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ABSTRACT
A multi-tenant cloud system allows multiple users to share a com-
mon physical computing infrastructure in a cost-effective way. Com-
ponent sharing is highly desired in such a shared computing in-
frastructure, where different tenants can leverage each other’s in-
formation and expertise to fulfill their own tasks. However, it is
challenging to maintain the availability of sharable component re-
sources in a large-scale cloud infrastructure, as cloud tenants are
fully autonomous and highly dynamic. In this paper, we present
a novel highly available component sharing system for large-scale
multi-tenant cloud systems. We describe a component availability
prediction scheme to identify endangered components (i.e., com-
ponents at risk of extinction) within the infrastructure. The system
then performs predictive replication based on the availability pre-
diction results to preserve those endangered components. Thus,
our system can preserve the availability of all component resources
with low cost. Theoretical analysis and large-scale simulation are
used to quantify the accuracy of our component availability pre-
diction, and the efficiency of predictive replication. Experimental
results show that our scheme can predict endangered components
with high accuracy, and achieve up to 99% availability with about
15% of the full replication cost.

1. INTRODUCTION
Multi-tenant cloud systems [1,2] have recently emerged as promis-

ing shared computing infrastructures. Cloud users, called tenants,
can lease computing resources in a pay-as-you-go fashion. In con-
trast to dedicated computing systems, cloud systems offer a more
cost-effective solution, since tenants can perform various comput-
ing tasks without maintaining expensive physical computing infras-
tructures themselves. Resources can be dynamically provisioned or
released based on the tenant’s needs and schedule. Cloud systems
can be leveraged by many resource-intensive scientific computing
applications that often require a large number of computers for
performing experiments and analyzing data [13].

Component sharing is highly desired in shared cloud comput-
ing systems when different tenants want to leverage each other’s
information and expertise to fulfill their tasks. We use the term
“components” to generally refer to sharable objects, such as data
files and reusable software components. For example, a scientist
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can lease a hundred nodes from the cloud and download ten years of
world temperature information to perform a global warming trend
analysis. The analysis result becomes a sharable component that
can be leveraged by other scientists to perform further studies. In
contrast to dedicated computing systems, a cloud tenant can release
resources in the middle of a computation, and resume leasing later.
To avoid redundant computation, it is important for the cloud to
provide a component preservation service that allows tenants to
store data that can be used later by the same tenants, or by other ten-
ants. Similarly, tenants may want to share reusable software com-
ponents such as data mining libraries. However, cloud computing
typically grants full autonomy to its tenants to download or delete
components arbitrarily. Moreover, frequent tenant departures or
arrivals induced by the charging model of the cloud system make it
challenging to provide a scalable and highly-available component
sharing system.

To preserve component availability, a simple approach might
be to deploy a centralized component manager to maintain a backup
copy of all unique components in the system at all times. How-
ever, this simple approach has three fundamental problems. First,
there may be thousands of tenants and many more components
in the system. For scientific computing applications, data objects
often have large sizes that can range from hundreds of Megabytes
to Gigabytes. Thus, component sharing will incur a prohibitive
storage cost on the management node. Second, tenants can add
or delete components arbitrarily. It is very costly to maintain an
updated global index table to track all unique components in the
infrastructure. Third, the centralized approach has the problems of
single point of failure and scalability limitation.

Although structured peer-to-peer (P2P) systems [4, 9, 14, 21]
can easily achieve availability by maintaining a fixed number of
components, it is hard, if not impossible, to enforce and main-
tain a uniform structure over large-scale multi-tenant cloud infras-
tructures. Particularly, structured P2P systems need to control the
placement of different components, which may not be accepted by
autonomous tenants. Existing replication schemes for unstructured
P2P systems [8] mainly focus on enhancing search and download
performance, rather than preserving component availability.

In this paper, we present a novel highly available component
sharing system for multi-tenant cloud systems. One major objective
of our approach is to maintain the autonomy of cloud tenants while
preserving availability of all components at all times with minimum
storage cost. To reduce storage cost, our system selectively repli-
cates a subset of components to preserve component availability.
The intuition behind this approach is that it is unnecessary to repli-
cate those components that already have a lot of copies on different
tenants. Tenants can download such “popular” components from
each other directly without involving cloud management nodes 1.

1We assume in this paper that a mechanism is in place to provide
incentives for tenants to share components with each other.
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However, the challenging task is to identify which subset of com-
ponents should be replicated on the management nodes while pre-
serving the availability of all components. To address the problem,
we develop a component availability prediction scheme that can
identify, in a timely way, endangered components that have few
copies in the system, and are at high risk of extinction. Thus,
instead of proactively replicating all components as in the simple
approach, our scheme aims at replicating only these endangered
components. This allows a significant reduction in the storage cost.

It is a challenging task to dynamically identify endangered com-
ponents without relying on a centralized server to track compo-
nent copies, or to enforce component placement rules (as in struc-
tured P2P systems). Furthermore, component availability status
may vary over time as the demand for different components changes.
For example, some endangered components may become highly
available as more tenants start to download them. Thus, the avail-
ability management system must be adaptive. To address the chal-
lenges, we propose a distributed hybrid component availability pre-
diction algorithm. Our scheme first leverages the component query
results to remove popular components from the list of endangered
components. The intuition behind our approach is that if a com-
ponent is frequently searched by different tenants, it will naturally
have many copies on different tenants. Thus, the availability man-
agement system does not need to worry about extinction of those
popular components. For those components that do not receive
many recent queries, we employ a dynamic random walk sampling
scheme to estimate the number of replicas, and predict endangered
components.

Based on the availability prediction results, our system can
dynamically replicate endangered components on dedicated man-
agement nodes to prevent component extinction. In a large-scale
shared computing infrastructure, our availability management scheme
reduces unnecessary replication of popular components and guar-
antees the availability of endangered components with limited repli-
cation cost. Our component management scheme is generic, which
can be integrated with existing cloud storage systems such as Ama-
zon Simple Storage Service (S3) [12].

We have implemented a prototype of the highly available com-
ponent sharing system and conducted a large-scale simulation study.
Our experimental results reveal several interesting findings. First,
the proposed scheme can accurately identify endangered compo-
nents and maintain high availability in a highly dynamic multi-
tenant cloud system. Second, our scheme can achieve up to 99%
availability with about 15% of full replication storage cost. In
contrast, other selective schemes can achieve similar or 10-15%
lower availability with more than 30% more storage cost. Third,
our scheme is light-weight, which imposes little computation and
communication cost to the cloud system.

The remainder of this paper is organized as follows: Section
2 introduces the system model. Section 3 presents the design of
our highly available component sharing system in detail. Section
4 presents the experimental results. Section 5 compares our work
with related work. Finally, the paper concludes in section 6.

2. SYSTEM MODEL
Our component sharing system adopts a two-tier hierarchical

structure for scalability and easy deployment, which is illustrated
by Figure 1. The system consists of two types of nodes: 1) tenants
(ai) that are autonomous cloud users, and 2) component managers
(CMi) that are dedicated infrastructure nodes. Table 1 summa-
rizes all the notations used in this paper. The component managers
are responsible for maintaining the availability of all components
owned by the infrastructure. Each component manager connects
to a set of tenants and also maintains connections to some other
component managers.

Each component manager keeps local index tables for all com-





































 

















 

 













Figure 1: System architecture.

notation meaning
CM Component manager
ci Unique component
ai Tenant
Nf # of unique data components in the system
Np # of component managers in the system
ri Popularity rank of the ith component
d Avg # of tenant connections at CM
ω Avg walker length
k # of random walkers
t Replication threshold
R Repair ratio

Table 1: Notations.

ponents used by its connected tenants. The index table provides the
information about the number of replicas and locations of replicas
for each unique component. Since a component manager only
connects to a limited number of tenants, the storage cost for the
index table is very low. The component manager also monitors the
status of those tenants connected to it, such as join, leave as well as
component addition and deletion. When a tenant joins or leaves the
system, or adds or deletes a component, it sends a corresponding
update message to its local component manager. The component
manager then updates its index table accordingly. The maintenance
cost for updating the index table is low compared to the cost of
queries, because such update messages are much less frequent than
queries.

3. SYSTEM DESIGN
In this section, we present the design details of our highly avail-

able component sharing system. We first provide an overview of
our approach. We then describe our component availability pre-
diction algorithms, followed by an analytical study to reveal the
theoretical underpinning of our approach.

3.1 Approach Overview
We now describe the basic component sharing protocol, illus-

trated by Figure 2. When a tenant ai creates a new sharable com-
ponent, it first registers the component with its local component
manager CMi. When another tenant aj would like to download
the component, it sends a component query to its local compo-
nent manager CMj . The component manager CMj first checks
whether the requested component is available on its connected ten-
ants based on the local component index table. If the component
is unavailable within the local domain, CMj further propagates
the component query to other component managers. The query is
associated with a time-to-live (TTL) counter to indicate the number
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Figure 2: Component sharing protocol.

of hops it can traverse. The query is propagated among different
component managers based on the TTL counter. All component
managers that receive the query and have the requested component
will reply to the query with the locations of the tenants that have the
component. The tenant ai can then download the component from
the discovered tenants. For fault-tolerance purpose, the system
may return multiple tenants that hold the requested component and
perform parallel downloading from multiple tenants. Essentially,
the component managers serve as the middlemen among tenants to
efficiently share components. The basic component sharing proto-
col follows the design of real world super-peer file sharing archi-
tectures such as Gnutella [3].

If component managers only store component indexes, the avail-
ability of a component will purely depend on whether a tenant still
holds the component, and whether the same tenant is still leasing
resources from the cloud. However, as mentioned in the intro-
duction, tenants can freely leave the cloud or delete a component.
Some components, especially those “unpopular" components that
have few copies in the system, will be at risk of becoming com-
pletely unavailable when all copies are removed from the system,
which is termed component extinction. To achieve highly available
component sharing service, it is necessary to replicate components
on the component managers to preserve their availability. However,
component managers typically have limited storage capacity, and it
could easily be impossible to back up all components at all times.
To provide a practical highly available component sharing system,
it makes more sense to selectively replicate components in danger
of extinction, rather than replicating all components.

For this purpose, a dynamic component availability prediction
scheme identifies endangered components. Without a centralized
component tracking server, it is challenging to identify endangered
components, since they have very few copies in a large-scale sys-
tem. To address this challenge, we adopt an elimination-based
component availability prediction approach. Our component avail-
ability prediction scheme tracks component availability by first elim-
inating non-endangered components locally and then conducting a
dynamic system-wide availability investigation for further elimina-
tion.

Specifically, in the first step, component managers leverage
component queries to identify local endangered components. Com-
ponent managers monitor queries for locally stored components,
and identify local non-endangered components by marking those
that receive frequent query requests from different tenants. The
intuition behind our approach is that a new component copy will be
instantiated on a tenant after a successful component query. Thus,
if a component is frequently queried by different tenants, it will
naturally have many copies on different tenants.

In the second step, component managers check the availability
of local endangered components in the maintained index table, and
if necessary, conduct further elimination through a system-wide
availability investigation. If enough copies of a component are

ComponentManager(msg)
1. if (msg.type == tenant leave or component delete)
2. mark local endangered component(s) ci
3. if (msg.tenant has ci)
4. for each component ci
5. if (system record is valid and sys.count ≥ t)
6. ci is non-endangered
7. else if (local record is valid and local.count ≥ t))
8. ci is non-endangered
9. else
10. generate new local record from index table
11. if (local.count ≥ t)
12. ci is non-endangered
13. else
14. send popularity query through random walkers
15.if (msg.type == popularity query)
16. put valid system record and local record in the walker
17. if (valid sys.count ≥ t, or valid local.count ≥ t)
18. send popularity reply to initiating CM
19. else if (not last hop and has non-visited neighbors)
20. randomly select a CM neighbor to forward
21. else
22. send popularity reply to initiating CM
23.if (msg.type == popularity reply)
24. if (all walkers are back or timer expired)
25. generate new system record
26. if (sys.count <t)
27. mark ci as endangered

Figure 3: Pseudo code of highly available component manage-
ment algorithm.

found in the index table, it indicates that it is not an endangered
component. Otherwise, our scheme employs a dynamic random
walk sampling mechanism among component managers to estimate
the system-wide component availability.

Based on the availability prediction results, we dynamically
replicate endangered components on component managers to pre-
vent component extinction. Figure 3 shows the pseudo code of
the highly available component sharing algorithm. Note that our
approach is fully distributed at the component manager level, which
does not assume a global component index table.

3.2 Component Availability Prediction
Our scheme identifies endangered components using a distributed

hybrid approach. First, each component manager marks a set of lo-
cal components as endangered based on all recently received queries.
Second, for such components, component managers further inves-
tigate the local availability, and eliminate non-endangered compo-
nents by conducting system-wide investigation using random walks.

Local endangered component identification. Component man-
agers leverage component queries to propose local endangered com-
ponents. Intuitively, a component that is queried more often should
have more copies in the system. Each component manager is re-
sponsible for monitoring component queries received from other
component managers as well as its connected tenants. A compo-
nent manager can then rank the local components stored on its
connected tenants according to query frequencies, and may label
some of the components as endangered based on its independent
query monitoring.

Each component manager maintains a “LFQ” (Least Frequently
Queried) queue for components provisioned by its connected ten-
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ants, and adjusts the component rank whenever receiving a query.
As a result, frequently-accessed components gradually take up the
front positions of the queue while the tail of the queue is left to
seldom- or never-queried components. For each component man-
ager, the same fraction of components at the tail are marked as
local endangered components. Thus, components for which there
are frequent queries are largely excluded at this step.

System-wide component availability investigation. If a com-
ponent manager concludes there is an insufficient number of repli-
cas of a component, based on query monitoring results, random
walk sampling is triggered to further validate that the component
is indeed endangered. The component manager further eliminates
non-endangered components through estimating component pop-
ularity. This is achieved by aggregating information from other
component managers.

The system-wide component availability investigation involves
a dynamic random walk sampling process among the component
managers. To minimize the frequency of random walks and cut
down the system cost, each component manager maintains a limited
amount of component state information in local storage. If the
state information can indicate the component has enough replicas,
the component is eliminated from the list of endangered compo-
nents. Thus, the infrastructure does not need to replicate the com-
ponent. Otherwise, the dynamic random walk sampling is con-
ducted among component managers to estimate the number of repli-
cas system-wide.

Component managers maintain two records about the state of
components in the system. One is called the local record, repre-
senting the component population across the tenants that connect
to the component manager. Since component managers keep in-
dexes for every component on connected tenants, the local record
is accurate and complete. The other state information is called
the system record, containing information about the component
population that is collected through random walks.

At each component manager, local record is computed for ev-
ery component that resides in the tenants connected to this com-
ponent manager, and is used to keep count of the number of local
copies. System records are kept for all marked local endangered
components, to keep count of the number of remote replicas found
by random walks. Each record is attached with a timestamp and
expires periodically. Local records are updated each time a com-
ponent manager receives join, leave, and update messages from
connected tenants. System records are updated from the random
walk results, which will be described below. If either local record
or system record for a component shows that its replica count ex-
ceeds a pre-defined threshold, the component is regarded as having
sufficient copies, and is therefore not endangered. Otherwise, if
the system record indicates the component population falls below
the threshold and the record for the component has not expired, the
component is identified as being endangered.

A component manager initiates several random walkers con-
taining information about the component to be investigated, and
sends them to randomly selected component manager neighbors.
These neighbors are responsible for storing their own up-to-date
statistics about this component in the walker, and in turn, forward
the walker to their own randomly selected neighbors. The above
statistics include both the local record and system record associated
with the component, as long as the records have not expired. Walk-
ers may be terminated when enough replicas are found, or after a
fixed number of hops, if not all neighbors have been visited at any
intermediate node. The component manager where a walker termi-
nates sends the result back to the initiating component manager.

In the proposed method, the random walk process uses each of
the visited component managers along a walker as a sample point,
rather than sampling the end points of each independent walker.
These two methods achieve similar statistical properties, according

to [10]. However, by sampling visited nodes instead of end nodes,
the scheme demands much less number of walkers to achieve the
same sample size. To ensure no individual walker visits the same
component manager twice, a message ID field is included in the
message header. Component managers store recently seen IDs and
terminate a walker if its message ID has already been seen.

We now justify that random walk sampling results will follow
the actual component popularity distribution. We define the popu-
larity of the ith -ranked component, denoted by ri, as the fraction
of component managers having a replica of component ci, where
0 ≤ ri ≤ 1. If we assume component replicas are randomly
distributed among all tenants, then ri is also the probability of
a tenant having a replica of the component ci. Each component
manager has aggregated information from d tenants. Thus, the
number of replicas of component ci found via a single random
walker has expected value ω · d · ri, where ω denotes the walker
length.

The random walk sample size, corresponding to the product of
walker length ω and number of walkers k, is a heuristic and tunable
factor that affects the estimation accuracy. A small sample size
can incur biased estimation, while a large sample size may lead
to higher system cost and delay. Its impact can be evaluated by
the degree of false negatives and false positives. In the following,
we show a method to appropriately determine random walk sample
size.

Component popularity takes the range of [0,1]. We use two
numbers rl and rh to classify components as endangered or non-
endangered, where rl and rh denote the popularity of the lth and
hth rank components respectively. We define that a component
ci is endangered if ri < rl, or is non-endangered if ri > rh,
where 0 < rl < rh < 1. We assume both rl and rh are given.
The range [rl,rh] is a grey zone with a mean rt = (rl + rh)/2.
We set rt to be the threshold popularity. Given rt and sample
size ω · k, the expected number of replicas found in the sample
is t = ωkdrt representing the replication threshold. Whenever
the replica number of a component found in the sample falls below
t, the component is identified as endangered. We define the false
negative probability for the lth component, denoted as P l

neg , to be
the probability of finding j (j > t) replicas from the sample; and
the false positive probability for the hth component, denoted as
Ph
pos, to be the probability of finding j (j < t) replicas from the

sample. These are given below, where K = ωkd represents the
total number of sampled tenants.

P l
neg =

j=∞∑

j=t

Pr(j) = 1−
j=t−1∑

j=0

(K
j

)
(rl)

j(1− rl)
K−j (1)

Ph
pos =

j=t−1∑

j=0

Pr(j) =
j=t−1∑

j=0

(K
j

)
(rh)

j(1− rh)
K−j (2)

From the above, given the desired false positive rate for non-endangered
components, and the desired false negative rate for endangered
components, we can determine the appropriate value for random
walk sample size. Given ω · k, maximizing the number of walkers
k produces lower delay than maximizing ω. Thus, in practice, we
may want to set k to be the maximum of component managers’
node degree (i.e. number of component manager neighbors).

Finally, the initiating component manager computes the aggre-
gated result from all local records it receives from other component
managers and generates a new system record. Combined with the
system records in the walkers, the component manager produces
an up-to-date estimation of component population by choosing the
maximum value from these records. If the estimated value is still
below the threshold, the component is confirmed as an endangered
component.
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Figure 4: Markov chain describing component lifetime

3.3 Analytical Study
We now present an analytical study to quantify the benefit of

our selective dynamic replication scheme. Recall that our system
performs dynamic replication when the estimated number of repli-
cas falls below a certain threshold. The metric of interest here is
how many replicas (or popularity level rt) are needed to achieve
a balance between a long component lifetime and low replication
cost. We employ a Markov model [19] to analyze the number of
replicas that can enable a system to achieve a specified expected
lifetime.

We analyze how many component replicas are needed for en-
dangered components to achieve a long lifetime in the following
way. Each state S in the Markov chain represents the number
of current replicas of the component ci in the system. Thus, the
lifetime of a component is the average time starting from an initial
state S(n) until reaching state S(0). There are two major factors
affecting state transitions, the component replica unavailable rate µ,
and the replica generation rate λ. Component replica unavailability
can be caused by node departure or component deletion. We de-
fine rr as the replica deletion degree, representing the probability
for a tenant to leave the system or delete the component ci. For
endangered components, replica generation is mainly attributed to
proactive replication. Thus, the expected lifetime ts is denoted as
follows, where γ = λ/µ, with γ representing the system capability
of compensating for a replica which has left.

ts =
1

µ
Pn(γ) =

1

nµ

k=n−1∑

k=0

j=k∑

j=0

(n
j

)

(n−1
k

)γ k−j (3)

Our result leads to a similar conclusion with the paper [19]. The
result shows a long component lifetime can be achieved by either
maximizing n through maintaining a large amount of replicas, or
by maximizing γ through aggressive repair. For example, if we
set µ to 1, a mean lifetime of 1010 can be either achieved with γ
equaling to 1 and n being above 40, or γ equaling to 10 and n
being more than 12. We believe aggressive replication when the
number of replicas falls below the replication threshold results in
better system performance than having a large number of replicas
for any component. γ is affected by both node unavailability degree
and replication rate. The latter can be adjusted by replicating with
multiple copies in compensation for one leaving replica. We call
this number the repair ratio, denoted as R. The proposed replica-
tion strategy is to keep a relatively low replication threshold and
set a moderate repair ratio to guarantee a long lifetime, even under
high component replica unavailable rate.

4. EXPERIMENTAL EVALUATION
In this section, we first present system implementation and ex-

periment setup. We then describe our experimental results, and
lessons learned from the experiments.

4.1 System Implementation and Experiment
Setup

We have implemented a prototype of the highly available com-
ponent sharing system in C++. The component manager algorithm
is fully implemented. Only the message delivery between different

nodes is simulated, in order to perform large-scale experiments. We
have implemented all dynamic tenant operations in the simulator,
such as bootstrap, join, leave, ping, pong, query, queryhit, etc.
Each tenant, when joining the system, needs to first contact the
bootstrap server to get a random list of component managers with
which to connect. Connections are established through three-way
handshakes.

Our system emulates dynamic tenants in a cloud system in the
following way. Tenants dynamically switch among three states:
offline, idle, and active. To become active, an offline tenant must
first enter the idle state. The transition from the idle to the active
state is accompanied by the issuance of a component query. After
a successful query, a tenant in the online state has a probability
ur (node churn rate) of going offline, and a probability 1 − ur of
instead changing to the idle state. Tenants in the idle or active states
can reply to queries and remain active in the system. This model
follows the design concept of [27]. Key system parameters were
chosen based on measurement studies [7] [22] of real world P2P
systems that resemble autonomous multi-tenant cloud systems.

We deploy 2,500 tenants and 250 component managers in the
component sharing system. The ratio between the number of com-
ponent managers and the number of tenants is heuristic. If the ratio
of component managers is too low, component managers may be
overloaded since they have to interact with a number of tenants.
However, a high ratio of component managers may result in inef-
ficiency in random walk sampling since random walkers of given
length may only be able to collect very limited tenant information.
There are a total of 5,000 unique components and over 100,000
component replicas produced during each experiment run. Com-
ponent queries follow the Zipf distribution with a zipf-exponent of
1.0. This has previously been found to be adequate to capture the
skew in file queries for P2P file-sharing systems [11], and was
used also in the related work such as [24] and [28]. Initial com-
ponent distribution also follows a quasi-zipf distribution according
to [29], and we use an exponent of 0.7 as in previous works. Mean
component size can be adjusted from 128MB to 2GB. The network
topology follows the transit-stub model. A component manager
can maintain up to 10 connections to other component managers
and also up to 10 connections to cloud tenants.

We evaluate our scheme using three sets of important metrics:
The first set of metrics is availability prediction accuracy, in terms
of the true positive rate Atp, and the false positive rate Afp. The
rates are calculated as follows,

Atp =
Ntp

Ntp +Nfn
(4)

Afp =
Nfp

Nfp +Ntn
(5)

where Ntp denotes the number of true endangered components that
get correctly identified as endangered; Ntn denotes the number of
non-endangered components that are correctly identified as non-
endangered; Nfp denotes the number of non-endangered compo-
nents that are incorrectly identified as endangered; and Nfn de-
notes the number of true endangered components that are incor-
rectly identified as non-endangered. We obtain these values by
comparing the prediction results with the ground truth. The second
set of metrics is availability, which is the fraction of components
that maintain at least one copy in the system at all times. Thus,
it is measured as the number of components that always have one
or more copies, divided by the total number of components. The
third set of metrics is storage cost, which is measured as the actual
storage used for saving extra copies of all unique components in
the system.

For comparison, we have also implemented four other alterna-
tive schemes: the no replication scheme, the full replication scheme,
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the queue monitoring replication scheme, and the local monitor-
ing replication scheme. The no replication scheme represents a
system that has no availability management, where the dynamics
of tenants may easily cause permanent loss of some components
that have few replicas. The full replication scheme keeps track
of all unique components and keeps an extra copy for all unique
components. The queue monitoring replication scheme refers to a
distributed availability management scheme similar to the first part
of our scheme. Component managers will label a small fraction of
the least-frequently queried components as endangered. This dif-
fers from our scheme in that it does not use random walk sampling
to further identify endangered components. All components locally
labeled as endangered will get replicated on the component man-
agers. Finally, in the local monitoring replication scheme, compo-
nent managers also maintain a list of least-frequently queried com-
ponents. However, this list is only updated for queries that are from
the tenants that directly connect with the component manager. In
other words, the local monitoring replication scheme only monitors
local queries. Similar to the queue monitoring replication scheme,
component managers label a small fraction of the least-frequently
queried components as endangered, and replicate all these compo-
nents on the component managers.

We evaluate the proposed scheme in four aspects. First, the ac-
curacy of identifying endangered components is evaluated. Second,
the ability to provide availability management (i.e., successfully
maintain sufficient copies of all components) in the presence of
various rates of component deletion, is investigated. Third, the pro-
posed scheme is compared with other schemes with respect to the
additional storage cost. Lastly, the scheme overhead is evaluated.

4.2 Results and Analysis
The first experiment investigated the accuracy of our scheme in

identifying endangered components. Figure 5 compares our scheme
with the queue monitoring scheme, and the local monitoring scheme.
The comparison is in terms of the true positive rates and the false
positive rates, as a function of the fraction of the local LFQ queue
labeled as local endangered components. This fraction ranges from
5% to 30%. In this experiment, the random walk sampling thresh-
old is 2, which means a component is identified as non-endangered
when our scheme finds more than two copies of it from random
walk sampling. Note that the threshold is a heuristic parameter. If
the ratio of the number of component managers to the number of
tenants is low, random walk sampling can locate more component
replicas resulting in higher estimation accuracy. On the contrary,
if the ratio of component managers is high, a lower threshold is
needed since less replicas can be located through random walk
sampling. The node churn rate is 0.1, which means that a node
has 0.1 probability of going offline after a successful query. By
comparing the identified results with the ground truth, we calculate
Ntp, Ntn, Nfp and Nfn. Thus, we can calculate the true positive
rate Atp and false positive rate Afp.

Figure 5 shows that our scheme can achieve much higher or
similar true positive rates than other schemes but with much lower
false positive rates. As expected, the true positive rate increases
when the fraction of the LFQ queue that is marked as endangered is
increased. This is because with a higher probability of labeling, our
scheme may have more chances to detect endangered components
in the system. At the same time, the false positive rate increases
with the increasing of this probability, since there is also more
chance of including non-endangered components. Note that label-
ing a smaller fraction only causes a small reduction in the true posi-
tive rate, but can reduce the false positive rate greatly. As expected,
our scheme achieves a similar true positive rate and a lower false
positive rate, compared with the queue monitoring scheme. This
is because our scheme further eliminates non-endangered compo-
nents after obtaining the queue monitoring results. For the local

0.05 0.1 0.15 0.2 0.25 0.30

0.2

0.4

0.6

0.8

1

Fraction of local queue labeled as locally endangered

Ac
cu

ra
cy

 

 

tpr - our scheme
fpr - our scheme
tpr - queue monitoring
fpr - queue monitoring
tpr - local monitoring
fpr - local monitoring

Figure 5: Accuracy in identifying endangered components.
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Figure 6: ROC curves for identifying endangered components.

monitoring scheme, the true positive rate is low and the false pos-
itive rate is relatively high. This is because component managers
cannot accurately capture the endangered components due to the
limited query pattern observations.

We also evaluate the performance of our scheme using a Re-
ceiver Operating Characteristic (ROC) curve. To generate the ROC
curve, we adjust the fraction of the local LFQ queue for labeling
local endangered components. That is, component managers label
the last 1%, 3%, 5% through 20% of the LFQ queue as local en-
dangered components. Our scheme can then identify a set of com-
ponents as endangered components through both local and system-
wide investigation. Results were collected from multiple runs. We
generate two curves with node churn rate ur equaling to 0.1 and
0.3 respectively. Figure 6 shows the ROC curves, with the X-axis
being the false positive rate. We observe our scheme can achieve
good accuracy with ROC curves close to the upper left-hand corner
in the diagram, even under a high node churn rate.

We now evaluate the availability maintenance ability of our
scheme and compare it with four other schemes. We also show
the corresponding storage cost for better comparison. Figure 7(a)
compares our scheme with the other four schemes in terms of avail-
ability, by varying the node churn rate from 0.1 to 0.3. As expected,
when there is no availability management scheme, the more quickly
tenants go offline, the more components become unavailable. The
system may lose valuable resources permanently. The full replica-
tion scheme achieves the best availability since it keeps a copy of
all components all the times. Our scheme and the queue monitoring
replication scheme achieve similar performance but with different
storage cost, which will be shown next. The local monitoring repli-
cation scheme cannot effectively provide availability management
due to the incapability of capturing endangered components. We
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learn that monitoring queries from a small range of tenants does
not help predict system availability.
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Figure 7: Availability and storage cost comparisons of different
schemes.

Figure 7(b) compares our scheme with the full replication scheme,
the queue monitoring scheme and the local monitoring scheme in
terms of storage cost, while varying node churn rate from 0.1 to
0.3. We observe that our scheme consistently incurs the lowest
storage cost. The queue monitoring replication scheme and the
local monitoring replication scheme have similar storage cost be-
cause they both replicate a certain fraction of components in the
monitoring queue. Both schemes performs worse than our scheme
because different component managers independently replicate the
same endangered component. However, our scheme can alleviate
the problem by gaining a global view from the system-wide random
walk availability investigation. With increasing system dynam-
ics, our scheme enjoys an increasing advantage over the queue
monitoring scheme and the local monitoring scheme. Clearly, the
full replication solution has the largest storage cost because each
component manager has to replicate all unique components from
each tenant with which it connects.

Figure 8 compares the storage cost of our scheme with the other
three availability management schemes, where mean component
size ranges from 128MB to 2GB. The node churn rate in this ex-
periment is ur = 0.1. Results indicate that our scheme shows
improved storage savings, with larger component sizes.

Compared with other availability management schemes, the
overhead of our scheme mainly comes from random walk inves-
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Figure 8: Storage cost comparison of different schemes under
different mean component size.
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Figure 9: System overhead in terms of random walk messages.

tigation. We evaluate the overhead by measuring the number of
random walk messages, for different network sizes ranging from
500 to 2,500 nodes. The number of component managers is about
10% of nodes under each scenario. Figure 9 shows the total number
of random walk messages during an experiment. The number of
random walk messages increase almost linearly with network size.
This is because the number of component managers that can issue
random walks increases linearly with network size. Note that the
number of random walks increases with the increasing of node
churn rate. This is mainly because the more dynamic the system
is, the more components may be endangered. Thus, more random
walks are triggered to investigate component availability. Also, we
measured the average number of random walks that a component
manager issues per second as being less than 0.002. Compared with
component query frequencies, which in general has an upper bound
of 8 queries per node per second, the random walk investigation
introduces negligible system overhead.

5. RELATED WORK
The availability problem has attracted considerable attention [5,

20,26] in dynamic decentralized systems such as P2P systems. P2P
Storage systems that are based on structured P2P networks, such as
CFS [9], PAST [21], OceanStore [14] and pStore [4] achieve avail-
ability through exact-copy replication or erasure coding. For ex-
ample, CFS replicates each file block on k CFS servers, which are
immediately after the block’s successor on the Chord ring. PAST
replicates files in a similar way; however, it stores whole files rather
than blocks. The availability of a file is determined by the node
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availability of the k nodes. In OceanStore, an object is erasure-
coded into many fragments and distributed among the servers. A
file may be reconstructed as long as enough fragments are retriev-
able. The pStore uses exact-copy chunk replication and file owners
are responsible to send replicas to target nodes. However, their
assumptions are that indexes are always available and correct, and
nodes always fulfill their responsibilities and store what they are
assigned. In large-scale multi-tenant shared computing systems,
it is hard if not impossible to enforce a uniform structure over
different content providers.

Replication strategies proposed for unstructured P2P networks
usually aim at optimizing the search performance, instead of main-
taining availability for all files, and may make under-provisioned
objects even rarer. Cohen and Shenker discussed various replica-
tion strategies for unstructured networks in [8], including uniform,
proportional and square-root replications. The uniform strategy
is to replicate everything equally, which is far from optimal in
terms of performance. The proportional strategy is to make the
number of replicas be proportional to the objects’ query rates. The
square-root strategy lies between the above two, and is shown to
minimize the expected search time for successful queries. Tewari
and Kleinrock showed the proportional replication has many per-
node advantages and can be achieved in a distributed manner using
LRU local storage management algorithms [23, 24].

Some other research work proposes hybrid P2P networks, which
constructs a DHT on top of an unstructured network, such as Peer-
Store [15]. In a dynamic environment where there is a high degree
of churn, not only files but also the DHT structures should be repli-
cated to ensure availability. The underlying complexity and robust-
ness problems seem to be the most arduous problems. Cheng and
Joung [6] used Bloom filters to index files and gossip among the
peers in order to better locate rare files. However, their work aimed
at improving searching performance rather than availability, and
there was no scheme to identify rare files and perform replication.

Previous work on content distribution networks mostly focuses
on efficiently and reliably serving users’ requests. CoDeeN em-
ploys heartbeat messages to monitor node health and avoids prob-
lematic proxies when directing users’ requests [25]. LOCKSS is
a peer-to-peer digital library system targeted to achieve long-term
digital preservation [17]. Each peer in the system periodically launch
opinion polls over its content and tries to maintain a fresh and valid
copy. Different from our work, both systems assume that data
objects are always available and retrievable.

Other work related to this paper investigated methods for in-
network aggregation in distributed systems. Li and Lee exploited
an in-network filtering technique “netFilter” to identify frequent
items in [16]. It is based on hierarchical aggregation and relies on
constant maintenance of the hierarchy to compute precise global
values of frequent items. Chu et al. presented a framework of syn-
opsis diffusion computing approximate global state in sensor net-
works [18]. Their method uses synopses designed to avoid double-
counting, thus enables the use of arbitrary multi-path routing schemes
in energy-sensitive sensor networks. Both work did not address
availability issues. In addition, in our scheme, it is not necessary to
compute precise global values.

6. CONCLUSION
In this paper, we have presented a novel highly available com-

ponent sharing system for large-scale multi-tenant cloud systems.
The system employs dynamic predictive replication to maintain
high availability of all components with low extra storage cost.
Instead of replicating all components uniformly, our system tries to
discover those endangered components and replicate those subset
of components only. We perform component availability predic-
tion using a hybrid scheme: 1) leverage query results to remove
local popular components from the “endangered” list; and 2) em-

ploy a random walk sampling scheme to further conduct system-
wide component popularity investigation. The system then per-
forms proactive replication to preserve those endangered compo-
nents. We have implemented a prototype of the proposed com-
ponent sharing system. Our experimental results show that our
scheme is both efficient and light-weight. Particularly, we observe
that our predictive replication scheme can 1) achieve up to 99%
availability with about 15% of the full replication cost; and 2) pro-
vide better or similar availability than other selective replication
schemes but with much less storage cost.
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