
A Study of Security Vulnerabilities on Docker Hub

Rui Shu, Xiaohui Gu and William Enck
North Carolina State University
Raleigh, North Carolina, USA

{rshu, xgu, whenck}@ncsu.edu

ABSTRACT

Docker containers have recently become a popular approach
to provision multiple applications over shared physical hosts
in a more lightweight fashion than traditional virtual ma-
chines. This popularity has led to the creation of the Docker
Hub registry, which distributes a large number of official and
community images. In this paper, we study the state of se-
curity vulnerabilities in Docker Hub images. We create a
scalable Docker image vulnerability analysis (DIVA) frame-
work that automatically discovers, downloads, and analyzes
both official and community images on Docker Hub. Using
our framework, we have studied 356,218 images and made
the following findings: (1) both official and community im-
ages contain more than 180 vulnerabilities on average when
considering all versions; (2) many images have not been up-
dated for hundreds of days; and (3) vulnerabilities commonly
propagate from parent images to child images. These find-
ings demonstrate a strong need for more automated and
systematic methods of applying security updates to Docker
images and our current Docker image analysis framework
provides a good foundation for such automatic security up-
date.
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1. INTRODUCTION
The container abstraction has become a popular technique

for running multiple application services on a single host.
Similar to system virtualization, containers provide an iso-
lated runtime environment and easy methods to package and
deploy many instances of an application. However, in con-
trast to system virtualization, containerized applications on
the same host share the host operating system kernel and
services. Containers wrap system libraries, files, and code
that are needed to support the target application. In doing
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so, containers become significantly more lightweight than
system virtualization, leading to its recent popularity.

Docker is one of the most widely used container-based
technologies. Docker distributes applications (e.g., Apache,
MySQL) in the form of images. Each image contains the
target application software as well as its supporting libraries
and configuration files. As a result, Docker images provide
a convenient way to store and deliver applications. New im-
ages need not to start from scratch. Rather, a new image
can extend existing images, creating a parent-child relation-
ship between images. At the roots of these inheritance trees
are a set of base (or root) images that provide bare-bones
functionality for a specific platform (e.g., Ubuntu).

A community has been developed around the creation and
sharing of Docker images. Docker Hub,1 introduced in 2014,
is a cloud registry service for sharing application images.
Images are distributed using repositories, which allow ver-
sioned image development and maintenance. Repositories
can branch off of other repositories. For example, a main-
tainer can create an image myimage:v1 in the myimage repos-
itory by building upon the ubuntu:16.04 image in ubuntu

repository. After installing application softwares, the main-
tainer can tag the working image as myimage:v2. Later, af-
ter applying some security updates, the image can be tagged
myimage:v3.

Docker Hub contains two types of public repositories: of-
ficial and community. Official repositories contain public,
certified images from vendors (e.g., Canonical, Oracle, Red
Hat, and Docker). In contrast, community repositories can
be created by any user or organization. At the time of writ-
ing, there were nearly 100 official repositories. While there
is no list of community repositories, our study has identified
about 100,000 public community repositories.

In January 2015, a Forrester survey [14] of enterprises
indicated that security was a top concern when deciding
whether to deploy containers. The survey found that of
the various security concerns, the Vulnerabilities & Malware
concern was the greatest. Therefore, we hypothesize that the
complexity of software configuration in Docker Hub images,
combined with a large number of images built by various
parties, results in a significantly vulnerable landscape. This
intuition leads us to the primary research question of this
work: what is the state of security vulnerabilities in Docker
Hub images?

In this paper, we provide an evaluation of security vul-
nerabilities in both official and community images that are

1https://hub.docker.com/

269

http://dx.doi.org/10.1145/3029806.3029832
https://hub.docker.com/


publicly available on Docker Hub. Particularly, we aim at
answering three key research questions:

RQ1 What is the composition of security vulnerabilities in
official and community images based on the number
and severity of Common Vulnerabilities and Expo-
sures (CVEs) [4]?

RQ2 How much time has lapsed since images were last up-
dated by their repository maintainers?

RQ3 Does creating images based on other images on Docker
Hub lead to the propagation of security vulnerabili-
ties, and to what extent?

To answer those questions, we build a framework that au-
tomatically discovers, downloads, and analyzes Docker im-
ages. With this tool, we analyze over 300,000 image versions
from over 85,000 unique image repositories. Our major find-
ings include: (1) both official and community images contain
more than 180 vulnerabilities on average when considering
all versions, and more than 80% of both official and commu-
nity images include at least one high severity vulnerability;
(2) a large number of both community and official images
have not been updated for hundreds of days, but the lat-
est version of official images are better maintained; and (3)
vulnerabilities commonly propagate from parent images to
child images.
We make the following contributions:

• We build a scalable Docker Image Vulnerability Analy-
sis (DIVA) system that automatically discovers, down-
loads, and analyzes images from Docker Hub. We note
that while Docker Hub is searchable, there is no prior
enumeration of available community images. Our sys-
tem supports parallel image analysis and extracts inter-
image inheritance relationships among a large number
(> 300, 000) of image versions.

• To the best of our knowledge, we perform the first sys-
tematic study of public community images on Docker
Hub. Our analysis demonstrates the significant need
for more automated methods of applying security up-
dates to Docker images.

We are not the first to study vulnerabilities in Docker
Hub images. Prior studies have focused on official images
on Docker Hub. For example, BanyanOps [24] reported
that over 30% of official images include software with high-
priority security vulnerabilities. However, the study was lim-
ited to official images and a small random sampling of com-
munity images. Additionally, Docker Inc. has worked with
the Center for Internet Security (CIS) to release a Docker
Security Benchmark to recommend best security practices
for deploying Docker [5]. In May 2016, Docker Inc. also
announced Docker Security Scanning [20] service (formerly
called“Project Nautilus”) to analyze security risks in Docker
images. However, this service is currently limited to official
repositories and some private repositories on Docker Hub.
The remainder of this paper proceeds as follows. Sec-

tion 2 describes DIVA system design. Section 3 describes
experimental evaluations. Section 4 discusses our findings.
Section 5 focuses on our future work discussion. Section 6
overviews related work. Section 7 concludes.
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Figure 1: Docker Image Vulnerability Analysis (DIVA) Sys-
tem Framework.

2. DIVA SYSTEM DESIGN
In order to study the broader collection of community

and official images on Docker Hub, we must overcome the
following challenges:

C1 There is no public list of community repositories or im-
ages on Docker Hub. While Docker Hub lists around
100 official repositories, community images can only be
discovered through keyword-based search.

C2 The entire registry of Docker Hub images is too large
to mirror locally. While the exact number of images is
unknown, our experiments indicate there are hundreds
of thousands of images on Docker Hub, and the number
continues to grow. The size of images ranges from hun-
dreds of megabytes to several gigabytes. It is imprac-
tical to store all images locally before analysis. Thus,
our system must support stream-based image analysis,
that is, extracting needed information continuously as
new images are loaded into the memory and old images
are deleted to make space for the new images.

C3 The number of images prohibits sequential processing.
Our initial experiments indicated an average download-
ing and processing time of two minutes per image. There-
fore, hundreds of thousands of images require tens of
months of analysis time. For this reason, our system
must support parallel processing to complete the analy-
sis of hundreds of thousands of images within reasonable
amount of time.

Figure 1 depicts the architecture of our Docker Image
Vulnerability Analysis (DIVA) framework. There are three
main components: 1) the image discovery module gener-
ates random strings to search Docker Hub to identify image
names and retrieves images from Docker Hub; 2) the image
vulnerability analysis module extracts useful metadata and
detects vulnerabilities in different images; and 3) the inter-
image dependency analysis module identifies the inheritance
relationships between images.

We now describe these components in detail.
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Table 1: Data collected from Docker images.

Data field Description

Image ID A 256 bits long ID for each unique image
Image Name An identifier for each image that follows

certain name policy
Last Update Time Exact date and time of last update to

the images
Layer ID Unique ID of each layer and the relation-

ship between layers
Commands The history of building the image

2.1 Image Discovery
Our first challenge (C1) is to discover Docker Hub repos-

itories and their corresponding images.
Official images are built by using an automated system

called bashbrew,2 which is composed of a set of scripts to
clone, build, tag and push official images into Docker Hub.
We collect names of official images from the recipes which
are available in the docker library in github [32].
There is no public list of community repositories or im-

ages on Docker Hub. Instead, Docker Hub provides a case-
insensitive, keyword-based search interface to discover repos-
itories [9]. Search strings match repository name, user name,
and words in the image description. The search results in-
clude: (1) the repository name, (2) a description of the
repository, (3) the community rating for the repository in
the form of number of stars, (4) whether the repository is
official or not, and (5) whether or not the repository is built
automatically from github. Each search query to Docker
Hub returns at most 25 results.
We discover repository names by creating a dictionary of

search keyword strings. Similar to PlayDrone [38], we gen-
erate random strings with lengths between 1 and 20 charac-
ters3. Our resulting dictionary includes 5,000,000 unique
strings. The name crawler queries Docker Hub for each
string and records the matched repository names. Dupli-
cated names are removed. As we report in Section 3, we dis-
covered 99,843 unique repository names using this method.
Once the repository names are known, we must determine

the images within the repositories. For each repository, we
perform an additional search to Docker Hub to enumerate
all of the tags (e.g., 16.10, latest, trusty). We then com-
bine the repository name with the tag to create the list of
image names. Using this method, we discovered 440,524
unique image names. However, between the time of image
name discovery and image analysis, a number of repositories
and images were not downloadable. We discuss this reduc-
tion further in Section 3. Note that our approach discovers
both official and community images. We further separate
our results into two lists: official image names and commu-
nity image names based on their image name format (i.e.,
official image names follow a format of repo-name:tag while
community image names follow the format of hub-user/repo-
name:tag).
We note that a Web search engine such as Google could

have also been used to discover Docker Hub repository names.
For example, the Google search query: site:hub.docker.com

2https://github.com/docker-library/official-images#
bashbrew
3We limit our name string length to 20 because we observe
that most of the image names include less than 20 charac-
ters. Our framework is generic, which can be configured
with longer string length easily.

Table 2: Data collected from Clair.

Data field Description

Timestamp Exact time of analysis by Clair
Vulnerability ID Unique CVE identifier to identify vul-

nerability
Severity Ranking Severity of each vulnerability
Description of CVE Description of each identified vulnera-

bility
Associated Packages Name and exact version of the package

that associates with each vulnerability
Layer ID Flag the specific image layer where the

vulnerability resides

“short description”“full description”“official repository” re-
turns a list of official image repository names. However,
when using Google search to identify community image repos-
itories, we were limited by the search results, identifying only
a few hundred repositories.

2.2 Image Vulnerability Analysis
Once the image names are identified, we need to down-

load the corresponding image files for analysis. Since it is
impractical to download all the images from the Docker Hub
to our local hosts, we need to adopt a stream-based parallel
image analysis approach. Specifically, each host fetches a
set of image names from the name list and downloads those
images using the Docker daemon’s docker pull command
(e.g., “docker pull hub-user/repo-name:tag” for community
images). Next, we perform the image analysis. Once the
analysis completes for the image set, all of those images
are deleted. We iterate the above process over sets of new
images on each host. We can scale up the processing by per-
forming the analysis on a large number of hosts concurrently.
We also found that images from the same repository often
share common layers and therefore the Docker daemon can
avoid pulling a layer again if the layer already exists on the
local host. This observation can lead to further speedup by
always retrieving the images of the same repository together.

To analyze the security vulnerability of each image, we
first extract metadata about each image, such as its name,
IDs, and layer information. Specifically, for each downloaded
image, we collect five data fields, shown in Table 1. Note
that for the last update time, we use docker inspect to
fetch the details of each docker image and store the results
in an array. The creation time is the date of the latest
docker build, therefore, we use this timestamp to denote
the latest update to images.

We then leverage Clair [16] to detect vulnerabilities in
each image. Clair is an open-source tool from CoreOS de-
signed to identify known vulnerabilities in container images.
Clair has been primarily used to scan images in CoreOS’s
private container registry, Quay.io, but it can also analyze
Docker images.

We collect several types of vulnerability information us-
ing Clair, as shown in Table 2. Clair uses static analysis
to extract: 1) the version of all installed software packages,
and 2) the operating system metadata in each layer of an
image. Clair identifies insecure packages by matching the
metadata against the Common Vulnerabilities and Expo-
sures (CVE) vulnerability database[4] and similar databases
such as Ubuntu CVE Tracker [37], Debian Security Bug
Tracker [18], Red Hat Security Data [34], etc. Note that
Clair only identifies the presence of packages with known
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CVE-2016-2842 (High)

The doapr_outch function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s 

and 1.0.2 before 1.0.2g does not verify that a certain memory allocation succeeds, 

which allows remote attackers to cause a denial of service (out-of-bounds write or 

memory consumption) or possibly have unspecified other impact via a long string, 

as demonstrated by a large amount of ASN.1 data, a different vulnerability than 

CVE-2016-0799.

Package:  openssl @ 1.0.1j-1

Fixed version:  1.0.1k-3+deb8u4

Link:  https://security-tracker.debian.org/tracker/CVE-2016-2842

Layer:  bc83b34ee0f0ac85392ad18a3af29c73751507a7f0353161f664ca42c6c495ba

Figure 2: A sample output of Clair for CVE-2016-2842 from
image ruby:2.0.0-p594-onbuild.

vulnerabilities. It does not determine if those packages are
actually used by container instances. Similarly, it does not
detect dynamic behavior in running instances, e.g., installing
vulnerable package versions at runtime.
Clair identifies the package versions based on the file sys-

tem view that is observable at runtime. If the image is built
from a Dockerfile, which specifies a set of instructions to
produce a local image, Clair is executed on the resulting im-
age. As discussed further in Section 2.3, Docker images are
based on layers. Each layer stores copy-on-write informa-
tion to produce a file system view. For example, we define
the base layer to be a scratch image (used before Docker
version 1.5.0 [28]) or created from a Dockerfile instruction
(e.g., ADD). The layers above the base layer are the results
of installing additional packages via installing commands or
upgrading commands such as apt-get install or apt-get
upgrade, or operations on existing files (e.g., add, modify,
delete) in running containers. In addition, executing instruc-
tions specified in Dockerfiles (e.g., ADD, COPY) also creates
new layers. Since Clair operates statically, it must process
all the layers in one image to identify any vulnerable pack-
ages. However, it must take care not to report a vulnerable
package in a lower layer if it is superseded by a patched ver-
sion of the package in a higher layer. We experimentally
confirmed that Clair does not report a vulnerable package
in a lower layer when a higher layer upgrades the package.
For example, we ran Clair on the ubuntu:14.04 image and
observed that vim 2:7.4.052-1ubuntu3 is identified as a vul-
nerable package. We performed an apt-get upgrade to up-
grade vim to version 2:7.4.052-1ubuntu3.1 and committed
the result to a new image. When running Clair on the new
image, the vulnerability for the upgraded vim package was
no longer present and was not reported by Clair.
Figure 2 shows a sample output from Clair for CVE-2016-

2842 from image ruby:2.0.0-p594-onbuild. For each CVE
entry, Clair collects the unique CVE identifier with the vul-
nerability severity rating. In Clair version 1.0 (used for our
study) the analysis outputs specific advice for security flaws.
In most cases, Clair recommends upgrading specific packages
to a more recent version. We also note that CVE identifiers
are unique IDs for known security vulnerabilities (e.g., CVE-
2016-1977). Red Hat Security Advisories (RHSA) uses a
different format of identifier (e.g., RHSA-2016:0176), which
must be mapped to CVE identifiers [34, 10]. When Clair
identifies a package with a vulnerability, it outputs a URL
for the corresponding CVE, along with the layer ID that
contains the package.
Each CVE’s severity is ranked by the National Vulnera-
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Figure 3: Inter-image dependency analysis example.

bility Database (NVD) [6] using the Common Vulnerability
Scoring System (CVSS) [8]. CVSS assigns a severity score
based on a formula including exploitability and impact met-
rics. The NVD also provides a qualitative severity rating
of “Low”, “Medium” and “High” based on the CVSS score
(Low: 0.0-3.9; Medium: 4.0-6.9; High: 7.0-10.0). We use
these qualitative scores to report statistics in our study.

2.3 Inter-Image Dependency Analysis
Basing new images on existing images on Docker Hub

minimizes effort. However, it also propagates any software
vulnerability to the new image, if care is not taken apply
security updates. In this section, we design an algorithm to
investigate the dependency relationship between images, as
well as identify vulnerability propagation patterns (RQ3).

Each Docker image is composed of a list of read-only lay-
ers. On a Docker host, each layer is stored as a tar file
within a unique directory. Layers are stacked hierarchically,
the order of which is specified in a JSON configuration file.
The configuration file references a layer ID, which is unique
throughout Docker Hub. Prior to Docker version 1.10, the
layer ID was a randomly generated 256-bit UUID. However,
for versions 1.10 and later, the layer ID is the SHA256 hash
of the tar file content. Commonly, the first 12 hex char-
acters are used as a short identifier for a layer. Note that
our study uses Docker version 1.9.0, which was the stable
version during our experiment. There are some differences
between these two versions, e.g., the way how images are
stored in the host; however, the changes would only require
minor modification in the DIVA source code.

To study dependency relationships between images, we
represent all layers in all images on Docker Hub using one
directed graph G = (V,E), where the set of vertices V rep-
resents the layer IDs, and the set of edges E represents re-
lationships between layer IDs, as specified in the JSON con-
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figuration files of images. We call G the image dependency
graph. In our representation, we label vertices with the set
of image names that have the corresponding layer ID as the
topmost layer. We represent G as an adjacency list. We
maintain the lists of vertices and edges separately in order
to label vertices when they are the topmost layer in an im-
age.
To construct the image dependency graph, we process

each image using three key steps: 1) updating the set of
vertices V with newly discovered layer IDs, 2) updating the
set of edges E with newly discovered edges based on the
inter-layer relationships specified in the JSON configuration
file (e.g., if the layer lj is placed on top of the layer li in
one image, we add an edge li → lj in the image dependency
graph), and 3) annotating a vertex corresponding to the
topmost layer with the image name. Note that if an image
only has one layer, no edges are added, but the vertex cor-
responding to that layer is annotated with the image name.
Since multiple images may have the same topmost layer,
the vertex annotation is a set. An example graph contain-
ing six Docker Hub images is shown in Figure 3 (a), which
contains both official images (e.g., debian:latest) and com-
munity image (e.g., corbel/rem-acl:latest). In this example,
these images share the same base layer.
We use the image dependency graph to determine the

propagation of vulnerabilities between images on Docker
Hub. To do this, we perform a depth-first search on G and
compare the vulnerabilities of each image to its direct chil-
dren. Let V(·) be a function that returns the set of CVEs for
an image, as reported by Clair (Section 2.2). We can then
define the set of new vulnerabilities (V+), patched vulner-
abilities (V−), and unpatched vulnerabilities (V=) for each
pair of parent and child images (ip, ic) as follows:

V+(ip, ic) = V(ic) \ V(ip)

V−(ip, ic) = V(ip) \ V(ic)

V=(ip, ic) = V(ip) ∩ V(ic)

Figure 3 (b) shows an the vulnerability propagation for the
rightmost branch of the graph.

3. EXPERIMENT
To identify the names of community images, we generated

5,000,000 random strings. During the month of February
2016, we queried Docker Hub for each string. After remov-
ing duplicates, the search query process identified 99,843
different repository names, including all 98 official reposi-
tories. Querying Docker Hub for repository tags produced
a list of 440,524 unique image names, composed of 436,722
community images and 3,802 official images.
We did not start to download and analyze images imme-

diately after we generated the image name list. Instead, we
randomly selected a sample of 20,000 images, downloaded
and analyzed them to further test and improve our analysis
framework between March and April. When we performed
our image analysis in late April 2016, not all repositories and
images were still available. We found that some repositories
were purely deleted by users, and we also detected dele-
tions of tags within repositories. Our final dataset consisted
of 86,066 repositories, containing 356,218 images, including
3,802 images from the 98 official repositories.
We performed the image metadata extraction using our

university’s cloud computing infrastructure called the Vir-

tual Computing Lab (VCL) [7]. We reserved 100 virtual
machines, each with 4GB memory and 40GB storage, and
configured with Ubuntu version 14.04, Docker version 1.9.0,
Clair version 1.0. We dedicated one processing node for the
official images. The remaining 99 processing nodes were used
to analyze community images. The list of community im-
age was split up into 99 sublists, taking care to ensure that
images within the same repository were on the same sublist
and processed by the same host to avoid repeated download-
ing of the same layers shared among different images in the
same repository.

As for image vulnerability detection, we ran Clair as a
container instance on each virtual machine. The Clair in-
stance uses a PostgreSQL container instance to periodically
update local vulnerability database (e.g., Ubuntu vulnera-
bilities database, Debian vulnerabilities database and Red
Hat vulnerabilities database). Both the Clair instance and
the PostgreSQL instance kept running and waiting for anal-
ysis requests throughout the entire experiment. In the end,
we aggregated the raw results from Clair for analysis.

4. RESULTS
We now return to our motivating research questions:

RQ1 What is the composition of security vulnerabilities in
official and community images based on the number
and severity of CVEs?

RQ2 How much time has lapsed since images were last up-
dated by their repository maintainers?

RQ3 Does creating images based on other images on Docker
Hub lead to the propagation of security vulnerabili-
ties, and to what extent?

This section presents our experimental results.

4.1 Vulnerabilities per Image
The number of vulnerabilities per image characterizes the

Docker Hub vulnerability landscape. Each Docker Hub repos-
itory is a collection of related images. Images refer to repos-
itory tags, which are commonly different versions of an ap-
plication or a distribution. Since older, potentially more
vulnerable, images may not ever be updated, it is useful to
consider both the vulnerabilities per image, as well as the
vulnerabilities in the latest version of that repository. To
identify the latest image in a repository, we leverage the
Docker Hub convention to use the tag “:latest” to indicate
the latest version. The :latest tag is also automatically
assigned if a maintainer does not specify any tag when cre-
ating a repository. However, if the user specifies any other
tag but the :latest tag, the repository does not include
the :latest tag, which is not included in our results about
the latest versions. In our dataset, we found that 10,435
out of 85,968 community repositories and 5 out of 98 official
repositories did not have a :latest tag.

Table 3 reports the number of vulnerabilities for all ver-
sions of images, as well as only the latest images. The table
includes the mean, median, max, min, and standard devi-
ation of vulnerabilities for the 352,416 community images
and 3,802 official images that we analyzed. Interestingly,
the number of vulnerabilities per community image does not
significantly differ when considering all images verses latest
images. In contrast, there is a significant difference between
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Table 3: Number of Vulnerabilities per Image.

Image Type
Total Number of Vulnerabilities
Images Mean Median Max Min Std. Dev.

Community 352,416 199 158 1,779 0 139
Community :latest 75,533 196 153 1,779 0 141
Official 3,802 185 127 791 0 145
Official :latest 93 76 76 392 0 59

Figure 4: Cumulative distribution function (CDF) of the
number of vulnerabilities per image.

the two classes for official images. This phenomenon is likely
the result of better maintenance for official images.
Figure 4 depicts the cumulative distribution function (CDF)

for these same images classes. Note that the dashed vertical
lines indicate the maximum number of vulnerabilities per
image for that class. The CDF corroborates our take-aways
from Table 3. The CDF also shows that both classes of com-
munity images track the CDF of the vulnerabilities in the
class containing all official images. One possible explanation
is that many community repositories are based off of old ver-
sions of official images, and the maintainers have not applied
security updates to the latest image in the repository. We
consider vulnerability propagation further in Section 4.5.

4.2 Vulnerability Severity
Clair provides five types of security rankings for vulner-

abilities: “Negligible”, “Low”, “Medium”, “High”, “Critical”.
However, we chose to use the more standard NVD sever-
ity ranking: “Low”, “Medium” and “High”. To identify the
severity of a vulnerability, we crawled the vulnerability type
and CVSS score from the CVE Details database4 for each
CVE vulnerability. We then mapped the score to the NVD
ranking based on their thresholds.
Figure 5 categorizes community and official images into

four groups: high, medium, low and none. An image is
placed in the group corresponding to the highest severity
ranking of its most severe CVE. For example, if an im-
age contains at least one “High” severity ranking CVE, it
is placed in the “High” group.
This figure shows that even though the latest version of

official repositories generally has less vulnerabilities, the vul-
nerabilities it contains generally include at least one that is
high severity. Although it is difficult to determine whether

4http://www.cvedetails.com/

Figure 5: Distribution of images based on most severe vul-
nerability.

the packages with high severity vulnerabilities are used in
running containers, they are still important to address. For
example, they may be exploited by attacks that chain to-
gether multiple vulnerabilities.

4.3 Image Age
Many Docker Hub repositories are well maintained, whereas

others remain unmaintained. Intuitively, an image that has
not been updated in a long time is more likely to contain
more vulnerabilities. Therefore, we seek to characterize the
age of images at the time of analysis. We determine the age
by subtracting the last update timestamp from the time of
our analysis for that image. For example, we analyzed the
clojure:lein-2.5.3-onbuild image on May 17, 2016 and
its last update time was March 24, 2016. Therefore, its age
is 54 days.

Figure 6 shows the CDF of the age of images at the time
of analysis for the four classes of images. As depicted in the
figure, for images of all versions, official images are some-
what similar to community images: about 70% of both types
of images are updated in less than 400 days at the time
of analysis. There is some difference in the percentage of
very recently updated images: approximately 20% for all
official images verses approximately 10% for all community
images. In contrast, nearly 86% of the latest official images
are recently updated. This result suggests that official im-
ages, particularly the latest official images, are much more
frequently maintained on Docker Hub than community im-
ages. Finally, we note that the CDF of the latest community
images nearly matches the CDF of all community images.

There are several possible explanations for the significant
number of images that have not received updates for a long
time. For example, some images may deliberately not be
updated in order to reproduce bugs in specific experimental
environments. Another explanation is that image maintain-
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Figure 6: Cumulative distribution function (CDF) of per-
centage distribution of the age of images at the time of anal-
ysis.

ers do not update images to ensure software compatibility.
Finally, images not marked as :latest may be intentionally
unmaintained to provide snapshots of runtime environments.

4.4 Vulnerability Composition
Thousands of new vulnerabilities are discovered each year.

In this subsection we consider the composition of security
vulnerabilities that exist in Docker Hub images. We first
look at the composition of unique vulnerabilities. Next we
consider the composition of vulnerability types. Finally, we
report the packages contributing to the most vulnerabilities.

Number of Unique Vulnerabilities: Figure 7 compares
the total number of CVE vulnerabilities discovered between
2008 to 2015 [1] to the corresponding CVEs that exist in
our dataset of Docker Hub images. The figure shows that
the number of CVEs per year remained approximately the
same between 2008 and 2013, with a steep increase in 2014,
and then a decrease in 2015. In contrast, the CVEs found in
our dataset of images grows steadily. We found 6,845 unique
CVE vulnerabilities in the set of all community images and
1,554 unique CVE vulnerabilities in the set of all official
images from the year 2008 to 2015. Since our dataset reports
vulnerabilities from the images state in 2016, this trend is
to be expected, as some, but not all images are patched over
time. However, Docker Hub was not published until 2014,
and the existence of CVEs from prior years suggests that
some images have included very old software packages.

Types of Vulnerabilities: The CVE Details database tax-
onmizes CVEs into several vulnerability types. Most of CVE
vulnerabilities are associated with one or more vulnerability
types. For example, CVE-2015-1781 [2], which is a buffer
overflow vulnerability that can be exploited in DNS services
and causes denial of service or arbitrary code execution, can
fall into three types: denial of service, execute code, and
overflow. However, some CVE vulnerabilities are not cate-
gorized with any type, e.g., CVE-2015-4000 [3] (a Logjam
vulnerability that allows a man-in-the-middle attacker to
downgrade the cipher suites used for TLS connections). Fur-

Figure 7: Comparison between CVEs discovered in CVE
database and CVEs found in community images and official
images from 2008 to 2015.

thermore, a small portion of the CVEs in our dataset belong
to reserved CVE entries, which are not included in the CVE
Details database. On the whole, we were able to categorize
5,116 of 6,845 unique CVEs for community images and 1,069
of 1,554 unique CVEs for official images.

Tables 4 and 5 show the prevalence of CVE types in the
latest version of official and community images. We focus
on the latest version, because these images are most likely
to represent the most recent version offered by the main-
tainers. The tables report vulnerability type ranked by the
number of images that contain at least one vulnerability of
that type discovered in that year. For example, Table 4
shows that 66 of the 93 official images contains an overflow
vulnerability from 2010 in its latest version. Specifically,
this high prevalence of overflow vulnerabilities from 2010 is
caused by 2 unique CVEs (i.e., CVE-2010-3192, CVE-2010-
4051) found in 2 packages (i.e., eglibc, glibc). The most
significant vulnerability was CVE-2010-4051, which was re-
lated to a “RE DUP MAX overflow”, which can lead to de-
nial of service. This vulnerability can be exploited in some
applications, e.g., ProFTPD. Finally, comparing official im-
ages (Table 4) to community images (Table 5), we see that
trends are fairly similar, but community images have more
variety in vulnerabilities. One explanation is that the num-
ber of studied community images is much larger than the
number of official images.

We also observe that a significant portion of the latest
community images are impacted by vulnerabilities from 2012
and 2013. However, the latest official images are not. This
phenomenon correlates with our previous finding for image
age, since a large number of community images, even of the
latest version, are not as well-maintained as official images.
For example, CVEs from some previous years do not receive
enough attention.

Most Vulnerable Packages: Finally, we investigate which
packages most frequently cause Docker images to contain
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Table 4: Vulnerability types ranked per year by the number of impacted :latest official images.

Vulnerability Type
Rank (Number of impacted images)

2015 2014 2013 2012 2011 2010 2009

Overflow 1 (78) 1 (75) 3 (14) 5 (5) 2 (2) 1 (66) 1 (14)
Denial of service 2 (77) 1 (75) 1 (56) 1 (44) 2 (2) 1 (66) 4 (1)
Obtain information 2 (77) 7 (6) 5 (12) 6 (0) 5 (0) 4 (30) 5 (0)
Bypass a restriction or similar 4 (57) 4 (40) 6 (1) 2 (28) 1 (3) 1 (66) 2 (2)
Execute code 5 (56) 1 (75) 2 (34) 3 (22) 5 (0) 6 (0) 2 (2)
Gain privileges 6 (33) 10 (0) 6 (1) 4 (15) 5 (0) 6 (0) 5 (0)
Memory corruption 7 (4) 6 (7) 4 (4) 6 (0) 4 (1) 6 (0) 5 (0)
Cross site scripting 8 (2) 8 (4) 6 (1) 6 (0) 5 (0) 6 (0) 5 (0)
Directory traversal 9 (1) 5 (8) 6 (1) 6 (0) 5 (0) 5 (13) 5 (0)
Http response splitting 10 (0) 9 (2) 10 (0) 6 (0) 5 (0) 6 (0) 5 (0)

Table 5: Vulnerability types ranked per year by the number of impacted :latest community images.

Vulnerability Type
Rank (Number of impacted images)

2015 2014 2013 2012 2011 2010 2009

Denial of service 1 (60k) 1 (60k) 1 (54k) 1 (39k) 1 (5k) 1 (30k) 3 (2k)
Overflow 2 (60k) 2 (59k) 3 (38k) 5 (6k) 4 (3k) 2 (26k) 1 (7k)
Obtain information 3 (59k) 7 (23k) 4 (36k) 6 (4k) 8 (174) 4 (17k) 7 (2)
Bypass a restriction or similar 4 (58k) 4 (49k) 5 (15k) 3 (20k) 3 (3k) 3 (26k) 5 (277)
Execute code 5 (58k) 3 (59k) 2 (47k) 2 (20k) 2 (3k) 6 (1k) 2 (2k)
Gain privilege 6 (52k) 9 (5k) 8 (942) 4 (11k) 7 (255) 7 (94) 9 (0)
Memory corruption 7 (31k) 5 (40k) 6 (5k) 7 (871) 5 (2k) 9 (6) 6 (10)
Cross site scripting 8 (7k) 10 (4k) 7 (980) 8 (198) 6 (387) 8 (88) 4 (486)
Directory traversal 9 (4k) 6 (35k) 11 (69) 10 (94) 10 (4) 5 (14k) 9 (0)
Cross site request forgery 10 (2k) 11 (276) 9 (644) 12 (54) 10 (4) 10 (0) 9 (0)
Http response splitting 11 (466) 8 (9k) 12 (0) 11 (67) 9 (58) 10 (0) 9 (0)
Sql injection 12 (16) 12 (42) 10 (218) 9 (158) 10 (4) 10 (0) 8 (1)

vulnerabilities. Recall from Section 2.2 that Clair reports
the vulnerable package name. Table 6 shows the top-ten
packages for both community images (all and latest) and
official images (all and latest). Note that the statistics are
calculated across all versions of the package. For official
images, glibc is the most frequent offender, affecting over
80% images in both all versions and the latest version. The
glibc package is also the most significant offender for com-
munity images. Another observation is that some packages
(e.g., util-linux, shadow, perl, openssl, etc.) appear in each
category. Therefore, it is possible that a small number of
vulnerable packages cause a significant impact on Docker
Hub. These packages could be targeted specifically to im-
prove the security of the Docker Hub ecosystem.

4.5 Image Dependency Relationship
Our third research question seeks to understand the rela-

tionship between image dependencies and vulnerability prop-
agation. Child images can be created from both official and
community images. There are two general ways to build
child images from parent images. First, if a user updates a
running image that was downloaded from Docker Hub, that
image can be committed as a new image. Second, a Docker
Hub repository maintainer can specify a FROM instruction
in the Dockerfile of a new image. This instruction speci-
fies the base image, which Docker automatically downloads
to the Docker host when building the new image from the
Dockerfile. Both of the methods may lead to vulnerability
propagation. We study this relationship from two perspec-
tives: (1) the degree of propagation from parent image to
child image, and (2) the factors that promote propagation.
RQ3.1: To what degree do child images add, inherit, or

remove vulnerabilities? In Section 2.3 we described an algo-
rithm of identifying the CVEs relationships between a parent
and child image. Figure 8 shows the average number of new,

unpatched, and patched CVEs per edge between images in
the dependency graph. Further, we distinguish between the
types of inheritance: official to official, official to community,
and community to community. The figure shows that child
images inherit on average 80 or more vulnerabilities from
their parents, regardless if the parent is official or commu-
nity. Furthermore, child images frequently introduce new
vulnerabilities. This is an interesting observation, because
it suggests that when a child installs new software packages,
the maintainer is not applying security updates (e.g., with
apt-get upgrade). That said, Figure 8 does indicate the
vulnerability propagation is slightly better for child images
that are created from official images.

RQ3.2: How does image popularity promote vulnerabil-
ity propagation? We answer this question in three stages.
First, we identify the top most influential OS and non-OS
base images, as determined by the number of descendant
images. Tables 7 and 8 list the top 10 OS and non-OS base
images along with the number of descendant images. Our
results for top OS base images is consistent with an Au-
gust 2015 study by CenturyLink [19]. Second, we look at
the distribution of influential base images (Figure 9), we see
that there are a relatively small number of very influential
images. Finally, we correlate top ranked images with top
vulnerable packages.

Tables 7 and 8 list the top vulnerable packages (from Ta-
ble 6) for the top OS and non-OS base images. The tables
show that many of the top vulnerable packages appear in
the top influential base images. Thus, it is highly likely that
the root cause of pervasive vulnerabilities on Docker Hub is
the result of propagation from a relatively small set of highly
influential base images. As such, future work should inves-
tigate methods of automatically pushing updates based on
the dependency graph.
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Table 6: Top ten packages causing images to contain vulnerabilities.

Rank
Package name (Percentage of impacted images)

Official Official :latest Community Community :latest

1 glibc (89.81%) glibc (81.91%) glibc (84.24%) glibc (84.82%)
2 util-linux (89.55%) util-linux (81.91%) openssl (78.32%) openssl (78.51%)
3 shadow (89.55%) shadow (81.91%) util-linux (77.01%) util-linux (77.24%)
4 perl (87.29%) audit (77.66%) shadow (77.01%) shadow (77.24%)
5 apt (83.82%) perl (73.40%) perl (74.07%) perl (73.05%)
6 openssl (83.79%) tar (72.34%) pam (70.92%) pam (70.53%)
7 tar (83.58%) apt (70.21%) pcre3 (66.54%) audit (67.10%)
8 openldap (76.85%) openssl (67.02%) audit (65.48%) pcre3 (65.59%)
9 krb5 (76.06%) systemd (67.02%) krb5 (64.99%) dpkg (64.36%)
10 audit (73.51%) gcc (65.96%) libidn (64.54%) libidn (62.93%)

Figure 8: Statistics of the pattern of CVE propagation.

4.6 Summary
Our experimental study reveals a set of key findings about

the security vulnerabilities of Docker Hub:

1. Both official and community images contain more than
180 vulnerabilities on average when considering all ver-
sions. Although the latest official images contain fewer
vulnerabilities, the average number of vulnerabilities
per image still reach more than 70. In contrast, the
number of vulnerabilities contained in the latest com-
munity images shows little difference from that of all
community images. In addition, more than 80% of
both types of images have at least one high severity
level vulnerability.

2. About 50% of both community and official images have
not been updated in 200 days, and about 30% of im-
ages have not been updated in 400 days. There is
some difference in the percentage of more frequently
updated images (i.e., updated in 14 days) between of-
ficial images and community images: approximately
20% for all official images verses approximately 10%
for all community images. In contrast, nearly 86% of
the latest official images have been updated in less than
14 days.

3. Child images bring in about 20 more new vulnerabili-
ties on average, and they also inherit 80 vulnerabilities

Figure 9: Distribution of the number of descendant images.

on average from their parent images. The vulnerabil-
ity propagation is slightly better when child images are
created from official images. In addition, there are a
relatively small number of influential base images, and
we also find top vulnerable packages mostly appear in
all top influential base images.

5. FUTURE WORK DISCUSSION
First, our current architecture depends on Clair to stat-

ically identify vulnerabilities from installed packages. One
possible enhancement for our work is to dynamically scan in-
dependent packages that are being installed in the running
containers. As a result, we can achieve most timely detec-
tion of vulnerabilities introduced by the package update to
running docker containers.

Second, we hope to patch the running containers when a
vulnerability is detected. One possible approach is to up-
grade packages to secure version in running containers, e.g.,
with apt-get upgrade. However, creating containers from
images and committing patched containers into images in-
cur resource overhead (e.g., CPU, disk) to the hosts. More-
over, applications or containers might require rebooting after
patching, which would incur undesirable unavailability for
server applications (e.g., a production web server). There-
fore, it is challenging to develop an effective and practical
security patching solution, which is also part of our future
work.
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Table 7: Top ten referenced OS base images. (✓: A package is included in the image; ✗: A package is not included in the
image. *: These vulnerable packages appear in Table 6 in both all versions and the latest version of official images.)

Rank Image name
Number of
descendant images

Vulnerable packages (*)
glibc util-linux shadow perl apt openssl tar openldap krb5 audit systemd gcc

1
ubuntu:trusty-
20150528

11440 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

2
ubuntu:trusty-
20151001

10820 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

3
ubuntu:trusty-
20150630

8781 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

4 debian:8.3 6642 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗

5
ubuntu:trusty-
20151028

5862 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

6
ubuntu:trusty-
20150730

4912 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

7
ubuntu:trusty-
20160217

4755 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

9
ubuntu:trusty-
20151218

4497 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

10 ubuntu:14.04.2 3328 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Table 8: Top ten referenced non-OS base images. (✓: A package is included in the image; ✗: A package is not included in the
image. *: These vulnerable packages appear in Table 6 in both all versions and the latest version of official images.)

Rank Image name
Number of
descendant images

Vulnerable packages (*)
glibc util-linux shadow perl apt openssl tar openldap krb5 audit systemd gcc

1 node:5.3 3935 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ruby:2.2.4-alpine 3279 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3
buildpack-deps:
jessie-curl

3149 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 node:4.2.2-onbuild 2972 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 nginx:1.9.7 2887 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

6 golang:1.5.2-alpine 2749 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 node:5.2 2691 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

8 node:4.2.3-onbuild 2597 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 nginx:1.9 2551 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

10 node:5.1.1-onbuild 2544 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Third, the size of Docker Hub community continues to
grow at a rapid pace, and more vulnerabilities are being dis-
covered in the meantime. We encourage the participation
from image publishers, image users, and repository main-
tainers to improve the whole ecosystem. For instance, image
publishers and maintainers could eliminate security vulner-
ability risks by utilizing vulnerability assessing tools dur-
ing image pushing, sharing, and maintaining. Image users
should check security threats before running an image down-
loaded from Docker Hub repositories.

6. RELATED WORK

Docker vulnerability assessment: The first area of re-
lated work includes recent efforts in auditing and assess-
ing the security of Docker. For example, Docker’s Bench-
mark for Security [5] assesses the deployment environment
and suggests best practices. However, many suggestions are
general best practices for Linux. In May 2016, Docker Inc.
announced the Docker Security Scanning service [20], for-
merly known as “Project Nautilus”, which provides auto-
mated security analysis, validation and continuous monitor-
ing for binary images that hosted on Docker Hub. Images
are scanned before every push to Docker Hub, and users are
notified when vulnerabilities are discovered. Unfortunately,
this service is currently only available to Docker Cloud pri-
vate repository customers.
There are also several analysis approaches providing vul-

nerability detection. Banyan Collector [12] can facilitate
analysis by launching image containers and running scripts
inside them to collect specific information, e.g., installed
packages. OpenSCAP Container Compliance [33] provides

multiple tools to assist administrators and auditors with as-
sessment, measurement and enforcement of security base-
lines. Container Compliance provides vulnerabilities assess-
ment of running containers and images (e.g., Red Hat Docker
containers) against Common Vulnerabilities and Exposures
(CVE) vulnerability database. Twistlock [36] is a closed-
source utility that performs heuristics and dynamic profil-
ing at runtime to identify potential risks. Twistlock runs
as a dedicated privileged container on each host and looks
at the resources being consumed by a container application,
including API processes that are spawned, as well as ports
being opened. IBM’s Vulnerability Advisor [27] is specific to
images hosted on IBM’s Bluemix cloud. It monitors images
pushed to its registry by inspecting features such as pack-
ages, configurations, and opened ports. It then compares
installed packages against known vulnerability databases for
security issues. Vulnerability Advisor also provides guidance
for basic security policies.

Our study is the first systematic study of security vulner-
abilities in both official and community images on Docker
Hub. Compared to previous vulnerability detection tech-
niques, our scalable framework leverages static analysis that
provided by Clair, which enables the analysis of a large num-
ber of images in a reasonable time. Our findings reveal not
only the security vulnerabilities of each image, but also the
propagation of vulnerabilities between images.

Virtual machine image security: The second category
of related work includes efforts that study virtual machine
images, which in many ways parallel Docker images. For ex-
ample, Amazon’s EC2 platform provides customers with a
community repository of pre-built Amazon Machine Images
(AMIs). If attackers inject malicious code into images and
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publish them in public repositories, other users who retrieve
these images may be compromised [26, 39, 25, 23, 11, 21]. In
other cases, confidential information may accidentally leak
due to template image cloning [23]. Bugiel et al. [15] pro-
vided a systematic analysis of security and privacy in AMIs
on Amazon EC2. Their framework extracts sensitive infor-
mation that can be used as a backdoors in virtual machines
created from vulnerable AMIs.
Public virtual machines images are commonly customiz-

able by consumers. Therefore vulnerabilities may propagate
that similar to our findings in Docker. Zhang et al. [40] ana-
lyzed the cost and effectiveness of exploiting popular vulner-
abilities in IaaS Cloud, and then used game theory to model
attacks and defenses. Arun Thomas et al. [35] discussed the
problem of virtual machine image sprawl or image sprawl
for short. Simply put, the problem is that since creating or
cloning an image is easy, the number of images is continu-
ously growing. As a result, the storage and maintainance
will become complicated.
To protect VM images against leaking sensitive data by

publishers or running malicious images, Mirage [39] provides
a set of management approaches (e.g., image filters, virtual
scanners) to remove confidential information or detect mali-
cious images. Similarly, Nuwa [41] enables automated offline
image patching to reduce security threats.

Finding unpatched code in OS distributions: There
are also parallels to the propagation of vulnerable code prop-
agating within software packages themselves. For example,
ReDeBug [29] is a scalable syntax-based pattern matching
approach for finding unpatched copies in OS-distribution
scale code bases. Some other work about the detection of
cloned code [17, 13, 22, 30, 31] have applied to security.
These works have conceptual similarity to vulnerability ex-
trapolation in images. Both copied code and the reusable
Docker images can lead to vulnerability propagation.

7. CONCLUSION
Docker Hub provides a public registry for users to store

and share containerized-applications. In this paper, we stud-
ied the state of security vulnerabilities in these images. We
proposed a scalable Docker Image Vulnerability Analysis
(DIVA) framework for automatically discovering, download-
ing, and analyzing vulnerabilities in images from Docker
Hub. DIVA also assesses vulnerability propagation between
images. We used DIVA to analyze over 300,000 images and
found significant and pervasive vulnerabilities in Docker Hub
images. We also found strong correlations between top in-
fluential images and top ranked vulnerable packages, which
implies that the widespread image vulnerabilities are likely
the result of propagation from a small number of influen-
tial images. These findings demonstrate a strong need for
more automated and systematic methods of applying secu-
rity updates to Docker images and we believe DIVA provides
a good foundation to meet the need with its stream-based
Docker image processing framework.
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