
SecureMR: A Service Integrity Assurance

Framework for MapReduce

Wei Wei, Juan Du, Ting Yu, Xiaohui Gu

Department of Computer Science, North Carolina State University

Raleigh, North Carolina, United States

{wwei5,jdu}@ncsu.edu, {gu,yu}@csc.ncsu.edu

Abstract—MapReduce has become increasingly popular as a
powerful parallel data processing model. To deploy MapReduce
as a data processing service over open systems such as service
oriented architecture, cloud computing, and volunteer computing,
we must provide necessary security mechanisms to protect the
integrity of MapReduce data processing services. In this paper,
we present SecureMR, a practical service integrity assurance
framework for MapReduce. SecureMR consists of five security
components, which provide a set of practical security mechanisms
that not only ensure MapReduce service integrity as well as to
prevent replay and Denial of Service (DoS) attacks, but also
preserve the simplicity, applicability and scalability of MapRe-
duce. We have implemented a prototype of SecureMR based
on Hadoop, an open source MapReduce implementation. Our
analytical study and experimental results show that SecureMR
can ensure data processing service integrity while imposing low
performance overhead.

I. INTRODUCTION

MapReduce is a parallel data processing model, proposed

by Google to simplify parallel data processing on large clus-

ters [1]. Recently, many organizations have adopted the model

of MapReduce, and developed their own implementations of

MapReduce, such as Google MapReduce [1] and Yahoo’s

Hadoop [2], as well as thousands of MapReduce applications.

Moreover, MapReduce has been adopted by many academic

researchers for data processing in different research areas,

such as high end computing [3], data intensive scientific

analysis [4], large scale semantic annotation [5] and machine

learning [6].

Current data processing systems using MapReduce are

mainly running on clusters belonging to a single administration

domain. As open systems, such as Service-Oriented Architec-

ture (SOA) [7], [8], Could Computing [9] and Volunteer Com-

puting [10], [11], increasingly emerge as promising platforms

for cross-domain resource and service integration, MapReduce

deployed over open systems will become an attractive solution

for large-scale cost-effective data processing services. As a

forerunner in this area, Amazon deploys MapReduce as a

web service using Amazon Elastic Compute Cloud (EC2) and

Amazon Simple Storage Service (Amazon S3). It provides a

public data processing service for researchers, data analysts,

and developers to efficiently and cost-effectively process vast

amounts of data [12]. However, in open systems, besides

communication security threats such as eavesdropping attacks,

replay attacks, and Denial of Service (DoS) attacks, MapRe-

duce faces a data processing service integrity issue since

service providers in open systems may come from different

administration domains that are not always trustworthy.

Several existing techniques such as replication (also known

as double-check), sampling, and checkpoint-based verification

have been proposed to address service integrity issues in

different computing environments like Peer-to-Peer Systems,

Grid Computing, and Volunteer Computing (e.g., [13]–[19]).

Replication-based techniques mainly rely on redundant com-

putation resources to execute duplicated individual tasks, and

a master (also known as supervisor) to verify the consistency

of results. Sampling techniques require indistinguishable test

samples. The checkpoint-based verification focuses on sequen-

tial computations that can be broken into multiple temporal

segments.

In this paper, we present SecureMR, a practical service

integrity assurance framework for MapReduce. SecureMR

provides a decentralized replication-based integrity verifica-

tion scheme for ensuring the integrity of MapReduce in

open systems. Our scheme leverages the unique properties

of the MapReduce system to achieve effective and practical

security protection. First, MapReduce provides natural redun-

dant computing resources, which is amenable to replication-

based techniques. Moreover, the parallel data processing of

MapReduce mitigates the performance influence of executing

duplicated tasks. However, in contrast to simple monolithic

systems, MapReduce often consists of many distributed com-

puting tasks processing massive data sets, which presents new

challenges to adopt replication-based techniques. For example,

it is impractical to replicate all distributed computing tasks for

consistency verification purposes. Moreover, it is not scalable

to perform centralized consistency verification over massive

result data sets at a single point (e.g., the master).

To address these challenges, our scheme decentralizes the

integrity verification process among different distributed com-

puting nodes who participate in the MapReduce computation.

Our major contributions are summarized as follows:

• We propose a new decentralized replication-based in-

tegrity verification scheme for running MapReduce in

open systems. Our approach achieves a set of security

properties such as non-repudiation and resilience to DoS

attacks and replay attacks while maintaining the data

processing efficiency of MapReduce.

• We have implemented a prototype of SecureMR based on



Hadoop [2], an open source implementation of MapRe-

duce. The prototype shows that the security compo-

nents in SecureMR can be easily integrated into existing

MapReduce implementations.

• We conduct security analytical study and experimental

evaluation of performance overhead based on the proto-

type. Our analytical study and experimental results show

that SecureMR can ensure the service integrity while

imposing low performance overhead.

The rest of the paper is organized as follows. We intro-

duce the MapReduce data processing model in Section II. In

Section III, we discuss the security vulnerabilities of running

MapReduce in open systems, and state assumptions and attack

models. Section IV presents the design details of SecureMR.

Section V provides the analytical and experimental evaluation

results. Section VI compares our work with related work.

Finally, the paper concludes in Section VII.

II. BACKGROUND

As a parallel data processing model, MapReduce is designed

to run in distributed computing environments. Figure 1 depicts

the MapReduce data processing reference model in such an

environment. The data processing model of MapReduce is

composed of three types of entities: a distributed file system

(DFS), a master and workers. The DFS provides a distributed

data storage for MapReduce. The master is responsible for

job management, task scheduling and load balancing among

workers. Workers are hosts who contribute computation re-

sources to execute tasks assigned by the master. The basic

data processing process in MapReduce can be divided into

two phases: i) a map phase where input data are distributed

to different distributed hosts for parallel processing; and ii)

a reduce phase where intermediate results are aggregated

together. To illustrate the two-phase data processing model,

we use a typical example, WordCount [20] that counts how

often words occur. The application is considered as a job of

MapReduce submitted by a user to the master. The input text

files of the job are stored in the DFS in the form of data

blocks, each of which is usually 64MB. The job is divided

into multiple map and reduce tasks. The number of map tasks

depends on the number of data blocks that the input text files

have. Each map task only takes one data block as its input.

During the map phase, the master assigns map tasks to

workers. A worker is called a mapper when it is assigned a

map task. When a mapper receives a map task assignment

from the master, the mapper reads a data block from the

DFS, processes it and writes its intermediate result to its local

storage. The intermediate result generated by each mapper is

divided into r partitions P1, P2, ..., P r using a partitioning

function. The number of partitions is the same with the number

of reduce tasks r. During the reduce phase, the master assigns

reduce tasks to workers. A worker is called a reducer when

it is assigned a reduce task. Each reduce task specifies which

partition a reducer should process. After a reducer receives a

reduce task, the reducer waits for notifications of map task

completion events from the master. Upon notified, the reducer

M A R AM B
Fig. 1. The MapReduce data processing reference model.

reads its partition from the intermediate result of each mapper

who finishes its map task. For example, in Figure 1, RA reads

P1 from MA, MB and other mappers. After the reducer reads

its partition from all mappers, the reducer starts to process

them, and finally each reducer outputs its result to the DFS.

In fact, the MapReduce data processing model supports to

combine multiple map and reduce phases into a MapReduce

chain to help users accomplish complex applications that

cannot be done via a single Map/Reduce job. In a MapReduce

chain, mappers will read the output of reducers in the preced-

ing reduce phase, except mappers in the first map phase, which

read data from the DFS. Then, the data processing enters into

the map phase with no difference from the normal map phase.

Similarly, reducers will read intermediate results from mappers

in the preceding map phase and generate outputs to DFS or

their local disks like what mappers do, which is different from

a single Map/Reduce data processing model. For reducers in

the middle of data processing, they may store their results in

their local disks to improve the overall system performance.

Eventually, the final results go into the DFS.

III. SYSTEM MODEL

A. MapReduce in Open Systems

MapReduce can be implemented to run in either closed

systems or open systems. In closed systems, all entities belong

to a single trusted domain, and all data processing phases are

executed within this domain. There is no interaction with other

domains at all. Thus, security is not taken into consideration

for MapReduce in closed systems. However, MapReduce in

open systems presents two significant differences:

• The entities in MapReduce come from different domains,

which are not always trusted. Furthermore, they may be

compromised by attackers due to different vulnerabilities

such as software bugs, and careless administration.

• The communications and data transferred among enti-

ties are through public networks. It is possible that the



communications are eavesdropped, or even tampered to

launch different attacks.

Therefore, before MapReduce can be deployed and operate in

open systems, several security issues need to be addressed, in-

cluding authenticity, confidentiality, integrity, and availability.

In this paper, we focus on protecting the service integrity for

MapReduce. Since the data processing model of MapReduce

includes three types of entities and two phases, to provide the

service integrity protection for MapReduce, it naturally boils

down to the following three steps:

1) Provide mappers with a mechanism to examine the

integrity of data blocks from the DFS.

2) Provide reducers with a mechanism to verify the au-

thenticity and correctness of the intermediate results

generated by mappers.

3) Provide users with a mechanism to check if the final

result produced by reducers is authentic and correct.

The first step ensures the integrity of inputs for MapReduce

in open systems. The second step provides reducers with the

integrity assurance for their inputs. The third step guarantees

the authenticity and correctness of the final result for users.

Finally, the combination of three ensures the MapReduce data

processing service integrity to users. Since the first step has

been addressed by existing techniques in [21]–[23], we will

go through the rest of steps in the following sections.

B. Assumptions and Attack Models

MapReduce is composed of three types of entities: a DFS, a

master and workers. The design of SecureMR is built on top of

several assumptions that we make on these entities. First, each

worker has a public/private key pair associated with a unique

worker identifier. Workers can generate and verify signatures,

and no worker can forge other’s signatures. Second, the master

is trusted and its public key is known to all, but workers are not

necessarily trusted. Third, a good worker is honest and always

returns the correct result for its task while a bad worker may

behave arbitrarily. Fourth, the DFS for MapReduce provides

data integrity protection so that each node can verify the

integrity of data read from the DFS. Fifth, if a worker is good,

then others cannot tamper its data (otherwise, the worker is

compromised and should be considered as a bad one). Since

each worker can have its own access control mechanism to

protect data from being changed by unauthorized workers, the

assumption is reasonable.

Based on the above assumptions, we concentrate on the

analysis of malicious behavior from bad workers. In open

systems, a bad worker may cheat on a task by giving a wrong

result without computation [13] or tamper the intermediate

result to mess up the final result. Moreover, a bad worker may

launch DoS attacks against other good workers. For example,

it may keep sending requests to a good worker and asking

for intermediate results or it may impersonate the master to

send fake task assignments to workers. Furthermore, it may

initiate replay attacks against good workers by sending old task

assignments to keep them busy. In addition, it may eavesdrop

and tamper the messages exchanged between two entities so

that the final result generated may be compromised. Here, we

classify malicious attacks into the following two models:

Non-collusive malicious behavior. Workers behave inde-

pendently, which means that bad workers do not necessarily

agree or consult with each other when misbehaving. A typical

example is that, when they return wrong results for the same

input, they may return different wrong results.

Collusive malicious behavior. Workers’ behavior depends

on the behavior of other collusive workers. They may com-

municate, exchange information, and make an agreement with

each other. For example, when they are assigned tasks by the

master, they can know if their colluders receive tasks with the

same input blocks. If so, they return the same results so that

there is no inconsistency among collusive workers. By doing

so, they try to avoid being detected even if they return wrong

results.

IV. SYSTEM DESIGN

In this section, we present the detailed design of our

decentralized replication-based integrity verification scheme.

A. Design Overview

SecureMR enhances the basic MapReduce framework with

a set of security components, illustrated by Figure 2. To

validate the integrity of map/reduce tasks, our basic idea is to

replicate some map/reduce tasks and assign them to different

mappers/reducers. Any inconsistent intermediate results from

those mappers/reducers reveal attacks. However, due to scal-

ability and efficiency reason, though the master is trusted in

our design, consistency verification should not be carried out

only by the master. Instead, in our design, this responsibility

is further distributed among workers. Our design must ensure

properties such as non-repudiation and resilience to DoS and

replay attacks, as well as efficiency. Further, our design should

preserve the existing MapReduce mechanism as much as

possible so that it can be easily implemented and deployed

with current MapReduce systems. We introduce the design of

SecureMR from two aspects: architecture and communication.

Architecture Design. Figure 2(a) shows the architecture

design of SecureMR, which comprises five security compo-

nents: Secure Manager, Secure Scheduler, Secure Task Ex-

ecutor, Secure Committer and Secure Verifier. They provide

a set of security mechanisms: task duplication, secure task

assignment, DoS and replay attack protection, commitment-

based consistency checking, data request authentication, and

result verification.

Secure Manager and Secure Scheduler are deployed in a

master mainly for task duplication, secure task assignment,

and commitment-based consistency checking. Secure Task

Executor is running in both mappers and reducers to prevent

DoS and replay attacks that exploit fake or old task assign-

ments. In mappers, Secure Committer takes the responsibility

of generating commitments for the intermediate results of

mappers and sending them to Secure Manager in the master to

complete the commitment-based consistency checking. Secure



U s e r A p p l i c a t i o n sS e c u r e M R R e d u c e rS e c u r eT a s k E x e c u t o rM a s t e rS e c u r eS c h e d u l e rM a p p e rS e c u r eT a s k E x e c u t o r S e c u r eV e r i f i e rS e c u r eM a n a g e rS e c u r eC o m m i t t e r O p e n S y s t e m sG r i d C o m p u t i n g , V o l u n t e e r C o m p u t i n g a n d P 2 P C o m p u t i n gG d C o p u g , V o u e e C o p u g a d C o p u gN e t w o r k I n f r a s t r u c t u r e
(a) SecureMR Architecture Design.

5 . C o m p a r eM a s t e r1 s eM A …B12 1 0 . V e r i f yM A R A ………B …… …… M B…B n …… R e d u c e rR e d u c eM a pM a p p e r R e d u c e rR e d u c eP h a s eD F S M a pP h a s e
(b) SecureMR Communication Design.

Fig. 2. SecureMR Design Overview.

Verifier running in a reducer collaborates with Secure Manager

to verify a mapper’s intermediate result. For simplicity, we

quote all components using names without Secure in the

following sections, for example Manager, Scheduler, Task

Executor and so on.

Communication Design. Figure 2(b) shows how the entities

in SecureMR communicate with each other to provide security

protection for MapReduce. Communications among them are

further organized into two protocols: Commitment protocol

and Verification protocol. In Figure 2(b), communications from

1 to 5 form the commitment protocol while communications

from 6 to 10 form the verification protocol.

In the commitment protocol, to avoid checking the interme-

diate results directly (which is expensive), mappers only send

commitments (which will be described in detail later) to the

master, which can be used to detect inconsistency efficiently.

However, this introduces another vulnerability. Mappers may

send the master the right commitments but the wrong results

to reducers. For this reason, we further ask reducers to check

the consistency between the commitment and the result in the

verification protocol. Note that this does not add much extra

effort to the reducer as it has to retrieve the intermediate result

for data processing anyway.

In the following two sections, we will discuss the details

of communications between the five security components of

SecureMR, which happen in the commitment and verification

protocols.

B. Commitment Protocol

Map Loc sig

Map P1 Pr sigM

KpubM

Fig. 3. The Commitment Protocol.

As mentioned in Section III-B, the master is a trusted entity.

However, since the intermediate result is usually tremendous, it

is impractical to require the master to check all intermediate re-

sults generated by different map tasks in different jobs, which

will overload the master and lead to low system performance.

Thus, instead of examining intermediate results directly, the

master requires mappers to generate commitments for their

intermediate results, and then check commitments [13].

1) Protocol design: Since we assume that the DFS provides

data integrity protection, we do not discuss the communi-

cations between mappers and the DFS. Figure 3 shows the

communications between a mapper and the master in the

commitment protocol. The specific steps are described as

follows.

Assign. The Scheduler in the master sends the Assign

message to the Task Executor in a mapper to assign a map task

to the mapper. Regarding task duplication, the Scheduler may

assign the same map task to different mappers. For example,

in Figure 2(b), MA and MB are assigned the same map

task. The Assign message includes a monotonically increasing

identity IDMap of a map task and an input data block location

DataLoc, which is signed by the master and encrypted using

KpubM , the public key of the mapper. After the Task Executor

receives the task assignment message, the Task Executor

decrypts and verifies the signature of the message. Then, the

Task Executor reads an input block according to DataLoc from

the DFS. In Figure 2(b), since MA and MB receive the same

task, they both read the same data block B2 from the DFS.

Commit. After the mapper processes the input block, the

Committer of the mapper makes a commitment to the master

by generating a hash value for each partition of its intermediate

result and signing those hash values. We use {...}sigM to

denote a signed message of a mapper. When the Manager

of the master receives the commitment, the Manager verifies

the signature using the mapper’s public key KpubM . If the

Manager has received more than one commitments for the

same map task from different mappers, the Manager will

compare new commitment with an old one to see if they are



consistent with each other.

Note that in this paper, we focus on expose suspicious

activities. How to exactly pinpoint malicious ones is the next

step and some existing techniques may be applied [24].

2) Protocol analysis: In this protocol, since the task assign-

ment message is signed by the master and encrypted using

the mapper’s public key, the integrity and confidentiality of

the Assign message is well protected. It also ensures that the

mapper is the only entity that can decrypt the Assign message

and the master is the only entity that can create it. In this

case, malicious mappers cannot know task assignments of

other good mappers or arbitrarily assign fake tasks to a mapper

to launch DoS attacks. Furthermore, to prevent replay attacks

which send old task assignments, a monotonically increasing

identity IDMap is associated with each map task, which is

automatically generated using timestamp or sequence number

by the Scheduler. The Task Executor in the mapper records

the IDMap for the last map task that it processed. In this

way, the Task Executor can determine if a task assignment is

an old one by comparing the IDMap with the latest recorded

IDMap. Regarding the Commit message, the integrity of the

commitment is assured since the Commit message is signed

using the mapper’s private key. Moreover, IDMap is needed

so that the master knows which map task this commitment is

for.

Reduce sig

M Seq Map Reduce sigR

Map Data sigM

Map Data sigM

M pubM Map Pi Reduce M sig

KpubR

M pubR Map Reduce sig

M pubM Map Pi Reduce M sig KpubR

Fig. 4. The Verification Protocol.

C. Verification Protocol

In the verification protocol, reducers further help the master

to verify if intermediate results generated by mappers are

consistent with commitments submitted to the master. The

verification protocol is built on existing MapReduce com-

munication mechanisms. There are no additional messages

introduced to MapReduce.

1) Protocol design: Figure 4 shows how the master, a

mapper, and a reducer communicate with each other in the

verification protocol. We illustrate each step as follows.

Assign. The master signs the Assign message and encrypts

it using KpubR, the public key of a reducer. In the message,

IDReduce is a monotonically increasing identity of a reduce

task, and Pi indicates the partition of intermediate results

that the reducer will process. When the Task Executor in the

reducer receives the task assignment, the Task Executor first

verifies the integrity and authenticity of the task assignment.

Then, the Verifier of the reducer will wait for notifications

from the Manager.

Notify. When the Manager receives the completion event

with a commitment from the Committer of a mapper, the

Master sends a notification to the Verifier of each reducer,

which includes the mapper’s address ADM , the mapper’s

public key KpubM , IDMap, the ticket T icketM for the mapper

signed by the master and the hash value HPi for the Pi
partition committed by the Committer. The ticket T icketM is

used for data request authentication in the Request message.

Request. After the Verifier in a reducer gets notified, the

Verifier sends a data request to the Committer of the mapper,

which includes the ticket T icketM as evidence of an authentic

data request authorized by the master, the reducer’s public key

KpubR, a sequence number ReqSeq and Pi which indicates

which partition is requested.

Response. After the Committer verifies the authenticity

of the request by verifying the ticket from the master and

the reducer’s signature, the mapper sends a response to the

Verifier, which includes IDMap, Pi, the data Data and

HData, the hash value of Data. To verify the integrity of

the response, the Verifier first verifies the signature in the

Response message, then regenerates a hash value H ′

Data for

the data, and compares HData with H ′

Data to make sure that

the data is not tampered during the Response communication.

Finally, the Verifier compares H ′

Data with HPi committed to

the master to check if any inconsistency occurs.

Report. When the Verifier detects an inconsistency, the

Verifier sends two signatures as evidence to the Manager

to report the inconsistency. After the Manager receives and

verifies the two signatures, the Manager can compare HData

with HPi to confirm the reported inconsistency.

2) Protocol analysis: Similar to the commitment protocol,

the reduce task assignment mechanism prevents both DoS and

replay attacks against reducers. However, in the verification

protocol, a mapper faces DoS attacks when others request

data from it. To countermeasure this kind of DoS attacks,

the mapper needs to authenticate data requests from reducers.

The data request authentication is achieved by requiring that

a reducer shows a ticket from the master. If the mapper sees a

ticket at the first time, the mapper can make sure that the

request must come from an authorized reducer who holds

the ticket issued by the master. However, if the first attempt

of data request fails somehow, attackers may get the ticket

by eavesdropping the communications between the mapper

and the reducer. In this case, since the mapper will record

the latest request sequence number ReqSeq associated with a

ticket, the mapper will check if this data request is an old

one by comparing the two ReqSeq numbers when the mapper

receives another data request with the same ticket. In this way,

replay attacks can be defeated.



Commit

Master
Verify

Master

M R d M R d V ifiMapper Reducer Mapper Reducer Verifier

Fig. 5. SecureMR Extension for MapReduce Chain.

D. SecureMR Extension

So far, we have discussed how SecureMR provides reducers

with a mechanism to verify the authenticity and correctness

of the intermediate results generated by mappers. In this

section, we present how SecureMR applies the replication-

based verification scheme to reducers and MapReduce chain

to provide users with a mechanism to check if the final result

produced by reducers is authentic and correct.

Extension for Reducers. Similar to mappers, the Scheduler

in the master may duplicate reduce tasks and assign them to

multiple reducers. Reducers assigned the same task will read

the same partition of the intermediate results from mappers.

However, we observe that reducers are not configured with a

Secure Committer component in current architecture described

in Figure 2(a), which means they cannot make a commitment

to the master. In order for reducers to make commitments,

we can easily deploy a Secure Committer component for

reducers. Another problem to apply the verification scheme

to reducers is that there are no other entities to complete

the verification protocol since reducers are in the last phase.

To address this problem, we extend the MapReduce model

to include an additional phase called Verify phase. In the

verify phase, the master involves several workers with a Secure

Verifier component, called verifiers to complete the verification

protocol. Another alternative is to install a Secure Verifier

component into MapReduce user applications and ask them

to complete the verification protocol by themselves after their

jobs are done.

Extension for MapReduce Chain. Similarly, the verifica-

tion scheme can be applied to MapReduce chain since each

map and reduce share the similar procedure of data processing.

Figure 5 shows the design overview of how SecureMR applies

the verification scheme to MapReduce chain. As we can see

from the figure, the design is like a Commit-Verify chain

between the master, mappers and reducers. If mappers make

commitments to the master, reducers will take the role of

verifiers to verify the consistency between intermediate results

and commitments of mappers. If reducers make commitments

to the master, mappers will take the role of verifiers to verify

the consistency between outputs and commitments of reducers

except the last phase, Verify phase. The verify phase has been

discussed in the above. In order for mappers to be able to

fulfill the verification protocol, the only thing that we need to

do is to plug a Secure Verifier component into each mapper.

V. ANALYSIS AND EVALUATION

In this section, we discuss the security properties of Se-

cureMR, and then evaluate the performance overhead both

analytically and experimentally. Note that in Section V-A and

V-B, we focus on the discussion for mappers due to the

similarity of the analysis between mappers and reducers.

A. Security Analysis

There are two kinds of inconsistencies for mappers in

MapReduce. One is an inconsistency between results returned

by different mappers that are assigned the same task. The other

is an inconsistency between the commitment and the result

generated by a mapper. The former can only be detected by

the master in the commitment protocol and the latter can only

be detected by a reducer in the verification protocol. We claim

that SecureMR provides the following two properties. We also

provide arguments for our statement in the following.

• No False Alarm. For any inconsistency detected by Se-

cureMR, it must happen between good and bad mappers,

between bad mappers or on a bad mapper. It cannot occur

between good mappers or on a good mapper.

• Non-Repudiation. For any inconsistency that can be

observed by a good reducer or the master, SecureMR

can detect it and present evidence to prove it.

Arguments of No False Alarm. The assumptions in Section

III-B guarantee that good mappers always produce correct and

consistent results. We prove by contradiction that SecureMR

provides No False Alarm property in terms of the two kinds

of inconsistencies.

First, suppose that an inconsistency between two good

mappers is detected by the master. In this case, the master must

get two different sets of hash values from the commitments of

two good mappers, which means that the two commitments the

master received must be tampered somehow since two good

mappers will not produce inconsistent results. However, if the

master accepted a commitment of a mapper, the master must

have confirmed the integrity and freshness of the commitment.

Thus, the commitment is neither a bad commitment nor an old

one. From the arguments, we can infer that there is no way to

tamper a commitment of a mapper without being detected by

the master. And the hypothesis implies that the master already

accepted the commitments, which means it is impossible that

the commitments that the master received have been tampered.

Therefore, the hypothesis that an inconsistency between two

good mappers is detected by the master is not true.

Second, suppose that an inconsistency between the com-

mitment and the intermediate result of a good mapper is

detected by a reducer. If the reducer is good, it can be

inferred that the message received by the reducer must be

tampered somehow. Since the reducer knows IDMap and Pi,
the reducer will not accept the message unless the reducer

confirms the integrity of the message. IDMap can also be

the proof of the freshness of the signatures. For the same

reason, it is impossible that the message has been tampered.

Thus, the case that an inconsistency on a good mapper is



detected by a good reducer cannot be true. If the reducer is

a bad reducer, the reducer can report an inconsistency even if

there is no inconsistency. But, the verification protocol requires

that the reducer present the evidence to the master, which is

described in Figure 4. And the reducer cannot forge evidence

without being detected by the master. Hence, the case that

an inconsistency on a good mapper is detected by a bad

reducer cannot be true, either. Therefore, the hypothesis that

an inconsistency on a good mapper is detected by a reducer

is not true.

Arguments of Non-Repudiation. We prove by contradic-

tion that SecureMR provides Non-Repudiation property in

terms of the two kinds of inconsistencies. Suppose that an

inconsistency is observed by the master or a good reducer.

Both the master and the good reducer definitely report the

inconsistency since they both tell the truth. Meanwhile, the

master holds the commitments of workers, which cannot be

denied, and the good reducer has the signatures of mappers.

They both can present the commitments or the signatures

of mappers to prove the inconsistency they detect. Thus,

SecureMR provides the Non-Repudiation property in terms of

the two kinds of inconsistencies.

B. Attacker Behavior Analysis

We analyze the behavior of the following attackers under

the two kinds of behavior models defined in Section III-B.

When we analyze the collusive attacks, we consider the worst

case that all malicious entities are colluding with one another.

• Periodical Attackers: they misbehave with a certain prob-

ability pm. Since a naive attacker is a special case of

periodical attacker with pm equal to 1. Thus, we discuss

these two kinds of attacker’s behavior together.

• Strategic Attackers: with the assumption that they know

the duplication strategy, they may not behave maliciously

until they definitely know that they will not be caught

due to the collusion, which means that all duplicates are

assigned to the collusive group.

Definition V.1. (Detection Rate) We define the detection

rate, denoted Drate, as the probability that the inconsistency

between results caused by the misbehavior of a mapper is

detected during l jobs.

Note that due to the paper space limit, we do not discuss

the inconsistency between the commitment and the result of a

mapper.

Since each map task processes one block, the duplication

of a map task is the same as the duplication of a block. The

following discussion may use both terms, block duplication

and map task duplication exchangeably. Suppose MapReduce

consists of one master and n workers, and m out of n workers

(m < n) are malicious workers. For simplicity, we assume

that the input of each job has the same number of blocks b,

no two blocks are the same and each worker only processes

one task in one job. The percentage of blocks that will be

duplicated in each job is pb. Thus, the number of duplicated

blocks is b · pb. SecureMR randomly chooses one block from

the original b blocks to duplicate for each duplication. It uses a

naive task scheduling algorithm, which launches all map tasks

together, including duplicated map tasks. In the following, we

analyze the detection rate for periodical attacker without and

with collusion, and the probability that strategic attackers can

misbehave in a job.

Periodical attackers without collusion. For simplicity, we

assume that they return different results when they misbehave

on the same input. Thus, without collusion, the detection rate

of a malicious mapper is the same as the probability that the

block processed by the mapper is duplicated. Therefore, the

detection rate is calculated as follows:

Drate = 1 − (1 − (1 − (1 − 1/b)b·pb ) · pm)l (1)

In Equation 1, (1− (1−1/b)b·pb) ·pm denotes the probability

that the misbehavior of the malicious mapper is detected

during one job. Figure 6 shows detection rate for a naive

attacker without collusion, where b is equal to 20 and l is 5, 10

and 15. Figure 7 shows detection rate for a periodical attacker

with 0.5 misbehaving probability. Both of them demonstrate

that as the number of tasks that a malicious mapper processes

increases, high detection rate can be achieved even if the

duplication rate is only 20%, which means that the chance

for an attacker to cheat without being detected in the long run

is very low.

Periodical attackers with collusion. With collusion, the

maximum number of entities that collude with each other

is m. Let P (Bi) denote the probability that a block will

be duplicated i times and P (D) denote the probability that

the inconsistency caused by the misbehavior of a malicious

mapper will be detected. In this case, the detection rate is:

Drate = 1 − (1 −

b·pb
∑

i=0

P (D|Bi) · P (Bi))
l

= 1 − (1 −

b·pb
∑

i=0

P (D|Bi) ·
(b · pb

i

)

(
1

b
)i · (1 −

1

b
)b·pb−i)l

(2)

where

P (D|Bi) =











0 if i = 0,

(1 −
(

m−1

i

)

/
(

n−1

i

)

) · pm if i > 0 and i < m,

pm if i >= m.

In Equation 2, the detection rate is computed using the

law of total probability. The inconsistency cannot be detected

only if all duplicates for the block that the malicious mapper

processes are assigned to its collusive parties. P (D|Bi) is the

probability that the inconsistency is detected when the block

that the malicious mapper processes is duplicated i times.

If i >= m, at least one duplicate will not be assigned to

its collusive parties. Figure 8 shows how the detection rate

changes as the duplication rate and the percentage of malicious

workers change given n, pm, b, l equals to 50, 0.5, 20 and

15, respectively. From the figure, we observe that as long as

the majority of workers are good, 90% detection rate can be

achieved with 40% duplication rate.

Strategic attackers. Since the misbehavior of attackers

cannot be detected, we discuss the probability P (F ) that the



1

1.2

0.8

1

R
a

te

0.6

e
c
ti

o
n

R

0 2

0.4

D
e
te

0

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Duplication RateDuplication Rate

l=5 l=10 l=15

Fig. 6. Detection Rate for Non-
Collusion Naive Attacker.

1

1.2

0.8

1

R
a

te

0.6

e
c
ti

o
n

R

0 2

0.4

D
e
te

0

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Duplication RateDuplication Rate

l=5 l=10 l=15

Fig. 7. Detection Rate for Non-
Collusion Periodical Attacker.

1

1.2

0.8

1

R
a

te

0.6

e
c
ti

o
n

R

0 2

0.4

D
e
te

0

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Duplication RateDuplication Rate

m/n=0.05, m/n=0.10 m/n=0.15

Fig. 8. Detection Rate for Collusion
Periodical Attacker.

1

1.2

ty

0.8

1

o
b

a
b

il
it

0.6

a
v

e
 P

r
o

0 2

0.4

M
is

b
e
h

a

0

0.2M

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Duplication RateDuplication Rate

m/n=0.05 m/n=0.10 m/n=0.15

Fig. 9. Misbehaving Probability vs
Duplication Rate.

intermediate result that reducers receive is tampered, which is

the same as the misbehaving probability of a strategic attacker.

In this case, we analyze the strategic attacker’s behavior in the

following two steps:

1) The master assigns b input blocks to b mappers before

any duplication is made.

2) The master duplicates b · pb input blocks after assign-

ments for the original b blocks. For each duplication, the

master randomly chooses one block from the original b
blocks to duplicate.

Therefore, P (F ) can be calculated by the following formula:

P (F ) =

x
∑

i=0

P (F |Ei) · P (Ei) =

x
∑

i=0

P (Ai) · P (Mi) · P (Ei)

=
x

∑

i=0

(i/b)b·pb · (
(m − i

b · pb

)

/
(n − b

b · pb

)

) ·
(m

i

)

·
(n − m

b − i

)

/
(n

b

)

(3)

where

x =

{

m if m < b,

b if m >= b.

Note that Ei and P (Ei) denote the event that mappers contain

i collusive mappers before input block duplication and the

probability that Ei happens, respectively. P (F |Ei) denotes

the probability that the result is tampered by some mappers

when Ei occurs. P (Ai) and P (Mi) denote the probability

that all duplicated blocks b · pb belong to the set of blocks

that the i collusive mappers process and the probability that

all duplicated blocks b · pb are assigned to the rest of mi’s

collusive workers. Figure 9 shows the misbehaving probability

of a strategic attacker when duplication rate and the percentage

of malicious workers change, where n, b, l equals to 50, 20

and 15, respectively. The result implies that the misbehaving

probability of a strategic attacker is pretty low even if the

duplication rate is only 10%.

Since strategic attackers can exchange information of tasks

with their collusive entities when they decide whether or not to

cheat in tasks, sometimes they can misbehave without being

detected. In order to address this vulnerability, we propose

a commitment-based task scheduling algorithm. Basically, the

commitment-based task scheduling algorithm will launch the

duplicates of a task only after the task has been committed. In

this case, when a strategic attacker initially processes a task,

there is no way for it to know any duplication information

about the task that it handles because no duplicated tasks

have been assigned yet. Later when its collusive entities

receive the duplicated tasks, they need to return the same

results with the initial result. Otherwise, inconsistency will

be produced, which can be detected by the master. Thus,

the strategic attacker cannot misbehave because it is always

possible that the misbehavior could be detected as long as

there are duplicated tasks. However, intuitively, it delays the

execution of duplicated tasks, which may bring down the

performance of the system. In the following section, we will

evaluate the performance overhead of SecureMR under both

the naive task scheduling algorithm and the commitment-based

task scheduling algorithm.

C. Experimental Evaluation

System Implementation. We have implemented a proto-

type of SecureMR based on one existing implementation of

MapReduce, Hadoop [2]. In our prototype, we have imple-

mented both naive task scheduling algorithm and commitment-

based task scheduling algorithm mentioned in previous sec-

tions. Regarding consistency verification, we have imple-

mented a non-blocking replication-based verification scheme,

which means that reducers do not need to wait for all dupli-

cates of a map task to finish and users do not need to wait for

all duplicates to finish. Finally, users will be informed if an

inconsistency is detected after all duplicates finish.

Experiment Setup. We run our experiments on 14 hosts

provided by Virtual Computing Lab (VCL), a distributed

computing system with hundreds of hosts connected through

campus networks [25]. The Hadoop Distributed File System

(HDFS) is also deployed in VCL. We use 11 hosts as workers

that offer MapReduce services and one host as a master,

and HDFS uses 13 nodes, not including the master host. We

adopt the duplication strategy discussed in Section V-B. All

hosts used have similar hardware and software configurations

(2.66GHz Intel Intel(R) Core(TM) 2 Duo, Ubuntu Linux 8.04,

Sun JDK 6 and Hadoop 0.19). All experiments are conducted

by using Hadoop WordCount application [20].

Performance Analysis. First, we estimate the additional

overhead introduced by SecureMR in Table I and II. Table I

shows the performance overhead of SecureMR on the master,

a mapper and a reducer. Table II shows the additional bytes

to be transmitted on each communication between them. Note

that there are no additional messages introduced. Here, T and



250

300

200

250

m
e
 (

S
)

150

n
se

 T
im

50

100

R
e
sp

o

0

50

0

20 25 30 35 40

Number of Reduce TasksNumber of Reduce Tasks

MapReduce SecureMR without duplication

Fig. 10. Response Time vs Number
of Reduce Tasks.

250

300

200

250

m
e
 (

S
)

150

n
se

 T
im

50

100

R
e
sp

o

0

50

0

200 400 600 800 1000

Data Size (M)Data Size (M)

MapReduce SecureMR without duplication

Fig. 11. Response Time vs Data Size.

250

300

200

250

m
e
 (

S
)

150

n
se

 T
im

50

100

R
e
sp

o

0

50

0

0 0.2 0.4 0.6 0.8

Duplication RateDuplication Rate

MapReduce Naive SecureMR C-based SecureMR

Fig. 12. Response time vs Duplica-
tion Rate.

300

350

250

m
e
 (

S
)

150

200

n
se

 T
im

100

R
e
sp

o

0

50

0

20 25 30 35 40

Number of Reduce TasksNumber of Reduce Tasks

MapReduce SecureMR with 40% duplication

Fig. 13. Response time vs Number
of Reduce Tasks.

Type Cost Estimation Estimated Time

Master 4 · Tsig + 3 · TEpub + Tver 20ms

Mapper 2 ·Tsig +TDpub +3 ·Tver +
r · Thash

14+(r +1) ·40ms

Reducer 2 ·TDpub +3 ·Tver +Thash 51ms

TABLE I
PERFORMANCE OVERHEAD ON ENTITIES

Type Cost Estimation Additional Bytes

Master-Mapper 2 · Dsig + r · Dhash 256+r ∗20bytes

Master-Reducer 3·Dsig +Dhash+Dpub 532bytes

Mapper-Reducer 3·Dsig +Dhash+Dpub 532bytes

TABLE II
COMMUNICATION OVERHEAD BETWEEN ENTITIES

D denote the time and data transmission cost for different

secure operations such as encryption, decryption, signature,

verification and hash. r is the number of reducers. The size

of each partition is around 14MB. We use SHA-1 to generate

hash values, and RSA to create signature or encrypt/decrypt

data. The estimation shows that the cost of communication is

negligible and the cost on each entity is small.

We also conduct experiments to evaluate the performance

overhead caused by SecureMR. Figure 10 shows the response

time versus the number of reduce tasks under two scenarios,

MapReduce and SecureMR without duplication, where the

number of map tasks is 60 and the data size is 1GB. The result

shows that the overhead of SecureMR is below 10 seconds,

which is small compared with the response time which is about

250 seconds. Figure 11 shows the response time versus the

data size, where the number of map tasks is 60 and the number

of reduce tasks is 25. Since the data size only affects the time

to generate hash values, it shows a similar overhead in Figure

10.

Regarding the performance overhead by executing dupli-

cated tasks, we compare the response time in three cases:

MapReduce, SecureMR with naive scheduling, and SecureMR

with commitment-based scheduling. Figure 12 shows the re-

sponse time versus the duplication rate. Since we adopts a

non-blocking verification mechanism, the difference between

two scheduling algorithms is very small. The result shows

that the time overhead increases slowly with the increase of

duplication rate. Figure 13 shows the response time versus the

number of reduce tasks under the two scenarios, MapReduce

and SecureMR with 40% duplication rate, where the number

of map tasks is 60 and the data size is 1GB. Compared with

the no-duplication case in Figure 10, the performance overhead

caused by executing duplicated tasks ranges from 5% to 12%.

VI. RELATED WORK

MapReduce recently has received a great amount of at-

tention for its simple model and parallel computation capa-

bility for data intensive computation in different application

and research areas. Chu et al. [6] applied MapReduce to

the multicore computation for machine learning. Ekanayake

et al. [4] applied MapReduce technique for two scientific

analyses, High Energy Physics data analyses and Kmeans

clustering. Mackey et al. [3] utilized MapReduce for High

End Computing applications. Most of them focus on how

to utilize MapReduce to solve issues or problems in specific

application domains. Few work pays attention to the service

integrity protection in MapReduce. SecureMR provides a set

of practical security mechanisms to ensure MapReduce data

processing service integrity.

Service integrity issues addressed in this paper also share

similarity with the problem addressed in [13]–[19]. Du et

al. [13] used sampling techniques to achieve efficient and

viable uncheatable grid computing. Zhao et al. [14] pro-

posed a scheme called Quiz to combat collusion for result

verification. Sarmenta et al. [15] introduced majority vot-

ing, and spot-checking techniques, and presented credibility-

based fault tolerance. Although several existing techniques

have been proposed to address the service integrity issues

in different application areas [11], [13], [26], the integrity

assurance for MapReduce data processing service presents its

unique challenges like massive data processing and multi-party

distributed computation. SecureMR adopts a new decentralized

replication-based integrity verification scheme to address these

new challenges, which fully utilizes the existing architecture

of MapReduce.

Regarding system security, Srivatsa and Liu proposed a

suite of security guards and a resilient network design to

secure content-based publish-subscribe systems [27]. PeerRe-

view [28] system ensures that Byzantine faults observed by a

correct node are eventually detected and irrefutably linked to a

faulty node in a distributed messaging system. Swamynathan



et. al. proposed a scheme to improve the accuracy of reputation

systems using a statistical metric to measure the reliability

of a peer’s reputation [29]. Different from previous works,

SecureMR is based on a trustworthy master and leverages

natural redundancy of map and reduce services and existing

MapReduce data processing mechanisms to perform compre-

hensive consistency verification.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented SecureMR, a practical

service integrity assurance framework for MapReduce. We

have implemented a scalable decentralized replication-based

verification scheme to protect the integrity of MapReduce data

processing service. To the best of our knowledge, our work

makes the first attempt to address this problem. Based on

Hadoop [2], we have implemented a prototype of SecureMR,

proved its security properties, evaluated the performance im-

pact resulted from the proposed scheme, and tested it on

a real distributed computing system with hundreds of hosts

connected through campus networks. Our initial experimen-

tal results show that the proposed scheme can ensure data

processing service integrity while imposing low performance

overhead.

However, although SecureMR provides an effective way to

detect misbehavior of malicious workers, it is impossible to de-

tect any inconsistency when all duplicated tasks are processed

by a collusive group. In order to counter this collusion attack,

we may resort to sampling techniques. We believe that the

unique properties of MapReduce may bring new opportunities

and challenges to adopt such new techniques.

ACKNOWLEDGMENT

This work is supported by the U.S. Army Research Office

under grant W911NF-08-1-0105 managed by NCSU Secure

Open Systems Initiative (SOSI) and by the NSF under grant

IIS-0430166. The contents of this paper do not necessarily

reflect the position or the policies of the U.S. Government.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” in OSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10.

[2] “Hadoop Tutorial,” http://public.yahoo.com/gogate/hadoop-

tutorial/start-tutorial.html.

[3] G. Mackey, S. Sehrish, J. Lopez, J. Bent, S. Habib, and J. Wang,
“Introducing mapreduce to high end computing,” in Petascale Data

Storage Workshop Held in conjunction with SC08, 2008.

[4] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data intensive
scientific analysis,” in eScience, 2008. eScience ’08. IEEE Fourth

International Conference on, 2008, pp. 277–284.

[5] M. Laclavı́k, M. Šeleng, and L. Hluchý, “Towards large scale semantic
annotation built on mapreduce architecture,” in ICCS ’08: Proceedings

of the 8th international conference on Computational Science, Part III.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 331–338.

[6] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski,
A. Y. Ng, and K. Olukotun, “Map-reduce for machine learning on
multicore,” in NIPS, B. Schölkopf, J. C. Platt, and T. Hoffman, Eds.
MIT Press, 2006, pp. 281–288. [Online]. Available: http://dblp.uni-
trier.de/rec/bibtex/conf/nips/ChuKLYBNO06

[7] G. A. amd F. Casati, H. Kuno, and V. Machiraju, “Web Services
Concepts, Architectures and Applications Series: Data-Centric Systems
and Applications,” Addison-Wesley Professional, 2002.

[8] T. Erl, “Service-Oriented Architecture (SOA): Concepts, Technology,
and Design,” Prentice Hall, 2005.

[9] “Amazon Elastic Compute Cloud,” http://aws.amazon.com/ec2/.
[10] D. P. Anderson, “Boinc: a system for public-resource

computing and storage,” 2004, pp. 4–10. [Online]. Available:
http://dx.doi.org/10.1109/GRID.2004.14

[11] “SETI@home.” http://setiathome.ssl.berkeley.edu/.
[12] “Amazon Elastic MapReduce,” http://docs.amazonwebservices.com/Elastic-

MapReduce/latest/DeveloperGuide/index.html.
[13] W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable grid com-

puting,” in ICDCS ’04: Proceedings of the 24th International Conference

on Distributed Computing Systems (ICDCS’04). Washington, DC, USA:
IEEE Computer Society, 2004, pp. 4–11.

[14] S. Zhao, V. Lo, and C. GauthierDickey, “Result verification and trust-
based scheduling in peer-to-peer grids,” in P2P ’05: Proceedings of

the Fifth IEEE International Conference on Peer-to-Peer Computing.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 31–38.

[15] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer
computing systems,” Future Generation Computer Systems,
vol. 18, no. 4, pp. 561–572, 2002. [Online]. Available:
citeseer.ist.psu.edu/sarmenta02sabotagetolerance.html

[16] C. Germain-Renaud and D. Monnier-Ragaigne, “Grid result checking,”
in CF ’05: Proceedings of the 2nd conference on Computing frontiers.
New York, NY, USA: ACM, 2005, pp. 87–96.

[17] P. Domingues, B. Sousa, and L. Moura Silva, “Sabotage-tolerance and
trust management in desktop grid computing,” Future Gener. Comput.

Syst., vol. 23, no. 7, pp. 904–912, 2007.
[18] P. Golle and S. Stubblebine, “Secure distributed computing in a

commercial environment,” in 5th International Conference Financial

Cryptography (FC. Springer-Verlag, 2001, pp. 289–304.
[19] P. Golle and I. Mironov, “Uncheatable distributed computations,” in CT-

RSA 2001: Proceedings of the 2001 Conference on Topics in Cryptology.
London, UK: Springer-Verlag, 2001, pp. 425–440.

[20] “WordCount, Hadoop,” http://wiki.apache.org/hadoop/WordCount.
[21] M. J. Atallah, Y. Cho, and A. Kundu, “Efficient data authentication

in an environment of untrusted third-party distributors,” in ICDE ’08:

Proceedings of the 2008 IEEE 24th International Conference on Data
Engineering. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 696–704.

[22] K. Fu, M. F. Kaashoek, and D. Mazières, “Fast and secure distributed
read-only file system,” ACM Trans. Comput. Syst., vol. 20, no. 1, pp.
1–24, 2002.

[23] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, “Authentic
third-party data publication,” in In Fourteenth IFIP 11.3 Conference on
Database Security, 1999, pp. 101–112.

[24] Q. Zhang, T. Yu, and P. Ning, “A framework for identifying compro-
mised nodes in wireless sensor networks,” ACM Trans. Inf. Syst. Secur.,
vol. 11, no. 3, pp. 1–37, 2008.

[25] “Virtual Computing Lab,” http://vcl.ncsu.edu/.
[26] D. Szajda, B. Lawson, and J. Owen, “Toward an optimal redundancy

strategy for distributed computations,” in Cluster Computing, 2005.
IEEE International, Sept. 2005, pp. 1–11.

[27] M. Srivatsa and L. Liu, “Securing publish-subscribe overlay services
with eventguard,” in CCS ’05: Proceedings of the 12th ACM conference

on Computer and communications security. New York, NY, USA:
ACM, 2005, pp. 289–298.

[28] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: practical
accountability for distributed systems,” in SOSP ’07: Proceedings of

twenty-first ACM SIGOPS symposium on Operating systems principles.
New York, NY, USA: ACM, 2007, pp. 175–188. [Online]. Available:
http://dx.doi.org/10.1145/1294261.1294279

[29] G. Swamynathan, B. Zhao, K. Almeroth, and S. Jammalamadaka, “To-
wards reliable reputations for dynamic networked systems,” in Reliable

Distributed Systems, 2008. SRDS ’08. IEEE Symposium on, Oct. 2008,
pp. 195–204.


