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ABSTRACT
Application markets such as the Google Play Store and the
Apple App Store have become the de facto method of dis-
tributing software to mobile devices. While official markets
dedicate significant resources to detecting malware, state-
of-the-art malware detection can be easily circumvented us-
ing logic bombs or checks for an emulated environment.
We present a Practical Root Exploit Containment (PREC)
framework that protects users from such conditional mali-
cious behavior. PREC can dynamically identify system calls
from high-risk components (e.g., third-party native libraries)
and execute those system calls within isolated threads. Hence,
PREC can detect and stop root exploits with high accuracy
while imposing low interference to benign applications. We
have implemented PREC and evaluated our methodology
on 140 most popular benign applications and 10 root ex-
ploit malicious applications. Our results show that PREC
can successfully detect and stop all the tested malware while
reducing the false alarm rates by more than one order of
magnitude over traditional malware detection algorithms.
PREC is light-weight, which makes it practical for runtime
on-device root exploit detection and containment.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software (e.g., viruses, worms, Trojan horses); D.2.5
[Software Engineering]: Testing and Debugging

Keywords
Android, Host Intrusion Detection, Dynamic Analysis, Mal-
ware, Root Exploit

1. INTRODUCTION
Popular application markets (e.g., Apple’s App Store, and

the Google Play Store) [13, 54] have become a boon for
users and developers, but they also provide a distribution
point for malware. While markets perform malware analysis
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(e.g., Bouncer [39]), dynamic analysis environments can be
easily detected by malware or avoided using logic bombs
and checks for emulation [20, 24, 44]. Thus, it is necessary
to provide on-device malware containment that can detect
and stop the malware during runtime.

We observe that the dynamic malware analysis performed
by application markets provides an opportunity to obtain
a normal behavior model for an application. In effect, this
forces malware authors to commit to a behavior during mar-
ket malware analysis. Therefore, we can use online anomaly
detection and malware containment to protect the user from
the malware that uses logic bombs or attempts to change ex-
ecution based on an emulated environment.

The primary challenges in making runtime root exploit
containment practical are achieving a low false alarm rate [18]
and imposing low interference to benign applications. We
address those challenges using two novel techniques. First,
we propose a classified system call monitoring scheme that
can separate system calls based on their origins (e.g., the
library that initiates the system call). Thus, we can dynam-
ically identify system calls originated from high-risk com-
ponents such as third-party native libraries (i.e., native li-
braries that are not included in the Android system libraries
but are downloaded with applications from the app market).
Since less than 10% of benign applications include third-
party native code [31], the majority of benign applications
will have zero false alarms using our scheme. Second, we pro-
pose a delay-based fine-grained containment mechanism that
executes the anomalous system calls using a pool of separate
threads, and slows them down exponentially to defeat the
attack. The rationale behind our approach is that address
space layout randomization (ASLR) in Android [6] forces ex-
ploits to repeat the attack sequence many times in order to
guess the right stack address. Moreover, most existing root
exploits (e.g., Rage Against the Cage) use resource exhaus-
tion attacks (e.g., continuously forking). By slowing down
the malicious activity, the exploit becomes unsuccessful and
often results in an Application Not Responding (ANR) sta-
tus, which causes the Android system to kill the malicious
application.

In this paper, we present the Practical Root Exploit Con-
tainment (PREC) framework to achieve on-device malware
containment. We specifically focus on malware that exploits
root privilege escalation vulnerabilities. This type of mal-
ware represents the highest risk for smartphones, because
root access enables the greatest amount of malicious func-
tionality, allows for hiding its existence, and makes the mal-
ware difficult to remove [31]. Figure 1 depicts the overall



PREC architecture. PREC operates in two phases: 1) of-
fline learning when a developer submits an app into the mar-
ket; and 2) online enforcement when the user downloads and
installs the app.

When a developer submits an app into the market, the
market server (e.g., Google’s Bouncer) runs the app within
a controlled emulator, performing comprehensive malware
detection using a combination of signature detection and
dynamic analysis. If the application contains malicious func-
tionality, the market dynamic analysis will detect it and re-
ject the malicious application. However, as mentioned ear-
lier, malware authors often attempt to evade the malware
detection system using logic bombs or by not executing ma-
licious code when running in a dynamic analysis environ-
ment. This is where PREC provides contribution by forcing
the app to commit to a normal behavior.

During dynamic malware analysis, PREC records and la-
bels a system call trace based on our classified monitoring
criteria. For this work, PREC labels each system call as
originating either from third-party native code or from Java
code. We use the third-party native code as the classifying
criteria, because it is more risky than Java code or system
libraries: 1) all existing malware that exploits root privi-
lege escalation vulnerabilities uses third-party native code;
2) low-level system APIs required by the root exploits are
often not available to Java code; and 3) program analysis
of third-party native code is significantly more difficult than
Java code or system libraries, therefore most malware anal-
ysis tools to date ignore third-party native code.

Once system calls are labeled by PREC, it creates a nor-
mal behavior model for the app. The normal behavior model
is sent to the PREC service that could be hosted within a
computing cloud. When choosing a model to represent the
normal behavior of an application, we considered several fac-
tors such as accuracy, overhead, and robustness to mimicry
attacks. After examining several common models such as
the hidden Markov model (HMM) and finite state automata
(FSA), we developed a new lightweight and robust behav-
ior learning scheme based on the self-organizing map (SOM)
technique [35, 23]. SOM is robust to noise in system calls
by projecting a high dimensional space (noisy system call
sequences) into a two-dimensional map that still captures
the principal normal patterns. Moreover, SOM is signifi-
cantly less computation-intensive than most other learning
methods such as HMM.

Ideally, the normal behavior model should be comprehen-
sive in order to avoid false alarms. PREC currently uses
a random input fuzz testing tool [11] to create the per-app
normal behavior model. Alternatively, app developers can
submit an input trace for PREC if a more precise model
is desired. Note that PREC is a general behavior learning
framework, which can work with any input testing tools or
user provided input traces. Our experiments show that us-
ing the simple input fuzz testing tool, PREC can already
produce high quality behavior models for most of the real
Android apps.

The enforcement phase uses the normal behavior model
from the PREC service to perform on-device anomaly de-
tection and malware containment. Therefore, PREC dy-
namically identifies system calls from the third-party native
code and performs anomaly detection only on system calls
that originate in third-party native code. Monitoring only
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Figure 1: Overview of the PREC architecture. When

the developer submits an app to the app market, the

market performs extensive malware detection in a con-

trolled emulator. If the app is detected as malware, it is

rejected. If not, a normal execution profile is saved and

forwarded to the PREC service. When a smartphone

user downloads an app, the normal execution profile is

retrieved. PREC then monitors operation and contains

root exploits on the phone.

third-party native code significantly reduces false alarms of
runtime root privilege escalation attack detection.

This paper makes the following contributions:

• We present an architecture for mitigating root exploit
malware that hides its existence during dynamic anal-
ysis. Our approach forces malware to commit to a
normal behavior during market dynamic analysis and
malicious attacks are detected and stopped at runtime.

• We describe a runtime, kernel-level, system call origin
identification mechanism that allows us to build fine-
grained behavior models (i.e., third-party native code
behaviors v.s. java code behaviors) for higher anomaly
detection accuracy and practical malware containment.

• We provide a scalable and robust behavior learning
and anomaly detection scheme using the self-organizing
map (SOM) learning algorithm [35] that can achieve
both high accuracy and low overhead.

We have implemented PREC and evaluated our methodol-
ogy on 140 most popular benign applications (80 with native
code and 60 without native code) covering all different appli-
cation categories and 10 root exploit malware (4 known root
exploit applications from the Malware Genome project [59]
and 6 repackaged root exploit applications). Our experi-
ments show that PREC can successfully detect and stop all
the tested root exploits. More importantly, PREC achieves
practicability by 1) raising 0 false alarm on the benign appli-
cations without native code. In contrast, traditional schemes
without our classified system call monitoring raise 67-92%
per-app false alarms; and 2) reducing the false alarm rate
on the benign applications with native code by more than
one orders of magnitude over traditional anomaly detection
algorithms: from 100% per-app false alarm rate (FSA) and
78% per-app false alarm rate (HMM) to 3.75% per-app false
alarm rate (PREC). Since less than 10% apps over the whole
market have third-party native code [31], we expect the false
alarm rate for PREC will be very low in practice. Our delay-
based fine-grained containment scheme can not only defeat
all the tested root exploit attacks but also minimize the false
alarm impact to the benign applications. Our experiments
show that PREC imposes noticeable false alarm impact to
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Figure 2: Thread-based system call origin identifica-

tion. When a third-party native function is called, we

dynamically choose a thread from a pool of special “na-

tive threads” to execute the function.

only 1 out of 140 tested popular benign applications. PREC
is light-weight, which only imposes less than 3% runtime
execution overhead on the smartphone device.

2. DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation

details of the PREC system. We first describe the system
call origin identification scheme. We then describe our on-
device root exploit detection schemes. Finally, we present
our automatic root exploit containment scheme.

2.1 System Call Origin Identification
PREC performs classified system call monitoring by sepa-

rating the system calls originated from high risk third-party
native code from the system calls issued by the less danger-
ous Java code. However, we cannot simply look at the return
address of the code that invokes the system call, because
both Java code and third-party native code use system-
provided native libraries (e.g., libc) to invoke system calls.

Performing user-space stack unwinding from the kernel
is one option to understand program components on the
call path. However, such backtrace information resides in
the user-space and therefore, needs to be well protected.
Furthermore, most system libraries do not include debug
information (e.g., DWARF [4] or EXIDX [5]) that is needed
to unwind the stack.

Another simple approach is to have the Dalvik VM notify
the kernel when a thread switches to third-party native code.
The kernel can then maintain a flag in the corresponding
thread structure in the kernel space. Then, when the native
function returns, the Dalvik VM notifies the kernel to clear
the flag. This approach makes labeling easy; however it is
vulnerable to a confused deputy attack. That is, the kernel
cannot determine if it is the Dalvik VM that requested the
flag to be unset or a malicious third-party native code.

In light of these limitations, we propose a thread-based
approach to identify the system call origins. The basic idea
is to maintain a pool of special threads called native threads
and execute all the third-party native functions using those
native threads as shown in Figure 2. Functions executed in
these threads are monitored without exception. Malicious
code cannot change a native thread to a normal thread.
No direct communication is needed between the Dalvik VM
and kernel since the pool of native threads are created by
PREC at application launch time. Thus, our approach is
not vulnerable to the confused deputy attack. Furthermore,
the code logic for determining the switching between native

threads and java threads is in Dalvik VM which Android en-
sures is read-only to the application process [1]. Thus, the
malicious attacker cannot bypass the switching from java
threads to native threads in order to execute the third-party
native code.

We build our system call tracer as a Linux kernel module
on top of kprobes. Kprobes are a set of Linux interfaces
that allow us to implant probes and register corresponding
handlers. Compared to user space system call tracers (e.g.,
ptrace [7]) that can introduce over 20% overhead due to
frequent context switches, our kernel tracer only incurs less
than 2% overhead. PREC could also use other kernel space
system call tracing tools such as SystemTap [10], DTrace [3],
or Linux Trace Toolkit - next generation (LTTng) [8] that
are orthogonal to our approach.

Our system call origin identification scheme leverages the
natural boundary between Java code and native code. An-
droid allows Java components to access native binaries (in-
cluding both libraries and executables) in three different
ways. First, Java components can use the JNI Bridge to
call native functions. The JNI Bridge is the aggregation
point that maps Java abstract native function names (i.e.,
static native function appeared in Java code) to real na-
tive function addresses. Second, when the Java code requires
a native library to be loaded, System.loadLibrary() will
load the native library to the memory and then call the
JNI_OnLoad() callback in the library. Since JNI_OnLoad()

is defined by the developer of the native library, it can be
used by an adversary to execute native code. Lastly, Java
allows applications to use System.Runtime.exec() to exe-
cute native executables. This function is the best place for
attackers to apply root privilege escalation attacks because
most exploits are released as native executables. For the rest
of this paper, we use native interfaces to represent different
ways to invoke third-party native functions.

When a Java thread needs to invoke a third-party na-
tive function through one of the aforementioned native inter-
faces, PREC is triggered to suspend the Java thread and use
a native thread to execute the native function instead. One
brute force implementation is to create a new native thread
each time the native function is invoked. However, this sim-
ple implementation suffers from high performance overhead
when the application frequently invokes native functions. In-
stead, PREC creates a pool of native threads at application
launch. When a Java thread needs to execute a third-party
native function, we suspend the Java thread and dynami-
cally select an idle native thread to execute the native func-
tion. The native function sometimes calls back to the Java
code (e.g., NewStringUTF(), which is a function that creates
a Java string inside the Java heap). Under those circum-
stances, we continue use the native thread to execute the
Java function because it might be a potential attack to Java
components. When the native function exits, we resume the
Java thread and recycle the native thread.

Our thread-based system call origin identification scheme
has several advantages over other alternatives. First, the
kernel tracer can easily identify the system call origins (i.e.,
from Java or native components) by checking whether the
thread belongs to the native thread pool. Second, the thread-
based approach allows us to isolate a small portion of the
application rather than kill the whole application. This al-
lows us to reduce the disturbance to the user by minimizing
the containment scope. We will describe our containment
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scheme in Section 2.3. Third, PREC can easily incorpo-
rate other execution sandboxing mechanisms (e.g., software
fault isolation [57]) to provide additional security isolations
between Java code and malicious native code.

2.2 On-Device Root Exploit Detection
After we extract the system calls from the high-risk native

code, we need to build a normal behavior model for the app
before it is released to the market. The behavior model is
then transferred to the smartphone device for runtime root
exploit detection.

Normal app behavior learning. We capture the nor-
mal behavior of each application during the market dynamic
malware analysis. As mentioned in the Introduction, we de-
velop a new lightweight and robust behavior learning scheme
based on the self-organizing map (SOM) technique [35]. Our
previous work [23] has used SOM to train a system behav-
ior model using system-level metrics such as CPU usage and
memory consumption. To the best of our knowledge, this
work makes the first step in applying SOM to system call
sequences.

SOM is a type of artificial neural network that is trained
using unsupervised learning to map the input space of the
training data into a low dimensional (usually two dimen-
sions) map space. Each map consists of n × m nodes called
neurons arranged in a grid, illustrated by Figure 3. Each
neuron is associated with a weight vector that has the same
length as the input vector. In our case, both input vectors
and weight vectors are sequences of system call identifiers
(ids) of length k (i.e., k-grams). Both n, m, and k are config-
urable parameters that can be dynamically set during map
creation. At map creation time, each weight vector element
is initialized randomly to be a value i such that 1 ≤ i ≤ S,
S equals to the largest system call id. In order to handle ap-
plications with different behaviors, PREC builds a SOM for
each individual application and only uses the system calls
originated by high-risk third-party native code to train the
SOM.

The traditional SOM learning algorithm updates weight
vectors continuously. However we cannot use this method
directly, since two system calls with similar ids do not nec-
essarily have similar actions. For example, system call id 12
(sys_chdir) is completely different than system call id 13
(sys_time). To address these issues, we have made two mod-
ifications to the traditional SOM learning algorithm. First,
we use the string edit distance instead of Euclidean or Man-
hattan distance as a measure of similarity when mapping
input vectors to neurons. This is because graph edit dis-

tance only considers if two items are exactly the same in
the weight vector. Second, to address the continuous up-
date problem, we have developed a frequency-based weight
vector update scheme, which we describe next.

Each SOM model training occurs in three iterative steps,
illustrated by Figure 3. First, we form an input vector of
length k by reading k system calls from the training data.
Second, we examine the string edit distance from that in-
put vector to the weight vectors of all neurons in the map.
Whichever neuron has the smallest distance is selected as
the winning neuron to be trained. We break ties using Eu-
clidean distance. Third, we add 1 to the count for the input
vector in the frequency map of the winner neuron. At this
point we also update the frequency maps of all neighbor
neurons. In this example, we define our neighborhood to be
the neurons in a radius of r = 1. The count value added
to the neighbor neuron is reduced based on a neighborhood
function (e.g., Gaussian function) which depends on the grid
distance from the winning neuron to the neighbor neuron.
For example, in Figure 3, the input vector [1, 2, 4] is added
into the frequency map of the winning neuron 1 with a count
1 and is also added into the frequency map of the neighbor
neuron 2 with a reduced count 0.8.

The frequency map keeps track of how many times each
particular system call sequence has been mapped to that
neuron. For example, in Figure 3, the frequency map of
neuron 1 shows that the sequence [2, 2, 4] is mapped to the
neuron 1 five times, the sequence [3, 2, 4] is mapped to neu-
ron 1 two times, and the sequence [1, 2, 4] is mapped to neu-
ron 1 just once. We repeat the above three steps for all the
system call sequences recorded in the training data. After
training is complete, we use the sequence with the highest
count in the frequency map to denote the weight vector of
the neuron. We sum the count values of all the sequences in
the frequency map to denote the frequency count value for
this neuron.

Use of system call arguments. System call arguments
provide finer-grained information to system call anomaly de-
tections. In PREC, we selected two types of arguments to
help detect root exploits: file paths and socket arguments.
We divide each file and socket related system call into mul-
tiple subgroups based on the arguments it contains. Specif-
ically, we classify file paths into two types: application ac-
cessible directories and system directories. We divide socket
system calls into three different groups based on its protocol
type: 1) the socket call that connects to a remote server on
the network, 2) a local server on the device, and 3) a kernel
component with the NETLINK socket. Each file or socket sys-
tem call is assigned with different identifiers based on the
argument type. For example, the system call open is as-
signed with an identifier 5 for accessing its home directory
or SD card partition and a different identifier (e.g., 300) for
accessing the system directories.

Some system calls (e.g., symlink, rename) include two file
paths in their arguments. If the two file paths belong to
the same type, we can assign the system call identifier in a
similar way as single file path ones. However, if the two file
paths belong to different types, we assign a unique identi-
fier to the system call. The intuition behind our approach
is that we observe that benign applications do not simulta-
neously access files in the application home directory and
the system directory. For example, benign applications do
not move files from its home directory to system partitions



and vice versa. In contrast, we observe that most malicious
applications try to access home directories and system di-
rectories at the same time (e.g., symlink a system file to a
local directory).

Runtime root exploit detection. When a user pur-
chases an app from the market, its normal behavior model
represented by SOM is downloaded to the user’s smart-
phone. After the application starts, PREC performs run-
time system call origin identification to form the sequences
of system calls originated by the third-party native code.
We then match the system call sequences against the SOM
model. If a root exploit begins to execute, PREC identi-
fies system call sequences that are mapped to rarely trained
neurons. Thus, if we map the collected system call sequence
to a neuron whose frequency count is less than a pre-defined
threshold (e.g., 0 represents never trained), the current se-
quence is considered to be malicious. The threshold allows
users to control the tradeoff between malware detection rate
and false alarm rate. The map size and the sequence length
are other configuration parameters that might contribute to
the malware detection accuracy tradeoff. We will quantify
such tradeoffs in the experimental evaluation section.

2.3 Automatic Root Exploit Containment
When a root exploit is detected, PREC automatically

responds to the alarm by containing the malicious execu-
tion. A brute force response to the malware alarm would
be killing the entire application to protect the device from
the root compromise. However, this brute force approach
might cause a lot of undesired disturbances to the user, es-
pecially when the anomaly detector raises a false alarm. To
address the challenge, PREC provides fine-grained contain-
ment by stopping or slowing down the malicious activities
only instead of the whole application.

As mentioned in Section 2.1, PREC executes system calls
from the third-party native code within the special native
threads. When a malicious system call sequence is detected,
PREC sends a predefined signal to the malicious native
thread to terminate the thread. To process the signal, we
also insert a signal handler inside the native thread before
the native function is called. In our current prototype im-
plementation, we use SIGSYS (signal 31) to trigger the native
thread termination. We confirm that SIGSYS is not used by
any other Android system components. Furthermore, PREC
disallows applications from sending or registering handlers
for SIGSYS.

Although killing native threads can effectively stop the
attack, it might still break the normal application execu-
tion when the anomaly detector raises a false alarm. Thus,
PREC provides a second containment option that is less in-
trusive: slowing down the malicious native thread by insert-
ing a delay during its execution. Our experiments show that
most root exploits become ineffective after we slow down the
malicious native thread to a certain point. The delay-based
approach can handle the false alarms more gracefully since
the benign application will not suffer from crashing or ter-
mination due to transient false alarms.

To insert delay into the malicious thread, we force the
kernel to call our sleep function before each system call is
dispatched to the corresponding handler. After the anomaly
detection module raises an alarm, it sets a delay value in
the task_struct of the malicious native thread. Note that
the task_struct is ready-only to the user process. Thus,

PREC pauses the native thread based on the delay speci-
fied by PREC. The delay time is applied to all subsequent
system calls in the thread, and exponentially increases for
each new alarm in order to stop the malicious activities in
a timely way. Our prototype starts at 1 ms and doubles per
alarm. For each normal system call sequence, we exponen-
tially decrease (halves) the delay. There are other possible
policies for increasing or decreasing the delay, which can be
used as tuning knobs for controlling the false alarm sensitiv-
ity. For example, we also tested a linear decrease policy, but
found exponential decrease can tolerate more false alarms.

3. EXPERIMENTAL EVALUATION
We implement PREC and evaluate our approach using

real world root exploits and applications. We evaluate PREC
in terms of detection accuracy, malware containment effec-
tiveness, and overhead.

3.1 Evaluation Methodology

Benign application selection: We first test PREC with
a variety of popular benign apps to evaluate the false alarm
rate of PREC. We select our benign apps as follows. We
downloaded top 10 popular free apps from all different ap-
plication categories (Android Market includes 34 application
categories). We then test those applications from the most
popular ones to less popular ones and check whether we
can run them successfully on the emulator and our Sam-
sung Galaxy Nexus device. We find 80 popular apps include
third-party native code and can be correctly executed on
our test devices. The majority of them are games and mul-
timedia applications. We also test 60 popular apps with-
out any third-party native code. We use more benign apps
with third-party native code than without third-party native
code in order to estimate the worst-case false alarm rate of
PREC since PREC will not raise any false alarm for be-
nign apps without any third-party native code. In contrast,
other alternative schemes without our classified monitoring
techniques will still raise false alarms on those benign apps
without third-party native code. We evaluated all the be-
nign apps using a Samsung Galaxy Nexus device with An-
droid 4.2, which is equipped with 1.2 GHz Dual-Core cortex
A9 processor, and 1GB RAM.

Malware selection: To evaluate the root exploit contain-
ment capability of PREC, we extensively studied all the ex-
isting real root exploits. Table 1 shows the 10 malicious
applications used in our experiments that covers four real
root exploits. We first used four real malware samples re-
ported by the Malware Genome project [59]. To evaluate
PREC under more challenging cases, we repackage existing
root privilege escalation attacks into a popular application
(AngryBirds), which contains a lot of native code.

We first studied all the six root exploit malware families
(DroidDream, DroidKungFu1, DroidKungFu2, Ginger Mas-
ter, BaseBridge, DroidKungFuSapp) reported by the Mal-
ware Genome Project [59]. Our experiments covered the
first four malware families. The BaseBridge malware only
attacks Sony and Motorola devices, which cannot be trig-
gered on our Nexus phones. The DroidKungFuSapp per-
forms attacks by connecting to a remote command and con-
trol server. However, the server was inaccessible at the time
of our testing, which did not allow us to trigger the root
exploit.



Table 1: Malware samples tested in the experiments. The first 4 malware samples are existing malware and the last

6 malware samples are repackaged AngryBirds applications with existing root exploits.
Malware Sample Application Package Root Exploits Description

DroidDream com.beauty.leg Exploid, RATC Plaintext root exploits which are triggered once the infected
application has been launched

DroidKungFu1 com.sansec Exploid, RATC Encrypt Exploid and RATC root attacks and is triggered when
a specific event is received at a predefined time condition.

DroidKungFu2 com.allen.txtdbwshs Exploid, RATC Encrypt the RATC root attack and is triggered when a specific
event is received at a predefined time condition.

GingerMaster com.igamepower.appmaster GingerBreak Hides shell code suffix and is triggered during the next reboot.
RATC-1 AngryBirds RATC Attack is triggered when the application receives

BOOT_COMPLETED broadcast intent.
RATC-2 AngryBirds RATC Attack is triggered ten seconds after the application is

launched.
ZimperLich-1 AngryBirds ZimperLich Attack is triggered when the application receives

BOOT_COMPLETED broadcast intent.
ZimperLich-2 AngryBirds ZimperLich Attack is triggered ten seconds after the application is

launched.
GingerBreak-1 AngryBirds GingerBreak Attack is triggered when the application receives

BOOT_COMPLETED broadcast intent.
GingerBreak-2 AngryBirds GingerBreak Attack is triggered ten seconds after the application is

launched.

The RiskRanker project [31] and the X-ray project [12]
reported 9 root exploits in total. Our experiments covered
four of them (Exploid, RATC, GingerBreak, ZimperLich).
We did not cover the other five root exploits for the follow-
ing reasons. Three reported root exploits (Ashmem, zer-
gRush, Mempodroid) are not found in real Android appli-
cations. Ashmem uses a vulnerability that Android failed
to protect Android Share Memory so unprivileged process
can change the value of ro.secure arbitrarily. This variable
is used by the Android Debug Bridge Daemon (ADBD) to
determine whether developer can login as root. However,
attackers cannot embed this exploit into applications be-
cause Android applications cannot access ADBD. Similarly,
zergRush requires several information in ADBD and Mem-
podroid executes run-as inside the Android Debug Bridge
shell. Therefore, it is infeasible for attackers to use those
exploits in applications. The remaining two root exploits
(Asroot, which is named Wunderbar in X-ray, and Levitator)
are not tested due to lack of software or hardware: Asroot
targets on Linux kernel version prior 2.6.30-4, and the ear-
liest available version that we can use for Nexus One device
is 2.6.32. Levitator targets PowerVR driver and our Nexus
One device uses Adreno 200 GPU. However, we also stud-
ied the source code of Asroot and Levitator and confirmed
that PREC can detect those two root exploits if they are
triggered. The reasons are that they either use some system
calls that should never be used by normal applications (e.g.,
syscall 187 in Asroot) or need to repeatedly execute certain
system calls (similar to GingerBreak) to achieve success.

We tested all the root exploit malware on a Google Nexus
One device with Android 2.2 with 1GHz single core cor-
tex A8 processor and 512MB RAM. Although the latest
root exploit in our data set targets Android 2.3, root privi-
lege escalation attacks are an increasing concern in Android.
For example, Google introduced SELinux in Android 4.3 to
mitigate the damage of root escalation attacks [9]. PREC
provides a complementary first-line defense to detect and
contain the root escalation attacks.

Model learning data collection in emulator: All the
application behavior model learning data were collected on

the Android emulator enhanced with our classified system
call monitoring scheme. We used the Android Monkey [11]
tool to generate random inputs to simulate user behaviors.
We chose Monkey in this work because it is the best publicly
available fuzz input generation tool we could find at the time
of writing. Previous work [52] also shows that Monkey can
provide similar coverage as manual collection given sufficient
rounds of testing. We note that using Monkey input gener-
ation is a limitation in our current implementation, which
will be discussed in detail in Section 4. However, our exper-
iments show that PREC can achieve high accuracy even by
using such a simple tool. We expect PREC can achieve even
more accurate malware detection given a more powerful in-
put generation tool or using developer provided input traces.
Although previous work [58, 56, 49, 41] proposed to auto-
mate the trace collection process by analyzing decompiled
Java source code and standard Android user interface (UI)
components, those approaches cannot be applied to PREC
for two main reasons. First, PREC focuses on third-party
native code which is very difficult, if not totally impossible,
to decompile. Second, most applications that contain na-
tive code do not use standard UI components. Rather, they
often draw UI components themselves.

Each application learning data collection lasted 10 min-
utes. For benign applications, trace collection was performed
on a modified Android 4.2 emulator (API level 17). We col-
lected traces for malicious applications on a modified An-
droid 2.2 emulator (API level 8) because they require An-
droid 2.2 to trigger the exploits. Note there is no root exploit
triggered in the training data collection phase since we as-
sume that malware try to hide themselves in the dynamic
analysis environment using logic bombs or detecting emula-
tion. If the root exploit is triggered, the malicious activities
will be detected by the market malware analysis and the
application will be rejected.

On-device real application testing data collection:

To evaluate the on-device benign application false alarm
rates and malware detection accuracy of PREC, we use real
users to run all the 140 benign applications on our Sam-
sung Galaxy Nexus device with Android 4.2 for collecting



realistic user behaviors. For each app, the user is asked to
play the app for about three minutes. Although we could
also use the same dynamic testing tool to collect the testing
data automatically, we chose not do so to avoid producing
biased results using the same tool for both learning and test-
ing. For those 10 malicious applications listed in Table 1,
we run them on a Google Nexus One device with Android
2.2 and make sure those root exploits are triggered during
our testing phase.

Alternative algorithms for comparison: In addition to
PREC, we also implement a set of different anomaly de-
tection schemes for comparison: 1) SOM (full) that applies
the SOM learning algorithm over all system calls to create
normal application behavior models; 2) HMM (native) that
applies the hidden Markov model [53] over the system calls
from the third-party native code only, which learn normal
system call sequence transition probabilities and raises an
alarm if the observed tradition probability is below a thresh-
old; 3) HMM (full) that uses the hidden Markov model over
all system calls; 4) FSA (native) [42] that uses the finite
state automaton over the system calls from the third-party
native code only, which learns normal system call sequence
patterns and raises an alarm if the observed system call se-
quence transition probability is below a pre-defined thresh-
old; and 5) FSA (full) that uses a finite state automaton
over all system calls. Note that we only compare PREC
with common unsupervised learning methods since super-
vised learning methods (e.g., support vector machine [32])
cannot be applied to PREC as they require malware data
during the learning phase and cannot detect unknown mal-
ware.

Evaluation metrics: We evaluate the malware detection
accuracy using the standard receiver operating characteristic
(ROC) curves. ROC curves can effectively show the tradeoff
between the true positive rate (AT ) and the false positive
rate (AF ) for an anomaly detection model. We use standard
true positive rate AT and false positive rate AF metrics, as
shown in Equation 1. Ntp, Nfn, Nfp, and Ntn denote the
true positive number, false negative number, false positive
number, and true negative number, respectively.

AT =
Ntp

Ntp + Nfn

, AF =
Nfp

Nfp + Ntn

(1)

A false positive means that our anomaly detection system
raises an alarm for a benign application. A false negative
means that we fail to raise any alarm for a malware sample.
In our results, we report both per-sequence (i.e., system call
sequence) and per-app true positive rates and false positive
rates.

3.2 Results and Analysis

Runtime classified system call monitoring: We first
evaluate the effectiveness of our runtime classified system
call monitoring module that serves as the foundation for
PREC. Figures 4(a) shows the percentage of the system calls
originated from the third-party native code for the 80 be-
nign apps that include third-party native code. Although
all those 80 apps contain native code, we observe that over
50% of the apps execute less than 10% third-party native
code. Thus, PREC can still filter out a large number of
system calls for those benign applications with third-party
native code during model creation and malware detection.
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Figure 4: Percentage of system calls originated from

native code for 80 apps with third-party native code and

10 malicious apps.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

T
ru

e 
po

si
tiv

e 
ra

te
 (

%
)

False positive rate (%)

PREC
SOM (Full)

HMM (Native)
HMM (Full)

FSA (Native)
FSA (Full)

(a) Without arguments

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

T
ru

e 
po

si
tiv

e 
ra

te
 (

%
)

False positive rate (%)

PREC
SOM (Full)

HMM (Native)
HMM (Full)

FSA (Native)
FSA (Full)

(b) With arguments

Figure 5: Per-app malware detection accuracy compar-

ison results for 80 apps that include third-party native

code.

We also observe that PREC never misclassifies a system call
from Java as a system call from third-party native code.
Thus, PREC will not raise any false alarm for those be-
nign applications that do not include any third-party native
code. Figure 4(b) shows that the classified monitoring re-
sults for the 10 malware samples used in our experiments.
We can see most malware applications contain a large por-
tion of system calls from the third-party native code. This
also validates our hypothesis: malware exploits root privi-
lege escalation vulnerabilities using third-party native code.
Thus, our classified monitoring scheme will not reduce the
root exploit detection capability.

Runtime on-device detection accuracy: We now eval-
uate the runtime on-device detection accuracy of the PREC
system. Figure 5 shows the per-app true positive and false
positive rate using different anomaly detection algorithms
for the 80 benign apps that include third-party native code.
Figure 5(a) shows the results without considering system call
arguments while Figure 5(b) shows the results of including
system call arguments. We adjust different parameters in
each anomaly detection algorithm to obtain the ROC curves.
For SOM algorithms, we adjusted the map size, the length of
the system call sequences, the anomalous frequency thresh-
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Figure 6: Per-app malware detection accuracy compar-

ison results for 60 apps that do not have any native code.

old, and the neighborhood area size. For HMM and FSA
algorithms, we adjusted the number of states, the system
call sequence length, and the anomalous probability thresh-
old. Each point on the ROC curve represents one accuracy
result under a certain configuration setting and we use the
configuration for all the 80 apps. If two configurations pro-
duce the same true positive rate but different false positive
rates, we only plot the point with the smaller false positive
rate to show the best accuracy result of each scheme. The
results show that all algorithms can easily achieve 100% true
positive rate but their false positive rates vary a lot. HMM
and FSA can achieve 49% and 80% false positive rate at
their best, respectively. In contrast, PREC can significantly
reduce the false positive rate to 3.75%. This validates our
choice of SOM since it is much more robust to noise in sys-
tem calls than HMM and FSA by projecting the original
noisy input space (noisy system call sequences) into a two-
dimensional map without losing principal patterns.

We believe that the user perceived false positive rate of
PREC will be even lower since most popular benign apps do
not include third-party native code and PREC will not raise
any false alarm on them with the help of classified system
call monitoring. However, without performing classified sys-
tem call monitoring, any anomaly detection algorithm might
still raise false alarms on those apps without third-party na-
tive code. Figure 6 shows the anomaly detection accuracy
results of different algorithms without using the classified
system call monitoring scheme for 60 benign apps without
third-party native code. We observe that SOM (full), HMM
(full), and FSA (full) raise 13%, 67%, and 92% per-app false
alarms at their best under 100% true positive rate. This val-
idates our hypothesis that classified monitoring can greatly
reduce the false alarms in practice during runtime root ex-
ploit detection.

We further compare different anomaly detection algorithms
at fine granularity by measuring per-sequence false positive
rates. Figure 7 shows the per-sequence false positive rates
at 85-99 percentile achieved by different schemes for the 80
benign apps that include third-party native code. For fair
comparison, we pick the configuration for each algorithm
that yields the best per-app anomaly detection accuracy re-
sult for the algorithm. We observe that SOM algorithms can
reduce the per-sequence false positive rates by more than one
order of magnitude compared to HMM and FSA. Figure 8
shows the per-sequence false positive rate comparison for the
benign apps without any third-party native code. We also
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Figure 7: Per-sequence false positive rate comparison

for 80 apps that include third-party native code.

observe that SOM can significantly reduce the false positive
rate by orders of magnitude.

Malware containment results: We now evaluate the
malware containment effectiveness of PREC. We trigger each
malicious app on the smartphone and run the PREC system
on the phone to see whether it can stop the root exploit at-
tack. Table 2 summarizes our malware containment results.
As mentioned in Section 2.3, PREC provides two different
containment mechanisms: 1) termination-based containment
that stops the root exploit attack by killing the malicious
native threads and 2) delay-based containment that stops
the root exploit attack by inserting exponentially increas-
ing delays in anomalous system calls. The results show that
our anomaly detection can successfully detect and stop all
the root exploit attacks before they succeed. We measure
the alarm lead time as the time elapsed between the when
root exploit is detected and when the root exploit is success-
ful if no containment scheme is taken. For the repackaged
malicious applications (RATC-1, RATC-2, ZimperLich-1,
ZimperLich-2, GingerBreak-1, GingerBreak-2), we can ter-
minate the malicious native threads only and continue to
run the AngryBirds application normally.

We further analyze which system call sequences first cause
our anomaly detector to raise alarms. For the GingerBreak
and both repackaged RATC malware samples, PREC de-
tects the abnormal sequence [execve, execve, execve, ex-

ecve, close, getpid, sigaction, sigaction, sigaction].
This is consistent with the behaviors of those root exploits
which first copy exploit files to a given directory and execute
chmod executable to change permission to 0755 for later ex-
ecution. Because different devices place chmod in different
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Figure 8: Per-sequence false positive rate comparison

for 60 apps that do not include any third-party native

code.

directories, the root exploit must try several locations to find
the right directory. We omit the detailed malicious system
call sequence results for other malware samples due to space
limitation. In summary, our sequence analysis results show
that PREC can accurately catch the malicious behaviors of
those malware samples.

False alarm impact results: We now evaluate the false
alarm impact of our system using different containment schemes.
As shown in Figure 5 and 6, PREC only raises false alarms
in 3 (out of 140 tested) benign apps (Forthblue.pool, Talk-
ingTom2Free, CamScanner). We first tried the termination-
based containment over those three benign applications. We
found that those applications crashed even if we only killed
the malicious native threads. We then tested our delay-based
containment scheme over these three apps. If we only insert
delays in malicious native threads, we observed that our con-
tainment scheme incurs negligible impact (0.1-0.25 second
total delay during 3 minutes run) to the two benign appli-
cations, TalkingTom2Free and CamScanner. Forthblue.pool
hangs after the delay-based containment is triggered. To
summarize, PREC only incurs significant false alarm im-
pact to 1 out of 140 benign popular apps tested in our ex-
periments.

PREC overhead results: We first evaluate our anomaly
detection overhead. Table 3 shows the per-app model train-
ing time and per-sequence anomaly detection time compar-
ison among different algorithms. We can see both SOM and
FSA algorithms are light-weight. However, FSA tends to
raise a large number of false alarms, which makes it im-
practical for runtime malware detection. HMM is sensitive

Table 2: Malware detection and containment results.
Alarm Termination- Delay-

Malware lead based based
Samples time containment containment

DroidDream 20.7 sec success success
DroidKungFu1 16.1 sec success success
DroidKungFu2 96.5 sec success success
GingerMaster 318.3 sec success success

RATC-1 26.6 sec success success
RATC-2 17.1 sec success success

ZimperLich-1 14.1 sec success success
ZimperLich-2 20.9 sec success success
GingerBreak-1 35 sec success success
GingerBreak-2 34.6 sec success success

Table 3: Anomaly detection model training and runtime

detection time comparison. For HMM, “S = i” means

the number of states is configured to be i in HMM. “S =

max” means the number of states equal to the number of

distinctive system calls in the trace. The average per-app

system call sequence number is 244K under all system

call monitoring and 106K under native thread system

call monitoring.
Per-app Per-sequence

Scheme training time detection time

PREC 39.7 ± 59.3s 0.07 ± 0.03ms
SOM (full) 131.3±88.6s 0.12 ± 0.00001ms

HMM (S= 10, native) 11.8 ±15.9s 1.1 ± 2.7ms
HMM (S= 10, full) 32.3 ±22s 0.2 ± 0.3ms

HMM (S= 20, native) 72.5±107.7s 8.8 ± 20.4ms
HMM (S= 20, full) 140.8±121.8s 1.8 ± 2.7ms

HMM (S = max, native) 1040 ± 2123s 7.7 ± 13ms
HMM (S = max, full) 2449 ± 1834.2s 105.9 ± 143.2ms

FSA (native) 0.6 ±1s 0.05 ± 0.26ms
FSA (full) 1.1 ±0.7s 0.01 ±0ms

to the number of states configured in the model. As we
increase the number of states to its maximum value (i.e.,
the number of distinctive system calls used in the training
trace), the overhead of HMM becomes too large to be prac-
tical. Although we see increased detection accuracy as we
increase the number of states, the best case of HMM is still
much worse than SOM, as shown in our detection accuracy
results. To quantify the runtime overhead of PREC, we
run PREC on a Galaxy Nexus phone with Andriod 4.2 us-
ing Antutu benchmarks [2]. Figure 9 shows the benchmark
performance results. We observe that our classified moni-
toring scheme imposes less than 1% overhead and the SOM
anomaly detection algorithm imposes up to 2% overhead.
Overall, PREC is light-weight, which makes it practical for
smartphone devices.

4. LIMITATION DISCUSSION
Our current trace collection prototype implementation has

two limitations. First, simple fuzz-testing tools such as the
Monkey tool are not guaranteed to produce sufficient be-
havioral coverage. However, our experiments show that this
simple tool works fine for the apps tested in our experiments.
One method of overcoming this limitation is to perform the
trace collection with a more fine-tuned automation process
such as event triggering and intelligent execution [49]. De-
velopers can also provide application input traces, which
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different benchmark apps on Galaxy Nexus running An-

driod 4.2.

allow us to collect training data based on the developer-
provided input trace for sufficient coverage. Second, a few
applications use different libraries (e.g., OpenGL library)
when the application runs in the real device and in the emu-
lator due to the hardware difference between the real device
and the emulator host. To eliminate the impact of this li-
brary difference to our results, we exclude those applications
that use OpenGL library in our experiments. One solution
to this limitation is to collect the training data for those
applications using special libraries on real devices offline to
eliminate the issue of platform difference [47].

PREC currently only monitors system calls from the third-
party native code. Thus, it is possible to have false nega-
tives if the attacker performs root exploits from the Java
code. While it is theoretically possible for the root exploit
to originate from Java code, root exploits require access to
low-level APIs that are difficult to execute purely in Java.
Thus, our approach raises the bar for attackers. However,
we note this as a limitation and topic of future research.

Any system call based anomaly detection schemes is sus-
ceptible to mimicry attacks. SOM includes randomization as
part of its learning, which makes it potentially more robust
to mimicry attacks. We can initialize the map with differ-
ent random seeds for different users. The resultant normal
profiles will look similar, but not exactly the same. There-
fore, our approach makes it harder for attackers to infer the
exact normal model for each user and succeed in hiding the
malicious system call sequences in normal behaviors on all
the attacked devices.

5. RELATED WORK
Forrest et al. [26] first proposed the system call malware

detection schemes by building a database of normal sys-
tem call sequences. Warrender et al. [53] extended this
idea by using hidden Markov models (HMMs) to model se-
quences of normal system calls. Other researchers [16, 34,
22] adapted artificial neural network to perform intrusion
detection. Kruegel et al. [37] proposed to use system call
arguments to improve the performance of host-based intru-
sion detection. Maggi et al. [40] proposed to cluster similar
system calls or similar system call arguments to further im-
prove the accuracy. Previous work [30, 38] also used SOM
for network intrusion detection by clustering system call ar-
guments such as user name, connection type, and connection
time. Gao et al. [28, 27] perform real-time anomaly detec-
tion based on differences between execution graphs and the
replica graphs constructed using system call traces and run-
time information (e.g., return addresses).Traditional system

call based intrusion detection approaches have to collect all
system calls made by the target process, as there is no clear
boundary to reduce the collection scope. This increases both
noise and design complexity of intrusion detection. In con-
trast, PREC leverages the natural component boundary in
the Android system to perform classified system call moni-
toring. As a result, PREC can achieve more accurate and
practical malware detection.

Crowdroid [17] collects system calls on smartphones and
sends system call statistics to a centralized server. Based
on the theory of crowdsourcing, symptoms that are shared
by a small number of devices are treated as abnormal. Sim-
ilarly, Paranoid Android [48] runs a daemon on the phone
to collect behaviors and a virtual replica of the phone in
the cloud. The daemon transmits collected behaviors to the
cloud and the virtual phone replays the actions happening
on the smartphone based on the collected behaviors. Both
Crowdroid and Paranoid Android incur 15-30% overhead to
smartphone devices. In contrast, PREC imposes less than
3% overhead to the smartphone device, which makes it prac-
tical for runtime smartphone malware containment. Smart-
Siren [21] gathers and reports communication information
to a proxy for anomaly detection. Besides the runtime over-
head, propagating sensitive communication data to a public
server might be a privacy concern for users. In contrast,
PREC does not require any smartphone data to be sent to
remote servers.

Recent work has explored using specific subsets of system
calls for smartphone security. Isohara et al. [33] monitor a
pre-defined subset of system calls such as open on smart-
phones. pBMDS [55] hooks input-event related functions
(e.g., sys_read() for keyboard events, specific drivers for
touch events) to collect system calls related to user interac-
tion behaviors (e.g., GUI events). It then performs malware
detection using HMMs. In contrast, PREC selects system
calls based on their origins rather than pre-defined system
call types. To the best of our knowledge, PREC makes the
first step in classifying system calls based on their origins to
significantly reduce the false alarms during runtime malware
detection.

Moser et al. [43] monitor system calls executed when a
program tries to terminate, with the intention of under-
standing how malware evades detection in virtualized test
environments. Bayer et al. [15] create malicious application
behavioral profiles by combining system call traces with sys-
tem call dependency and operation information. Kolbitsch
et al. [36] generate hard to obfuscate models that track the
dependencies of system calls in known malware, which they
then can use to detect malware. CloudAV [45] intercepts
every open system call and extracts the target file. It com-
pares this signature with signatures of abnormal files main-
tained in the cloud to detect the access of malicious files.
DroidRanger [60] utilizes a signature-based algorithm to de-
tect known malware from markets and monitors sensitive
API accesses to discover zero-day malware. In contrast,
PREC does not train on malware and can detect zero-day
malware that hides itself during market malware analysis.
Several researchers have also applied machine learning to
statically detect malicious applications based on their per-
missions [50, 46, 19]; however, the root exploit malware ad-
dressed by PREC does not require permissions.

Previous work has been done to automatically respond
to malicious attacks on networked hosts. For example, So-



mayaji et al. [51] delay anomalous system calls with increas-
ing delay durations to prevent security violations such as a
buffer overflow. Feinstein et al. [25] dynamically apply filter-
ing rules when a DDoS attack is detected. Balepin et al. [14]
use a cost model to compare predefined exploit costs with
various predefined benefits to select the best response to a
compromised system resource. Garfinkel et al. [29] sandbox
applications by using user defined policies to control access
to system resources by blocking certain system calls. Addi-
tionally, their tool emulates access to these resources to pre-
vent applications from crashing. In contrast, our approach
implements a fine-grained attack containment scheme that
can reduce the disturbance to the user from the anomaly
responses without using user defined detection or response
rules.

6. CONCLUSION
In this paper, we have presented PREC, a novel classi-

fied system call monitoring and root exploit containment
system for Android. PREC provides an on-device malware
detection and containment solution to stop those malicious
applications that hide themselves during market dynamic
malware analysis using logic bombs or checks for an em-
ulated environment. PREC achieves high detection accu-
racy and low false alarm impact by 1) classifying system
calls by origin (e.g., third-party native library), 2) adapt-
ing SOM learning algorithm to detect root exploit activities,
and 3) inserting exponentially increasing delays to malicious
threads. We have implemented a prototype of PREC and
evaluated it on 140 most popular benign applications and 10
malicious applications. Our experiments show that PREC
successfully detected and stopped all the tested root exploit
attacks. Compared to other anomaly detection algorithms,
PREC reduces the false alarm rate by more than one order
of magnitude. Our delay-based containment scheme only
impose noticeable impact to 1 out of 140 popular benign ap-
plications. PREC is light-weight, which makes it practical
for runtime malware containment on smartphone devices.
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