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Abstract

Infrastructure-as-a-service (IaaS) clouds are becoming
widely adopted. However, as multiple tenants share the
same physical resources, performance anomalies have
become one of the top concerns for users. Unfortunately,
performance anomaly diagnosis in the production IaaS
cloud often takes a long time due to its inherent com-
plexity and sharing nature. In this paper, we present
PerfCompass, a runtime performance anomaly fault lo-
calization tool using online system call trace analysis
techniques. Specifically, PerfCompass tackles a chal-
lenging fault localization problem for IaaS clouds, that
is, differentiating whether a production-run performance
anomaly is caused by an external fault (e.g., interfer-
ence from other co-located applications) or an internal
fault (e.g., software bug). PerfCompass does not require
any application source code or runtime instrumentation,
which makes it practical for production IaaS clouds. We
have tested PerfCompass using a set of popular soft-
ware systems (e.g., Apache, MySQL, Squid, Cassandra,
Hadoop) and a range of common cloud environment
issues and real software bugs. The results show that
PerfCompass accurately diagnoses all the faults while
imposing low overhead during normal application exe-
cution time.

1 Introduction

Infrastructure-as-a-service (IaaS) clouds [4] have be-
come increasingly popular by providing a cost-effective
resource sharing platform. While multi-tenant shared
hosting has many benefits, there is also greater risk for
performance anomalies (e.g., service outages [5], ser-
vice level objective violations) to arise due to its in-
herent complexity and sharing nature. When an appli-
cation in the IaaS cloud does not perform as expected,
it is important to localize the cause of the performance
anomaly quickly in order to minimize the performance

penalty. However, diagnosing performance anomalies
in a production IaaS cloud is extremely challenging.
Shared computing environments mean that a perfor-
mance anomaly can be caused by either external faults
(e.g., interference from other co-located applications,
improper resource allocations) or internal faults (e.g., ap-
plication software bugs). Differentiating between these
two types of faults is critical as the steps taken to handle
external and internal faults are quite different. Partic-
ularly, as many external problems can be quickly fixed
using virtual machine (VM) migration [13] or resource
scaling [28, 21], we can avoid wasting time on unneces-
sary application debugging.

1.1 Summary of the State of the Art

Existing runtime performance anomaly fault localization
tools (e.g.,[31, 25, 23, 17, 12, 11, 3, 9, 18, 24, 22]) can
only providecoarse-grainedfault localization such as
identifying faulty components in a distributed applica-
tion. In contrast, white-box or gray-box schemes (e.g.,
[19, 10, 30, 16]) can providefine-graineddiagnosis such
as localizing the faulty functions or code block. How-
ever, those approaches often require application source
code and expensive instrumentation, which makes them
impractical for production IaaS clouds. Although previ-
ous work [15, 27, 26] also developed trace-based perfor-
mance debugging tools, most of them need an extensive
profiling phase to extract application performance mod-
els in advance, which are often infeasible in IaaS clouds.
Some other performance debugging tools [16] need to
combine user space and kernel space tracing, which can
impart high overhead (up to 280%) to the application.
Moreover, the existing performance anomaly diagnosis
solutions do not address the unique fault localization
problems in IaaS clouds such as distinguishing between
external and internal faults.



1.2 Our Contributions

In this paper, we present PerfCompass, a light-weight
runtime performance anomaly fault localization tool de-
signed to be used by either IaaS cloud administrators or
cloud service users. PerfCompass does not require ap-
plication source code or any instrumentation, making it
practical for production IaaS clouds. PerfCompass uses a
kernel-level tracing tool [14] to collect system call traces
with low overhead (1.03% on average) and performs
onlineanalysis over the system call trace to achieve fine-
grained fault localization. Thus, PerfCompass does not
require any advance application profiling, allowing it to
diagnose previously seen or unseen anomalies.

By using kernel-level system call traces only, our ap-
proach is both light-weight and generic, applicable to any
multi-processed or multi-threaded application written in
different programming languages (e.g., both compiled
and interpreted programs). Particularly, PerfCompass
focuses on diagnosing whether a performance anomaly
is caused by an internal or external fault. This diagno-
sis result is critical for achieving efficient performance
anomaly correction in production IaaS clouds.

System call traces often have high volume. For exam-
ple, an Apache web server can produce tens of thousands
of system calls per second. Performing fault localization
from such a large amount of system calls is like finding
a needle in a haystack. We provide online system call
trace analysis algorithms that can quickly extract useful
fault featuresfor us to identify whether the fault is ex-
ternal or internal. We propose to extract afault impact
factor feature and afault onset time dispersionfeature to
infer whether the performance anomaly is caused by an
external or internal fault.

When a performance anomaly occurs, the PerfCom-
pass analysis module is dynamically triggered to perform
online fault localization within the faulty VMs. We can
identify faulty VMs using existing online black-box fault
localization tools [22, 3, 9, 18, 24]. However, to differen-
tiate between external and internal faults, we cannot treat
the whole application VM as one black-box. PerfCom-
pass first extracts different groups of closely related sys-
tem calls, calledexecution units, from the continuous raw
system call traces. We can first easily group system calls
based on the process/thread ID. However, we observe
that some server systems (e.g., Apache web server) use a
pre-allocated thread pool and often reuse the same thread
to perform different tasks. So we further split per-thread
execution units based on the inter-system-call time gap
(e.g., 99th percentile value) to mitigate inaccurate system
call grouping caused by thread reuse.

After extracting different execution units, we perform
change detection over system call execution time or
system call frequency moving average values to detect

whether an execution unit is affected by the fault. We
then derive a fault onset time for each affected execu-
tion unit to quantify how quickly the fault impacts the
affected execution unit.

Our key observation is that if the performance
anomaly is caused by an external fault, we often see
the fault directly affectsall running execution units si-
multaneously. In contrast, an internal fault only directly
affects a subset of execution units at the beginning al-
though the impact might propagate to other execution
units through communications or shared resources at a
later time. Thus, we use theimpact factorto quantify
the scope of thedirect impact from the fault to different
execution units and thefault onset time dispersionto
quantify the onset time difference among different af-
fected execution units. We can then infer whether the
performance anomaly is caused by an external or internal
fault by checking whether the fault has a global or local
direct impact and whether the fault onset time durations
of different execution units are similar.

In this paper, we make the following contributions:

• We make the first step toward runtime fine-grained
performance anomaly fault localization in IaaS
clouds using low-overhead kernel-level system call
tracing and analysis techniques.

• We describe an online system call trace analysis al-
gorithms that can extract useful fault features (e.g.,
fault impact scope, fault onset time dispersion) from
massive raw system call traces quickly.

• We have implemented the PerfCompass system and
tested it using five open source server systems under
common environment issues and real software bugs.
The results show that PerfCompass can successfully
diagnose all the tested faults while imparting an
average of 1.03% runtime overhead.

2 System Design

In this section, we present the design details of the Perf-
Compass system.

2.1 Fault Onset Time Identification

In order to distinguish between external and internal
fault, we first extract two pieces of important information
from raw system call traces of each execution unit: 1)
which execution units are affected by the fault? and 2)
whendoes the fault impact first start in each execution
unit?

To detect whether an execution unit is affected by the
fault, we first analyze the system call execution time.
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Our observation is that if the fault causes application
performance slowdown, the system call execution time
should also increase. Therefore we compute the per-
system call execution time and detect whether the fault
affects the execution unit by identifying any outlier sys-
tem call execution times. We perform outlier detection
using the standard criteria (i.e.,> mean+ 2 × standard
deviation).

We also observe that different system calls often have
varied execution time based on their functions. Thus,
it is necessary to distinguish different kinds of system
calls (e.g.,sys read, sys write) and compute the per-
system call execution time for each kind of system call
separately. Ifany system call type is identified as an
outlier, we infer that this execution unit has been affected
by the fault.

Some performance anomalies do not manifest as
changes in system call execution time. For example, if
the performance anomaly is caused by an incorrect loop
bug, we might observe the system calls inside the loop
iterate more times when the bug is triggered than during
normal execution. So, we maintain a frequency count for
each system call type. An execution unit is said to be
affected by the fault if we detect anomalous changes in
either the system call execution time or the frequency for
any type of system call.

If an execution unit is affected by the fault, we use
a fault onset timemetric to quantify how fast the fault
affects the execution unit. We calculate the fault onset
time using the time interval between the start time of the
execution unit and the timestamp of the first affected sys-
tem call in that unit. This time interval represents when
the execution unit starts to be affected by the currently
occurring fault after the execution unit is scheduled to
run.

2.2 Fault Localization Schemes

Our fault localization schemes are based on extracting
and analysing two fault features. We first extract the
fault impact feature to infer whether the fault has a global
or local impact. We define afault impact factormetric
to calculate the percentage of threads that are affected
by the fault directly. If a thread consists of multiple
execution units, we only consider the fault onset time
of the first execution unit that is affected by the fault
since we want to identify when the faultfirst affected
each thread. We discuss how to set the fault onset time
threshold later in this section. If the fault onset time of
the affected thread is smaller than a pre-defined threshold
(e.g., 1 second), we say this thread is affected by the fault
directly. If the fault impact factor is close to 100%, we
can infer that the fault should be an external fault; If the

fault impact factor is significantly less than 100%, we
can infer that the fault should be an internal fault.

However, if the fault impact factor has a borderline
value (e.g., 90%), we extract afault onset time disper-
sionfeature to identify whether the fault affects different
threads at the same time or at different time. Since an
external fault affects all the running threads uniformly,
the affected threads are likely to show the fault impact at
a similar time after the fault is triggered. We use the stan-
dard deviation of the fault onset time among all the af-
fected threads to quantify the fault onset time dispersion.
If the fault onset dispersion is small, we infer that this
fault is an external one. In contrast, an internal fault is
likely to directly affect a subset of threads executing the
buggy code and then indirectly affect other threads that
communicate with the directly affected threads. Thus, if
we observe a large fault onset time dispersion, we infer
the fault is an internal one.

In our experiments, we found that a fixed fault onset
time threshold (1 second) works well for all the appli-
cations and faults we tested. Generally speaking, it is
more accurate to apply an application specific threshold.
We observe that the fault onset time of different external
faults are similar for the same application. Thus, we can
easily calibrate the fault onset time threshold for each
application by imposing a simple external fault to the
application (e.g., imposing a low CPU cap by limiting
the CPU consumption of the application). Such a cali-
bration can be easily done without requiring any specific
workload or fault type. We can calibrate the fault onset
time dispersion threshold in a similar way.

3 Evaluation

We evaluate PerfCompass using real system perfor-
mance anomalies caused by different external and in-
ternal faults. We first describe our experiment setup
followed by a summary of our results.

3.1 Experiment Setup

We tested PerfCompass with five different systems:
Apache [6], MySQL [20], Squid [29], Cassandra [7],
and Hadoop [8]. Table 1 lists all the faults we tested.
Each of the 9 external faults represents a common multi-
tenancy or environment issue such as interference from
other co-located applications, insufficient resource allo-
cation, or network packet loss. We also tested 7 internal
faults which arereal software bugsfound by searching
the appropriate bug reporting repository (e.g., Bugzilla)
for performance related terms. We then follow the in-
structions given in the bug report to reproduce the bugs.

We use Apache 2.2.22, MySQL 5.5.29, Squid 3.2.9,
Cassandra 1.2.0-beta, and Hadoop 2.0.0-alpha for the
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System
name

Fault description Fault impact
factor

Fault onset time
dispersion

Correct
diagnosis

CPU cap problem (external): improperly setting the VM’s CPU cap to too low
causes insufficient CPU allocation.

100± 0 % 7 ± 1 ms X

Apache Packet loss problem (external): using thetc command to randomly drop 10%
packets.

100± 0 % 4 ± 1 ms X

Flag setting bug (internal): deleting a port Apache is listening to and then restarting
the server causes Apache to attempt to make a blocking call ona socket when a flag
preventing blocking calls has not been cleared. The code does not check for this
condition and re-tries endlessly (#37680).

50± 0.5 % 374± 63 ms X

I/O interference problem (external): a co-located VM causes a disk contention
interference problem by running a disk intensive Hadoop job.

100± 0 % 15± 7 ms X

CPU cap problem (external): improperly setting the VM’s CPU cap to too low
causes insufficient CPU allocation.

94± 2 % 17.77± 4 ms X

MySQL Deadlock bug (internal): a MySQL deadlock bug that occurs when each of the two
connections locks one table and tries to lock the other table. If one connection tries
to execute aINSERT DELAYED command on the other while the other is sleeping, the
system will become deadlocked (#54332).

40± 0% 38± 3 ms X

Data flushing bug (internal): truncating a table causes a 5x slowdown in table
insertions due to a bug with the InnoDB storage engine for bigdatasets. InnoDB
fails to mark truncated data as deleted and constantly allocates new blocks. (#65615)

62± 3 % 721± 4 ms X

Packet loss problem (external): using thetc command to randomly drop 10%
packets.

100± 0 % 0.01± 0.001 ms X

Squid File access bug (internal): if /dev/null is made not accessible, by changing
permissions for example, squid will loop endlessly trying to open it (#1484).

83± 1 % 0.35± 0.09 ms X

CPU cap problem (external): improperly setting the VM’s CPU cap to too low
causes insufficient CPU allocation.

99± 1.4 % 28± 4 ms X

Cassandra I/O interference problem (external): a co-located VM causes a disk contention
interference problem by running a disk intensive Hadoop job.

100± 0 % 9 ± 1 ms X

Endless loop bug (internal): trying to alter a table when the table includes
collections causes it to hang, consuming 100% CPU due to an internal problem with
the way Cassandra locks tables for updating (#5064).

51± 5.7% 25± 0.98 ms X

CPU cap problem (external): improperly setting the VM’s CPU cap to too low
causes insufficient CPU allocation.

98± 1 % 39± 5 ms X

I/O interference problem (external): a co-located VM causes a disk contention
interference problem by running a disk intensive Hadoop job.

98± 0 % 16± 3 ms X

Hadoop Endless read bug (internal): HDFS does not check for an overflow of an
internal content length field causing HDFS transfers largerthan 2GB to block and
continuously try to read from an input stream (#HDFS-3318).

81± 0 % 23± 6 ms X

Thread shutdown bug (internal): when the AppLogAggregator thread dies
unexpectedly (e.g. due to a crash), the task waits for an atomic variable to be set
indicating thread shutdown is complete. As the thread has died already, the variable
will never be set and the job will hang indefinitely (# MAPREDUCE-3738).

85± 0.5 % 110± 20 ms X

Table 1: PerfCompass fault localization result summary fordifferent systems under various external and internal faults.

Apache, MySQL, Squid, Cassandra, and Hadoop exter-
nal faults, respectively. For each internal fault, we used
the version specified in the bug report. In order to eval-
uate PerfCompass under workloads with realistic time
variations, we used the following workloads during our
experiments: 1)Apache: we use one day of per-minute
workload intensity observed in a NASA web server trace
starting at 1995-07-01:00.00 [2]; 2)MySQL : we use
a MySQL benchmark tool called “Sysbench” [1]; 3)
Squid: we configure Squid to act as a web proxy and
use httperf to request various pages from an Apache web
server using Squid as the proxy; 4)Cassandra: we use a
workload which creates a table and inserts various entries
into the table; and 5)Hadoop: we use the standard Pi
calculation example with 16 map and 16 reduce tasks.

We repeated each fault injection three times, reporting
the average and mean standard deviation values over all
3 runs.

To evaluate our approach in different virtualization
environments, we conducted our experiments on two
different virtualized clusters. The Apache and MySQL
experiments were conducted on a cluster where each host
has a dual-core Xeon 3.0GHz CPU and 4GB memory,
and runs 64bit CentOS 5.2 with Xen 3.0.3. The Squid,
Cassandra, and Hadoop experiments were conducted on
a cluster where each node is equipped with a quad-core
Xeon 2.53Ghz CPU along with 8GB memory with KVM
1.0. In both cases, each trace was collected on a guest
VM using LTTng 2.0.1 running 32-bit Ubuntu 12.04
kernel version 3.2.0.
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We calibrate the fault onset time threshold and fault
onset time dispersion threshold values by injecting a low
CPU cap external fault to different applications. Note
that we do not need to perform the calibration under
the same workload intensity as the performance anomaly
occurrence time. The fault onset time thresholds we get
are 0.06 second for Apache, 0.3 second for MySQL,
0.002 second for Squid, and 0.4 second for Cassandra
and Hadoop. The fault onset time dispersion values we
get are 7ms for Apache, 17ms for MySQL, 0.02ms for
Squid, 28ms for Cassandra, and 39ms for Hadoop. We
also conduct the experiments using a fixed fault onset
time threshold (1 second) and found that using the simple
threshold gives similar results.

3.2 Result Summary

Table 1 provides a summary of our fault localization
results for different systems under various external and
internal faults. The results show that PerfCompass cor-
rectly diagnoses each of the 9 external faults as external
and each of the 7 internal faults as internal.

All the tested external faults have impact factors close
to 100%, clearly indicating each of them as external.
Similarly, most internal faults for these systems have
an impact factor significantly less than 100%, clearly
indicating each of them as internal. We also observe
that most internal faults have significantly larger fault
onset time dispersion values than the external faults of
the same application.

3.2.1 PerfCompass Overhead

We now evaluate the overhead of the PerfCompass sys-
tem. Figure 1 shows the runtime overhead imposed by
PerfCompass on each of the tested systems. For Apache,
MySQL, and Squid we used httperf to send a fixed num-
ber of requests, recording the average response time both
with and without PerfCompass. We used a request rate
of 100 requests per second for Apache and Squid, and a
request rate of 20 requests per second for MySQL1. For
Cassandra, we ran a simple database insertion workload,
recording the average processing time. For Hadoop we
ran the Pi sample job, recording the average processing
time. We ran all the tests 5 times, reporting the mean
and standard deviation. We observe that PerfCompass
imparts 1.03% runtime overhead on average. We also
measured the resource consumption of PerfCompass. We
found PerfCompass imparts between 2-3% CPU load
and has a small memory footprint ( about 256KB). We
believe that PerfCompass is light-weight, which makes it

1Those request rates were selected based on the capacity of the
tested machine.
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Figure 1: The overhead imposed by PerfCompass on
different server systems.

practical for online performance anomaly fault localiza-
tion in production IaaS clouds.

4 Conclusions and Future Work

In this paper, we have presented PerfCompass, a run-
time performance anomaly fault localization tool for
production IaaS clouds. PerfCompass can distinguish
between external and internal faults without requiring
source code or runtime instrumentation. PerfCompass
uses light-weight kernel-level system call tracing and
performs online system call trace analysis to extract fault
features from massive raw system call traces during run-
time. We have implemented PerfCompass and evaluated
it using a variety of commonly used open source server
systems including Apache, MySQL, Squid, Cassandra,
and Hadoop. We tested PerfCompass using a set of com-
mon environment issues in the shared IaaS clouds and
real software bugs. The results show that PerfCompass
accurately diagnoses all the tested faults. PerfCompass is
light-weight and non-intrusive, which makes it practical
for IaaS clouds. In the future, we plan to extend our
system call analysis framework to extract other fault
features for supporting different types of fine-grained
runtime performance anomaly fault localizations such as
narrowing down potential root cause functions.
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