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ABSTRACT

Infrastructure-as-a-Service (laaS) clouds are pronerfoimeance
anomalies due to their complex nature. Although previouskwo
has shown the effectiveness of using statistical learrindetect
performance anomalies, existing schemes often assumbethbe
training data, which requires significant human effort aad only
handle previously known anomalies. We presentasupervised
BehaviorLearning (UBL) system for laaS cloud computing infras-
tructures. UBL leverages Self-Organizing Maps to captunere
gent system behaviors and predict unknown anomalies. a-sc
bility, UBL uses residual resources in the cloud infrastnoe for
behavior learning and anomaly prediction with little add-apst.
We have implemented a prototype of the UBL system on top of the
Xen platform and conducted extensive experiments usinggera
of distributed systems. Our results show that UBL can ptemic-
formance anomalies with high accuracy and achieve suffitéen
time for automatic anomaly prevention. UBL supports lasgale
infrastructure-wide behavior learning with negligiblecokread.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

General Terms
Reliability, Management, Experimentation

Keywords

Unsupervised System Behavior Learning, Cloud Computimmmaly
Prediction

1. INTRODUCTION

Infrastructure-as-a-Service (laaS) cloud infrastruesijf] allow
users to lease resources in a pay-as-you-go fashion. Dus to i
inherent complexity and sharing nature, the cloud systepndee
to performance anomalies due to various reasons such ageeso
contentions, software bugs, or hardware failures. It isuntiag
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task for system administrators to manually keep track okttezu-
tion status of tens of thousands of virtual machines (VMk)jhad
time. Moreover, delayed anomaly detection can cause lavicse
level objective (SLO) violation time, which is often assateid with
a large financial penalty. Thus, it is highly desirable tovule
automatic anomaly prediction techniques that can foreghsther
a system will enter an anomalous state and trigger propeeptige
actions to steer the system away from the anomalous state.

It is challenging to achieve efficient anomaly management fo
large-scale laaS cloud infrastructures. First, applecetirunning
inside the cloud often appear as black-box to the cloud servi
provider. Therefore, it is impractical to apply previousitekbox
or grey-box anomaly detection techniques (e.qg., [7]) whézfuire
application instrumentation. Second, a large-scale clofrds-
tructure often runs thousands of applications concuryenilthe
anomaly management scheme itself must be light-weightlama &
operate in an online fashion. Third, it is difficult, if nottadly
impossible, to obtaifabelled training data (i.e., measurement sam-
ples associated with normal or abnormal labels) from prdoc
cloud systems. As a result, it is hard to apply previous stiped
learning techniques [15, 17, 33] for monitoring productidoud
systems. More importantly, supervised learning techrsiqeen
only detect previously known anomalies.

In this paper, we present the design and implementation of an
Unsupervise®ehaviorLearning (UBL) system for virtualized cloud
computing infrastructures. UBL does not require any lagkdfain-
ing data, allowing it capturemergent system behaviors. This makes
it possible for UBL to predict both known anomalies amgnown
anomalies. UBL employs a set of continuous VM behavior liegrn
modules to capture the patterns of normal operations ofpgllia
cation VMs. To avoid manual data labeling and capture enmérge
system behaviors, UBL leverages an unsupervised learnitigod
called the Self Organizing Map (SOM) [24]. We chose the SOM
because it is capable of capturing complex system behawioite
being computationally less expensive than comparableocappes
such as k-nearest neighbor [32]. To predict anomalies, WWBkd
for early deviations from normal system behaviors. UBL ordy
lies on system-level metrics that can be easily acquiredthea
hypervisor or guest OS to achieve black-box anomaly priedict

For scalability, UBL takes decentralized andvirtualized learn-
ing approach that leveragessidual resources in the cloud infras-
tructure for behavior learning and anomaly prediction.nitasu-
lates the behavior analysis program within a set of spéezh-
ing VMs. We then use the Xen credit scheduler [8] to enforce
the learning VM to only use residual resources without diifgc
other co-located application VMs. We can also easily mathe
learning VM between different hosts using live VM migratidi4]
to utilize time-varying residual resources on differenstso
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Figure 1: SOM training process.

Specially, this paper makes the following contributions:

e We show how to use the SOM learning technique to achieve
efficient unsupervised system behavior learning.

We describe how to leverage the system behavior model along
with the node neighborhood area size analysis to predict-eme
gent system anomalies and infer anomaly causes.

We present a virtualized system behavior learning scheme
that leverages the virtualization technology to efficigiathd
safely harvest residual resources in the cloud to achieale sc
able online system behavior learning and anomaly predictio
with little add-on cost.

We have implemented a prototype of UBL on top of the Xen
platform [8]. We have deployed and tested UBL on the NCSU'’s
virtual computing lab (VCL) [6] that operates in a similar wa
as Amazon EC2 [1]. We conducted extensive experiments using
a range of real distributed systems: 1) RUBIS, an onlineianct
benchmark [4], 2) IBM System S, a commercial stream prongssi
system [18], and 3) Hadoop, an open source implementation of
MapReduce framework [2]. Our experimental results show tha
UBL can predict a range of performance anomalies with 5.9%7
higher true positive rates and 3.3-84.5% lower false alaatasr
than other alternative schemes. UBL can achieve sufficead |
time in most cases for the system to take just-in-time pretme
actions [34]. Our prototype implementation shows that UBL i
feasible and imposes negligible overhead for the cloudegyst

The remainder of the paper is organized as follows. Section 2
presents the design details of UBL. Section 3 presents theriex
mental evaluation. Section 4 compares our work with relatedk.
Finally, Section 5 concludes this paper.

2. SYSTEM DESIGN

In this section, we present the design details of the UBLesgst
We first describe our continuous runtime system behavionieg
scheme. We then present our unsupervised anomaly predictio
algorithm that can raise advance alerts about both knowruand
known anomalies. Next, we present our decentralized legrni
framework to achieve scalable and low-cost cloud infrastme
behavior learning.

2.1 Online System Behavior Learning

It is a challenging task to achieve efficient online systeimalve
ior learning for large-scale cloud computing infrastruets The
learning scheme first needs to achieve scalability, whichmduce
behavior models for a large number of application companent
the-fly without imposing excessive learning overhead. frarmrhore,
system metric measurements for real world distributediegipbns

are often fluctuating due to dynamic workloads or measurémen
noises, which requires a robust learning scheme. We chasseto
the SOM learning technique in this work to achieve scalabld a
efficient system behavior learning.

The SOM maps a high dimensional input space into a low dimen-
sional map space (usually two dimensions) while presertiirg
topological properties of the original input space (i.e similar
samples will be projected to close positions in the map). sThu
the SOM can handle multi-variant system behavior learniefj w
without missing any representative behaviors. Speciatycollect
a vector of measurement3(t) = [z1, z2, ..., z»] continuously for
each VM, wherer; denotes one system-level metrics (e.g., CPU,
memory, disk 1/O, or network traffic), and use the measurémen
vectors as inputs to train SOMs. UBL can dynamically induce a
SOM for each VM to capture the VM’s behaviors.

A SOM is composed of a set of neurons arranged in a lattice,
illustrated by Figure 1. Each neuron is associated with ayltei
vector and a coordinate in the map. Weight vectors should be
the same length as the measurement vectors (R€t)), which
are dynamically updated based on the values of the measaoreme
vectors in the training data. UBL uses SOMs to model system
behaviors in two different phases: learning and mapping_ fi&e
describe the learning phase. We will present the mappingepima
detail in the next subsection.

During learning, the SOM uses a competitive learning preces
to adjust the weight vectors of different neurons. The cditipe
learning process works by comparing the Euclidean distafitte
input measurement vector to each neuron’s weight vectohen t
map. The neuron with the smallest Euclidian distance isctsde
as the currently trained neuron. For example, Figure 1 stows
map consisting of 9 neurons being trained with an input measu
ment vector of [0,2,4]. We first calculate the Euclideanatise to
every neuron. Neuron 1 is selected as the currently traieedon
because it has the smallest Euclidean distance to the nesasor
vector. That neuron’s values along with its neighbor nesrare
then updated. In this example, we define our neighborhooe to b
the neurons in a radius of= 1. Striped neurons (neurons 2, 4, and
5) are the neurons in neuron 1's neighborhood. The generalia
for updating the weight vector of a given neuron at tinig given
in Equation 1. We us®#/(t) andD(t) to define the weight vector and
the input vector at time instan¢erespectively.N (v, t) denotes the
neighborhood function (e.g., a Gaussian function) whicpetels
on the lattice distance to a neighbor neuran L(¢) denotes a
learning coefficient that can be applied to modify how mucthea
weight vector is changed as learning proceeds.

W(t+1)=W(t)+ N(v,t)L(t)(D(t) — W(t)) 1)
Figure 1 illustrates the learning process using Equatioritth &
learning coefficient of 1 and a neighborhood function}lof We
use a simple function here to illustrate the learning precesit
more complex neighborhood functions are used in non-trapa
plications, which we discuss further in Section 3. For exi@mnp
neuron 2 has a weight vector of [4,2,4] and the input vector is
[0,2,4]. Taking the difference between the input vector #mel
weight vector gives a value of [-4,0,0] which is then mulggl by 1
and%. This gives value of [-1,0,0] which is then added to the aiti
weight of [4,2,4] to give a final updated value of [3,2,4] tauran
2. All updated values are shown in bold. The intuition behinid
approach is to make the currently trained neuron and theonsur
in its neighborhood converge to the input space.

When each input vector has been used to update the map raultipl
times (e.g., 10 in our experiments), learning is completéths
point, the weight vectors of neurons represent a genetalivaf



the whole measurement vector space. Thus, the SOM can eaptur
thenormal system behaviors under different workloads. We define
this phase to be thisootstrap learning phase. UBL also supports
incremental updates which can continuously adjust the SGkl w
new measurement vectors. However, too many incrementaktegpd
may degrade the quality of the SOM as all weight vectors may
converge to a small number of vector values. This can happenw
the system starts to process a completely different new laadk

In this case, we can re-bootstrap the SOM with new measutemen
data to maintain the quality of the SOM.

When applying the SOM to learning real system behaviors, we
found that UBL needs to address several metric pre-prewepsdb-
lems in order to achieve efficiency. First, different systewtric
values can have very different ranges in their raw form. Ber e
ample, the MEM_USAGE metric ranges from 0 to 2048, while the
CPU_USAGE metric expressed as a utilization percentage @ro
to 100. This is problematic for our map as large data rangesdvo
require a large number of neurons. To address this probleam, w
normalize all metric values to the range [0,100] by lookinghe
maximum value of each metric in the learning data. We chose to
normalize our values this way because we found using thdwtbso
maximum possible value sometimes produced distorted ricena
values that distribute within a small range. For examplejndu
normal operation, the observed network traffic should betmhess
than the maximum traffic possible. Normalizing to the maximu
possible value would mean the network traffic value wouldyonl
cover a small range.

During online operation, some measurement values might ex-
ceed the maximum value in the training data. This will causaes
normalized metric values to be greater than 100. However, we
found this does not cause an unexpected result. By doingvtieis
can significantly reduce the number of neurons needed faroay
the whole measurement space while still capturing the ipesttef
the system behavior. We also filter constant metric valueistwh
have no effect on our system to further decrease the memoty fo
print for storing the training data. Second, some real systetric
values (e.g., memory usage in Hadoop) are highly fluctuativig
might induce a map with poor quality using the raw monitoring
data. To address the problem, we apply k-point moving aeerag
filter to smooth the raw monitoring data. The lengthkakpresents
the degree of smoothing, which computes an average valuador
current value with thé& metric values before the current value.

Determining how to properly configure and initialize the map
is critical for the performance of SOM. We first need to decide
the size of the map we should use for modeling a VM'’s behavior.
We found a matrix topology based map with dimensions 32x32
consisting of 1024 total neurons works well for all the apafions
we tested. As values have been normalized to [0,100], wializi

each weight vector element to a random value between 0 and 100

We found random initialization to be necessary becausilizing

the weight vectors to a set of known values causes the prdduce
map to be heavily biased towards the known values. This deege
the ability of the map to predict unknown values.

Due to the randomness used in weight vector initializatioa,
found the random vectors generated in some maps would gy re
resent a subset of the training data values. This causecxamall
portion of neurons to be trained, which in turn led to a poaliqy
map. To address this problem, we use K-fold cross validaa®n
part of our learning phase, which works as follows. The trajn
data is first partitioned into K parts denoted by, - - -, Dx. The
validation process takes K rounds to complete. In royid< i <
K, D; is selected to be the testing data while the oftfeér— 1)
partsDq,- - -, D;—1,Diy1,- - -, Dk are used as the training data.
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Figure 2: An example path showing the system evolution from
normal to failure.

We collect various correct and incorrect classificationistias to
compute the accuracy of each map. Since UBL is designed to be
unsupervised, we only use unlabelemmal data to train the map.
UBL relies on the SLO feedback from the application or some
external SLO monitoring tool [11] to select normal data. [soge
Ny, is the number of false positives, when UBL raised an alarm
yet no anomaly was foundV;,, is the number of false negatives,
when UBL failed to raise an alarm but the current sample was an
anomaly. Ny, is the number of true positives, when UBL raised
an alarm and there was an anomaly/s,, is the number of true
negatives, when UBL did not raise an alarm and the currenpkam
was normal. Since our training data are all normal data, =

Ny, = 0. The accuracy metric for each map is calculated using the
standard way as follows:

Ntn + th

A:
Ntn+pr+an+th

)

The cross validation module selects the map with the besracy

as the final trained map. We use the same Gaussian neighbor-
hood function and the same constant learning coefficientngmo

all datasets. We also conducted sensitivity experimentshtov

how those parameter values affect the performance of UBL. We
will present those results in Section 3.

2.2 Unsupervised Anomaly Prediction

Performance anomalies, such as SLO violations, in dig&bu
systems often manifest as anomalous changes in systet¥lete
rics. Faults do not always cause a SLO failure immediateltelad
there is a time window from when the fault occurs to the actual
time of failure. Therefore, at any given time, a system can be
thought to be operating in one of three states: normal, giferé,
or failure. Additionally, the system typically first entettse pre-
failure state before entering the failure state. Since D#$s able
to maintain the topological properties of the measuremamiptes,
we can observe when the system enters the pre-failure sidte a
moves to the failure state. Figure 2 shows an example usiegla r
system failure where the failing system follows a path tigitothe
SOM over time. UBL can raise an advanced alarm when the system
leaves the normal state but has not yet entered the failate. st

To decide the system state represented by each neuron, UBL
calculates a neighborhood area size for each neuron in tiv. SO
As mentioned in Section 2.1, when neurons in the SOM are up-
dated with training data, we also adjust the weight vectbtheir
neighboring neurons. After learning, frequently traineguimons
will have modified the weight vector values of their neighibgr
neurons with the same input measurement vectors. As aresult
the weight vectors of the neurons that are frequently tchimil
look similar to the weight vectors of their neighboring rens.
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Figure 3: Grey-scale visualization of the SOM models for the
RUBIS with the Network Hog fault and System S with the
MemLeak fault. Darker neurons have larger neighborhood
area sizes while lighter neurons have smaller neighborhood
area sizes.

Since systems are usually in the normal state, neuronssetieg

the normal state will be more frequently trained than therowes
representing the pre-failure or failure states. Thus, wéhave
clusters of neurons representing different normal systeatiors.

We calculate a neighborhood area size value for each newron b
examining the immediate neighbors of each neuron. As cticdat
topology is a two-dimensional grid, this means we examire th
top, left, right, and bottom neighbors. We calculate the Matan
distance between two neurong, N; with weight vectorsV; =
(w1, Wki], Wi = [wa,j, - - -, wg, ;] respectively, as follows:

k
M(N;, Nj) :Z|wl,i — w5 (3
=1
We define the neighborhood area size for a neuvpras the sum
of Manhattan distance between the neuhgrand its top, left, right
and bottom immediate neighbors denoted\y, N1, Nr andN g,
as follows:

S(N:) = Z M(Ns, X) 4)
Xe{Np,Np,Ng,Ng}

UBL determines if a neuron is hormal or anomalous by looking a
the neighborhood area size of that neuron. If the neighluatlacea

neuron. If the neighborhood area size is below the thresfuld
the map, that means the sample has mapped to a neuron which
is close to many other neurons. We consider this sample to be a
normal sample and do not raise an alarm. However, if the sampl
maps to a neuron with an area value greater than or equal to our
threshold value, this sample represents something weyraesl
during learning. We consider this type of sample to be anouzal
Transient fluctuations in system metrics due to noise canbsti
present even after data smoothing. Those momentary flimbsat
may be mapped to anomalous neurons, although it would be-inco
recttoraise an alarmin this case. As aresult, we raise amalaly
when the system identifies three consecutive anomalousleamp
Determining a neighborhood area size threshold to diftéatn
normal and anomalous neurons is integral to the accuracleof t
UBL system. If the threshold is set too high, we cannot raise a
alarm early enough and may miss some anomalies. Alterhagtive
if we set the threshold too low, we might raise too many alarms
including false alarms. Additionally, neighborhood arze yalues
vary from map to map depending on the range of values in the
dataset. To address this issue, we set the threshold vasssl ba
on a percentile instead of a fixed value. We sort all calcdlate
neighborhood area size values and set the threshold valbe to
the value at a selected percentile. We found a percentilgeval
of 85% is able to achieve good results across all datasetsrin o
experiments. We further examine the effect of the thresloold
accuracy in Section 3.

2.3 Anomaly CauseInference

Determining the root cause of an anomaly is a highly nonatriv
task. UBL is able to ameliorate this task by giving a hint ashat
metrics are the top contributors to an anomaly. While thissdwot
directly identify the root cause of the anomaly, it provideslue
of where to start looking. As the SOM preserves the topokdgic
properties of the measurement space, UBL can use this iafam
to identify the faulty metric causing an anomaly. The bad@aiis
to look at the difference between anomalous neurons andatorm
neurons, and output the metrics that differ most as faultyriose
Specifically, when we map a measurement sample to an anoma-
lous neuron, we calculate the Euclidean distance from thepeth
anomalous neuron to a set of nearby normal neurons. Hem, it i
necessary to avoid comparing with anomalous neighbor nsuro
as they represent unknown states and therefore may giveréato

size is small, we know that the neuron we have mapped to is in a anomaly cause hints. We examine the neighborhood areafalue

tight cluster of neurons, meaning the neuron is normal. @wther
hand, if a neuron maps to a neuron with a large neighborhceal ar
value, we know that the neuron is not close to other neurars, a
thus, probably anomalous. For example, in Figure 2, theutatked
neighborhood area size for neuron 6 (a normal neuron) ofdvoel
the sum of the differences to neighbors 2,5,7, and 10, wkit62.
The neighborhood area size of neuron 10 (a pre-failure mguon

the other hand, is the sum to neighbors 6, 9, 14, and 11, which i
280.

Figure 3 shows two maps after bootstrap learning has coatplet
one is for the RUBIS web server with a network hog bug and the
other is for one faulty component in System S including a mgmo
leak bug. We use gray-scale visualization to illustrateltbbav-
ior patterns. Darker neurons represent anomalous bekawtute
lighter neurons represent normal behaviors. Once leaigiogm-
plete, we can clearly see different systems present digiettavior
patterns that can be captured by the SOM.

each neuron first. If itis above our threshold, we ignore it arove

on to the next neuron in our neighborhood. If no normal neuron
is found in the anomalous neuron’s neighborhood, we expand o
distance calculation to include more neurons in the map.rdiero

to ensure we get a good representation of normal metricsel@ets

Q normal nearby neurons (e.g., Q =5 in our experiments).

Once a set of normal neurons has been found, we calculate dif-
ference between the individual metric values of each nonaaton
and those of the anomalous neuron. As the change can bevpositi
or negative, we take the absolute value of the calculatéerdiice.

We then sort the metric differences from the highest to thek

to determine a ranking order. After this process completesyill
have Q metric ranking lists. Finally, we examine the ranlongers

of each of the Q rankings to determine a final order. To do this,
we use majority voting. Each list votes for which metric itdha
identified as having the largest difference in values. Wa theput

the metric with the most votes as the first ranked metric, th&im

During application runtime, we map each measurement vector that has the 2nd most is the second ranked metric, and soes. Ti

to a neuron using the same Euclidean distance metric asahe le

indicate no consensus could be reached and we output th&e metr

ing phase. We look at the neighborhood area size of the mappedthat happens to come first in the output list constructionil&\iie



have found ties to be rare, a potential refinement of thiscambr
would be to use the total difference of each metric to brezk ths

an example, suppose three ranking lists rank CPU usage &spthe
anomaly cause but two other ranking lists rank Memory usage a
the top cause. We will output CPU usage as the top anomalgcaus
as it has been ranked the top anomaly cause by a majority.

2.4 Decentralized Behavior Learning

Based on the monitoring results of a production cloud inftes
ture, we observe that many hosts have less than 100% resdgitrce
lization. UBL leverages thesesidual resources to perform behav-
ior learning as background tasks that are co-located witardnt
application VMs (foreground tasks) on distributed hostkroligh
this, we can achieve scalable infrastructure-wide belndearning
with minimum add-on cost. Our approach is particularly aatde
for energy saving since a large portion of energy consumgso
wasted in machine’s idle state. To avoid affecting the foyagd
tasks, UBL takes advantage of the isolation provideXéyto en-
capsulate itself within a specibdarning VM. We then use weight-
based priority scheduling provided by the Xen platform tswee
the learning VM has a minimal effect on the foreground woaklo
Specifically, we assign a very low weight (e.g., 8) to all ieag
VMs which causes them to yield resources to the foregroupd-ap
cation VMs.

UBL monitors the residual resources on each host by agdnegat
the resource consumption of all the VMs running on the haist. |
we find the available residual resources are insufficiengnvploy
live migration to move the learning VM to a host with suffiden
residual resources. UBL maintains a resource demand signat
for each learning VM and the residual resource signaturedch
host [19]. UBL finds a suitable host for migrating the leaghviM
by matching the resource demand signature of the learning VM
with the residual resource signature of the host. We definest h
to be overloaded when the total resource consumption ofdke h
exceeds a certain threshold (e;9.90%). In this case, we relocate
all the learning VMs running on that host to the hosts withahle
residual resources.

3. EXPERIMENTAL EVALUATION

We have implemented a prototype of UBL on top of the Xen plat-
form and conducted extensive experiments using three besiéh
systems: the RUBIS multi-tier online auction web applicatfEJB
version) [4], IBM System S data stream processing syster) [18
and the Hadoop MapReduce framework [2]. We begin by describ-
ing our evaluation methodology. We then present our results

3.1 Evaluation Methodology

Our experiments were conducted on the Virtual Computing Lab
(VCL) infrastructure [6] which operates in a similar way ama-
zon EC2 [1]. Each VCL host has a dual-core Xeon 3.0GHz CPU
and 4GB memory, and runs 64bit CentOS 5.2 with Xen 3.0.3. The
guest VMs also run 64bit CentOS 5.2 .

UBL monitors VMs' resource demands from domain 0, using the
i bxenstat andl i bvirt libraries to collect resource usage
information (e.g., CPU usage, memory allocation, netwaek, |
disk 1/0) for both domain 0 and guest VMs. UBL also uses a small
memory monitoring daemon within each VM to get memory us-
age statistics (through the /proc interface in Linux). Tampling
interval is 1 second.

We have chosen three benchmark systems to evaluate UBL in
order to demonstrate the agnosticism necessary for suctensyo
be used in the real world. Moreover, UBL can handle dynamic ap
plications processing time-varying workloads. To demaistthis,

we drive all the benchmark applications using dynamic waatl
intensity observed in real world online services. We irgddaults

at different times while the system was under dynamic watttlo
Each experiment duration varies slightly but all last atmmeé hour.
Fault injections also vary slightly depending on the fayet but all

last between 1 and 5 minutes. For each fault injection, weatsul

the experiment 30 to 40 times. We now describe all the systems
and fault injections in detail as follows.

RUBIS online auction benchmark: We used the three-tier on-
line auction benchmark system RUBIS (EJB version) with oeb w
server, two application servers, and one database serverdér
to evaluate our system under workloads with realistic tiragay
tions, we used a client workload generator that emulates/tik-
load intensity observed in the NASA web server trace begmai
00:00:00 July 1, 1995 from the IRCache Internet traffic arelib]
to modulate the request rate of our RUBIS benchmark. Thetclie
workload generator also tracks the response time of the HETP
quests it made. A SLO violation is marked if the average refjue
response time is larger than a pre-defined threshold (@©@ms).

We injected the following faults in RUBIS: 1Memleak: we
start a memory-intensive program in the VM running the dasab
server; 2)CpuLeak: a CPU-bound program with gradually increas-
ing CPU consumptions competes CPU with the database server
inside the same VM; and 3)etHog: we use httperf [3] tool to
send a large number of http requests to the web server.

IBM System S: We used the IBM System S that is a commercial
high-performance data stream processing system. EachriSyst
application consists of a set of inter-connected procgsliements
(PEs). We measured the average per-tuple processing til8eQA
violation is marked if the average processing time is lathan a
pre-defined threshold (e.g., 20ms). In order to evaluatesystem
under dynamic workloads with realistic time variations, wsed
the workload intensity observed in the ClarkNet web serraret
beginning at 1995-08-28:00.00 from the IRCache Interragfitr
archive [5] to modulate the data arrival rate.

For System S, we injected the following faultsMeémLeak: we
start a memory-intensive program in one randomly seleckEe®p
CpuHog: a CPU-bound program competes CPU with one randomly
selected PE within the same VM; andBjttleneck: we make one
PE the bottleneck in the application by setting a low CPU aap f
the VM running the PE.

Hadoop: We run Hadoop sorting application that is one of the
sample applications provided by the Hadoop distributioe.déa-
sure the progress score of the job through Hadoop API. A SLO
violation is marked when the job does not make any progress (i
0 progress score increase). We use 3 VMs for Map tasks and 6 VMs
for Reduce tasks. The number of map slots on each VM running
map tasks is set to 2, and the number of Reduce slots on each VM
running reduce tasks is set to 1. We use this configuratioausec
the reduce task requires much more disk and memory space than
the map task in the sorting application. Since this is a shiadloop
cluster, the JobTracker and NameNode are very light-weigfe
colocate them together with the first reduce VM. The data size
we process is 12GB, which is generated using the RandomWrite
application.

For Hadoop, we injected two types of faults into all the VMs-+u
ning the map tasks: lemLeak: we injected a memory leak bug
into all the map tasks, which repeatedly allocates certamory
from the heap without releasing; and @puHog: we injected an
infinite loop bug into all the map tasks.

We evaluate the anomaly prediction accuracy using the atend
receiver operating characteristic (ROC) curves. ROC curves can
effectively show the tradeoff between the true positive rgtr)
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and the false positive rated{) for a prediction model. We use
standardrue positive rate A andfalse positive rate Ar metrics
given in equation 5. Th&V;,, Ny, Nin, and Ny, values are the
same as those described in Section 2.

— Nip Ap = NfP
th+an7 pr+Nt7L

We say the prediction model makes a true positive predidfidn
raises an anomaly alert at timeand the anomaly indeed happens ‘ ‘ KN B g ./ ‘ ‘
attimets, t1 < t2 < t1 + W, wherelW denotes the upper-bound 20 4 60 80 100 0 20 4 60 8 100
of the anomaly pending time. Otherwise, we say the prediction False Positve Rate (%) False Positve Rate (%)
model fails to make a correct prediction. If the predictdsea an (a) CpuHog (b) MemLeak

alert and the predicted anomaly does not happen withim théV’,

we say that the prediction model raises a false alarm. Wadurt  Figure 6: Performance anomaly prediction accuracy compari-
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evaluate the prediction capability of UBL usiaghieved lead time, son for Hadoop under different faults.

which we define to be the amount of lead time we give prior to a

SLO violation occurring. For example, if we raise an alartimet tain anomalous data. We uEdBL-NSto denote the UBL scheme
and the actual SLO violation occurs at titte20 seconds, we have  without applying any data smoothing. We UsBL-kPtSto repre-
achieved a lead time of 20 seconds. sent the UBL scheme using tkepoint moving average smoothing.

For comparison, we also implemented a set of commonly used Through experimentation, we have defined our map to be 32x32
unsupervised learning schemes: 1) B@A scheme uses princi-  nodes, the neighborhood of each node to have a radius of 4, the
ple component analysis to identify normal and anomalous-sam learning factor to be a constant 0.7, and the neighborhooctifun
ples [26]; and 2) th&-NN scheme calculates a k-nearest neigh- to be a Gaussian function. We use 3-fold cross validatioreto s
bor distance for each measurement sample to identify noanl lect the best map among three randomly initialized map. We ha
anomalous samples [32]. Different from UBL, both PCA and k- also conducted sensitivity study experiments on thosenpetexs,

NN models need to be trained with both normal and anomalous which will be presented in the next subsection.
data. In contrast, UBL does not require the training dataoto ¢ .
3.2 Resaultsand Analysis

1We have determined an appropriate anomaly pending timeruppe
boundW for each dataset by manually examining the fault injec- 321  Prediction Accuracy Results

tion time to the SLO violation time. For example, if a fault is - o )
injected at timet = 20 and a SLO violation is observed at time We now present the anomaly prediction accuracy comparison
t = 30, our window size would be 10. results. We acquire the ROC curves for the UBL schemes by ad-
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Figure7: Theachieved lead time by the UBL anomaly prediction model.

justing the neighborhood area size percentile threshad {@0'th
percentile to 98'th percentile). For PCA, we obtain the R@6/es
by adjusting the variance threshold. The ROC curves of k-BIN i
calculated by adjusting th&'th nearest neighbor distance thresh-
old.

We begin with the results of our RUBIS experiments. Figure 4
shows the ROC curves for the RUBIS systems under three eliffer
faults. The memory leak dataset was our best RUBIS dataset, w
were able to achieve a high true positive rate of 97% with g kv
false positive rate of 2%. This is consistent with what weestpd
as the memory leak manifests gradually and slowly. Conlgrse

is unable to raise an alarm appropriately, leading to loweueacy
than without smoothing.

We now present the results of our Hadoop experiments shown
by Figure 6. The MemLeak dataset was able to achieve the $tighe
overall true positive rate due to the gradual nature of that.fa
Hadoop is our noisiest dataset, which explains for the hajbef
positive rates observed in these datasets. As expectediteon-
set time of the CpuHog fault means the overall true positie we
could achieve here was lower than the gradual memory lealselat
As we can see, smoothing helps the MemLeak dataset, rediheing
overall noise of the dataset while preserving the pre4faisymp-

we see our worst results from our NetHog dataset, achieving atoms. We show an additional curve to illustrate this poinbn€C

87% maximum true positive rate with a corresponding 4.7%efal
positive rate. This is also consistent with what we expesiade
the NetHog fault manifests more quickly than the other twdtfa

In all cases, UBL consistently outperforms PCA and k-NN with
higher true positive rates and lower false positive rates.

We can see the positive effect of smoothing by looking at the
Memleak dataset. Due to the gradual nature of this faultoshiag
allows us to achieve approximately 20% higher true positates
with corresponding false positive rates. This is expectedha
RUBIS dataset contains quite some transient noises. Adaddilly,
due to the gradual manifestation time of the fault, we do nwiath

out any pre-failure symptoms. Therefore, we see a marked im-

provement between the smoothed and non-smoothed data.
Figure 5 shows the prediction accuracy results for the IBM-Sy
tem S application under different faults. The results sHoat UBL
is able to achieve higher prediction accuracy than the attiegmes
in all cases. The best result we were able to achieve was ar@@% t
positive rate along with a 1.7% false positive rate in the mgm
leak dataset. The worst results we achieved were in the CRiJ Ho
dataset, with a 93% true positive rate and a 0.5% false pesiie.
This is expected as CPU spikes are more difficult to prediet du
to the rapid onset of the fault. Similarly, the Bottlenecklfas
also hard to predict as the time from fault to failure is albors

versely, while smoothing reduced the noise of the CpuHogsat
reducing the overall false positive rate, it also smoothetipoe-
failure symptoms leading to a lower true positive rate ad.wel
both cases, UBL still can achieve better prediction acguthan
PCA and k-NN.

3.2.2 Lead Time Results

Figure 7 shows the average lead times achieved by UBL for
RUBIS, System S, and Hadoop, respectively. The results show
only consider the lead time achieved for cases determinied e
positive results. We first discuss the RUBIS lead time rasulve
were closest to the maximum achievable lead time in the CakiLe
dataset. We achieved an average lead time of 38 seconds, with
a maximum lead time of 40 seconds. The memory leak results
for this dataset were the worst results we saw. We achieved an
average lead time of only 7 seconds, with a maximum lead time o
50 seconds. This can be explained by variations in the data. T
workload and background noise of the system caused theasetri
to approach unknown levels only when the system was clogeeto t
anomaly state.

We next discuss the lead time we were able to achieve for the
System S datasets. Here, we were able to achieve an avesaage le
time of 47 seconds for the memory leak dataset with a maximum

The System S dataset has relatively less noise than the RUBISlead time possible of 50 seconds. While the lead time is Idater

datasets, so the high accuracy results are expected. éwliy,
the Bottleneck and CPU Hog datasets are harder to predittiiea
Memleak dataset, while our results for these datasets aid goey
are lower than Memleak as expected.

Itis interesting to observe smoothing does not always helieae
better accuracy. In the Bottleneck and CPU Hog datasetfesbie
results we achieve are those without any smoothing. Thisiés d
to two reasons. First, both faults manifest very quickly.c@wl,

the CpuHog dataset, we achieved an average lead time of Bdsco
with a maximum possible lead time of 4 seconds. Similarly, we
achieved a lead time of 5 seconds in the Bottleneck datast, w
a maximum lead time of 6 seconds possible. The memory leak
dataset had the best lead time because it was a gradual avdhge
little memory fluctuation. The CpuHog and BottleNeck datase
had much shorter manifestation durations, and thus ouersysad
little time to predict the anomaly, however we still are aolachieve

System S datasets are inherently not very noisy. When we ap-results close to the maximum possible lead time.

ply smoothing, even 5-point smoothing, we sometimes smooth
those critical pre-anomaly symptoms. When this happensnodel

Finally, we present the average lead time we are able toachie
in the Hadoop experiments in. The average lead time we wéee ab
to achieve in the memory leak dataset was 24 seconds. Here the
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Figure 8. Ranking results of the faulty metrics in different

failure instances. The Y axis is the faulty metric rank as 60

determined by UBL while the X axis represents the total 50 igg;
number of faults observed. 2 40l e K-NN
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maximum lead time possible was 25 seconds. In this case, UBL E 30
is able to quickly determine the pattern is not normal anserain o 207
early alarm. In contrast, the CpuHog lead time is lower, mt a E 10
before this is due to the rapid onset time. We achieved arageer 0 s S
lead time of 3 seconds with a maximum possible lead time of 4 10 20 30 40 50 60 70 80 90 100
seconds. CPU Cap (%)

All in all, UBL can achieve close to maximum possible lead
time for different faults tested in our experiments. Ourvjas Figure 10: Training time comparison.
study [34] shows that we can take local anomaly preventien ac % 20
tions such as VM resource scaling within one second and more Without Learning VMs 1 |
costly anomaly preventions such as live VM migration withih With Learning VMs (7]
to 30 seconds. Thus, the lead time achieved by UBL is sufticien g — 115 = 5
in most cases for the cloud system to provide automatic alyoma ; %\20’ £8
preventions. 58 10 %%

o9 ® O

3.2.3 Anomaly Cause Inference Results 8511 g

We now present our anomaly cause inference results shown by g 1% ==
Figure 8. We consider the faulty metric to be the metrics most <

closely associated with a given failure. For example, ferNfem- 0 : 0.0
Leak datasets, we consider the memory metric as the fauliyane RUBIS System S

The figure shows the ranking of the faulty metric in the ramsk li
output by UBL. As the Figure shows, UBL can correctly rank the
faulty metric as top ranked metric in most failure cases. s€he
results indicate UBL is able to preserve the topologicapprtes consumption and energy consumption exhibits linear graseth
of the input measurement space and is useful for diagnosizlhs cording to the number of learning VMs in the training statecg
as prediction. In datasets where noise is less of an issak,asi there are a total of 15 cores on 5 hosts, the total CPU congompt

Figure1l: Learning VM impact to co-located application VMs.

System S, UBL achieves near perfect ranking results. cannot exceed 1500%. This experiment shows that the ceettal
.. learning approach will not be scalable.
324 Scalability Results Figure 10 shows the training time using 6000 data samples whe

To demonstrate the benefit of using the decentralized approa varying the CPU cap of the learning VM on the HGCC host. We
we first measure the CPU load and power consumption of central see that the training time of UBL is similar to PCA and much
ized system behavior learning approach. We run 25 learnMg V  faster compared to k-NN. This is expected since k-NN hasdrigh
on five physical hosts, each of which runs five VMs. This experi computation complexity than PCA and UBL. We also find that the
ment is conducted on a small cluster in our lab since VCL hargs training time of UBL decreases linearly as the CPU cap irsgsa
not equipped with power meters. Each host has a quad-cone Xeo from 7 minutes to 42 seconds. This motivates our idea of émjiag
2.53GHz processor, 8GB memory and 1Gbps network bandwidth, residual resources with migration to achieve fast systeamiag
and runs CentOS 5.5 64 bit with Xen 3.4.3. In each physical, hos with low cost. Additionally, this demonstrates that everthafew
we pin down Domain 0 to one core and run all learning VMs on resources available, UBL training time is reasonable.
three other cores, each VM is configured with one virtual core We now examine the impact of learning VMs to the performance

Figure 9 shows the total CPU consumption and energy consump- of co-located application VMs. We set up a small cluster iricivh
tion of the 25 VMs using 6000 data samples. The X-axis shows we run both RUBIS and System S. We use the Xen credit scheduler
different numbers of learning VMs in the training state (tlest to set the scheduling weight of the application VMs to 256 tned
are in the prediction state). The left Y-axis shows the ta@BU weight of the learning VM to 8. Figure 11 shows the perfornganc
consumption and the right Y-axis shows the total energy wops of the RUBIS and System S with and without the presence ofifear
tion. We find that in all three schemes (PCA, k-NN, UBL), the ing VMs. We observe that with the presence of learning VMs, th
learning VMs in the training state are CPU-greedy. The tGRU average response time of RUBIS and the throughput of System S
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Figure 12: Prediction time and model updatetime of UBL.

System Modules |CPU cost

VM monitoring (8 attributes) 1.33+0.09 ms
3-fold cross validation (6000 sample) 4 1 sec
SOM model updating 245+54.9 ms
Anomaly prediction 2.44+2.6 ms

Table 1: UBL System overhead measurements.

Accuracy | Accuracy

(NetHog) | (Memleak)
Map 25x25 97% 93%
Map 32x32 98% 92.8%
Map 40x40 97.1% 93.3%
Neighborhood size 3 98.6% 93.6%
Neighborhood size 4 98.5% 92.8%
Neighborhood size 5 97.6% 92.5%
Gaussian function height 7 98.2% 92.9%
Gaussian function height 10 98.5% 92.8%
Gaussian function height 13| 98.9% 93.8%

Table 2: Sensitivity experiment results for the NetHog fault in
RUBiSand MemL eak fault in System S.

have little difference compared to the case that the legrifids
are not present. The results show that the learning VMs litilee |
impact to the performance of the co-located application VMs

Figure 12 shows the benefit of using learning VM migration to
maintain the prediction time and online model update timeac&
we require the learning VMs to always yield to foreground|eap
tions, the performance of the learning VMs will be affectelew
the foreground applications use up the resources. Theseshdw
that, from time 450 to 700, the prediction time and the mogel u
date time increase because residual resources are low.gBgting
the learning VMs to another physical host with more resasyrttee
performance of UBL is preserved.

Finally, we evaluate the overhead of the UBL system. Table 1
lists the CPU cost of each key module in our system. The VM
monitoring module runs within Domain 0 of each host and ctde
eight resource attributes per second. Each collectiors talxeut 1.3
milliseconds. 3-fold cross validation is the most time-saming
operation, taking about 42 seconds. However, this stepysuzed
during bootstrap learning phase. Incremental SOM updates t
about 245 milliseconds for every 30 new data samples. Anpmal
prediction takes about 2.4 milliseconds. During the norexaicu-
tion, the learning VM imposes less than 1% CPU load and UBL
consumes less than 16MB of memory. Overall, the overhead mea
surements show that UBL is light-weight, which makes it ficad
for online system anomaly management.

3.25 Sensitivity Sudy

We have conducted sensitivity experiments to study how UBL
performs under different key parameter settings. Due toesfim-
itation, we only show a subset of our results in Table 2. Treiac

racy values are calculated using Equation 2. We observeJBhat

is not very sensitive to different parameter values and e &b
achieve accuracy values which differ by less than 1% in masgts.
The map size parameter has the potential to affect the agycofa
the system ifit is set too low. For example, a 5x5 map is todidma
effectively capture the overall pattern of the system. Addally,

if the map size is too large, the learning time becomes long. W
have found map sizes in the range we list are able to give good
results for all datasets we tested.

4. RELATED WORK

The idea of using machine learning methods to detect andigpred
anomalies, faults, and failures has been of great inteceshed
research community in recent years. Broadly, these appesac
can be classified into supervised approaches and unsugpeiis
proaches. Supervised approaches rely on labelled trantémg
to accurately identify previously known anomalies. Unsujsed
approaches do not require labelled training data to findlpros,
but generally are less accurate than supervised approdcbkisg
for a broader range of problems. These approaches can berfurt
divided into detection schemes and prediction schemescben
schemes identify failures at the moment of failure, whilediction
schemes try to predict a failure before it happens.

Supervised anomaly prediction. The most closely related work
to ours is Tiresias [36], which also addresses the blackfhibxre
prediction problem in distributed systems. Tiresias setie exter-
nal anomaly detectors to create anomaly vectors. The sytbiem
applies Dispersion Frame Technique (DFT) prediction Istigs on
the anomaly vectors for anomaly prediction. Gu et al. [26dgnate
Markov feature value prediction with naive Bayesian clécaion
to predict performance anomalies. Tan et al. [33] use a tulical
clustering technique to discover different execution egt#t of a
dynamic system but build context-aware prediction modelsnt
prove prediction accuracy. Different from UBL, the aboverks
need labelled normal and failure data in the training dath dm
not provide anomaly cause inference. In contrast, UBL das
require any data labeling, which allows UBL to predict botiown
and unknown performance anomalies.

Supervised anomaly detection. Cohen et al. [16] use clustering
over labelled failure data to extract failure signaturebjolv can
be used to detect recurrent problems. Powers et al. [27)y stud
different statistical learning methods to find the appreadhat can
detect performance violations in an enterprise system.ti®led
al. [9] develop sketches of system events, which are theralied
for diagnosis by an expert. The Fa system [17] uses anomaly-
based clustering to achieve automatic failure diagnosigjfery
processing systems. Cha et al. [12] use a signature baseshapp
along with a bloom filter for malware detection. Bodik et dl0]
use signatures along with feature selection and a regressialel
to detect performance anomalies. In contrast, our apprioacises
on predicting unknown anomalies and does not require priowk
edge about different failure instances.

Unsupervised anomaly detection. Previous work has proposed
model-driven approach to performance anomaly detectionef
ample, Stewart et al. [31] instrument the OS to gather dath an
profile system performance using queuing models. Shen [@&%4l.
use a reference based approach to detect performance &@®hyal
looking at how metrics differ from the ideal case. Stewastef30]
use a transaction mix model to predict the performance gaen
certain workload, and hence can detect the anomaly if therebd
performance is different with the predicted performanceome
pared to UBL, those model-driven approaches typically irecex-
tensive model calibration using offline profiling and neednake



certain assumptions about the workload type (e.g, traiosesjtand
user request arrival patterns. In contrast, UBL is appbcaagnostic
and does not require extensive application profiling. Chsoka et
al. [13] build regression-based transaction models andcapion
performance signatures to provide a solution for anomatgatien
considering system changes. Different from UBL, this mddel
designed to consider a single metric. Wang et al. [35] haeg us
entropy based approaches to quantify the metric distohugind
detect anomalies using signal processing and spike date&im-
ilarly, Jiang et al. [22] detect failures by looking at therepy of
clustered system metric relationships. Makanju et al. gXgign
entropy scores to event log data to detect anomalies. WASI5 [2
detects the bottleneck in distributed systems by analyziagsage
traces to infer the causal structure and timing of commuitica
within these systems. Kasick et al. [23] use peer comparieon
determine the root cause of a problem in a distributed enviro
ment. Jiang et al. [21] employ linear regression models toaek
invariants and then track their changes to detect the aryomal
transaction systems. In contrast to the above approaclBiscéh
predict future anomalies as opposed to detecting anomeatlite
moment of failure. Moreover, UBL is broader in scope, desijn
to learn system behavior for a variety of uses. We show anomal
prediction as one of the uses of UBL.

5. CONCLUSION

In this paper, we have presented UBL, a novel black-box unsu-

pervised behavior learning and anomaly prediction systertahS
clouds. UBL leverages the Self-Organizing Map (SOM) leagni
technique to capture dynamic system behaviors without any h
man intervention. Based on the induced behavior model, UBL c
predict previously unknown performance anomalies andigesv
hints for anomaly causes. UBL achieves scalable beha\daonitey
by virtualizing and distributing the learning tasks amoigjributed
hosts. We have implemented a prototype of UBL on top of the Xen
platform and conducted extensive experiments using reddiveics-
tributed systems running inside a production cloud infragure.
Our results show that UBL can achieve high prediction aayura
with up to 98% true positive rate and 1.7% false positive, ratel
raise advance alarms with up to 47 seconds lead time. UBgh& li
weight, which makes it practical for large-scale cloud catmy
infrastructures.
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