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ABSTRACT
Cloud computing has emerged as a multi-tenant resource shar-

ing platform, which allows different service providers to deliver
software as services in an economical way. However, for many
security sensitive applications such as critical data processing, we
must provide necessary security protection for migrating those crit-
ical application services into shared open cloud infrastructures. In
this paper, we present RunTest, a scalable runtime integrity attes-
tation framework to assure the integrity of dataflow processing in
cloud infrastructures. RunTest provides light-weight application-
level attestation methods to dynamically verify the integrity of data
processing results and pinpoint malicious service providers when
inconsistent results are detected. We have implemented RunTest
within IBM System S dataflow processing system and tested it on
NCSU virtual computing lab. Our experimental results show that
our scheme is effective and imposes low performance impact for
dataflow processing in the cloud infrastructure.
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General Terms
Security, Management, Verification
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1. INTRODUCTION
Cloud computing [1, 3] has recently emerged as a promising

hosting platform that allows multiple cloud users called tenants
to share a common physical computing infrastructure. With rapid
adoption of the concepts of Software as a Service (SaaS) [4] and
Service Oriented Architecture (SOA) [9,18], the Internet has evolved
into an important service delivery infrastructure instead of merely
providing host connectivity. Thus, service providers can lease a set
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of resources from cloud infrastructures to provide their software
as services in an economical way without maintaining their own
physical computing infrastructures.

Data-intensive computing [2, 17, 21, 28] has recently received
much research attention with many real world applications such
as security surveillance, scientific study, and business intelligence.
In particular, our work focuses on dataflow processing systems [6,
21, 23] that provide high-performance continuous processing over
massive data streams. Previous work on distributed dataflow pro-
cessing mainly focuses on resource and performance management
issues [6, 23, 29, 34]. It usually assumes that all data processing
components are trustworthy. This assumption generally holds for
small-scale closed cluster systems. However, in multi-tenant cloud
computing infrastructures consisting of different service providers,
we can no longer assume that all processing components are trust-
worthy. For example, dataflow processing components may include
security holes that can be exploited by attackers. Attackers can also
pretend to be legitimate service providers to compromise dataflow
processing. One of the top security concerns for cloud users is to
verify the integrity of data processing results, especially for critical
data processing applications such as fraud detection and business
intelligence. Note that confidentiality and user data privacy are im-
portant orthogonal issues addressed by previous work [8,27,43,44].

Trust management for large-scale systems has been studied un-
der different contexts such as observable Byzantine faults detection
for distributed messaging systems [26] and wide-area systems [10],
security guards for publish-subscribe systems [39], TVDc [13] for
virtualized datacenters, and remote attestation to identify compro-
mised service components using trusted hardware or secure kernel
co-existed with the remote software platform [19, 20, 37, 38]. Dif-
ferent from previous work, our research focuses on providing light-
weight application-level attestation methods to dynamically verify
the integrity of dataflow processing services provisioned through
multi-party cloud computing infrastructures. We aim at achieving a
practical integrity attestation technique for large-scale cloud infras-
tructures without requiring application modifications or assuming
a trusted entity at third-party service provider sites.

In this paper, we present RunTest, a light-weight application-
level attestation scheme that can dynamically verify the integrity of
data processing results in the cloud infrastructure and pinpoint ma-
licious service providers when inconsistent results are detected. We
validate service integrity by aggregating and analyzing result con-
sistency information rather than comparing memory footprints of
code execution as used by code attestation [38]. Thus, our approach
does not require trusted hardware or secure kernel co-existed with
third-party service providers in the cloud. The rationale behind
our approach is that dataflow processing applications are mostly
concerned about the accuracy of final data results instead of the in-



tegrity of the code execution. One advantage of our approach is
that we can easily provide runtime continuous integrity attestation
that is highly desired by dataflow processing applications. Dif-
ferent from traditional consensus-based Byzantine fault detection
schemes [32, 40], our approach does not rely on full time majority
voting on all service nodes, which falls short for cloud infrastruc-
tures in terms of scalability. In contrast, our scheme leverages the
unique features of dataflow processing to perform randomized at-
testation using a small subset of input data tuples over different
subsets of cloud nodes. To the best of our knowledge, our work
makes the first attempt to provide efficient runtime integrity attes-
tation scheme for dataflow processing in the cloud infrastructure.
Specifically, this paper makes the following contributions:

• We provide a new runtime service integrity attestation scheme
that employs a novel attestation graph model to capture at-
testation results among different cloud nodes. We design a
clique based attestation graph analysis algorithm to pinpoint
malicious service providers and recognize colluding attack
patterns. Our scheme can achieve runtime integrity attes-
tation for cloud dataflow processing services using a small
number of attestation data.

• We have implemented the RunTest system within IBM Sys-
tem S dataflow processing system [21] and tested it on NCSU
virtual computing lab (VCL) [5], a production virtual cloud
infrastructure. The prototype implementation indicates that
our scheme can be easily integrated into cloud dataflow pro-
cessing system.

• We have conducted both analytical study and experimental
evaluation to quantify the performance of the RunTest sys-
tem. Our analytical study and experiment results show that
RunTest can ensure the integrity of dataflow processing while
imposing low performance overhead.

The rest of the paper is organized as follows. Section 2 gives a
brief background about cloud computing and dataflow processing
service model followed by the integrity attack model considered
by our work. Section 3 presents the design and algorithms of the
RunTest system. Section 4 presents the analytical evaluation about
the integrity assurance and data result quality achieved by our run-
time attestation scheme. Section 5 presents the prototype imple-
mentation and experimental results. Section 6 compares our work
with related work. Finally, the paper concludes in Section 7.

2. PRELIMINARY
In this section, we first give a brief background overview about

the cloud computing infrastructure and data-intensive computing
applications that can be delivered as services via the cloud infras-
tructure. We then describe the integrity attack scenarios that are
addressed by our work.

2.1 Multi-Tenant Cloud Infrastructures
Cloud infrastructures [1, 3] support multi-tenant resource shar-

ing, which allows different cloud users to safely share a common
physical infrastructure, illustrated by Figure 1. We use Amazon
Elastic Cloud Computing (EC2) [1] as an example to illustrate the
basic idea of resource leasing in the cloud computing. In EC2,
the cloud system leases several physical hosts running a set of vir-
tual machines (VMs) to each user. The users can run any appli-
cations within the VM (e.g., data mining, web services) and will
be charged by the exact cloud resources (CPU cycles, disk storage)
they use. The benefit of cloud computing is that individual users do
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Figure 2: Dataflow processing application example.

not need to maintain their own physical infrastructure that is often
very costly.

Service oriented architecture [9] (SOA) allows service providers
to deliver their software as services. Thus, the cloud infrastructure
provides a natural platform for different service providers to de-
liver their software as services in an economical way. Each service
provider pi can lease a set of resources from the cloud to deliver
its software services. We define a service component si as a self-
contained software unit providing a certain service function fi such
as data filtering. Each service component can have one or more in-
put ports for receiving input data tuples, denoted by di, and one
or more output ports to emit output data tuples. For quality-of-
service (QoS) management, we use a vector Qsi = [qsi1 , ..., qsim ]
to characterize the dynamic QoS metrics of the component such
as dataflow processing delay and loss rate. There also exist some
portal service providers that can aggregate different service compo-
nents into composite services based on the user’s service function
requirements [24, 25, 36].

2.2 Dataflow Processing in Clouds
Data processing systems (e.g., Google’s MapReduce [17], Ya-

hoo’s Hadoop [2], IBM System S [21], Microsoft Dryad [28]) have
become increasingly popular with applications in many domains
such as business intelligence, security surveillance, and scientific
computing. In particular, our work focuses on continuous dataflow
processing applications [21, 23], which supports high performance
in-memory data processing. For example, Figure 2 shows an exam-
ple of dataflow processing application. The application reads data
from NOAA (the National Oceanic and Atmospheric Administra-
tion) that reports weather conditions from weather stations through-
out the world, and generates the most recent weather information
for different locations where the fruit suppliers are located. Pro-
duced results will help in making decisions on whether to purchase
fruit from a supplier. The raw data tuples are first converted into
a set of structured streams of weather conditions information, and
then are filtered to keep data only for some specific locations. Then



the next step is to perform some conversions and calculations on
the weather data for different locations respectively. The weather
data will then be joined with the supplier location data to generate
the required output.

The user can request dataflow processing services from the cloud
infrastructure through some portal nodes. A data processing appli-
cation can be specified using a dataflow template denoting required
dataflow processing functions and inter-function dependencies and
desired QoS levels. The portal node accepts input data from users
and delivers final results to the user. The portal sends source tuples
received from the user to the first-hop component. Each compo-
nent emits intermediate result tuples called derived data. Finally,
the last-hop service component reports the final results to the portal
node that forwards the final results to the user.

2.3 Attack Model
Malicious attackers can launch security attacks to a cloud infras-

tructure by pretending to be legitimate service providers or taking
control of vulnerable service providers. Our work focuses on de-
tecting integrity attacks to cloud dataflow processing where a ma-
licious (or compromised) service node gives untruthful data pro-
cessing results. Compared to user data privacy and confidentiality,
integrity assurance is the most prevalent, which is needed no matter
whether public or private data are processed by the cloud.

We assume that dataflow processing services are input-deterministic,
that is, given the same input, a benign node always produces the
same output. We also assume data processing services are state-
less. Many dataflow processing functions fall into this category,
such as selection, filtering, and mapping [2, 21].

Unlike standalone web servers or clusters, cloud infrastructures
comprise a large number of distributed service provisioning nodes.
We must consider colluding attack scenarios when multiple mali-
cious attackers collude or multiple service sites are simultaneously
compromised and controlled by a single malicious attacker. We
assume that malicious nodes have no knowledge of other nodes ex-
cept those they interact with for data receiving and forwarding or
their colluding parties. However, attackers can communicate with
their colluders in any arbitrary way.

Given a specific data processing function, suppose there are w
malicious service components A = {m1,m2, ...,mw}. For each
attacker mi, it has a set of colluders, which is a subset of A, denoted
by L. Given an input tuple, if mi (1 ≤ i ≤ k) is the first attacker
among its colluders to receive this tuple, mi has bi (0 < bi ≤ 1)
probability to misbehave on this tuple. If mi is not the first one,
it has ci (0 ≤ ci ≤ 1) probability to collude with its colluders
by giving the same results with what their colluders have given,
and 1 − ci to behave independently. We define that two malicious
components are non-concluding if they give inconsistent results on
the same input. Further, if a malicious service component always
gives correct data processing results (i.e., misbehaving probability
bi = 0), we say that the component’s integrity attack fails since the
accuracy of data processing results is not impacted. Thus, we can
use parameters bi and ci to represent an attacker’s behavior.

Malicious components have various strategies to choose from:
they can always misbehave or probabilistically misbehave; they can
collude with their colluders in different degrees and in different
ways. We characterize all possible attack scenarios using different
combinations of parameters (bi, ci) and classify those attacks into
five attack patterns.

• Non-Collusion Always Misbehave (NCAM). Malicious com-
ponents always act independently and always give incorrect
results. It corresponds to bi = 1 and ci = 0.

• Non-Collusion Probabilistically Misbehave (NCPM). Ma-
licious components always act independently and give in-
correct results probabilistically with probability less than 1.
Different malicious components may have different misbe-
having probability bi. It corresponds to 0 < bi < 1 and
ci = 0.

• Full Time Full Collusion (FTFC). Malicious components
always collude and always give the same incorrect results,
corresponding to bi = 1, and ci = 1.

• Partial Time Full Collusion (PTFC). Malicious components
always collude and give the same incorrect results on se-
lected tuples, corresponding to 0 < bi < 1 and ci = 1.
Malicious components cannot arbitrarily select tuples to mis-
behave, since they only have a local view and do not know if
the selected tuple has already passed through a benign com-
ponent or not. The composer is bound to detect the existence
of malicious behavior if it receives different results for the
same tuple. In order to reduce the risk of being detected, ma-
licious components can select tuples to misbehave based on
a pre-agreement. For example, colluding malicious compo-
nents may choose to misbehave if the received tuple has an
even number sequence number.

• Partial Time Partial Collusion (PTPC). Malicious compo-
nents sometimes collude and sometimes act independently.
It corresponds to 0 < bi < 1 and 0 < ci < 1.

3. DESIGN AND ALGORITHMS
In this section, we first give an overview of our approach. Then,

we describe the integrity attestation graph model that serves as the
basis for our integrity attack analysis. We then describe a clique-
based malicious node pinpointing algorithm followed by the attack
pattern recognition algorithm for identifying attack colluding be-
havior in large-scale cloud infrastructures.

3.1 Approach Overview
The design objectives of the RunTest system are to identify un-

truthful dataflow processing results, pinpointing malicious data pro-
cessing service providers, and detecting colluding attack behav-
ior. To achieve these goals, we propose a new integrity attestation
graph model to capture aggregated cross-node integrity attestation
results, which includes the statistical output consistency/inconsistency
information from different dataflow processing nodes. By analyz-
ing the features of weighted attestation graphs, we can comprehen-
sively verify the integrity of different dataflow processing results
produced by the cloud infrastructure and pinpoint malicious ser-
vice nodes in the cloud.

The RunTest system dynamically induces the weighted integrity
attestation graph through randomized data attestation. When a tu-
ple d first enters the cloud, the portal node first sends the data to
a pre-defined dataflow path p1 → p2... → pl providing functions
f1 → f2... → fl. After the portal receives the processing result
for d, the portal may decide to perform integrity attestation with
a certain probability pu. The portal performs integrity attestation
by sending a duplicate of d to an alternative dataflow paths such
as p′1 → p′2... → p′l, where p′i provides the same data processing
function fi as pi. The portal may send multiple duplicates of d to
perform concurrent attestation. For distributed dataflow processing
applications, we verify both intermediate and final processing re-
sults to pinpoint malicious processing nodes. In order to achieve
non-repudiation, each service provider is required to keep the se-



cure hash values of its input and output as evidence and sign the
hash values with its private key.

We intentionally decouple the normal data processing phase from
the attestation phase to prevent malicious attackers from detecting
and escaping our attestation scheme. If we send attestation data to-
gether with the original data d, the malicious attacker can decide to
cheat when it is sure that no attestation is triggered for d or when
all attestation data are sent to its colluders. As a result, as long
as the attestation is not employed for every tuple all the time, the
malicious attackers can compromise the integrity of dataflow pro-
cessing without being detected. In contrast, under our decoupled
attestation scheme, the malicious attackers cannot avoid the risk of
being detected when they produce false results on the original data
d. Although the decoupled attestation scheme may cause delay in a
single tuple processing, we can overlap the attestation and normal
processing of consecutive tuples in the dataflow to hide the attesta-
tion delay from the cloud user.

After receiving the attestation results, the portal compares each
intermediate result between pairs of functionally equivalent nodes
pi and p′i. If pi and p′i receive the same input data but produce
different output results, we say that pi and p′i are inconsistent with
regard to function fi. Otherwise, we say that pi and p′i are consis-
tent with regard to function fi. For each pair, the portal maintains
counters of consistencies and inconsistencies in order to compute
the weight of the corresponding edge in the attestation graph. The
portal updates the counters and the weights each time when it re-
ceives attestation data. The attestation graph captures aggregated
attestation results over a period of time.

The RunTest system then performs comprehensive analysis over
the attestation graphs to pinpoint malicious service providers and
identify untruthful results. Particularly, we look for attestation graph
patterns (e.g., number of cliques, weights of non-clique edges) to
identify malicious service providers and their collusion behavior.
Furthermore, our scheme can also give accurate estimation about
the quality of data (QoD) provided by the cloud dataflow process-
ing services.

3.2 Integrity Attestation Graph
In order to detect service integrity attack, we employ data attes-

tation on data processing service nodes. In contrast to code attes-
tation schemes (e.g., [22, 37, 41, 42]), which often require special
hardware/software to verify the code running on a system, data at-
testation verifies the integrity of service function by feeding same
input data into redundant service nodes and comparing output data.
The results of data attestation are in the form of consistency or in-
consistency relationships, based on the comparison of output data
on the same input data. We use the integrity attestation graph to
aggregate individual data attestation results. Thus, we can achieve
more efficient and scalable attack detection for dataflow process-
ing in large-scale cloud infrastructures. We formally define the in-
tegrity attestation graph as follows,

Definition 1: An Integrity Attestation Graph is a weighted undi-
rected graph, with all the attested service providers (or cloud nodes)
as the vertex set and consistency/inconsistency relationships as the
edges. Each edge in the attestation graph is associated with a weight.
The Weight on an attestation graph edge, denoted as w (0 ≤ w ≤
1), is the fraction of consistent output out of all output data between
two service providers given the same input data.

Thus, if w = 1, it means that the two service providers always
agree with each other. If w = 0, it means the two service providers
never agree with each other. In particular, we define consistency
pairs and inconsistency pairs as follows,
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Definition 2: A Consistency Pair is a pair of service providers,
which always give the same output on the same input data. An
Inconsistency Pair is a pair of service providers, which give at least
one inconsistent output on the same input data. Thus, the edge
between a consistency pair has weight w = 1. The edge between
an inconsistency pair has weight w < 1.

Figure 3 and Figure 4 show an example dataflow application and
its corresponding attestation graph. Note that in Figure 3, only
a small subset of input data will undergo the attestation process.
Each attestation process only involves a subset of service providers.
However, over a period of time, all service providers will be at-
tested for at least once. Hence, our scheme can detect malicious
attacks to dataflow processing in the cloud without losing scalabil-
ity. For example, in Figure 3, d1 is selected for attestation, and
the attestation data d′1 is sent to p2. Similarly, d3 is selected for
attestation and the attestation data d′3 is sent to p3. Thus, p1, p2
and p3 are all attested through different tuples. Figure 4 shows
the generated attestation graphs. We use solid lines to represent
consistency pairs, and dotted lines for inconsistency pairs in the at-
testation graph. For function f1, the attestation graph contains one
consistency pair (p1, p2) as well as two inconsistency pairs (p1, p3)
and (p2, p3). For function f2, the attestation graph contains one
consistency pair (p4, p5) as well as two inconsistency pairs (p3, p4)
and (p3, p5). Note that service provider p3 provides both function
f1 and f2. We can also generate an integrated attestation graph
by combining all per-function attestation graphs, as shown by the
rightmost graph. In the rest of the paper, we use attestation graph
to refer to per-function attestation graph.

We propose to perform comprehensive analysis over the attes-
tation graph to detect malicious service providers and identify un-
truthful data processing results. We would like to identify those
representative attestation graph features, called attestation graph
motifs, which can distinguish benign service providers from mali-
cious attackers. Particularly, we observe that any two benign ser-
vice providers always give the same results for the same input. In
the attestation graph, this is expressed by an edge between them
with weight one. We further define consistency clique as follows,

Definition 3: A Consistency Clique is a complete subgraph of
an attestation graph such that 1) it has at least two nodes; 2) the
weights of all edges are one (i.e., w = 1); and 3) it is maximal,
that is, it is not contained in any other complete subgraph where



the weights of all edges are one.

If all pairs of service providers provisioning a particular data pro-
cessing function have been attested, we can make the following
proposition:

Proposition 1: All benign service providers always form a consis-
tency clique in the integrity attestation graph.

Proof: we prove the above proposition by contradiction. Suppose
there is a benign service node pi+1 that is not in the consistency
clique formed by other benign service nodes p1, p2, ..., pi. Then
there must be at least one weight 1 edge missing from pi+1 to one
of the benign nodes in the clique, say pj (1 ≤ j ≤ i). Since
pair (pi+1, pj) has been attested together and they both give correct
results, they must have given the same results on all the common
tuples. Thus, there should be a solid line edge of weight 1 between
them. This contradicts with the previous assumption that there is
no weight 1 edge between pi+1 and pj .

3.3 Pinpointing Malicious Service Providers
Although our attestation scheme randomly attests a subset of all

providers at a time, randomized attestation over a stream of data
can cover all service providers over a period of time. In a large-
scale cloud system, it is reasonable to assume that for any given
data processing function, the number of benign providers is larger
than that of malicious ones. Suppose there are k nodes in the at-
testation graph. Since all benign service providers always form a
clique in the attestation graph (Proposition 1), we can claim that,
at any time, a benign node must be in at least one clique with size
larger than bk/2c. Therefore, we can make the following proposi-
tion to pinpoint malicious nodes.

Proposition 2: Any node that is outside of all maximal cliques of
size larger than bk/2c in a per-function attestation graph must be a
malicious node.

Proof: we prove the above proposition by contradiction. Suppose
there is a benign node pi+1 that is not in any of the maximal cliques
of size larger than bk/2c. According to Proposition 1, the benign
node forms a clique with all other benign nodes. Since the number
of benign nodes is larger than bk/2c, node pi+1 is in a clique of
size larger than bk/2c. So, it is in a maximal clique of size larger
than bk/2c. This contradicts with the assumption.

Initially, all nodes are treated as benign nodes and stay in a sin-
gle clique. As a malicious node keeps misbehaving, it will pro-
duce inconsistent results with that of benign nodes sooner or later
through attestation, and thus gets excluded from the clique it stayed
before. The malicious node either remains in a downsized clique
or becomes an isolated node. When the malicious node is pushed
away from any of the cliques with size larger than bk/2c, it will be
pinpointed as malicious. Ultimately, there will be only one clique
with size larger than bk/2c in the per-function integrity attestation
graph, which is formed by all benign nodes. This clique is the max-
imum clique in the attestation graph. All other cliques, if there is
any, should have size less than dk/2e.

Thus, pinpointing malicious nodes becomes the problem of find-
ing consistency cliques in the attestation graph. We adapt the well-
known Bron-Kerbosch (BK) clique finding algorithm [14, 15, 31]
for finding consistency cliques in the attestation graph. We main-
tain three disjoint sets of nodes R, P, and X:

The set R stands for the currently growing clique, i.e. the set
to be extended by a new node or shrunk by one node on traveling
along a branch of the backtracking tree, and R is initialized to be ∅;

p5

p1

p2 p3

p4

Figure 5: An example of finding maximal cliques.

The set P stands for prospective nodes which are connected to all
nodes in R and using which R can be expanded, and P is initialized
to contain all nodes;

The set X contains nodes already processed, i.e. the nodes that
were previously in P and hence all maximal cliques containing
them have already been reported, and X is initialized to be ∅. Main-
taining the set X is because X being empty is one of the conditions
to claim the current R contains a maximal clique. If X is not empty,
R may be extended by considering nodes in X.

Note that all nodes that are connected to every node of R are ei-
ther in P or X. The algorithm runs as traversing the recursion tree
by moving nodes from P to R and updating the R, P, X sets recur-
sively. A maximal clique is reported when both P and X are empty.
The heuristic of the pivot selection is based on the identification
and elimination of equal sub-trees appearing in different branches
of the recursion tree which lead to the formation of non-maximal
cliques.

We use an example to explain the algorithm shown by Figure 5.
There are three benign nodes {p1, p2, p3} and two malicious nodes
{p4, p5} in the attestation graph. Based on our consistency clique
definition, we only count consistency links as connections between
any two nodes. Initially, the current clique node set R = ∅, and
the candidate set P = {p1, p2, p3, p4, p5}. We randomly take one
of the nodes in P , say p4 as the pivot node. Thus, we can move
those nodes that are not the neighbors of p4 from P to R. In this
example, we can move the candidate nodes p1, p2, p3 but not p5
since p5 is the neighbor of the pivot node p4. Suppose we first
move p1 to R. Then, R = {p1}, and we update the candidate set
P to include the nodes that are connected to all node(s) in R, which
should be P = {p2, p3}. X is the set containing already processed
nodes with regard to the node currently under consideration. So
the update of X is to shrink it so that it only contains nodes that
has connections with p1. In this case, X is ∅ and no need to be
shrunk. Next, we use the new R,P,X in recursion to explore a
maximal clique. We move another node p2 from P to R to ex-
pand the clique, then updating R,P , and X into R = {p1, p2},
P = {p3}, and X = ∅. Similarly, we move p3 from P to R, and
have R = {p1, p2, p3}, P = ∅, and X = ∅. By now, we have
identified a clique R = {p1, p2, p3} since both P and X become
empty. After returning from the recursions, p3, p2, p1 will all be
added to X respectively, since they are processed nodes. Note that
the usefulness of X would be clearer when there are other nodes
connected to only a part of the currently forming clique, which is
not presented in this simple example. Now, we start from a differ-
ent pivot node, say p1. We have R = ∅, P = {p1, p2, p3, p4, p5},
X = {p1, p2, p3}. We can move those nodes that are not the neigh-
bors of p1 from P to R, which include p4 and p5. Suppose we
first move p4 to R and then update R,P , and X into R = {p4},
P = {p5}, and X = ∅. Next, we can move p5 from P to R since
it is not the neighbor of the pivot p1. Thus, we have R = {p4, p5},
P = ∅, and X = ∅, so that we identify another clique {p4, p5}.

Generally, a maximal clique is a complete subgraph that is not
contained in any other complete subgraph. Among all cliques, the



AdaptiveBK(G)
1. Initialization 1: Mark any two nodes with w < 1 edge as

unconnected, and with w = 1 edge as connected;
2. Initialization 2: Eliminate nodes that do not have any edge of

w = 1
3. FindConsistencyClique(∅, V (G), ∅), where V (G) is the node

set of G

FindConsistencyClique(R,P,X)
1. if (P == ∅ and X == ∅ and size of R > 1)
2. Report R as a maximal clique
3. else
4. Let up be the pivot node
5. Assume P = u1, u2, ..., uk

6. for i =1 to k do
7. if ui is not a neighbor of up

8. P = P − ui

9. Rnew = R ∪ ui

10. Pnew = P ∩N [ui], where N [ui] is neighbor
set of ui

11. Xnew = X ∩N [ui]
12. FindConsistencyClique(Rnew, Pnew, Xnew)
13. X = X ∪ ui

Figure 6: Consistency clique discovery algorithm.

largest one is the maximum clique. The maximum clique problem
is one of the canonical NP-complete problems, while the problem
of enumerating all cliques in a graph is NP-hard. The complex-
ity of the BK algorithm increases with the number of cliques in the
graph. However, in practice, the number of cliques in the attestation
graph is very small. Furthermore, in this paper, we add two require-
ments for cliques: 1) The clique contains at least two nodes; and 2)
weights of all edges are one. These two features can help us elim-
inate some nodes that do not satisfy the criteria in O(n + e) time,
with e being number of edges. Thus, we extend the BK algorithm
by first reducing the attestation graph through eliminating a subset
of nodes. Nodes without weight 1 edge cannot be in a clique. By
going through each node in the graph at the beginning, such type of
nodes can be eliminated, and the complexity of the BK algorithm is
reduced. Figure 6 shows the pseudo-code of our consistency clique
finding algorithm. The algorithm takes the attestation graph G as
input, and returns all maximal cliques.

3.4 Identifying Attack Patterns
A large-scale cloud computing infrastructure often consists of

many distributed service provisioning nodes. When multiple ma-
licious attackers collude or multiple cloud nodes are compromised
and controlled by a single malicious attacker, the cloud infrastruc-
ture will be exposed to collusive integrity attacks. Thus, in addi-
tion to pinpointing those malicious nodes, it is also important to
discover colluding behavior among different nodes, which can as-
sist in cloud security diagnosis. A nice feature of our integrity at-
testation graph is that it can not only expose malicious nodes but
also reveal collusive attack patterns. We summarize the features
of the corresponding attestation graphs for each attack pattern, and
express them using attestation graph motifs. By the law of large
numbers, when enough attestation outputs are observed, the attes-
tation graph motifs of all possible integrity attack patterns can be
described as follows, which are shown in Figures 7 - 10. Note that
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we begin to analyze attack patterns after we find only one clique of
size larger than bk/2c.

Attestation graph motif A: If malicious nodes are not in collu-
sion and always misbehave, the portal would find different results
from different malicious nodes. In the attestation graph, malicious
nodes would be isolated nodes in terms of consistency relationship.
And in terms of inconsistency relationship, they are the nodes that
have the maximal degrees. In other words, the weights on all the
edges involving malicious nodes are all zero. Figure 7 shows an
example of attestation graph motif A. This scenario corresponds to
the Non-Collusion Always Misbehave (NCAM) attack pattern.

Attestation graph motif B: If malicious nodes misbehave prob-
abilistically and independently, they would agree with benign nodes
and even well-behaved malicious nodes on some attestation data.
This scenario corresponds to the Non-Collusion Probabilistically
Misbehave (NCPM) attack pattern. Alternatively, malicious nodes
may collude sometimes and act independently for the rest of time,
which corresponds to Partial Time Partial Collustion (PTPC) attack
pattern. In both cases, the weights on the attestation graph edges in-
volving malicious nodes appear to be randomized. Figure 8 shows
an example of the attestation graph motif B.

Attestation graph motif C: If all malicious nodes collude to-
gether and always give the same incorrect results, malicious nodes
also form a consistency clique among themselves in the attestation
graph. However, the weights on the edges involving one malicious
node and one benign node are all zero. Figure 9 shows an exam-
ple the attestation graph motif C. This attestation graph motif can
capture the Full Time Full Collusion (FTFC) attack pattern.

Attestation graph motif D: If all malicious nodes collude to-
gether but only on selected tuples based on a pre-agreement, ma-
licious nodes also form a clique. Each malicious node connects to
benign nodes with the same weight of w. Figure 10 shows an ex-
ample attestation graph motif D. This scenario corresponds to the
Partial Time Full Collusion (PTFC) attack pattern.

From the attestation graph motifs, it can be observed that differ-
ent attack patterns can be distinguished according to two criteria:
(a) number of cliques; and (b) the weight patterns of non-clique
edges. Thus, we can identify attack patterns using the following
rules: (1) Depending on number of cliques in an attestation graph,



IdentifyMaliciousNodes(G)
1. find all maximal cliques CLi (1 ≤ i < k) in G using adapted

Bron-Kerbosch algorithm with pivot selection
2. in CLi, find those maximal cliques with size larger than bk/2c,

CLb (b ≤ i), where k is the total number of nodes in G
3. check all nodes Nodej in G against nodes in all CLb

4. if (Nodej is not in any of CLb)
5. Nodej is malicious
6. if (only one maximal clique in CLb, i.e.,the maximum clique)
7. if (numCliques == 1)
8. nodes in the clique is identified as Ni

9. if (weights of edges from nodes in Ni to rest of nodes not
in Ni are all 0s)

10. attack model NCAM
11. else
12. attack model NCPM or PTPC
13. if (numCliques ≥ 2)
14. nodes in the maximum clique are Ni, in the rest cliques

are N1i, N2i, ...
15. check each clique other than the maximum clique
16. if (weights from Ni to any of N1i, N2i, ... are all 0s)
17. attack model FTFC
18. else if (all links between Ni and Nji have same weight)
19. attack model PTFC

Figure 11: Cloud Dataflow Integrity attack detection algo-
rithm.

we can divide the attack patterns into two groups. One group in-
cludes NCAM, NCPM, and PTPC, which contains only one clique.
And the other group includes FTFC and PTFC. (2) Depending on
the weights on non-clique edges, we can further identify individual
attack patterns within each group. For example, in the first group,
if weights are all zero, the attack can only be NCAM. However, in
the second group, if weights are all zero, attack pattern is FTFC.
Note that the algorithm cannot distinguish NCPM and PTPC, since
their attestation graphs have the same features. This is acceptable
because NCPM is a special case of PTPC, where the parameter
controlling collusion goes from sometimes to never.

Figure 11 shows the pseudo code of our algorithm to identify
attack patterns and malicious service nodes. The algorithm takes
the attestation graph G as input, and outputs suspected malicious
nodes. First, the algorithm finds all cliques in the attestation graph
using the adapted BK algorithm. Second, it checks nodes against
the identified cliques to pinpoint malicious service nodes. Finally,
when there is only one clique of size larger than half of the to-
tal number of nodes, the algorithm identifies attack patterns. By
checking the number of cliques in the attestation graph and the
weights on non-clique edges one by one, the algorithm identifies
specific attack patterns. Note that the algorithm needs to be started
when all pairs of functionally equivalent nodes have been attested
in order to assure that all benign nodes have showed up in the max-
imum clique.

4. SECURITY ANALYSIS

4.1 Security Properties
Our scheme of pinpointing malicious service providers is based

on attestation graph analysis. We claim that the scheme preserves
the following properties:

Property 1: No false positive: a benign service provider will not
be pinpointed as malicious.

Proof: As proved for our Proposition 2, a benign node always stays
in at least one clique of size larger than bk/2c. Therefore, a benign
node will not be treated as malicious since our algorithm only pin-
points a node when the node is outside of any maximal cliques with
size larger than bk/2c.

Property 2: Non-Repudiation: for any pinpointed malicious ser-
vice provider, the trusted portal node can present evidence to prove
it is malicious.

Proof: The data received by the portal contains the signed hash
value of intermediate processing results provided by service providers.
The portal can present proof that shows the pinpointed node is
inconsistent with more than bk/2c of its functionally equivalent
nodes. According to our algorithm, a pinpointed node is not in any
of the maximal cliques with size larger than bk/2c, which means
it has inconsistent results with more than bk/2c nodes. Since the
number of malicious nodes is less than or equal to bk/2c, the pin-
pointed node must have been inconsistent with a benign node. Thus,
it must be malicious.

Note that our scheme has false negative, since the randomized
data attestation cannot capture the misbehavior of malicious service
providers if they accidentally only misbehave on non-duplicated tu-
ples or all our attestation are conducted on collusive service providers.
However, since our scheme ensures that malicious nodes cannot
predict when they will be attested, the probability of detecting mis-
behavior through observing inconsistent data results will increase
accordingly as more attestations are performed. Thus, our runtime
attestation scheme can eventually identify all misbehaving mali-
cious nodes as data tuples continuously flow into the system.

4.2 Data Quality
We define data quality as the percentage of processed data with

correct results. Our scheme can detect tampered data results prob-
abilistically and report data quality close to actual data quality.

Suppose the total number of unique data is n, and the number of
tampered unique data is s. Thus, the actual data quality, denoted
by Qa, equals to 1 − s/n. In contrast, our reported data quality,
denoted by Qr , can be computed as the percentage of data that
we believe has correct results. For non-duplicated data, we count
them as non-tampered since we are not sure whether it is tampered.
For duplicated data, we also count it as non-tampered if we get
consistent results. If we get inconsistent results, we count it as
tampered. The expected number of unique data that gets duplicated
for attestation is npu. We suppose the number of data that gets
duplicated but with inconsistent results is c. Thus, the reported
data quality becomes ((n−npu)+ (npu − c))/n, which turns out
to be 1− c/n. That is,

Qr = 1− c

n
(1)

where c can be observed and recorded by the portal through data
attestation. It can be seen that c < s. The data quality reporting of
our scheme has false negatives but without false positives.

We can introduce auto-correction mechanism to correct tampered
data results. By checking visited components against the pinpointed
malicious component set, we can either select data result from ex-
isting results processed by only benign components or process the
data again through only benign components. After pinpointing a
malicious component, we can also eliminate it from the system and
thus improve data quality extensively.



5. EXPERIMENTAL EVALUATION

5.1 System Implementation
We have implemented our runtime integrity attestation scheme

in C++ within IBM System S dataflow processing system [21].
The dataflow processing system is a high-performance continuous
stream processing platform that can handle high-rate data streams
and scale to hundreds of processing components. Our experiment
is conducted on NCSU virtual computing lab [5] consisting of sev-
eral hundreds of blade servers, which provides similar virtual cloud
resources as Amazon EC2 [1]. We use about 10 blade servers in our
experiments. Each host runs CentOS 5.2 64-bit with Xen 3.0.3 for
managing virtual machines.

The dataflow processing application we use is extracted from the
sample application, illustrated by Figure 2, provided by the IBM
System S dataflow processing system. The application takes real
data about weather information as input, performs conversions and
calculations on the weather data, and generates the most recent
weather information for different fruit suppliers. We perform at-
testation on three functions. Each function is provisioned by five
different service providers. We have a trusted portal node that ac-
cepts a stream of application data tuples, launches randomized data
attestation, and collects attestation results. For each function, the
portal constructs an attestation graph for pinpointing malicious ser-
vice providers and identifying attack patterns. The input data rate
is 100 tuples per second.

For comparison, we have also implemented the common consensus-
based integrity verification scheme full-time majority voting that
employs all functionally redundant service providers all the time
to cross validate each other. The scheme determines which ser-
vice providers are malicious through majority voting. It can detect
any service integrity attack behavior immediately when receiving
inconsistent results with the assumption that the number of be-
nign service providers is larger than that of malicious ones. Our
scheme relies on the same assumption to pinpoint malicious ser-
vice providers.

We evaluate our scheme using two important metrics: detection
rate and attestation overhead. The detection rate is calculated by
the number of pinpointed malicious service providers over the to-
tal number of malicious service providers that have misbehaved at
least once during one experiment run. The attestation overhead
is calculated by the number of duplicated data tuples that are re-
dundantly processed for integrity attestation and the extra dataflow
processing time incurred by the integrity attestation.

We evaluate the proposed scheme in three steps: 1) we evalu-
ate the effectiveness of our service integrity verification scheme in
terms of detecting malicious service providers under different at-
tack strategies; 2) we investigate the sensitivity of our scheme to
system parameter variations; 3) we compare our scheme with the
full-time majority voting scheme. We show that our scheme can
achieve similar attack detection performance as the full-time ma-
jority voting scheme while imposing much lower overhead.

5.2 Results and Analysis
We first evaluate the attack detection effectiveness of our scheme.

We vary the percentage of malicious service providers from 20% to
40% but guarantee that for each function, the number of benign ser-
vice providers is larger than that of malicious ones. After the portal
receives the processing result of a new data tuple, it randomly de-
cides whether to perform data attestation. Each tuple has 0.2 proba-
bility of getting attested (i.e., attestation probability pu = 0.2), and
only one attestation data is used (i.e., number of total data copies
r = 2). Figure 12 through Figure 16 show the detection rate under
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Figure 12: Service integrity attack detection rate under
non-collusion scenario where bi = 1 and ci = 0.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Attestation Traffic (# of tuple duplicates)

De
te

ct
io

n 
Ra

te

 

 

20% malicious nodes
40% malicious nodes

Figure 13: Service integrity attack detection rate under
non-collusion scenario where bi = 0.2 and ci = 0.

different integrity attack scenarios. For each attack scenario, we
plot the detection rates in the presence of different percentage of
malicious service providers. The X axis shows the number of total
attestation data used up to that point. We observe that our scheme
can detect all malicious service providers using a small number of
attestation data. Generally speaking, we need to use more attesta-
tion data to detect all malicious service providers under collusion
attack patterns.

For non-collusion attacks, we test (bi = 1, ci = 0) and (0 <
bi < 1, ci = 0) scenarios respectively. Our algorithm can correctly
identify (bi = 1, ci = 0) as NCAM attack pattern, and identify
(0 < bi < 1, ci = 0) as either NCPM or PTPC attack pattern. Note
that our algorithm cannot distinguish NCPM and PTPC because
they share the same attestation graph motif. Figure 12 is the NCAM
scenario, where malicious service providers misbehave all the time
and independently. As we can see, the detection rate reaches 100%
earlier when there are less malicious service providers. However,
the intermediate detection rate depends on the time when malicious
service providers begin to misbehave as well as the time that misbe-
havior is captured through attestation. Figure 13 shows the NCPM
scenario, where malicious service providers misbehave indepen-
dently but probabilistically. They have 0.2 probability of misbehav-
ing on a tuple (misbehaving probability bi = 0.2). Compared with
NCAM, the NCPM scenario needs longer time to reach 100% de-
tection rate. This is because malicious service providers misbehave
probabilistically, which makes it harder to catch their malicious be-
havior immediately.

For collusion attacks, we test (bi = 1, ci = 1), (0 < bi <
1, ci = 1), and (0 < bi < 1, 0 < ci < 1) scenarios respec-
tively. Our algorithm correctly identifies (bi = 1, ci = 1) as FTFC,
(0 < bi < 1, ci = 1) as PTFC, and (0 < bi < 1, 0 < ci < 1) as
either PTPC or NCPM. Figure 14 shows the FTFC scenario, where
all malicious service providers form a group and launch group col-
luding attacks all the time. They give the same output on a data
tuple. Even though our scheme randomly selects service providers
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Figure 14: Service integrity attack detection rate under col-
lusion scenario where bi = 1 and ci = 1.
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Figure 15: Service integrity attack detection rate under col-
lusion scenario where 0 < bi < 1 and ci = 1.
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Figure 16: Service integrity attack detection rate under col-
lusion scenario where 0 < bi < 1 and 0 < ci < 1.

for attestation, it can still achieve 100% detection rate under such
colluding attacks. Figure 15 shows a more intelligent attack sce-
nario of PTFC, where all malicious service providers are in col-
lusion and they have pre-agreement specifying on which tuples to
misbehave. They only misbehave on tuples with even-numbered
sequence number, so bi = 0.5. Figure 16 is the PTPC scenario,
where attackers may form collusion sometimes and act indepen-
dently otherwise. In the experiments, each attacker relies on a ran-
dom number generator to decide whether to collude. And if they
collude, they give the same results on the same input data. Our
scheme can still capture such attacks and pinpoint malicious ser-
vice components under such scenario.

Secondly, we investigate the impact of system parameters, such
as attestation probability and malicious service providers misbe-
having probability, on the effectiveness of our algorithm. We fix
the percentage of malicious service providers at 20%. Figure 17
shows the detection rate under different attestation probability in
(bi = 1, ci = 1) scenario. By increasing attestation probability,
attestation traffic has more opportunities to cover malicious service
providers and capture their misbehavior. Thus, our scheme can
reach higher detection rate earlier. However, the system overhead,
in terms of attestation traffic would increase accordingly since we
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Figure 17: Detection rate under different attestation proba-
bility in (bi = 1, ci = 1) scenario.
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Figure 18: Detection rate under different misbehaving
probability in (0 < bi < 1, ci = 0) scenario. (attestation
probability = 0.2)
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Figure 19: Computing time of clique discovery algorithm.

duplicate more tuples for attestation. Figure 18 shows the detec-
tion rate under different misbehaving probability of malicious ser-
vice providers in (0 < bi < 1, ci = 0) scenario. As we can
see, the more frequently malicious service providers misbehave,
the less attestation traffic and less time we use to detect them. In
other words, our scheme forces attackers to slow down and reduce
their attacks. Note that even with low misbehaving probability, e.g.
0.2, our scheme can pinpoint those attackers with limited attesta-
tion traffic. As long as attackers keep misbehaving, no matter how
infrequently, our scheme can detect them eventually.

We also measure the computation time of the clique discovery
algorithm. Figure 19 shows the total clique enumeration time of
attestation graphs with 1, 2, till 5 cliques. We test it with different
number of service providers in the system. It shows that given a
small number of cliques, the number of cliques in the graph does
not have much impact on clique enumeration time. Even with 100
service providers serving the same function, clique enumeration
time measurements are within two milliseconds.

We compare actual data quality with reported data quality to
evaluate whether our scheme can accurately capture data quality.
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Figure 20: Comparison of actual data quality and reported
data quality.
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Figure 21: Dataflow processing delay comparison.

Actual data quality is defined as the percentage of processed data
with correct results. The reported data quality is calculated using
equation 1 by the portal. Figure 20 shows the data quality compar-
ison under different attack patterns. It shows that for each scenario,
our scheme can give a very close estimate of actual data quality.

We compare no attestation and with attestation (r = 2) schemes
in terms of the average dataflow processing delay. The delay is
measured by the average per-tuple turnaround time (i.e., the du-
ration between the time when the first dataflow tuple enters the
system and the time when the last dataflow tuple leaves the sys-
tem over the total number of tuples processed). Figure 21 shows
the comparison in cases of different data rate. We can see that our
scheme had little delay overhead compared with the no attestation
scheme.

Thirdly, we compare our scheme with a common existing scheme,
full-time majority voting. Figure 22 compares the detection time
of our scheme with the full-time majority voting scheme in the
(bi = 1, ci = 0) attack scenario (identified as NCAM). Our scheme
was run with different attestation probabilities. Each time, two
functionally equivalent service providers are selected, while in the
full-time majority voting scheme, it sends duplicated tuples to all
the five service components. The full-time majority voting scheme
has the shortest detection time. Our scheme can achieve 100% de-
tection with a short delay, which can be shortened by increasing the
duplication probability. Note that such a short delay is acceptable
by dataflow processing applications, where we can mark a set of re-
sult data as tentative and commit the final correct results after the at-
testation [12]. Figure 23 compares the attestation overhead in terms
of number of redundant tuple duplicates processed. Our scheme
outperforms the naive full-time majority voting scheme with the
limited overhead at the expense of only a little delay toward detect-
ing all malicious service providers.
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Figure 22: Detection time comparison between our scheme
and the full-time majority voting scheme.
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Figure 23: Attestation overhead comparison between our
scheme and the full-time majority voting scheme.

6. RELATED WORK
Trust management and reputation systems for distributed sys-

tems have been studied under different contexts. In addition to
those mentioned in the introduction, the EigenTrust algorithm ap-
plies a global feedback reputation system for P2P networks, and
attempts to address the problem of peer collusion by assuming pre-
trusted peers in the network [30]. NetProbe models auction users
and transactions as a Markov Random Field tuned to detect suspi-
cious patterns that fraudsters create, and employs a belief propa-
gation mechanism to detect likely fraudsters in online auction net-
works [33]. BIND provides a fine-grained code attestation scheme
for distributed systems [38]. Alam et al. proposed a set of specifica-
tion, hardware-based trust measurement, and verification schemes
for attesting the behavior of business processes [7]. Different from
previous work, our research focuses on developing application-
level attestation schemes for pinpointing malicious nodes in large-
scale multi-tenant cloud infrastructures.

The problem of pinpointing malicious components share some
similarities with fault diagnosis in complex systems. The pioneer-
ing work is the PMC model proposed in [35]. Efficient diagnos-
ing algorithms to identify faulty nodes are also proposed [11, 16].
They either assume permanent faults, which means a faulty node
always fails a test, or assume the number of incorrect outcomes
is bounded. However, for dataflow processing in cloud infrastruc-
tures, malicious components can behave arbitrarily on any input
data, and collude with collaborators at will. The methods in fault
diagnosis systems cannot be readily applied to cloud dataflow pro-
cessing systems. Previous work on Byzantine fault detection (BFD)
generally focuses on the designing of communication protocols or
message/detector structures, so that a proper voting mechanism can
lead to the exposure of Byzantine generals [32,40]. However, BFD
generally relies on full time majority voting scheme to detect faults,
which is hardly applicable to large-scale cloud computing infras-
tructure due to issues related to scalability and deployment diffi-
culty. In contrast, our scheme provides comprehensive randomized
attestation to achieve both scalability and efficiency.



7. CONCLUSION
In this paper, we have presented the design and implementation

of RunTest, a new service integrity attestation system for verify-
ing the integrity of dataflow processing in multi-tenant cloud in-
frastructures. RunTest employs application-level randomized data
attestation for pinpointing malicious dataflow processing service
providers in large-scale cloud infrastructures. We propose a new in-
tegrity attestation graph model to capture aggregated data process-
ing integrity attestation results. By analyzing the integrity attes-
tation graph, RunTest can i) pinpoint malicious service providers,
ii) identify untruthful data processing results, and iii) discovering
colluding attack patterns in the large-scale cloud infrastructure. We
have implemented our service integrity attestation scheme within
IBM System S dataflow processing system and tested it on NCSU
virtual computing lab. Our initial experimental results show that
the proposed scheme is effective and imposes low performance im-
pact for dataflow processing in cloud infrastructures.
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