
On Verifying Stateful Dataflow Processing Services in
Large-Scale Cloud Systems

Juan Du, Xiaohui Gu, Ting Yu
Department of Computer Science, North Carolina State University

Raleigh, North Carolina, USA
jdu@ncsu.edu, {gu,yu}@csc.ncsu.edu

ABSTRACT
Cloud computing needs to provide integrity assurance in order

to support security sensitive application services such as critical
dataflow processing. In this paper, we present a novel RObust Ser-
vice Integrity Attestation (ROSIA) framework that can efficiently
verify the integrity of stateful dataflow processing services and pin-
point malicious service providers within a large-scale cloud sys-
tem. ROSIA achieves robustness by supporting stateful dataflow
services such as windowed stream operators, and performing in-
tegrated consistency check to detect colluding attacks. We have
implemented ROSIA on top of the IBM System S dataflow process-
ing system and tested it on the NCSU virtual computing lab. Our
experimental results show that our scheme is feasible and efficient
for large-scale cloud systems.

Categories and Subject Descriptors: H.4 [Information Systems
Applications]: General

General Terms: Security, Management, Verification

1. INTRODUCTION
With rapid adoption of the concepts of Software as a Service

(SaaS) and Service Oriented Architecture (SOA), cloud infrastruc-
tures have emerged as promising service provisioning platforms.
Cloud infrastructures allow multiple users, called tenants, to lease
computing resources from the cloud to run their applications. Thus,
application service providers can conveniently use the cloud infras-
tructure to provide their software as services in a cost-effective way.
In particular, our work focuses on dataflow processing services [4]
that often demand high-performance continuous processing over
data streams. Dataflow processing service has many real world
applications such as security surveillance, scientific study, and busi-
ness intelligence.

However, in open cloud systems, which consist of service providers
from different security domains, we can no longer assume that all
service components are trustworthy. For example, service compo-
nents may include security holes that can be exploited by attackers.
Attackers can also pretend to be legitimate service providers to
compromise service delivery. In particular, it is challenging to en-
sure theresult integrity of dataflow processing services. Compared
with confidentiality and privacy concerns that have been addressed
by previous research [7], the result integrity concern is the most
prevalent, which needs to be addressed no matter whether public or
private data are processed by the cloud system. Although previous
work has provided various integrity attestation solutions [2, 8] for

Copyright is held by the author/owner(s).
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

distributed systems, those techniques often require trusted hard-
ware or secure kernel to be co-existed with the remote computing
platform, which is difficult to be applied in cloud systems where
service providers often autonomously control their computing en-
vironments and run proprietary software. To this end, the goal
of our research is to develop practical service integrity attestation
techniques that do not require application modifications or assume
trusted entities on the third-party service provider site.

It is a challenging task to perform service integrity attestation for
dataflow applications in cloud systems. First, dataflow applications
requirecontinuous runtime integrity attestation. Traditional Byzan-
tine fault detection schemes [6] rely on full time majority voting
on a set of service replicas over all input data, which fall short
for cloud infrastructures in terms of scalability. In our previous
work, we proposed RunTest, a replay-based randomized attestation
scheme [3] that randomly selects a subset of input data to replay
and performs result consistency check to detect malicious service
providers. RunTest examines each service function individually
and identifies nodes that fall outside of the maximum consistency
clique as malicious. However, real world dataflow applications of-
ten include stateful service functions such as windowed stream op-
erators [4]. In contrast to a stateless function whose output merely
depends on the input, the output of a stateful function depends on
both the input data and the state of the service component (e.g., pre-
viously received data in sliding-window stream operators). Thus,
simply replaying the input will yield inaccurate integrity checking
results. Second, multiple malicious service providers may launch
strategic colluding attacks to the cloud system. For example, they
can always give consistent wrong results and form a majority clique
in a specific service function to trick the algorithm to label be-
nign service providers as malicious. Thus, it is insufficient to only
examine consistency relationships in individual service functions
separately.

In this paper, we present a novel RObust Service Integrity Attes-
tation (ROSIA) framework that can efficiently verify the integrity
of stateful dataflow processing services and pinpoint malicious ser-
vice providers within a large-scale cloud infrastructure. ROSIA
achieves robustness in two major aspects. First, ROSIA supports
replay-based consistency check for stateful data processing ser-
vices. Second, ROSIA can pinpoint malicious service providers
even when the system is under strategic colluding attacks. Specif-
ically, this paper makes the following contributions: 1) We pro-
vide two safe consistency check schemes for stateful services. Our
schemes do not require direct service state reset, which may alert
malicious service providers about the integrity attestation and is
impractical for implementation-specific state changes; 2) ROSIA
performs comprehensive integrity attestation by examining both
consistency and inconsistency relationships. This scheme can both

User

VM
VM

VM

S3

Portal

S2

S6

S6

S1

S1

… d3, d2, d1

S3

Original Dataflow

Data processing

component
Si

Virtual machine

di Application data
VM

VM

VMVM

VM

Pi
Service provider/

cloud tenant

P4

P3

P3

P3

P2

P1
P1

Attestation Dataflow

Figure 1: Multi-tenant cloud infrastructure.

achieve higher attack detection accuracy and limit the scope of
the damage caused by colluding attackers; and 3) We have imple-
mented the ROSIA system on top of the IBM System S stream
processing system [4] and tested it on the NCSU virtual computing
lab (VCL) [1]. Our experiment results show that ROSIA can ef-
ficiently verify the integrity of stateful dataflow applications while
imposing low overhead to the cloud system.

2. SYSTEM MODEL AND ASSUMPTIONS
We now introduce the multi-tenant cloud system, illustrated by

Figure 1. Each service providerpi can lease a set of virtual ma-
chines (VMs) from the cloud system to provide one or more ser-
vice components. A service componentsi is a self-contained soft-
ware unit providing a certain service functionfi. Users can ac-
cess the services by making a request through some portal node,
who composes composite services from different service compo-
nents according to the user’s function specification [5]. The portal
node accepts input data tuplesdi from the user, forwards to differ-
ent service components for processing, and delivers final results to
the user. A service function may be provided by different service
providers.

Our work focuses on detecting service integrity attack to dataflow
processing applications where a malicious service component may
give untruthful data processing results. We assume that the total
number of malicious service components is less than that of benign
ones in the entire cloud system. But we do not assume benign
service components have to be the majority for each specific service
function as in [3]. Attackers couldsporadically collude, which
means an attacker can collude with an arbitrary subset of its col-
luders at an arbitrary time. Attackers can beselective cheating,
which means they can misbehave on selective input data and/or on
selective subset of service functions. These characteristics require
that the detection scheme must be robust and scalable to capture
unpredictable and occasional misbehavior.

3. DESIGN AND ALGORITHMS
Our algorithm pinpoints malicious service providers based on

the consistency / inconsistency relationships between service providers.
It includes three parts: 1) A runtime attestation scheme, called
replay-based consistency check, to derive the consistency / incon-
sistency relationships between functionally equivalent service providers;
2) Consistency graph andinconsistency graph models to aggregate
attestation results; and 3) A pinpointing algorithm that takes the
attestation graphs as input and outputs malicious service providers.

Replay-based Consistency Check. The basic idea is to feed the
same input data into functionally equivalent service components
and compare output results to find out consistency/inconsistency
relationships between service providers. Two service providers

have consistency relationship if they always give consistent output
results on all input data, or have inconsistency relationship if they
give inconsistent outputs on at least one input data. Result consis-
tency is defined as either result equality, or the distance between
the results according to some distance function falling within a
threshold. Note that we perform integrity attestation by replaying
a subset of original input data at a later time. Thus, the malicious
attackers cannot avoid the risk of being detected when they produce
false results on the original data.

For stateless functions, given the same input data, two benign
service providers will always return consistent output results. How-
ever, it is challenging to perform replay-based consistency check
on stateful functions, such as windowed aggregation and join [4].
Even if the same input data is used for attestation, two benign
service providers at different states may produce different results.
Thus, for stateful functions, both input data and the states have to be
replayed. We propose two methods to attest stateful functions. One
method is calledindirect state recovery, which relies on replaying
a sequence of historic input data to indirectly bring back the state.
For sliding-window stream operators, we record the data tuples sent
to one service provider and resend them to another service provider
to form the exact same window. The other method is calleddif-
ference check, which derives consistency relationship between two
stateful service components by comparing result difference pro-
duced by two consecutive input data. For example, the state can be
a counter to to count the number of received tuples. Even though
the counters of two service components may have different values,
they both will increase by one when accepting a new input data.

In this paper, we focus on window-based stateful service func-
tions, which is adopted by IBM System S [4]. We adopt a master-
slave mechanism for data attestation. For each function, the por-
tal randomly designates a service provider as the master and the
rest as slaves. The portal sends all the data to the master ser-
vice provider and sends only attestation data to the slave service
providers. Specifically, the portal duplicates a data tupledi with
a probabilityPdup, and buffers a window sizew of continuous
tuplesdi, di−1, ..., di−w+1, which serve as the state on the master
service provider. After the portal receives the processing result of
di from the master, it sends the buffered window to a randomly
selected subset of slave service providers. Results from the master
and the slave service providers can then be compared to derive the
consistency / inconsistency relationships.

Attestation Graph Model. Consistency/inconsistency relation-
ships are stored in graphs for further analysis. For each service
function, we maintain a consistency graph, which is an undirected
graph, with all the attested service providers that provide the same
service function as the vertex set and consistency relationship as
the edges, as shown in Figure 2. Note that two service providers
that are consistent in one function may be inconsistent in another
function. Consistency graphs alone cannot efficiently reflect the
relationship between service providers. Thus, we also maintain a
global inconsistency graph, with all the service providers in the sys-
tem as the vertex set and inconsistency relationship as the edges, as
shown in Figure 3. The graphs reflect the consistency/inconsistency
relationships across multiple service providers over time.

Pinpointing Malicious Service Providers. We leverage both
per-function consistency graphs and global inconsistency graph to
pinpoint malicious service providers. With consistency graphs, we
adopt the method proposed in our previous work [3]. The intuition
is that benign service providers always give the same correct re-
sults, thus can form a clique in the consistency graph. If the number
of benign service providers is larger than that of malicious ones,

f1

p1

p3 p4

p2

p5

f2

p6

p7 p8

p2

p5

Figure 2: Per-function consis-
tency graphs.

p1

p2
p3

p4

p5

p6

p7

p8

Figure 3: Global inconsis-
tency graph.

we can identify nodes that fall outside of the maximum clique as
malicious.

Note that malicious service providers can escape from being de-
tected by trying to form a majority clique in the per-function con-
sistency graph. However, if attackers try to maximize their damage
by attacking multiple functions, we can still detect them by lever-
aging the global inconsistency graph. Intuitively, given two service
providers that are inconsistent, we can claim that at least one of
them is malicious. Thus, we can conclude that the number of mali-
cious service providers in the inconsistency graphG should be no
less than the size of the minimum vertex cover of the inconsistency
graph, denoted by|CG|. If we assume that the total number of
malicious service providers in the whole system is no more than
K, we can pinpoint those nodes that are definitely malicious by
examining each individual nodep in G [9]. The intuition is that
if a nodep is benign, its neighbors must be malicious. Then total
number of malicious nodes, which is the sum ofp’s neighbor size
|Np| and the number of malicious nodes in the residual graph after
removingp and its neighbors from the inconsistency graph, should
be no less thanK. The latter has a lower bound equal to the
minimum vertex cover of the residual graph, denoted by|CG′

p
|.

Thus, nodep is a malicious service provider if and only if|Np| +
|CG′

p
| > K. This method forces the attackers to limit the number

of inconsistency links in order to escape from being detected.
Our algorithm finalizes the list of malicious service providers

based on the results of both consistency graphs and inconsistency
graphs. The idea is that any node identified through inconsistency
graph is definitely malicious. If the node is also identified as mali-
cious in a consistency graph, which may indicate that benign nodes
form the majority in this function. Then the rest nodes that are
outside of the majority clique may also be malicious. In summary,
the consistency graph based pinpointing method forces malicious
attackers to form majority in every service function they participate
in, while the inconsistency graph based pinpointing method limits
the number of functions malicious service providers can attack. By
considering both consistency graphs and inconsistency graph, we
can detect malicious service providers with a higher probability.
The damage of malicious attacks is also bounded.

4. EXPERIMENTAL EVALUATION
We have implemented the ROSIA system in C++ on top of the

IBM System S stream processing system [4], and deployed it on
the NCSU virtual computing lab (VCL) [1], which consists of hun-
dreds of blade servers and provides similar virtual resources as
Amazon EC2. We compare our scheme with two other schemes:
the consistency graph (CG) scheme and theinconsistency graph
(ICG) scheme, which identify malicious nodes based on consis-
tency graphs only and inconsistency graph only, respectively. Fig-
ure 4 shows one of our initial results, the advantages of ROSIA in

ROSIA CG ICG
0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

detection rate
false positive rate

Figure 4: Comparison between ROSIA, the consistency graph
(CG) scheme and the inconsistency graph (ICG) scheme.

terms of higher detection rate and lower false positive rate in certain
attack scenarios.

5. CONCLUSION
In this paper, we have presented the design and implementation

of ROSIA, a robust service integrity attestation system for pro-
cessing stateful dataflow applications in cloud systems. ROSIA
employs replay-based consistency check to efficiently verify the in-
tegrity of dataflow processing service components and pinpoint ma-
licious service providers. ROSIA supports both stateless and state-
ful service functions and performs integrated analysis over both
per-function consistency graphs and global inconsistency graph to
effectively pinpoint colluding attackers. We have implemented ROSIA
on top of the IBM System S stream processing system and tested it
on the NCSU virtual computing lab. Our experimental results show
that ROSIA is effective and imposes low overhead for dataflow
processing in cloud infrastructures.

Acknowledgment: This work was sponsored in part by U.S. Army
Research Office (ARO) under grant W911NF-08-1-0105 managed
by NCSU Secure Open Systems Initiative (SOSI), NSF CNS-0915567,
and NSF IIS-0430166.

6. REFERENCES
[1] Virtual Computing Lab. http://vcl.ncsu.edu/.
[2] S. Berger, R. Caceres, and et. al. TVDc: Managing security in

the trusted virtual datacenter.ACM SIGOPS Operating
Systems Review, 42(1):40–47, 2008.

[3] J. Du, W. Wei, X. Gu, and T. Yu. Runtest: Assuring integrity
of dataflow processing in cloud computing infrastructures. In
ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2010.

[4] B. Gedik, H. Andrade, and et. al. SPADE: the System S
Declarative Stream Processing Engine.Proc. of SIGMOD,
April 2008.

[5] X. Gu, K. Nahrstedt, and et. al. QoS-Assured Service
Composition in Managed Service Overlay Networks.Proc. of
ICDCS, 194-202, 2003.

[6] T. Ho, B. Leong, R. Koetter, and et. al. Byzantine modification
detection in multicast networks using randomized network
coding. InIEEE ISIT, 2004.

[7] I. Roy, S. Setty, and et. al. Airavat: Security and privacy for
MapReduce. InNSDI, April 2010.

[8] E. Shi, A. Perrig, and L. V. Doorn. Bind: A fine-grained
attestation service for secure distributed systems. In
Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 2005.

[9] Q. Zhang, T. Yu, and P. Ning. A framework for identifying
compromised nodes in wireless sensor networks.ACM
TISSEC, 11(3), 2008.

