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Abstract—Big data processing is one of the killer applications
for cloud systems. MapReduce systems such as Hadoop are the
most popular big data processing platforms used in the cloud
system. Data corruption is one of the most critical problems in
cloud data processing, which not only has serious impact on
the integrity of individual application results but also affects the
performance and availability of the whole data processing system.
In this paper, we present a comprehensive study on 138 real world
data corruption incidents reported in Hadoop bug repositories.
We characterize those data corruption problems in four aspects:
1) what impact can data corruption have on the application and
system? 2) how is data corruption detected? 3) what are the
causes of the data corruption? and 4) what problems can occur
while attempting to handle data corruption?

Our study has made the following findings: 1) the impact
of data corruption is not limited to data integrity; 2) existing
data corruption detection schemes are quite insufficient: only
25% of data corruption problems are correctly reported, 42%
are silent data corruption without any error message, and 21%
receive imprecise error report. We also found the detection
system raised 12% false alarms; 3) there are various causes
of data corruption such as improper runtime checking, race
conditions, inconsistent block states, improper network failure
handling, and improper node crash handling; and 4) existing data
corruption handling mechanisms (i.e., data replication, replica
deletion, simple re-execution) make frequent mistakes including
replicating corrupted data blocks, deleting uncorrupted data
blocks, or causing undesirable resource hogging.

I. INTRODUCTION

Cloud computing [1], [2] has become increasingly popular
recently. Massive data processing systems such as Hadoop [3]
are most commonly used cloud applications. However, cloud
data corruption [4] has become a big concern for the user,
which can not only cause data loss [5] but also system
crashes [6] and reduced availability [7]. Data corruption issues
often incur severe financial penalty ranging from millions in
fines [8] to company collapse [9].

Data corruption can be caused by both hardware faults (e.g,
memory errors, disk bit rot) and software faults (e.g., software
bugs [4], [10], [11]). As the capacity of hard disks and memory
grows, the likelihood of hardware failures also increases.
For example, Facebook [5] temporarily lost over 10% of
photos because of a hard drive failure. Similarly, as cloud
systems scale out, data corruptions caused by software bugs
also become prevalent. For example, Amazon Simple Storage
Service (S3) [1] encountered a data corruption problem caused
by a load balancer bug [12]. Although previous studies [13]–
[15] have shown that disk errors (e.g., latent sector errors [16])
and DRAM errors in large-scale production systems are large

enough to require attention, little research has been done to
understand software-induced data corruption problems.

In this paper, we present a comprehensive study on the
characteristics of the real world data corruption problems
caused by software bugs in cloud systems. We examined 138
data corruption incidents reported in the bug repositories of
four Hadoop projects (i.e., Hadoop-common, HDFS, MapRe-
duce, YARN [17]). Although Hadoop provides fault tolerance,
our study has shown that data corruptions still seriously affect
the integrity, performance, and availability of the Hadoop
systems. Particularly, we characterize the 138 data corruption
incidents in our study based on the following four aspects:
1) what impact can data corruption have on the application
and system? 2) how is data corruption detected? 3) what is
the causes of the data corruption? and 4) what problems can
occur while attempting to handle data corruption?

Our study has made the following findings:

• Data corruption impact: Data corruption impact
is not limited to data integrity. If corrupted blocks
are not handled correctly, the data they store could
be completely lost. Corrupted metadata prevents data
from being accessed, which might cause wrong data
deletion in some cases. Essential HDFS system files
which keep track of HDFS file system information
(e.g., permissions) can cause other components of the
system to crash when corrupted. Furthermore, if these
system files are not recoverable, all data stored in
HDFS can be lost. Data corruption can also cause job
failures, infinite loops, and failed client requests for
Hadoop services.

• Data corruption detection: Although Hadoop pro-
vides a data corruption detection mechanism, it is far
from sufficient to detect all data corruptions. Our study
shows that Hadoop fails to detect many data corruption
problems caused by software bugs. Moreover, the
existing Hadoop file system integrity checking scheme
(i.e., fsck1) can generate false alarms which leads to
unnecessary debugging cost. Hadoop data corruption
detection mechanisms can also generate imprecise
messages. For example, genstamp2 mismatches are al-
ways reported as block corruption. In cases of unhan-
dled exceptions caused by data corruption, exception

1fsck is a Hadoop command for checking filesystem and reporting problems
with files.

2Genstamp is short for GenerationStamp, an identity number indicating
block version. It is assigned to each created block and gets increased each
time the block is updated.



names and exception messages are often unclear, pro-
viding little useful information about the underlying
data corruption. Those unclear error messages make
it difficult for developers to correctly identify and fix
the problem.

• Data corruption causes: The cause of data corruption
can be from a variety of factors including both external
and internal to HDFS. When processing uploaded
files, external factors such as disk failure and bit-flip
in memory generate exceptions which are difficult to
handle properly. Internal factors also exist and mainly
result from either Hadoop’s inability to maintain data
consistency in the face of node crashes or from
Hadoop’s inability to synchronize data information in
the face of concurrent operations on the same blocks.

• Data corruption handling: Hadoop provides data
corruption handling mechanisms. However, problems
can occur during the handling of corrupted data.
For example, a corrupted block can be mistakenly
replicated, which causes Hadoop to delete it because
it is corrupted, which triggers replication again. Worse
yet, this replication and deletion process can continue
infinitely.

The remainder of the paper is organized as follows:
Section II describes our data corruption problem sources,
the statistics of different data corruption types, and how we
categorize the data corruption problems. Section III describes
different impact the data corruption problems have on Hadoop.
Section IV describes how Hadoop detects data corruptions
along with the problems that can cause Hadoop to miss
data corruptions. Section V discusses different causes of
data corruptions. Section VI describes how Hadoop handles
detected data corruptions along with the problems that can
occur during data corruption handling. Section VII discusses
the work related to our study. Finally, Section VIII concludes
the paper.

II. PRELIMINARIES

A. Hadoop Background

Hadoop has two broad classes of versions, namely, 1.x
and 2.x. Hadoop 1.x consists of Hadoop common, HDFS, and
MapReduce. Hadoop 2.x introduces HDFS federation and a
resource management framework, YARN. Table I summarizes
our notations. We now describe them as follows.

Hadoop uses the Hadoop Distributed File System (HDFS)
to store files among DataNodes (DNs) under the management
of the NameNode (NN) which is the master node where
Hadoop maintains the file system namespace of HDFS. DN
is the slave node which is used for storing files and responds
to commands from NN. The SecondaryNameNode (2NN)
periodically creates checkpoints of the file system maintained
in NN.

Yet Another Resource Negotiator (YARN) is responsible
for resource management when executing MapReduce pro-
grams in Hadoop. The ResourceManager (RM) is a scheduler
to optimize cluster utilization. For each machine in a Hadoop
cluster, there is a NodeManager (NM) which monitors resource
usage and reports it to RM. For each MapReduce job, there is

TABLE I. NOTATIONS.

Notation Meaning

HDFS Hadoop Distributed File System

YARN Yet Another Resource Negotiator

DN DataNode

NN NameNode

2NN SecondaryNameNode

RM ResourceManager

NM NodeManager

AM ApplicationManager

TABLE II. STATISTICS OF DATA CORRUPTION INCIDENTS.

System
name

System
file
corruption

Metadata
corruption

Block
corruption

Misreported
corruption

Hadoop
1.x

15 11 46 4

Hadoop
2.x(YARN)

1 0 7 0

HDFS 1.x 17 7 23 7

HDFS 2.x 8 0 22 10

an ApplicationManager (AM) which requests resources from
RM and reports job status and progress to RM.

There are three different types of data stored in HDFS:
1) system files that include files needed by HDFS (e.g.,
edits.log, fsimage, VERSION), job history logs, and
task description files, and are stored on the NN; 2) data blocks
that are chunks of user data and replicated among several DNs;
and 3) block metadata that are created along with the data
blocks on the same DN and include block information such as
block’s checksum and genstamp.

B. Data Corruption Sample Collection

We collected samples of real world data corruption in-
cidents from the Hadoop bug repository [18]. We selected
the data corruption samples using these criteria: 1) project:
HADOOP, HDFS, MAPREDUCE, YARN; 2) issue type: Bug;
3) status: RESOLVED, CLOSED, PATCH AVAILABLE; and
4) keyword: corruption. We then manually examined each
incident to ensure it is indeed related to data corruption and is
resolved (e.g., patch provided). We found 138 distinct data
corruption samples for our study, shown by Table II. We
classify data corruption problems into different groups based
on what types of data are affected by the problem.

To emphasize data corruption incidents in HDFS, we
separate HDFS from Hadoop 1.x and from Hadoop 2.x. Some
selected incidents could affect both Hadoop 1.x and Hadoop
2.x. For the 12 incidents without specific version specified,
we use the fix version to infer the proper version. For the
five incidents specifying neither an affected version nor a
fix version, we identify the Hadoop version by searching for
version-related information in the bug descriptions, comments,
uploaded logs, and attached patches. While some incidents
could affect more than one type of data, some others do not
actually affect any type of data either because they happen in
memory or because they are misreported data corruption.



C. Characteristic Categories

We categorize the data corruption problems in four as-
pects: impact, detection, causes, and handling. Each aspect
is subdivided into several types and the percentage of the data
corruption samples in each type is also reported.

Data corruption impact: We measure the data corruption
impact in three dimensions: 1) integrity which means data
corruption has occurred to data stored in HDFS; 2) availability
which means data corruption causes Hadoop node crashes,
restarting failures, Hadoop service failures, or MapReduce job
failures; and 3) performance which means MapReduce jobs
or Hadoop services either take a longer time to finish or is
unable to serve more client requests. Several data corruption
problems impact more than one dimension.

Data corruption detection: For data corruption detection, we
divide bug detection into four types: 1) correct data corruption
detection which means once data corruption occurs, it can
be detected immediately or automatically by Hadoop, and the
reported messages about data corruption are accurate enough
to let users know what data is corrupted; 2) imprecise data
corruption detection which means although the data corruption
is detected immediately or automatically by Hadoop, the
generated message does not indicate what data are corrupted;
3) silent data corruption which means the data corruption is
not detected; and 4) misreported data corruption which means
one or more blocks are reported as corrupted while actually
these blocks are intact and uncorrupted.

Data corruption causes: For data corruption causes, we use
the following categories: 1) improper runtime checking which
means data corruptions of this type can be fixed by checking
inputs to Hadoop or by checking resources usages of Hadoop;
2) race condition which means multiple threads are changing
the same variable value or are writing to the same file; 3)
inconsistent state which means NN keeps block information
which is not consistent with the blocks stored in the DNs,
or the DNs have inconsistent block metadata on the same
block; 4) improper network failure handling which means
the data corruption can occur when data or messages are not
transmitted successfully, or only part of the data or message is
transmitted; 5) improper node crash handling which means
the data corruption can be caused by the NN or the DN
process termination; 6) incorrect name/value which means the
data corruption is caused by using incorrect variable name
or value; 7) lib/command errors which means libraries or
commands errors can cause data corruption; 8) compression-
related errors which means the data corruption occurs during
the compression process; and 9) incorrect data movement
which means moving invalid or incomplete data into data
directory.

These categories are not disjoint. For example, data corrup-
tion could be caused by a race condition which also leads to
an inconsistent block state. Since we are only interested in real
data corruption, we exclude any misreported data corruption
incidents. We also exclude those incidents with unclear or
undocumented data corruption causes. Specifically, 17 data
corruption incidents are of misreported data corruption and
there are 40 incidents of which we cannot find the causes.

Data corruption handling: When examining current data
corruption handling schemes, we found problems could occur
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Fig. 1. Different impact of data corruption.

during 1) data replication where Hadoop cannot correctly
identify the blocks which need replication; 2) replica deletion
where Hadoop cannot correctly delete the corrupted replica;
and 3) simple re-execution where Hadoop simply rerun the job
or command to recover from failures. We found 32 incidents
that describe the problems during data corruption handling.

III. DATA CORRUPTION IMPACT

In this section we discuss the impact that data corruption
has on Hadoop. Specifically, data corruption has the potential
to impact Hadoop in three different ways. First, the integrity
of the data may be affected, causing clients to be unable to
successfully retrieve data, namely, block corruption, metadata
corruption, and system file corruption. Second, the availability
of Hadoop may be affected, namely, Hadoop failures, and
MapReduce job failures. Third, the performance of the system
can be affected, namely, time delay, and decreased throughput.
Several data corruption problems impact on more than one
type. The detailed percentage distribution of the three types
is shown in Figure 1. The dominant data corruption impact
is on integrity, and over 65% bug incidents are related to
block corruption. With the unexpected high percentage (i.e.,
over 10%, 25% respectively), metadata corruption and system
file corruption are the corruptions people should pay more
attention to.

A. Integrity

There are several ways in which data corruption can affect
the integrity of Hadoop data. Specifically, the result of a
MapReduce job, data already stored in HDFS, block metadata
files on the DN, or HDFS system files on the NN can all be
corrupted. Furthermore, data corruption can occur in several
different files at the same time.

Block corruption: Data blocks are one type of data vulnerable
to corruption. Data block corruption can affect data that is
already stored or will be stored in HDFS (e.g., MapReduce
job results). For example, HADOOP-10143 explains how map
task output data is corrupted, causing missing key/value pairs.

Metadata corruption: Block metadata is another frequently
mentioned type of data in the studied data corruption incidents.
In general, the DN creates a metadata file for each block stored
on it. The metadata file records a lot of block information (e.g.,

31014 denotes the bug number in the bug repository.



identifier, size, genstamp, length, and checksum value). Since
a block usually has three replicas stored on different DNs,
updating data in HDFS could possibly put the replicas into an
inconsistent state, causing misreported corruption messages or
misleading corruption messages to clients and developers. For
example, in HDFS-1232, metadata corruption occurs because
of the DN crashes between storing a data block on it and
writing the block checksum to the block metadata file.

System file corruption: HDFS system files are files on the
NN containing HDFS file system information. edits.log,
fsimage and VERSION are the most commonly seen cor-
rupted system files in our case study. These files can be
corrupted as a result of unhandled software bugs which
cause failures (e.g., improper node crash handling, HDFS
synchronization failures). These files need to be loaded into
the memory of the NN when starting HDFS. Once corrupted,
they will make HDFS unable to start. If not recovered, all files
stored in HDFS will be inaccessible. In the worst case, all data
can be lost. For example, HDFS-1594 shows the corruption
of edits.log that is caused by the disk being full, which
makes it impossible to start the NN.

B. Availability

The availability of Hadoop can be compromised by either
data corruption-based Hadoop failures or data corruption-based
MapReduce job failures. Applications built on top of HDFS
also suffer from data corruption-based availability issues.

Hadoop failures: Hadoop node crashes, node recovery fail-
ures, and node restarting are commonly reported issues in the
surveyed incidents. One closely related factor for those failures
is corruption of the fsimage and edit.log files. These two
files are necessary for starting the NN and when corrupted,
can irrecoverably crash the NN. For example, most users store
multiple copies of the fsimage file to prevent potential data
loss. HDFS-3277 shows that when the first loaded fsimage

is corrupted, the NN is unable to load a different correct
fsimage.

The other two types of corruption, namely block and
metadata, can cause part of Hadoop services to be unavailable
to users. For every access of data, HDFS starts data corruption
detection before transmitting data to client. If HDFS detects
a data block is corrupted, it will refuse to transmit the data.
Specifically, HDFS does checksum checking on a requested
block by matching checksum values kept in metadata with
the one calculated from the block. As we have previously
mentioned, metadata keeps track of block checksum. Either
corrupted block or corrupted block results in checksum mis-
matches, thereafter causes failure of Hadoop services which
need to access data block in HDFS. In HDFS-679, the block
receiver throws exception about a mismatched checksum be-
cause the checksum for the last packet is mistakenly set to
zero.

MapReduce job failures: Hadoop prevents clients from read-
ing blocks which are marked as corrupted. As a consequence
of this, jobs or tasks can fail. For example, HADOOP-86 is
a bug in which corrupted map outputs cause reducers to get
stuck fetching data forever. Another case is a failure to read a
non-existent block. MAPREDUCE-3931 shows such a failure
involving GridMix [19], which is a benchmark for Hadoop

MapReduce tasks. In Hadoop 2.x, submitted jobs are divided
into a couple of tasks, and every task is executed in an indepen-
dent resource container. Before launching resource container,
YARN needs to localize the file/library which contains the
source code of the task, and then downloads the file/library
from HDFS. However, a corrupted time stamp causes Hadoop
to attempt to download a non-existent block, failing the job.

When data corruption causes HDFS to return an unex-
pected result to an application built on top of it (e.g.,HBASE
[20], HIVE [21], and PIG [22]), availability is impacted.
For example, HDFS-3222 is one case preventing HBASE
from completely replaying unsaved updates by providing an
incorrect length of related file. HBASE stores data updates
in memory and saves them to disk in batches. To prevent
data loss, HBASE stores unsaved updates in a file which is
also stored in HDFS so that it can recover data if one of its
server fails. Because HDFS provides a wrong file length value,
HBASE ends up only partially reading the data updates and
thus could not recover all data completely.

C. Performance

The performance of Hadoop can be degraded in two ways,
a time delay from the prolonged job execution or a throughput
decrease.

Time delay: Once a job or task fails, Hadoop needs to re-
execute it, causing the job or task to take a longer time
to finish than usual. A time delay can also occur when a
task tries to locally access a block replica which in fact has
already been deleted from its local directory. In this case,
the overhead is transferring data from a remote DN to the
DN where the task is performed. As mentioned in Section
II, HDFS file system information and block information are
stored separately. In order to collect block information on the
NN, every DN sends block reports to the NN which contains
all block information on the DN itself. Therefore, the deleted
block replica is not known to the NN before a block report
is sent from the DN. Because of this, a new task with the
same input will request the block again since the first time it
is requesting a deleted block replica. This problem could cause
substantial unnecessary overhead in iterative and incremental
computations. For example, YARN-897 discusses a resource
starvation problem. Because YARN uses a counter named
“UsedCapacity” as the criteria to assign resources to jobs,
releasing resources without updating this counter value can
cause a job to have a less chance of getting resources again.
Waiting a longer time for resources will elongate the total job
execution time.

Client requests can also be delayed because of a temporar-
ily unresponsive NN or DN. This can occur when the NN runs
into an infinite loop or a loop which is only exited when the
job times out. Unresponsiveness can occur as the result of a
large number of block deletions, as seen with bug HDFS-1393.
In this case, the NN is unresponsive for as long as 20 seconds
because no other operations can occur while deleting blocks.

Decreased throughput: Decreased throughput typically oc-
curs when Hadoop does intensive unnecessary work, such
as retrying or repeating a failing command. For example,
HADOOP-1911 shows how using the dfs -cat command
to read a corrupted file causes an exception. Hadoop attempts
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to handle this problem by repeating the command, causing the
process to repeat infinitely. Another example is HADOOP-
4692. The only replica existing in HDFS is corrupted. Since
the system is under-replicated, the NN replicates the replica. It
then finds that the newly created replica is corrupt and should
be deleted. This replication and deletion process then repeats
infinitely.

IV. DATA CORRUPTION DETECTION

In order to detect data corruption, HDFS currently provides
two main methods, checksum verification and block scanning.
Checksum verification occurs in several steps. First, a block
metadata file is created and stored in HDFS. A checksum value
is then calculated for this block and written to the metadata
file. Whenever the block is accessed, HDFS calculates that
block’s checksum value again and compares that value with the
checksum value stored in the metadata file. Whenever a block
is updated, the checksum value in the metadata file is also
updated. If data corruption affects stored data which has some
operations performed on it (e.g, write), checksum verification
will find it immediately. The other method is periodically
running a block scanner. The block scanner provides a good
way to automatically find existing data corruption without
operations on it.

However, from our study shown in Figure 2, we can see that
only 25% of data corruption incidents are detected and reported
correctly. 42% of data corruption incidents are silent data
corruption. 12% of incidents are reported as false alarms. 21%
of incidents have imprecise report messages. We now discuss
the three types of errors during data corruption detection in
detail.

A. Silent Data Corruption

It is difficult to detect data corruption in HDFS system
files. HDFS assumes system files are correct and does not
provide any methods to check them. Restarting the NN is
an indirect way to check the existence of data corruption in
system files. Because HDFS system files are stored on a single
NN in Hadoop 1.x, any HDFS system file (e.g., fsimage,
edits.log) corruption will cause the NN to fail to start.

HDFS-2305 discusses failures in synchronizing fsimage in
an HDFS system with multiple 2NNs. Instead of getting an up-
to-date file, they get an outdated file. This causes the operations
logged in edits.log to fail when applied later. HDFS-3626
shows an example of a corrupted edits.log as the result of
creating file with invalid path. This corruption is unknown to
the NN until it is restarted. When restarted, all the operations
logged in this file are performed again, triggering an exception.
Hadoop 2.x is able to better handle system file corruption
because the introduction of multiple NNs allows HDFS system
file corruption to be detected and corrected. This leads to
a reduction in the system file corruption cases as shown in
Table II.

Another reason for silent data corruption is inconsistency.
The block information kept in the NN could be inconsistent
with the blocks stored on DN. Block replica and block
metadata can also be different from each other. This kind of
inconsistency allows corrupted blocks to occasionally avoid
interval block scanning and only be detected when fsck

is executed manually. HADOOP-2905 discusses failures of
hadoop fsck / -move. Specifically, this command mis-
takenly moves some corrupted files which causes a client
exception at a later time. The functionality of this command
itself can also be affected by inconsistency. HDFS-2376 shows
how this command mistakenly reports a block as uncorrupted
even when all replicas are corrupted.

Some data corruption is not detected because the data is
already corrupt before being stored in HDFS. Hadoop assumes
the data stored in HDFS is correct, causing any corrupted
data to be found only when manually inspected or when used
as job input. MAPREDUCE-4832 is an instance in which
two AMs write different data into the same output file due
to a failure. This corrupted data is then stored in HDFS.
Similarly, HADOOP-5326 describes how data compression
causes corruption in the intermediate stage of a MapReduce
task. This results in a corrupted output file being stored in
HDFS.

Silent data corruption can also be generated in memory and
later propagated outside. For example, YARN-897 discusses
a resource starvation problem caused by the “UsedCapacity”
counter. This is a type of counters used to represent the
resources assigned to a job. In memory, the counter values for
different jobs are kept sorted in order to ensure fair resource
allocation. However, in this bug, “UsedCapacity” is not always
correctly updated in memory, causing resource starvation for
large jobs.

B. Misreported Data Corruption

Misreported data corruption can be the result of block
verification occurring before it should. Soon after it enters
the active state, the NN starts block verification, performing
block replication according to the block verification results.
However, the states of other nodes may not allow it to do so.
For example, in HDFS-3921, when the NN transitions into
the active state, no block reports are sent from any DNs. This
causes the NN to incorrectly consider all blocks as missing.
Another example is the NN recovery in the scenario of multiple
NNs described in HDFS-3605. When the NN restarts after
crashing, all block operations in edits.log have to be



performed again to ensure the block information in the NN is
consistent with the block information in DNs. However, as the
DN is still actively performing block operations, block meta-
data inconsistencies can occur resulting in the NN incorrectly
marking blocks as corrupt.

Misreported corruption can be caused by failures in
block creation. Failures happen in block allocation, allocating
DNs for blocks, and uploading block content. For example,
HADOOP-2540 shows how fsck can falsely report zero sized
files as corrupted. For blocks whose length is zero, Hadoop
cannot separate newly created blocks without content from
missing blocks. The never-created block could occur if the NN
crashes after allocating a block for a file but before allocating
any DNs to that block. Similarly, Hadoop cannot distinguish
never-created blocks from missing blocks, as shown in HDFS-
4212 and HADOOP-2275.

Misreported corruption could also be due to inaccurate
block information. The block scanner collects block informa-
tion periodically. When block scanning is coincidentally sched-
uled during the execution of block operations, block metadata
information can change after the block scanner collects it but
before the block scanner does block verification. Therefore the
block scanner mistakenly marks the block as corrupted. HDFS-
763 and HDFS-2798 are misreported corruptions because of
inaccurate block information caused by deleting blocks and
appending to blocks, respectively. Blocks under construction
are also very susceptible to inaccurate block information. The
NN blindly treats a new replica as corrupted if the new
replica’s length is not the same as the one recorded in the
NN. This is discussed in HDFS-145 and HDFS-5438.

To summarize, the root cause of misreported corruption
typically is that the NN blindly marks corrupted blocks based
on block reports of unguaranteed accuracy. The NN does not
have further verification methods to confirm the correctness of
block reports with DNs. According to the bug description in
HDFS-1371, an incorrect block report may cause all files in
a DN to be marked as corrupted and may later delete them
according to Hadoop’s mechanism of handling corruption.

C. Imprecise Data Corruption Detection

Imprecise messages can come in many forms. For example,
in HDFS-3874, a DN reports a “ChecksumError” to the NN
and provides the NN with the DN where checksum error
occurs. However, the DN provided does not exist, making it
impossible for the NN to mark the corrupted block correctly.

In several cases, an imprecise message is generated as
part of an exception. For example, in bug HDFS-1232 and
HADOOP-1262, a “ChecksumException” is generated due
to data corruption. While this tells the user corruption has
occurred, it does not let the user know if the corruption is in
the block or metadata file. Data corruption in either of them
will cause a checksum mismatch and trigger HDFS to throw
this exception. In HADOOP-2073, although the file VERSION
on the DN is corrupted by an unexpected crash, the exception
still reports an exception which indicates that the data directory
is in an inconsistent state. However, in this case the exception
has nothing to do with the data directory, but is a result from
reading the corrupt VERSION file.

TABLE III. STATISTICS OF DATA CORRUPTION CAUSES.

Data corruption cause Number
of
incidents

Improper runtime checking 25

Race condition 26

Inconsistent state 16

Improper network failure handling 5

Improper node crash handling 10

Incorrect name/value 5

Lib/command errors 4

Compression-related errors 4

Incorrect data movement 2

In cases where the exception is not a “ChecksumExcep-
tion”, the exception message is either difficult to relate to data
corruption or is unclear about the data corruption location.
The latter is typically because the point where the exception
is caught is far away from the point where corruption occurred.
For example, in bug HDFS-3067, exception handling causes
a block object to be set to null. This causes a “NullPoint-
erException” to be thrown at a later time, making it unclear
that data corruption has occurred. In bug HADOOP-2890,
an “IOException” is thrown, informing the HDFS client that
the actual size of a block is inconsistent with the block size
information kept in the memory of the NN. However, the
block size on the side of the NN shown in the exception
message is not correct. The value shown, 134217728 (128K),
is actually the size of a block object used in a RPC, not
the value kept in the memory of the NN. Another confusing
error message is shown in bug HADOOP-1955. This bug
describes different messages given by two nodes during block
replication. A corrupted block replica is sent from one DN to
another. The DN which receives the data reports a checksum
error and rejects the block. However, the DN sending the
corrupted data only reports a “SocketException”, hiding the
data corruption. As a result, the NN keeps retrying replication
without generating any messages related to data corruption.

V. DATA CORRUPTION CAUSES

In this section, we discuss the causes of the real data
corruption problems we studied. Of the 138 data corruption
incidents, 17 of studied incidents are misreported data cor-
ruptions and 40 of studied incidents have unclear or undocu-
mented causes. Thus, we do not consider the causes of those
data corruption incidents. The causes for the remaining 81
data corruption incidents can be broadly classified as having
improper runtime checking, race condition, inconsistent state,
improper network failure handling, improper node crash han-
dling, incorrect name/value, lib/command errors, compression-
related errors, and incorrect data movement. The statistics of
different data corruption causes is shown in Table III. As
shown, improper runtime checking, race condition, and incon-
sistent state are the three dominant types of data corruption
causes. We now discuss each category in detail along with
examples.

Improper runtime checking: Runtime input should be
checked because improper input can cause data corruption.
However, Hadoop does not strictly check Hadoop job inputs
or Hadoop command parameters. There are various examples



in which input path, file name, quota configuration, or file
ownership causes data corruption.

HDFS-3626 describes how creating files by executing the
Hadoop fs command with an invalid path containing a double
slash as the root directory can corrupt the edits.log.
HDFS-1258 shows how fsimage is corrupted by changing
the limit of the number of file and directory names allowed in
the root directory.

Several data corruption incidents are a result of failing
to check disk being full. For example, in bugs HDFS-1594
and HADOOP-6774, the fsimage and edits.log files are
corrupted when the NN disk is full. Even when disk space is
made available, restarting the NN is impossible.

Abnormal file names can cause corruption as well. In
Hadoop-6017, renaming an open file with another name con-
taining Java regex special characters could cause an unrecog-
nized file name to be written to edits.log. This causes the
NN and the 2NN to fail to load this file.

Unverified file ownership can cause data corruption. For ex-
ample, in HDFS-1821, calling the method createSymlink
of class FileContext with the kerberos enable option creates
an irremovable symlink with an invalid user.

Race condition: Distributed systems are prone to race condi-
tions and Hadoop is no exception. For example, several client
may write to the same file at the same time, multiple threads
may operate on the same block in a multi-threading Hadoop
task.

From our observation, there are three different types of race
conditions that Hadoop is prone to. The race can be between
threads owned by Hadoop itself, between threads generated
by launching MapReduce tasks, or between threads owned by
Hadoop and threads generated to run tasks.

A race condition between threads owned by Hadoop itself
usually occurs when concurrent threads are writing to the
same variable or to the same file. For example, in HDFS-
988, when the NN enters safemode, there may be pending
logSyc() operations that occur in other threads. These
threads call this method to flush save all modifications done
by themselves to edits.log. If the administrator issues the
saveNameSpace command at this time, partial writes will
cause this log file to become corrupted. The threads are not
limited to only being NN threads. In HDFS-4811, there are two
such threads in the NN. Thread 1 is doing checkpointing in
the NN itself by writing to fsimage, and thread 2 is fetching
this file from another NN. After getting this file as a temporary
file, thread 2 tries to rename the temporary file with the file
name fsimage while thread 1 still holds open for this file. This
results in fsimage being deleted or being incomplete. Race
conditions can also occur because developers are neglect to
concurrency risks. Java long and double are primitive types
whose assignment operation is not atomic in 32-bit JVM. In the
previously described bug MAPREDUCE-3931, the corrupted
timestamp turns out to be the consequence of non-atomic
change on the time stamp value among MapReduce threads.

A race condition between threads running the same task
usually occurs when operations (e.g., write) occur on the same
file. HADOOP-4397 describes how the fuse-dfs command

causes data corruption when used by a multi-threaded process.
In MAPREDUCE-4832, the RM could possibly assign two
AMs to run the same job at the same time which causing
concurrent writing operations to the same output file.

A race condition between threads owned by Hadoop and
threads to run tasks is usually a result of conflicts when
they try to update the same file. In HDFS-4178, the file
descriptor “2” can be reused by threads from both sides.
Since jobs can usually use file descriptor “2” as the channel
for writing error messages, closing standard error stream for
hadoop subprocesses with 2>&- leaves potential risk that those
subprocesses will re-use file descriptor “2” for opening file.
Two threads using same file descriptor but for different purpose
will corrupt the opened file.

Inconsistent state: Race conditions can cause data corrup-
tion in the form of an inconsistent block state. Failed write
operations can also cause block state inconsistency. Hadoop
typically keeps several replicas of each block. When updating
a block, several file operations need to be done successfully
and in a specific order to ensure a consistent update. If any
of these operations fail or are done out of order, inconsistency
can occur between the actual blocks stored on disk and their
corresponding block state in memory. For example, HADOOP-
752 shows an inconsistent state of a map in memory, which
is responsible for keeping track of block locations. This
inconsistent state is caused by some methods changing the
map without acquiring its global lock, because of which the
NN could not realize some blocks are non-existent on disk.
HADOOP-3649 is a bug report that a data corruption in a list
of corrupted blocks causes an inconsistency between the list
of corrupted blocks and a list of corrupted block locations.
HDFS-1260 shows how a failed block metadata update causes
an inconsistency between genstamps.

Improper network failure handling: In Hadoop, nodes com-
municate with messages piggybacked on heartbeat messages.
If these messages are not received in a timely manner, data
corruption can occur. For example, in MAPREDUCE-4832 the
RM assigns two AMs to run the same job at the same time
because it does not receive heartbeat message from the first
AM. This leads to data corruption when the duplicate jobs
finish and try to write to the same output file.

Another case of improper network failure handling is
transmission failures. For example, HDFS-1527 discusses a
data transmission failure on 32-bit JVM. When the block size
is bigger than 2GB, which is the limit on 32-bit JVM, the
data transmission fails causing data corruption in the form of
a partial file on the disk.

Improper node crash handling: We observed that data cor-
ruption can also be caused by improper node crashes handling.
In process of creating files in HDFS, the client’s file creation
request will cause the NN to create a new file in HDFS
filesystem. A pipeline is then set up between the client, NN,
and DN to write data to the file in HDFS. As the data is
written, any node crash can possibly cause data corruption.
For example, in HADOOP-2275, the data corruption occurs
when the NN crashes before forming pipeline. In HDFS-3222,
suddenly restarting cluster after forming pipeline but before all
the data are written to the DNs causes partial blocks stored on
DNs. After writing successfully all data to the DN, the block
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Fig. 3. An example of data corruption analysis.

pipeline will also calculate the checksum for the block, and
write the checksum information into the block metadata file.
As described in HDFS-1232, DN crashes before checksum is
written to the metadata file but after the data has been stored
on the DN makes a healthy block but corrupted checksum
information.

Incorrect name/value: Data corruption can occur when some
variables are used or updated incorrectly. For example, in
YARN-897, releasing resources without updating the list of
available resources disorders this list, corrupting the data
structure representing this list in memory.

Lib/command errors: Data corruptions can occur when using
some libraries or commands. For example, in HDFS-727,
passing the block size argument to a method in libhdfs

without making a appropriate type cast first causes the block
size argument to be corrupted in memory.

Compression-related errors: Data corruptions can occur in
the compression process. For example, in HADOOP-6799, the
compression of HDFS data into several gzip [23] files leaves
only the first gzip file readable. All remaining gzip files are
corrupted because gzip header and 32-bit Cyclic Redundancy
Check are not reset.

Incorrect data movement: Data corruptions can be caused
by moving invalid or incomplete data into data directory. For
example, HDFS-142 reports an incident of moving invalid
files from temporary directory to normal data directory. Since
these files fail block verification, they are reported as data
corruptions.

Figure 3 illustrates how a corrupted fsimage is generated
without being detected by the NN. This issue is reported
in HADOOP-3069. In GetImageServlet.java the line
labelled S1 means the 2NN is trying to pull a new fsimage

from the NN. It invokes the method getFileServer in
TransferFsImage on the NN side. Note that the Output-
Stream of object reponse is passed to getFileServer

as the parameter outstream, and used as the data channel
between the NN and the 2NN. Code S2 and S3 try to read
the request file, and send the data back to the 2NN. If the data
is transferred successfully, code S4 will close outstream.

Thus, on the 2NN side, it will receive a complete and correct
fsimage file.

However, if an error happens during data transmission,
code S4 will be executed before getFileServer throws an
“IOException” to inform the 2NN of the transmission error.
S4 will close the connection from response to the NN.
Therefore, when GetImageServlet catches this exception
and tries to report an error message to NN in code S5, it
causes an uncaught exception on the 2NN. This is because the
connection is already closed, and the error message cannot be
sent out. As a consequence, the NN never receives the error
message, and thinks the file transfer is successful. But in fact,
the fsimage on the 2NN is not completely transferred, or is
even an empty file. When NN pulls this file from the 2NN to
do recovery, it treats it as correct and does recovery based on
an actually corrupted fsimage.

VI. DATA CORRUPTION HANDLING

Hadoop handles data corruption in two ways: 1) re-
executing failed commands; and 2) recovering corrupted data
by replicating uncorrupted blocks and deleting corrupted
blocks. Problems can occur in both ways.

Although re-executing commands requires no further ex-
planation, there are several steps involved in data corruption
recovery. First, when a corrupted replica is detected and
reported to the NN, it is marked as corrupted. The identifier
of this replica is then added to a map which keeps track of
all the replicas to be deleted. At the same time the corrupt
replica identifier is removed from a second map which keeps
track all valid replicas in HDFS. The NN next calculates how
many valid replicas exist for each block. If the number of
valid replicas for a block is below a predefined threshold value
(e.g., three), the block is marked as under-replicated and then
added to a third map which keeps track of all blocks needing
replication. The NN then picks a block from the third map and
replicates it. When replication is complete the newly created
replica is added to the second map. Finally, the corrupted
replica is deleted and its identifier is removed from the first
map. Steps one and two are called data replication while the
final step is called replica deletion. Data corruption handling
problems can occur during data replication, replica deletion,
and simple re-execution with percentage of 37%, 31%, and
31%, respectively. We now discuss each category in detail.

A. Data Replication

Data replication can go wrong in several ways. As de-
scribed in HADOOP-1955, the NN may start block replication
with a corrupted replica. Since DNs could detect and reject
corrupted block replicas, corruption messages sent from the
DNs to the NN may lead the NN to retry replication infinitely.
Blocks may also never be replicated as shown in HDFS-2290.
In this case, an under-replicated block is never added to the
replica creation queue.

False alarms can also cause problems with data replication.
For example, HDFS-2822 shows how a misreported corruption
causes a block to be marked as needing replication. Similarly,
an incorrectly handled error during replication can cause a
problem at a later time. For example, HDFS-3874 describes
how an on disk data corruption causes a block replication



problem. A “ChecksumException” is thrown but incorrectly
handled, ultimately causing a non-existent remote DN to be
reported to the NN.

B. Replica Deletion

As with data replication, errors can occur during replica
deletion. Specifically, Hadoop can mistakenly delete uncor-
rupted replicas. HDFS-4799, HADOOP-4910 and HDFS-875
all report that the NN incorrectly marks uncorrupted repli-
cas as replicas needing to be deleted because the NN does
not distinguish between corrupted and uncorrupted replicas
when determining if the system is over-replicated. HDFS-
4799 shows how block verification can lead to block deletion
of uncorrupted replicas. In this case, the block replication
factor, responsible for determining when the system is over-
replicated, is set to three. The bug manifests when there are
six replicas for each block, three uncorrupted replicas and
three outdated replicas. When the cluster is rebooted, the NN
first receives the block reports of the three outdated blocks,
correctly marking them as corrupted. However, when it next
receives the block report about uncorrupted replicas, the NN
finds the total number of replicas for this block is larger than
the configured replication factor of three. It regards the three
uncorrupted replicas as redundant and incorrectly deletes them
from HDFS, leaving only the three outdated corrupt replicas
in HDFS. In HADOOP-4910 and HDFS-875, the NN treats a
corrupted replica as valid when calculating the number of over-
replicated blocks. This incorrect calculation makes it possible
for HDFS to delete uncorrupted replicas instead of corrupt
replicas.

C. Simple Re-execution

When Hadoop job or command fails because of data
corruption, the simplest way to handle it is to execute the
command again. However, if the command cannot succeed,
re-execution wastes resources. For example HADOOP-1955
describes unsuccessful but infinite attempts of the NN to
replicate corrupted blocks, wasting resources in the process.
HADOOP-459 shows how a memory leak can occur when
hdfsWrite and hdfsRead are called repeatedly. HDFS-
3440 describes that reading a corrupted edits.log can
cause large memory consumption. HDFS-1940 reports the
waste of disk space since extra replicas on disk are not deleted
after a DN recovers from a disk failure.

Simple re-execution can also cause infinite loops. In
HADOOP-3681, an infinite loop occurs when the Hadoop
user tries to close a corrupted file. Both HADOOP-1911 and
HADOOP-83 show that infinite loops can occur when users
use dfs -cat command to access corrupted files.

VII. RELATED WORK

Data corruption studies: Our work is most closely related to
the study [24] done by Zhang et al. Their work studies Sun’s
ZFS as a case of end-to-end data integrity for file systems.
They show that ZFS uses techniques such as checksum,
replication and transactional updates for data integrity. This
allows ZFS to be robust to disk corruption but less resilient
to memory corruptions. Our work is complementary to this
work, classifying data corruption problems that can occur in a

distributed file system designed for use in a cloud computing
system as opposed to identifying data corruption problems that
can occur on a local file system.

Data corruption is an issue that has been widely discussed
in data storage. Several studies [15], [24]–[30] have shown
that data corruption can be caused by bit rot in hardware,
firmware bugs, lost writes, misdirected writes, DRAM errors,
or software bugs. Most of these studies are focused on disk
failure or memory failures. For example, studies [25], [26]
have found that DRAM failures occur more frequently than
expected. Other studies [27], [31], [32] show that disk failures
are prevalent in deployed systems. Our work is complementary
to these studies, characterizing software-induced data corrup-
tion problems.

Data corruption detection frameworks: Data corruption cor-
rection frameworks exist which attempt to identify and fix data
corruption. EXPLODE [29] is a framework for checking real
storage systems for crash recovery bugs by quickly driving a
storage system into corner cases. RedMPI [33] is a MPI profile
library to help detect and correct soft-errors or single bit flips
in memory while executing MPI applications. TAC [30] injects
pointer-corruption and field-level corruption into MySQL, to
show that MySQL is vulnerable to data corruption, especially
metadata corruption. The insights in our characteristic study
can help each of these works in ensuring high data corruption
coverage.

Bug characteristic studies: Existing work has examined
different categories (e.g., performance, misconfiguration) of
bugs exposing existing problems in real-world systems. Perfor-
mance bug [34] studies identify performance degradation and
resource waste in real-world systems. Concurrency bug [35]
studies describe concurrency bug identification patterns, ways
in which concurrency bugs manifest, and the effectiveness of
concurrency bug fix strategies. A study of misconfiguration
errors [36] in different systems shows that misconfigurations
are a major cause of system failures. A study of OpenStack
fault resilience [37] exposes various problems in OpenStack
APIs. Although these studies all focus on different categories
of bugs none of them focus on data corruption bugs. Our
work is complementary to existing work, providing the first
comprehensive data corruption bug study of a widely deployed
cloud computing system.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a characteristic study over 138
real world data corruption incidents caused by software bugs
in cloud systems. Our study reveals several interesting findings:
1) the impact of data corruption is not limited to data integrity;
2) data corruption can be caused by various software bugs
including both external and internal to HDFS; 3) existing data
corruption detection mechanisms are insufficient with both
mis-detections and false alarms; and 4) existing data corruption
handling schemes may not only fail to prevent data loss but
also trigger additional problems such as resource exhaustion.

In the future, we plan to develop efficient detection and
handling schemes to combat real world data corruption prob-
lems. We propose to trace data-related operations in the cloud
and perform anomaly detection over the operation logs to
detect potential data corruption problems. Our goal is to



identify those anomalous data processing events early and
prevent them from causing data corruptions.
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