)

 Booting from scratch
 Cold cloning
 AGILE live cloning

Figure 4: Performance of a new Cassandra server using
different server instantiation mechanisms in KVM. All mea-
surements start at the time of receiving a new server cloning
request. We expect post-copy live cloning would behave
similar to cold cloning.

2.3 Dynamic server pool scaling

Our technique for scaling up the server pool when
overload is predicted distinguishes itself from previous
work [28, 8] in terms of agility: servers can be dy-
namically added with little interference, provide near
immediate performance scale-up, and low bandwidth
cost using adaptive copy rate configuration.

There are multiple approaches to instantiate a new
application server:

1. Boot from scratch: create a new VM and start the
OS and application from the beginning.

2. Cold cloning: create a snapshot of the application
VM beforehand and then instantiate a new server
using the snapshot.

3. Post-copy live cloning[28]: instantiate a new server
by cloning one of the currently running VMs, start
it immediately after instantiation and use demand
paging for memory copy.

4. Pre-copy live cloning: instantiate a new server from
an already running VM. The new server is started
after almost all the memory has been copied.

AGILE uses the last of these, augmented with rate
control over the data transfer to achieve rapid perfor-
mance scale-up, minimize interference with the source
VMs, and avoid storing and maintaining VM snapshots.
Figure 4 shows the throughput of a new Cassandra
server [4] using different server instantiation schemes.
AGILE allows the new instance to reach its maximum
performance immediately, while the others take about
2 minutes to warm up. Note that AGILE triggers the
live cloning before the application enters the overload
state, so its performance is still good during the pre-copy
phase, as we will show later.

Our live VM cloning scheme is similar to previous
VM/process migration systems [13, 51]. In the pre-copy
phase, the dirty memory pages of the source VM are

4

copied iteratively in multiple rounds without stopping the
source VM. A stop-and-copy phase, where the source
VM is paused temporarily, is used for transferring the
remaining dirty pages. A typical pause is within 1
second.

AGILE also performs disk cloning to make the new
VM independent of the source VM. In IaaS clouds, the
VM’s disk is typically located on a networked storage
device. Because a full disk image is typically large
and would take a long time to copy, AGILE performs
incremental disk cloningusing QEMU Copy On Write
(QCOW). When we pause the source VM to perform the
final round of memory copy, we make the disk image of
the source VM a read-only base image, and build two
incremental (copy-on-write) images for the source VM
and the new VM. We can associate the new incremental
image with the source VM on-the-fly without restarting
the VM by redirecting the disk image driver at the
hypervisor level. This is transparent to the guest OS of
the source VM.

Because live VM cloning makes the new VM instance
inherit all the state from the source VM, which includes
the IP address, the new VM may immediately send out
network packets using the same IP address as the source
VM, causing duplicate network packets and application
errors. To avoid this, AGILE first disconnects the
network interface of the new VM, clears the network
buffer, and then reconnects the network interface of the
new VM with a new IP address.

AGILE introduces two features to live VM cloning.
Adaptive copy rate configuration. AGILE uses the

minimum copy rate that can finish the cloning before
the overload is predicted to start (To), and adjusts this
dynamically based on how much data needs to be trans-
ferred. This uses the minimal network bandwidth, and
minimizes impact on the source machine and application.

If the new application server configuration takes
Tcon f ig seconds, the cloning must finish withinTclone =
To − Tcon f ig. Intuitively, the total size of transferred
memory should equal the original memory size plus the
amount of memory that is modified while the cloning
is taking place. Suppose the VM is usingM memory
pages, and the desired copy rate isrpagecopy pages per
second. We have:rpagecopy×Tclone= M + rdirty ×Tclone.
From this, we have:rpagecopy = M/Tclone+ rdirty. To
estimate the page-dirty rate, we continuously sample the
actual page-dirtying rate and use an exponential moving
average of these values as the estimated value. AGILE
will also adjust the copy rate if the predicted overload
timeTo changes.

Event-driven application auto-configuration. AG-
ILE allows VMs to subscribe to critical events that
occur during the live cloning process to achieve auto-
configuration. For example, the new VM can subscribe

to theNetworkConfiguredevent so that it can configure
itself to use its new IP address. The source VM can
subscribe to theStoppingevent that is triggered when
the cloning enters the stop-and-copy phase, so that it
can notify a front-end load balancer to buffer some
user requests (e.g., write requests). Each VM image
is associated with an XML configuration file specifying
what to invoke on each cloning event.

Minimizing unhelpful cloning. Since live cloning
takes resources, we want to avoid triggering unnecessary
cloning on transient workload spikes: AGILE will only
trigger cloning if the overload is predicted more thank
(e.g. k=3) consecutive times. Similarly, AGILE cancels
cloning if the overload is predicted to be gone more than
k consecutive times. Furthermore, if the overload state
will end before the new VM becomes ready, we should
not trigger cloning.

To do this, AGILE checks whether an overload con-
dition will appear in the look ahead window[t,t +W].
We want to ignore those transient overload states that
will be gone before the cloning can be completed. Let
TRML < W denote the required minimum lead time that
AGILE’s predictor needs to raise an alert in advance
for the cloning to complete before the system enters the
overload state. AGILE will ignore those overload alarms
that only appear in the window[t,t +TRML] but disappear
in the window[t +TRML,t +W]. Furthermore, cloning is
triggered only if the overload state is predicted to last
for at leastQ seconds in the window[t + TRML,t +W]
(0 < Q≤W−TRML) .

The least-loaded server in the pool is used as the
source VM to be cloned. AGILE also supports concur-
rent cloning where it creates multiple new servers at the
same time. Different source servers are used to avoid
overloading any one of them.

Online prediction algorithms can raise false alarms.
To address this issue, AGILE continuously checks
whether previously predicted overload states still exist.
Intuitively, as the system approaches the start of the over-
load state, the prediction should become more accurate.
If the overload state is no longer predicted to occur, the
cloning operation will be canceled; if this can be done
during the pre-copy phase, it won’t affect the application
or the source VM.

3 Experimental evaluation

We implemented AGILE on top of the KVM virtual-
ization platform, in which each VM runs as a KVM
process. This lets AGILE monitor the VM’s resource
usage through the Linux/proc interface. AGILE
periodically samples system-level metrics such as CPU
consumption, memory allocation, network traffic, and
disk I/O statistics. To implement pre-copy live cloning,

5

we modified KVM to add a new KVM hypervisor mod-
ule and an interface in theKVM monitor that supports
starting, stopping a clone, and adjusting the memory
copy rate. AGILE controls the resources allocated to
application VMs through the Linuxcgroups interface.

We evaluated our KVM implementation of AGILE
using the RUBiS online auction benchmark (PHP ver-
sion) [38] and the Apache Cassandra key-value store
0.6.13 [4]. We also tested our prediction algorithm using
Google cluster data [20]. This section describes our
experiments and results.

3.1 Experiment methodology

Our experiments were conducted on a cloud testbed in
our lab with 10 nodes. Each cloud node has a quad-
core Xeon 2.53GHz processor, 8GiB memory and 1Gbps
network bandwidth, and runs 64 bit CentOS 6.2 with
KVM 0.12.1.2. Each guest VM runs 64 bit CentOS 5.2
with one virtual CPU core and 2GiB memory. This setup
is enough to host our test benchmarks at their maximum
workload.

Our experiments on RUBiS focus on the CPU re-
source, as that appears to be the bottleneck in our
setup since all the RUBiS components have low memory
consumption. To evaluate AGILE under workloads
with realistic time variations, we used one day of per-
minute workload intensity observed in 4 different real
world web traces [24] to modulate the request rate of
the RUBiS benchmark: (1) World Cup 98 web server
trace starting at 1998-05-05:00.00; (2) NASA web server
trace beginning at 1995-07-01:00.00; (3) EPA web server
trace starting at 1995-08-29:23.53; and (4) ClarkNet web
server trace beginning at 1995-08-28:00.00. These traces
represent realistic load variations over time observed
from well-known web sites. The resource usage is
collected every 2 seconds. We perform fine-grained
sampling for precise resource usage prediction and ef-
fective scaling [43]. Although the request rate is changed
every minute, the resource usage may still change faster
because different types of requests are generated.

At each sampling instantt, the resource demand
prediction module uses a sliding window of sizeD of
recent resource usage (i.e., fromt −D to t) and predicts
future resource demands in the look-ahead windowW
(i.e., from t to t +W). We repeat each experiment 6
times.

We also tested our prediction algorithm using real
system resource usage data collected on a Google
cluster [20] to evaluate its accuracy on predicting
machine overloads. To do this, we extracted CPU
and memory usage traces from 100 machines randomly
selected from the Google cluster data. We then aggregate
the resource usages of all the tasks running on a given

Parameter RUBiS Google data
Input data window (D) 6000 seconds 250 hours
Look-ahead window (W) 120 seconds 5 hours
Sampling interval (Ts) 2 seconds 5 minutes
Total trace length one day 29 days
Overload duration threshold (Q) 20 seconds 25 minutes
Response time SLO 100 ms NA

Table 1: Summary of parameter values used in our experiments.

machine to get the usage for that machine. These
traces represent various realistic workload patterns. The
sampling interval in the Google cluster is 5 minutes and
the trace lasts 29 days.

Table 1 shows the parameter values used in our
experiments. We also performed comparisons under
different threshold values by varyingD,W, andQ, which
show similar trends. Note that we used consistently
larger D, W, and Q values for the Google trace data
because the sampling interval of the Google data (5
minutes) is significantly larger than what we used in the
RUBiS experiments (2 seconds).

To evaluate the accuracy of our wavelet-based
prediction scheme, we compare it against the best
alternatives we could find: PRESS [19] and auto-
regression [9]. These have been shown to achieve
higher accuracy and lower overheads than other
alternatives. We calculate the overload-prediction
accuracy as follows. The predictor is deemed to
raise a valid overload alarm if the overload state
(e.g., when the resource pressure is bigger than the
overload threshold) is predicted earlier than the required
minimum lead time (TRML). Otherwise, we call the
prediction a false negative. Note that we only consider
those overload states that last at leastQ seconds
(Section 2.3). Moreover, we require that the prediction
model accurately estimates when the overload will start,
so we compare the predicted alarm time with the true
overload start time to calculate aprediction time error. If
the absolute prediction time error is small (i.e.,≤ 3 ·Ts),
we say the predictor raises a correct alarm. Otherwise,
we say the predictor raises a false alarm.

We use the standard metrics,true positive rate(AT)
and false positive rate(AF), given in equation 1.
Ptrue, Pfalse, Ntrue, and Nfalse denote the number of
true positives, false positives, true negatives, and false
negatives, respectively.

AT =
Ptrue

Ptrue+Nf alse
, AF =

Pf alse

Pf alse+Ntrue
(1)

A service provider can either rely on the application
itself or an external tool [5] to tell whether the application
SLO is being violated. In our experiments, we adopted
the latter approach. With the RUBiS benchmark, the

6

WorldCup NASA EPA ClarkNet
0

25

50

75

100

Tr
ue

 p
os

iti
ve

 ra
te

 (%
)

 Wavelet-60 Wavelet-100
 PRESS-60 PRESS-100
 AutoRegression-60 AutoRegression-100

(a)

WorldCup NASA EPA ClarkNet
0

10

20

30

40

50

Fa
ls

e
po

si
tiv

e
ra

te
 (%

)

 Wavelet-60 Wavelet-100
 PRESS-60 PRESS-100
 AutoRegression-60 AutoRegression-100

(b)

Figure 5: CPU demand prediction accuracy comparison for
RUBiS web server driven by one-day request traces of different
real web servers withTRML = 60 and 100 seconds.

workload generator tracks the response time of the HTTP
requests it makes. The SLO violation rate is the fraction
of requests that have response time larger than a pre-
defined SLO threshold. In our experiments, this was
100ms, the 99th percentile of observed response times
for a run with no resource constraints. We conduct our
RUBiS experiments on both the Apache web server tier
and the MySQL database tier.

For comparison, we also implemented a set of
alternative resource provisioning schemes:

• No scaling: A non-elastic resource provisioning
scheme that cannot change the size of the server
pool, which is fixed at 1 server as this is sufficient
for the average resource demand.

• Reactive: This scheme triggers live VM cloning
when it observes that the application has become
overloaded. It uses a fixed memory-copy rate, and
for a fair comparison, we set this to the average copy
rate used by AGILE so that both schemes incur a
similar network cost for cloning.

• PRESS: Instead of using the wavelet-based
prediction algorithm, PRESS uses a Markov+FFT
resource demand prediction algorithm [19] to
predict future overload state and triggers live
cloning when an overload state is predicted to
occur. PRESS uses the same false alarm filtering

1 10 100 1000
0

20

40

60

80

100

 Wavelet-60
 PRESS-60
 AutoRegression-60

Absolute prediction time error (s) [log
10

]C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(%
)

0

Figure 6: Cumulative distribution function of the prediction
time error for the RUBiS web server driven by the ClarkNet
workload.

mechanism described in Section 2.3.

• FixThreshold-65% and -80%: This scheme triggers
live VM cloning if the resource pressure exceeds
65% and 80%. This allows us to evaluate the effects
of the resource pressure model.

Note that thereactive and PRESSschemes use the
AGILE same resource pressure model to decide the
resource pressure threshold for the target 5% SLO
violation rate.

3.2 Experimental results

Prediction accuracy results.In this set of experiments,
no cloning is performed. Figure 5 shows the overload
prediction accuracy comparisons for RUBiS driven by
different real workload traces. We test the prediction
system with different lead time requirements (TRML).
The results show that our wavelet prediction scheme is
statistically significantly better than the PRESS scheme
and the auto-regression scheme (the independent two-
sample t-test indicatesp-value≤ 0.01). Particularly,
the wavelet scheme can improve the true positive rate
by up to 3.42× and reduce the false positive rate by
up to 0.41×. The accuracy of the PRESS and auto-
regression schemes suffers as the number of iterations
increases, errors accumulate, and the correlation between
the prediction model and the actual resource demand
becomes weaker. This is especially so for ClarkNet, the
most dynamic of the four traces.

In the above prediction accuracy figure, we consider
the predictor raises a correct alarm if the absolute
prediction time error is less than≤ 3 · Ts. We further
compare the distributions of the absolute prediction time
error among different schemes. Figure 6 compares
the cumulative distribution functions of the absolute
prediction time error among different schemes. We

7

Wavelet-100

Wavelet-150

PRESS-100

PRESS-150

AutoRegression-100

AutoRegression-150

0

20

40

60

80

100

Tr
ue

 p
os

iti
ve

 ra
te

 (%
)

(a)

Wavelet-100

Wavelet-150

PRESS-100

PRESS-150

AutoRegression-100

AutoRegression-150

0

20

40

60

Fa
ls

e
po

si
tiv

e
ra

te
 (%

)

(b)

Figure 7: Prediction accuracy for 100 Google cluster CPU
traces withTRML = 100 and 150 minutes. The bottom and top
of the box represent 25th and 75th percentile values, the ends
of the whiskers represent 10th and 90th percentile values.

observe that AGILE achieves much lower prediction
time error (78% alarms have 0 absolute prediction time
error) than auto-regression (34% alarms have 0 absolute
prediction time error) and PRESS (46% alarms have
0 absolute prediction time error). Other traces show
similar trend, which are omitted due to space limitation.

Figure 7 and Figure 8 show the prediction accuracy
for the CPU and memory usage traces on 100 machines
in a Google cluster. The overload threshold is set to the
70th percentile of all values in each trace. We observe
that the wavelet scheme again consistently outperforms
the PRESS scheme and the auto-regression scheme with
up to 2.1× better true positive rate and 0.34× the false
positive rate.

Overload handling results. Next, we evaluate how
well AGILE handles overload using dynamic server pool
scaling. The experiment covers 7000 seconds of a
RUBiS run driven by the ClarkNet web server trace. The
first 6000 seconds are used for training and no cloning is
performed. The overload state starts at about t = 6500s.
When examining the effects of scaling on different tiers
in RUBiS, we limit the scaling to one tier and allocate
sufficient resources to the other tier. We repeat each
experiment 3 times.

Figure 9 shows the overall results of different schemes.

Wavelet-100

Wavelet-150

PRESS-100

PRESS-150

AutoRegression-100

AutoRegression-150

0

20

40

60

80

100

Tr
ue

 p
os

iti
ve

 ra
te

 (%
)

(a)

Wavelet-100

Wavelet-150

PRESS-100

PRESS-150

AutoRegression-100

AutoRegression-150

0

20

40

60

80

Fa
ls

e
po

si
tiv

e
ra

te
 (%

)

(b)

Figure 8: Prediction accuracy comparison for 100 Google
cluster memory traces.

Overall SLO violationrate denotes the percentage of
requests that have response times larger than the SLO
violation threshold (e.g., 100ms) during the experiment
run. SLO violationtime is the total time in which SLO
violation rate (collected every 5 seconds) exceeds the
target (e.g., 5%). We observe that AGILE consistently
achieves the lowest SLO violation rate and shortest
SLO violation time. Under theno scalingscheme, the
application suffers from high SLO violation rate and
long SLO violation time in both the web server tier
and the database tier scaling experiments. Thereactive
scheme mitigates this by triggering live cloning to create
a new server after the overload condition is detected,
but since the application is already overloaded when
the scaling is triggered, the application still experiences
a high SLO violation rate for a significant time. The
FixThreshold-80%scheme triggers the scaling too late,
especially in the database experiment and thus does
not show any noticeable improvement compared to
without scaling. Using a lower threshold,FixThreshold-
65% improves the SLO violation rate but at a higher
resource cost: resource pressure is maintained at 65%
while AGILE maintains the resource pressure at 75%.
In contrast, AGILE predicts the overload state in
advance, and successfully completes live cloning before
the application enters the overload state. With more
accurate predictions, AGILE also outperforms PRESS by

8

0

5

10

15

20
O

ve
ra

ll
SL

O
 v

io
la

tio
n

ra
te

 (%
)

 No scaling Reactive PRESS AGILE
 FixThreshold-65% FixThreshold-80%

0

50

100

150

200 4024185035302727.2

O
ve

ra
ll

SL
O

 v
io

la
tio

n
tim

e
(s

)

 DatabaseWebserver

DatabaseWebserver

Figure 9: SLO violation rates and times for the two RUBiS tiers
under a workload following the ClarkNet trace.

Application In use Copied Ratio
RUBiS Webserver 530MiB 690MiB 1.3×
RUBiS Database 1092MiB 1331MiB 1.2×
Cassandra 671MiB 1001MiB 1.5×

Table 2: Amount of memory moved during cloning for
different applications.

predicting the overload sooner.
Figure 10 shows detailed performance measurements

for the web server tier during the above experiment. We
sample the average response time every second and plot
the cumulative distribution functions for the whole run
and during cloning. From Figure 10(a), we can see
that the response time for most requests meets the SLO
when using the AGILE system. In contrast, if no scaling
is performed, the application suffers from a significant
increase in response time. Figure 10(b) shows that all
the scaling schemes, except AGILE, cause much worse
performance during the cloning process: the application
is overloaded and many requests suffer from a large
response time until a new server is started. In contrast,
using AGILE, the application experiences little response
time increase since the application has not yet entered the
overload state. Figure 11 shows the equivalent results for
the database server and has similar trends.

Figure 12 and Figure 13 show the SLO violation
rate timeline of RUBiS application under the ClarkNet
workload. Compared to other schemes, AGILE triggers
scaling before the system enters the overload state.
Under the reactive scheme, the live cloning is executed
when the system is already overloaded, which causes a
significant impact to the application performance during
the cloning time. Although PRESS can predict the
overload state in advance, the lead time is not long
enough for cloning to finish before the application is
overloaded.

Dynamic copy-rate configuration results. Table 2
shows the amount of memory moved during cloning for
different applications. AGILE moved at most 1.5 times

0 50 100 150 200
0

20

40

60

80

100

 No scaling
 Reactive
 PRESS
 AGILE

Average response time (ms)

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

(a) Overall CDF

0 50 100 150 200
0

20

40

60

80

100

 Reactive
 PRESS
 AGILE

Average response time (ms)
Cu

m
ul

at
iv

e
Pe

rc
en

ta
ge

 (%
)

(b) During cloning

Figure 10: Scaling up the RUBiS web server tier from 1 server
to 2 servers under a dynamic workload following the ClarkNet
trace. (a) Overall CDF denotes the whole experiment.(b)
During cloningdenotes the period in which the scaling is being
executed. AGILE always triggers scaling earlier than other
schemes.

the amount of the memory in use at the source VM.
We also tested AGILE under different overload pending
time deadlines (i.e., target time to finish cloning) and
check whether the cloning can finish within the pending
time. Figure 14 shows that our dynamic copy-rate setting
can accurately control the cloning time under different
deadlines.

We measured the time spent in the different stages of
the live VM cloning for different applications (Table 3).
As expected, pre-copy dominates the cloning time (tens
of seconds), while the stop-and-copy time is only 0.1 s,
so the downtime of the source VM is negligible.

Overhead results. We first present the overhead
imposed by our online profiling mechanism. Figure 15
shows the timeline of the average response time during
profiling. Figure 16 shows the performance impact of the
online profiling on the average response time over the
period of 6 hours, in which AGILE performs profiling
three times. Overall, the overhead measurements show
that AGILE is practical for online system management.

9

0 50 100 150 200
0

20

40

60

80

100

 No scaling
 Reactive
 PRESS
 AGILE

Average response time (ms)

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

(a) Overall CDF

0 50 100 150 200
0

20

40

60

80

100

 Reactive
 PRESS
 AGILE

Average response time (ms)

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

(b) During cloning

Figure 11: Scaling up the RUBiS database server tier from 1
server to 2 servers under a dynamic workload following the
ClarkNet trace. We used 9 web servers to make the database
tier become the bottleneck.

Application Pre-copy Stop-and-copy Configuration
RUBiS Webserver 31.2± 1.1 s 0.10± 0.01 s 16.8± 0.6 s
RUBiS Database 33.1± 0.9 s 0.10± 0.01 s 17.8± 0.8 s
Cassandra 31.5± 1.1 s 0.10± 0.01 s 17.5± 0.9 s

Table 3: Time spent in the different stages of live VM cloning.

We also evaluated the overhead of the AGILE system.
The AGILE slave process on each cloud node imposes
less than 1% CPU overhead. The most computationally
intensive component is the prediction module that runs
on the master node. Table 4 shows the online training
time and prediction time for AGILE, PRESS, and auto-
regression schemes. AGILE has similar overheads at the
master node as does PRESS. The auto-regression scheme
is faster, however its accuracy is much worse than
AGILE. Clearly, these costs still need to be reduced (e.g.,
by incremental retraining mechanisms and decentralized
masters), and we hope to work on this in the future.

6000 6200 6400 6600 6800 7000
0

10
20
30
40
50
60
70
80

 No scaling (455 s)
 Reactive (120 s)
 Press (85 s)
 AGILE (40 s)

Time (s)

SL
O

 v
io

la
tio

n
ra

te
 (%

)

Figure 12: SLO violation timeline for web server tier
experiment under the ClarkNet workload. The number in the
bracket indicates the SLO violation time in seconds.

6000 6200 6400 6600 6800 7000
0
10
20
30
40
50
60
70
80

 No scaling (425 s)
 Reactive (110 s)
 Press (80 s)
 AGILE (25 s)

Time (s)

SL
O

 v
io

la
tio

n
ra

te
 (%

)

Figure 13: SLO violation timeline for database tier experiment
under the ClarkNet workload.

4 Related Work

AGILE is built on top of previous work on resource
demand prediction, performance modeling, and VM
cloning. Most previous work on server pool scaling
(e.g., [29, 17]) adopts areactiveapproach while AGILE
provides aprediction-drivensolution that allows the
system to start new instances before SLO violation
occurs.

Previous work has proposed white-box or grey-box
approaches to addressing the problem of cluster sizing.
Elastisizer [22] combines job profiling, black-box and
white-box models, and simulation to compute an optimal
cluster size for a specific MapReduce job. Verma
et al. [47] proposed a MapReduce resource sizing
framework that profiles the application on a smaller data
set and applies linear regression scaling rules to generate
a set of resource provisioning plans. The SCADS
director framework [44] used a model-predictive control
(MPC) framework to make cluster sizing decisions based
on the current workload state, current data layout, and

10

0 20 40 60
0

20

40

60

C
lo

ni
ng

 ti
m

e
(s

)

Overload pending time (s)

Figure 14: Cloning time achieved against predicted time to
overload.

Scheme Training time
(3000 samples)

Prediction time
(60 steps)

AGILE 575± 7 ms 2.2± 0.1 ms
PRESS 595± 6 ms 1.5± 0.1 ms
Auto-regression 168± 5 ms 2.2± 0.1 ms

Table 4: Prediction model training time and the prediction
time comparison between AGILE, PRESS, and auto-regression
schemes. The prediction module runs on the master host.

predicted SLO violation. Huber et al. [23] presented
a self-adaptive resource management algorithm which
leverages workload prediction and a performance
model [7] that predicts application’s performance
under different configurations and workloads. In
contrast, AGILE does not require any prior application
knowledge.

Previous work [53, 26, 35, 36, 34, 29] has applied
control theory to achieve adaptive resource allocation.
Such approaches often have parameters that need to be
specified or tuned offline for different applications or
workloads. The feedback control system also requires
a feedback signal that is stable and well correlated with
SLO measurement. Choosing suitable feedback signals
for different applications is a non-trivial task [29]. Other
projects used statistical learning methods [41, 42, 15, 40]
or queueing theory [46, 45, 14] to estimate the impact
of different resource allocation policies. Overdriver [48]
used offline profiling to learn the memory overload
probability of each VM to select different mitigation
strategies: using migration for sustained overloads or
network memory for transient overloads. Those models
need to be built and calibrated in advance. Moreover,
the resource allocation system needs to make certain
assumptions about the application and the running
platform (e.g., input data size, cache size, processor
speed), which often is impractical in a virtualized, multi-
tenant IaaS cloud system.

Trace-driven resource demand prediction has been
applied to several dynamic resource allocation problems.
Rolia et al. [37] described a resource demand prediction
scheme that multiplies recent resource usage by a
burst factor to provide some headroom. Chandra et
al. [11] developed a prediction framework based on

0 1000 2000 3000 4000
0

20

40

Profiling starts

 No profiling
 With profiling

Time (s)

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

Profiling ends

Figure 15: The effect of profiling on average response time for
the RUBiS system under the ClarkNet workload.

10 15 20 25 30 35 40 45
0

20

40

60

80

100

 Overall performance without profiling
 Overall performance with profiling
 During profiling

Average response time (ms)

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 (%

)

Figure 16: Profiling overhead for the RUBiS system under the
ClarkNet workload. Profiling occurs every two hours.

auto-regression to drive dynamic resource allocation
decisions. Gmach et al. [18] used a Fourier transform-
based scheme to perform offline extraction of long-term
cyclic workload patterns. Andrzejak et al. [3] employed a
genetic algorithm and fuzzy logic to address the problem
of having little training data. Gandhi et al. [16] combined
long-term predictive provisioning using periodic patterns
with short-term reactive provisioning to minimize SLO
violations and energy consumption. Matsunaga et
al. [30] investigated several machine learning techniques
for predicting spatio-temporal resource utilization.
PRESS [19] developed a hybrid online resource demand
prediction model that combines a Markov model and
a fast Fourier transform-based technique. Previous
prediction schemes either focus on short-term prediction
or need to assume cyclic workload patterns. In contrast,
AGILE focuses on medium-term prediction and works
for arbitrary workload patterns.

VM cloning has been used to support elastic cloud
computing. SnowFlock [28] provides a fast VM
instantiation scheme using on-demand paging. However,
the new instance suffers from an extended performance
warmup period while the working set is copied over from

11

the origin. Kaleidoscope [8] uses fractional VM cloning
with VM state coloring to prefetch semantically-related
regions. Although our current prototype uses full pre-
copy, AGILE could readily work with fractional pre-
copy too: prediction-driven live cloning and dynamic
copy rate adjustment can be applied to both cases.
Fractional pre-copy could be especially useful if the
overload duration is predicted to be short. Dolly [10]
proposed a proactive database provisioning scheme that
creates a new database instance in advance from a disk
image snapshot and replays the transaction log to bring
the new instance to the latest state. However, Dolly did
not provide any performance predictions, and the new
instance created from an image snapshot may need some
warmup time. In contrast, the new instance created by
AGILE can reach its peak performance immediately after
start.

Local resource scaling (e.g., [39]) or live VM
migration [13, 50, 49, 25] can also relieve local, per-
server application overloads, but distributed resource
scaling will be needed if the workload exceeds the
maximum capacity of any single server. Although
previous work [39, 50] has used overload prediction
to proactively trigger local resource scaling or live
VM migration, AGILE addresses the specific challenges
of using predictions in distributed resource scaling.
Compared to local resource scaling and migration,
cloning requires longer lead time and is more sensitive
to prediction accuracy, since we need to pay the cost
of maintaining extra servers. AGILE provides medium-
term predictions to tackle this challenge.

5 Future Work

Although AGILE showed its practicality and efficiency
in experiments, there are several limitations which we
plan to address in our future work.

AGILE currently derives resource pressure models
for just CPU. Our future work will extend the resource
pressure model to consider other resources such as
memory, network bandwidth, and disk I/O. There are
two ways to build a multi-resource model. We can build
one resource pressure model for each resource separately
or build a single resource pressure model incorporating
all of them. We plan to explore both approaches and
compare them.

AGILE currently uses resource capping (a Linux
cgroups feature) to achieve performance isolation
among different VMs [39]. Although we observed that
the resource capping scheme works well for common
bottleneck resources such as CPU and memory, there
may still exist interference among co-located VMs [52].
We need to take such interference into account to build
more precise resource pressure models and achieve more

accurate overload predictions.
Our resource pressure model profiling can be triggered

either periodically or by workload mix changes. To
make AGILE more intelligent, we plan to incorporate
workload change detection mechanism [32, 12] in
AGILE. Upon detecting a workload change, AGILE
starts a new profiling phase to build a new resource
pressure model for the current workload type.

6 Conclusion

AGILE is an application-agnostic, prediction-driven,
distributed resource scaling system for IaaS clouds.
It uses wavelets to provide medium-term performance
predictions; it provides an automatically-determined
model of how an application’s performance relates to
the resources it has available; and it implements a way
of cloning VMs that minimizes application startup time.
Together, these allow AGILE to predict performance
problems far enough in advance that they can be avoided.

To minimize the impact of cloning a VM, AGILE
copies memory at a rate that completes the clone just
before the new VM is needed. AGILE performs
continuous prediction validation to detect false alarms
and cancels unnecessary cloning.

We implemented AGILE on top of the KVM
virtualization platform, and conducted experiments
under a number of time-varying application loads
derived from real-life web workload traces and real
resource usage traces. Our results show that AGILE can
significantly reduce SLO violations when compared to
existing resource scaling schemes. Finally, AGILE is
lightweight, which makes it practical for IaaS clouds.

7 Acknowledgement

This work was sponsored in part by NSF CNS0915567
grant, NSF CNS0915861 grant, NSF CAREER Award
CNS1149445, U.S. Army Research Office (ARO) under
grant W911NF-10-1-0273, IBM Faculty Awards and
Google Research Awards. Any opinions expressed in
this paper are those of the authors and do not necessarily
reflect the views of NSF, ARO, or U.S. Government.

References

[1] N. A. Ali and R. H. Paul.Multiresolution signal
decomposition. Academic Press, 2000.

[2] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/.

[3] A. Andrzejak, S. Graupner, and S. Plantikow. Predicting
resource demand in dynamic utility computing
environments. InAutonomic and Autonomous Systems,
2006.

12

[4] Apache Cassandra Database.
http://cassandra.apache.org/.

[5] M. Ben-Yehuda, D. Breitgand, M. Factor, H. Kolodner,
V. Kravtsov, and D. Pelleg. NAP: a building block for
remediating performance bottlenecks via black box
network analysis. InICAC, 2009.

[6] E. Brigham and R. Morrow. The fast Fourier transform.
IEEE Spectrum, 1967.

[7] F. Brosig, N. Huber, and S. Kounev. Automated
extraction of architecture-level performance models of
distributed component-based systems. InAutomated
Software Engineering, 2011.

[8] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi,
M. Hiltunen, A. Lagar-Cavilla, and E. de Lara.
Kaleidoscope: cloud micro-elasticity via VM state
coloring. InEuroSys, 2011.

[9] E. S. Buneci and D. A. Reed. Analysis of application
heartbeats: Learning structural and temporal features in
time series data for identification of performance
problems. InSupercomputing, 2008.

[10] E. Cecchet, R. Singh, U. Sharma, and P. Shenoy. Dolly:
virtualization-driven database provisioning for the cloud.
In VEE, 2011.

[11] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource
allocation for shared data centers using online
measurements. InIWQoS, 2003.

[12] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and
E. Smirni. Anomaly? application change? or workload
change? towards automated detection of application
performance anomaly and change. InDependable
Systems and Networks, 2008.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. InNSDI, 2005.

[14] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M.
Vahdat. Model-based resource provisioning in a web
service utility. InUSENIX Symposium on Internet
Technologies and Systems, 2003.

[15] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox,
M. Jordan, and D. Patterson. Predicting multiple metrics
for queries: better decisions enabled by machine
learning. InInternational Conference on Data
Engineering, 2009.

[16] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and
M. Marwah. Minimizing data center sla violations and
power consumption via hybrid resource provisioning. In
Green Computing Conference and Workshops, 2011.

[17] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and
M. Kozuch. Autoscale: Dynamic, robust capacity
management for multi-tier data centers. InTransactions
on Computer Systems, 2012.

[18] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Capacity management and demand prediction for next
generation data centers. InInternational Conference on
Web Services, 2007.

[19] Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems. In
International Conference on Network and Service
Management, 2010.

[20] Google cluster-usage traces: format + scheme
(2011.11.08 external).http://goo.gl/5uJri.

[21] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-adaptive workload classification and forecasting for
proactive resource provisioning. InInternational
Conference on Performance Engineering, 2013.

[22] H. Herodotou, F. Dong, and S. Babu. No one (cluster)
size fits all: automatic cluster sizing for data-intensive
analytics. InSoCC, 2011.

[23] N. Huber, F. Brosig, and S. Kounev. Model-based
self-adaptive resource allocation in virtualized
environments. InSoftware Engineering for Adaptive and
Self-Managing Systems, 2011.

[24] The IRCache Project.
http://www.ircache.net/.

[25] C. Isci, J. Liu, B. Abali, J. Kephart, and J. Kouloheris.
Improving server utilization using fast virtual machine
migration. InIBM Journal of Research and
Development, 2011.

[26] E. Kalyvianaki, T. Charalambous, and S. Hand.
Self-adaptive and self-configured CPU resource
provisioning for virtualized servers using Kalman filters.
In ICAC, 2009.

[27] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the linux virtual machine monitor. InLinux
Symposium, 2007.

[28] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. InEuroSys, 2009.

[29] H. C. Lim, S. Babu, and J. S. Chase. Automated control
for elastic storage. InICAC, 2010.

[30] A. Matsunaga and J. Fortes. On the use of machine
learning to predict the time and resources consumed by
applications. InCluster, Cloud and Grid Computing,
2010.

[31] A. Neogi, V. R. Somisetty, and C. Nero. Optimizing the
cloud infrastructure: tool design and a case study.
International IBM Cloud Academy Conference, 2012.

[32] H. Nguyen, Z. Shen, Y. Tan, and X. Gu. FChain: Toward
black-box online fault localization for cloud systems. In
ICDCS, 2013.

[33] Oracle. Best practices for database consolidation in
private clouds, 2012.
http://www.oracle.com/technetwork/
database/focus-areas/database-cloud/
database-cons-best-practices-1561461.
pdf.

[34] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant. Automated

13

control of multiple virtualized resources. InEuroSys,
2009.

[35] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive control
of virtualized resources in utility computing
environments. InEuroSys, 2007.

[36] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury,
T. Jayram, and J. Bigus. Using control theory to achieve
service level objectives in performance management. In
Real-Time Systems, 2002.

[37] J. Rolia, L. Cherkasova, M. Arlitt, and V. Machiraju.
Supporting application quality of service in shared
resource pools.Communications of the ACM, 2006.

[38] RUBiS Online Auction System.
http://rubis.ow2.org/.

[39] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale:
elastic resource scaling for multi-tenant cloud systems.
In SoCC, 2011.

[40] P. Shivam, S. Babu, and J. Chase. Active and accelerated
learning of cost models for optimizing scientific
applications. InVLDB, 2006.

[41] P. Shivam, S. Babu, and J. S. Chase. Learning
application models for utility resource planning. In
ICAC, 2006.

[42] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar
from 15 cents: cross-platform management for internet
services. InUSENIX ATC, 2008.

[43] Y. Tan, V. Venkatesh, and X. Gu. Resilient
self-compressive monitoring for large-scale hosting
infrastructures. InTPDS, 2012.

[44] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin, M. I.
Jordan, and D. A. Patterson. The SCADS director:
scaling a distributed storage system under stringent
performance requirements. InFAST, 2011.

[45] B. Urgaonkar and A. Chandra. Dynamic provisioning of
multi-tier internet applications. InICAC, 2005.

[46] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier internet
services and its applications. InSIGMETRICS, 2005.

[47] A. Verma, L. Cherkasova, and R. Campbell. Resource
provisioning framework for MapReduce jobs with
performance goals. InMiddleware, 2011.

[48] D. Williams, H. Jamjoom, Y. Liu, and H. Weatherspoon.
Overdriver: Handling memory overload in an
oversubscribed cloud. InVEE, 2011.

[49] D. Williams, H. Jamjoom, and H. Weatherspoon. The
Xen-Blanket: virtualize once, run everywhere. In
Eurosys, 2012.

[50] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and gray-box strategies for virtual
machine migration. InNSDI, 2007.

[51] E. Zayas. Attacking the process migration bottleneck.In
SOSP, 1987.

[52] X. Zhang, E. Tune, R. Hagmann, R. J. V. Gokhale, and
J. Wilkes. Cpi2: Cpu performance isolation for shared
compute clusters. InEurosys, 2013.

[53] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia,
S. Singhal, B. McKee, C. Hyser, D. Gmach, R. Gardner,
T. Christian, and L. Cherkasova. 1000 Islands:
integrated capacity and workload management for the
next generation data center. InICAC, 2008.

14

