
UBL: Unsupervised Behavior Learning for Predicting
Performance Anomalies in Virtualized Cloud Systems

Daniel J. Dean, Hiep Nguyen, Xiaohui Gu
Department of Computer Science

North Carolina State University
{djdean2,hcnguye3}@ncsu.edu, gu@csc.ncsu.edu

ABSTRACT
Infrastructure-as-a-Service (IaaS) clouds are prone to performance
anomalies due to their complex nature. Although previous work
has shown the effectiveness of using statistical learning to detect
performance anomalies, existing schemes often assume labelled
training data, which requires significant human effort and can only
handle previously known anomalies. We present anUnsupervised
BehaviorLearning (UBL) system for IaaS cloud computing infras-
tructures. UBL leverages Self-Organizing Maps to capture emer-
gent system behaviors and predict unknown anomalies. For scala-
bility, UBL uses residual resources in the cloud infrastructure for
behavior learning and anomaly prediction with little add-on cost.
We have implemented a prototype of the UBL system on top of the
Xen platform and conducted extensive experiments using a range
of distributed systems. Our results show that UBL can predict per-
formance anomalies with high accuracy and achieve sufficient lead
time for automatic anomaly prevention. UBL supports large-scale
infrastructure-wide behavior learning with negligible overhead.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

General Terms
Reliability, Management, Experimentation

Keywords
Unsupervised System Behavior Learning, Cloud Computing, Anomaly
Prediction

1. INTRODUCTION
Infrastructure-as-a-Service (IaaS) cloud infrastructures [1] allow

users to lease resources in a pay-as-you-go fashion. Due to its
inherent complexity and sharing nature, the cloud system isprone
to performance anomalies due to various reasons such as resource
contentions, software bugs, or hardware failures. It is a daunting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

task for system administrators to manually keep track of theexecu-
tion status of tens of thousands of virtual machines (VMs) all the
time. Moreover, delayed anomaly detection can cause long service
level objective (SLO) violation time, which is often associated with
a large financial penalty. Thus, it is highly desirable to provide
automatic anomaly prediction techniques that can forecastwhether
a system will enter an anomalous state and trigger proper preventive
actions to steer the system away from the anomalous state.

It is challenging to achieve efficient anomaly management for
large-scale IaaS cloud infrastructures. First, applications running
inside the cloud often appear as black-box to the cloud service
provider. Therefore, it is impractical to apply previous white-box
or grey-box anomaly detection techniques (e.g., [7]) whichrequire
application instrumentation. Second, a large-scale cloudinfras-
tructure often runs thousands of applications concurrently. The
anomaly management scheme itself must be light-weight and should
operate in an online fashion. Third, it is difficult, if not totally
impossible, to obtainlabelled training data (i.e., measurement sam-
ples associated with normal or abnormal labels) from production
cloud systems. As a result, it is hard to apply previous supervised
learning techniques [15, 17, 33] for monitoring productioncloud
systems. More importantly, supervised learning techniques can
only detect previously known anomalies.

In this paper, we present the design and implementation of an
UnsupervisedBehaviorLearning (UBL) system for virtualized cloud
computing infrastructures. UBL does not require any labelled train-
ing data, allowing it captureemergent system behaviors. This makes
it possible for UBL to predict both known anomalies andunknown
anomalies. UBL employs a set of continuous VM behavior learning
modules to capture the patterns of normal operations of all appli-
cation VMs. To avoid manual data labeling and capture emergent
system behaviors, UBL leverages an unsupervised learning method
called the Self Organizing Map (SOM) [24]. We chose the SOM
because it is capable of capturing complex system behaviorswhile
being computationally less expensive than comparable approaches
such as k-nearest neighbor [32]. To predict anomalies, UBL looks
for early deviations from normal system behaviors. UBL onlyre-
lies on system-level metrics that can be easily acquired viathe
hypervisor or guest OS to achieve black-box anomaly prediction.

For scalability, UBL takes adecentralized andvirtualized learn-
ing approach that leveragesresidual resources in the cloud infras-
tructure for behavior learning and anomaly prediction. It encapsu-
lates the behavior analysis program within a set of speciallearn-
ing VMs. We then use the Xen credit scheduler [8] to enforce
the learning VM to only use residual resources without affecting
other co-located application VMs. We can also easily migrate the
learning VM between different hosts using live VM migrations [14]
to utilize time-varying residual resources on different hosts.

1

Train with

input vector

[0,2,4]

1 2

4 65

7 98

Currently trained

neuron

Neighbor

neurons

Other

neurons

SOM before the update SOM after the update

[0,2,4] [4,2,4] [1,3,2]

[4,6,4] [4,6,0] [4,2,0]

[0,1,4] [2,4,2] [0,3,5]

3 1 2

4 65

7 98

[0,2,4] [3,2,4] [1,3,2]

[3,5,4] [3,5,1] [4,2,0]

[0,1,4] [2,4,2] [0,3,5]

3

Figure 1: SOM training process.

Specially, this paper makes the following contributions:

• We show how to use the SOM learning technique to achieve
efficient unsupervised system behavior learning.

• We describe how to leverage the system behavior model along
with the node neighborhood area size analysis to predict emer-
gent system anomalies and infer anomaly causes.

• We present a virtualized system behavior learning scheme
that leverages the virtualization technology to efficiently and
safely harvest residual resources in the cloud to achieve scal-
able online system behavior learning and anomaly prediction
with little add-on cost.

We have implemented a prototype of UBL on top of the Xen
platform [8]. We have deployed and tested UBL on the NCSU’s
virtual computing lab (VCL) [6] that operates in a similar way
as Amazon EC2 [1]. We conducted extensive experiments using
a range of real distributed systems: 1) RUBiS, an online auction
benchmark [4], 2) IBM System S, a commercial stream processing
system [18], and 3) Hadoop, an open source implementation of
MapReduce framework [2]. Our experimental results show that
UBL can predict a range of performance anomalies with 5.9-87.7%
higher true positive rates and 3.3-84.5% lower false alarm rates
than other alternative schemes. UBL can achieve sufficient lead
time in most cases for the system to take just-in-time preventative
actions [34]. Our prototype implementation shows that UBL is
feasible and imposes negligible overhead for the cloud system.

The remainder of the paper is organized as follows. Section 2
presents the design details of UBL. Section 3 presents the experi-
mental evaluation. Section 4 compares our work with relatedwork.
Finally, Section 5 concludes this paper.

2. SYSTEM DESIGN
In this section, we present the design details of the UBL system.

We first describe our continuous runtime system behavior learning
scheme. We then present our unsupervised anomaly prediction
algorithm that can raise advance alerts about both known andun-
known anomalies. Next, we present our decentralized learning
framework to achieve scalable and low-cost cloud infrastructure
behavior learning.

2.1 Online System Behavior Learning
It is a challenging task to achieve efficient online system behav-

ior learning for large-scale cloud computing infrastructures. The
learning scheme first needs to achieve scalability, which can induce
behavior models for a large number of application components on-
the-fly without imposing excessive learning overhead. Furthermore,
system metric measurements for real world distributed applications

are often fluctuating due to dynamic workloads or measurement
noises, which requires a robust learning scheme. We chose touse
the SOM learning technique in this work to achieve scalable and
efficient system behavior learning.

The SOM maps a high dimensional input space into a low dimen-
sional map space (usually two dimensions) while preservingthe
topological properties of the original input space (i.e., two similar
samples will be projected to close positions in the map). Thus,
the SOM can handle multi-variant system behavior learning well
without missing any representative behaviors. Specially,we collect
a vector of measurementsD(t) = [x1, x2, ..., xn] continuously for
each VM, wherexi denotes one system-level metrics (e.g., CPU,
memory, disk I/O, or network traffic), and use the measurement
vectors as inputs to train SOMs. UBL can dynamically induce a
SOM for each VM to capture the VM’s behaviors.

A SOM is composed of a set of neurons arranged in a lattice,
illustrated by Figure 1. Each neuron is associated with a weight
vector and a coordinate in the map. Weight vectors should be
the same length as the measurement vectors (i.e.,D(t)), which
are dynamically updated based on the values of the measurement
vectors in the training data. UBL uses SOMs to model system
behaviors in two different phases: learning and mapping. Wefirst
describe the learning phase. We will present the mapping phase in
detail in the next subsection.

During learning, the SOM uses a competitive learning process
to adjust the weight vectors of different neurons. The competitive
learning process works by comparing the Euclidean distanceof the
input measurement vector to each neuron’s weight vector in the
map. The neuron with the smallest Euclidian distance is selected
as the currently trained neuron. For example, Figure 1 showsa
map consisting of 9 neurons being trained with an input measure-
ment vector of [0,2,4]. We first calculate the Euclidean distance to
every neuron. Neuron 1 is selected as the currently trained neuron
because it has the smallest Euclidean distance to the measurement
vector. That neuron’s values along with its neighbor neurons are
then updated. In this example, we define our neighborhood to be
the neurons in a radius ofr = 1. Striped neurons (neurons 2, 4, and
5) are the neurons in neuron 1’s neighborhood. The general formula
for updating the weight vector of a given neuron at timet is given
in Equation 1. We useW(t) andD(t) to define the weight vector and
the input vector at time instancet, respectively.N(v, t) denotes the
neighborhood function (e.g., a Gaussian function) which depends
on the lattice distance to a neighbor neuronv. L(t) denotes a
learning coefficient that can be applied to modify how much each
weight vector is changed as learning proceeds.

W (t + 1) = W (t) + N(v, t)L(t)(D(t) − W (t)) (1)

Figure 1 illustrates the learning process using Equation 1 with a
learning coefficient of 1 and a neighborhood function of1

4
. We

use a simple function here to illustrate the learning process, but
more complex neighborhood functions are used in non-trivial ap-
plications, which we discuss further in Section 3. For example,
neuron 2 has a weight vector of [4,2,4] and the input vector is
[0,2,4]. Taking the difference between the input vector andthe
weight vector gives a value of [-4,0,0] which is then multiplied by 1
and 1

4
. This gives value of [-1,0,0] which is then added to the initial

weight of [4,2,4] to give a final updated value of [3,2,4] to neuron
2. All updated values are shown in bold. The intuition behindthis
approach is to make the currently trained neuron and the neurons
in its neighborhood converge to the input space.

When each input vector has been used to update the map multiple
times (e.g., 10 in our experiments), learning is complete. At this
point, the weight vectors of neurons represent a generalization of

2

the whole measurement vector space. Thus, the SOM can capture
thenormal system behaviors under different workloads. We define
this phase to be thebootstrap learning phase. UBL also supports
incremental updates which can continuously adjust the SOM with
new measurement vectors. However, too many incremental updates
may degrade the quality of the SOM as all weight vectors may
converge to a small number of vector values. This can happen when
the system starts to process a completely different new workload.
In this case, we can re-bootstrap the SOM with new measurement
data to maintain the quality of the SOM.

When applying the SOM to learning real system behaviors, we
found that UBL needs to address several metric pre-precessing prob-
lems in order to achieve efficiency. First, different systemmetric
values can have very different ranges in their raw form. For ex-
ample, the MEM_USAGE metric ranges from 0 to 2048, while the
CPU_USAGE metric expressed as a utilization percentage from 0
to 100. This is problematic for our map as large data ranges would
require a large number of neurons. To address this problem, we
normalize all metric values to the range [0,100] by looking at the
maximum value of each metric in the learning data. We chose to
normalize our values this way because we found using the absolute
maximum possible value sometimes produced distorted normalized
values that distribute within a small range. For example, during
normal operation, the observed network traffic should be much less
than the maximum traffic possible. Normalizing to the maximum
possible value would mean the network traffic value would only
cover a small range.

During online operation, some measurement values might ex-
ceed the maximum value in the training data. This will cause some
normalized metric values to be greater than 100. However, we
found this does not cause an unexpected result. By doing this, we
can significantly reduce the number of neurons needed for covering
the whole measurement space while still capturing the patterns of
the system behavior. We also filter constant metric values which
have no effect on our system to further decrease the memory foot-
print for storing the training data. Second, some real system metric
values (e.g., memory usage in Hadoop) are highly fluctuating. We
might induce a map with poor quality using the raw monitoring
data. To address the problem, we apply k-point moving average
filter to smooth the raw monitoring data. The length ofk represents
the degree of smoothing, which computes an average value forthe
current value with thek metric values before the current value.

Determining how to properly configure and initialize the map
is critical for the performance of SOM. We first need to decide
the size of the map we should use for modeling a VM’s behavior.
We found a matrix topology based map with dimensions 32x32
consisting of 1024 total neurons works well for all the applications
we tested. As values have been normalized to [0,100], we initialize
each weight vector element to a random value between 0 and 100.
We found random initialization to be necessary because initializing
the weight vectors to a set of known values causes the produced
map to be heavily biased towards the known values. This decreases
the ability of the map to predict unknown values.

Due to the randomness used in weight vector initialization,we
found the random vectors generated in some maps would only rep-
resent a subset of the training data values. This caused onlya small
portion of neurons to be trained, which in turn led to a poor quality
map. To address this problem, we use K-fold cross validationas
part of our learning phase, which works as follows. The training
data is first partitioned into K parts denoted byD1, · · ·, DK . The
validation process takes K rounds to complete. In roundi, 1 ≤ i ≤
K, Di is selected to be the testing data while the other(K − 1)
partsD1, · · ·, Di−1, Di+1, · · ·, DK are used as the training data.

1

Normal
neuron

Pre-failure
neuron

Failure
neuron

Evolving path

[6,15,116]

2

[3,15,120]

3

[4,11,118]

5

[3,11,119]

6

[5,15,117]

7

[13,24,120]

9

[33,14,89]

13

[89,16,33]

10

[38,17,83]

14

[100,21,21]

11

[67,4,56]

15

[104,25,18]

4

[1,13,122]

8

[2,13,121]

12

[32,50,90]

16

[92,14,15]

Figure 2: An example path showing the system evolution from
normal to failure.

We collect various correct and incorrect classification statistics to
compute the accuracy of each map. Since UBL is designed to be
unsupervised, we only use unlabelednormal data to train the map.
UBL relies on the SLO feedback from the application or some
external SLO monitoring tool [11] to select normal data. Suppose
Nfp is the number of false positives, when UBL raised an alarm
yet no anomaly was found.Nfn is the number of false negatives,
when UBL failed to raise an alarm but the current sample was an
anomaly. Ntp is the number of true positives, when UBL raised
an alarm and there was an anomaly.Ntn is the number of true
negatives, when UBL did not raise an alarm and the current sample
was normal. Since our training data are all normal data,Nfn =
Ntp = 0. The accuracy metric for each map is calculated using the
standard way as follows:

A =
Ntn + Ntp

Ntn + Nfp + Nfn + Ntp

(2)

The cross validation module selects the map with the best accuracy
as the final trained map. We use the same Gaussian neighbor-
hood function and the same constant learning coefficient among
all datasets. We also conducted sensitivity experiments toshow
how those parameter values affect the performance of UBL. We
will present those results in Section 3.

2.2 Unsupervised Anomaly Prediction
Performance anomalies, such as SLO violations, in distributed

systems often manifest as anomalous changes in system-level met-
rics. Faults do not always cause a SLO failure immediately. Instead
there is a time window from when the fault occurs to the actual
time of failure. Therefore, at any given time, a system can be
thought to be operating in one of three states: normal, pre-failure,
or failure. Additionally, the system typically first entersthe pre-
failure state before entering the failure state. Since the SOM is able
to maintain the topological properties of the measurement samples,
we can observe when the system enters the pre-failure state and
moves to the failure state. Figure 2 shows an example using a real
system failure where the failing system follows a path through the
SOM over time. UBL can raise an advanced alarm when the system
leaves the normal state but has not yet entered the failure state.

To decide the system state represented by each neuron, UBL
calculates a neighborhood area size for each neuron in the SOM.
As mentioned in Section 2.1, when neurons in the SOM are up-
dated with training data, we also adjust the weight vectors of their
neighboring neurons. After learning, frequently trained neurons
will have modified the weight vector values of their neighboring
neurons with the same input measurement vectors. As a result,
the weight vectors of the neurons that are frequently trained will
look similar to the weight vectors of their neighboring neurons.

3

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

5500

6000

6500

7000

7500

8000

(a) Network Hog (RUBiS)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
4

(b) MemLeak (SystemS)

Figure 3: Grey-scale visualization of the SOM models for the
RUBiS with the Network Hog fault and System S with the
MemLeak fault. Darker neurons have larger neighborhood
area sizes while lighter neurons have smaller neighborhood
area sizes.

Since systems are usually in the normal state, neurons representing
the normal state will be more frequently trained than the neurons
representing the pre-failure or failure states. Thus, we will have
clusters of neurons representing different normal system behaviors.
We calculate a neighborhood area size value for each neuron by
examining the immediate neighbors of each neuron. As our lattice
topology is a two-dimensional grid, this means we examine the
top, left, right, and bottom neighbors. We calculate the Manhattan
distance between two neuronsNi, Nj with weight vectorsWi =
[w1,i, · · ·, wk,i], Wj = [w1,j , · · ·, wk,j] respectively, as follows:

M(Ni, Nj) =
k

X

l=1

|wl,i − wl,j | (3)

We define the neighborhood area size for a neuronNi as the sum
of Manhattan distance between the neuronNi and its top, left, right
and bottom immediate neighbors denoted byNT , NL, NR andNB ,
as follows:

S(Ni) =
X

X∈{NT ,NL,NR,NB}

M(Ni, X) (4)

UBL determines if a neuron is normal or anomalous by looking at
the neighborhood area size of that neuron. If the neighborhood area
size is small, we know that the neuron we have mapped to is in a
tight cluster of neurons, meaning the neuron is normal. On the other
hand, if a neuron maps to a neuron with a large neighborhood area
value, we know that the neuron is not close to other neurons, and
thus, probably anomalous. For example, in Figure 2, the calculated
neighborhood area size for neuron 6 (a normal neuron) of would be
the sum of the differences to neighbors 2,5,7, and 10, which is102.
The neighborhood area size of neuron 10 (a pre-failure neuron), on
the other hand, is the sum to neighbors 6, 9, 14, and 11, which is
280.

Figure 3 shows two maps after bootstrap learning has completed:
one is for the RUBiS web server with a network hog bug and the
other is for one faulty component in System S including a memory
leak bug. We use gray-scale visualization to illustrate thebehav-
ior patterns. Darker neurons represent anomalous behaviors while
lighter neurons represent normal behaviors. Once learningis com-
plete, we can clearly see different systems present distinct behavior
patterns that can be captured by the SOM.

During application runtime, we map each measurement vector
to a neuron using the same Euclidean distance metric as the learn-
ing phase. We look at the neighborhood area size of the mapped

neuron. If the neighborhood area size is below the thresholdfor
the map, that means the sample has mapped to a neuron which
is close to many other neurons. We consider this sample to be a
normal sample and do not raise an alarm. However, if the sample
maps to a neuron with an area value greater than or equal to our
threshold value, this sample represents something we rarely see
during learning. We consider this type of sample to be anomalous.
Transient fluctuations in system metrics due to noise can still be
present even after data smoothing. Those momentary fluctuations
may be mapped to anomalous neurons, although it would be incor-
rect to raise an alarm in this case. As a result, we raise an alarm only
when the system identifies three consecutive anomalous samples.

Determining a neighborhood area size threshold to differentiate
normal and anomalous neurons is integral to the accuracy of the
UBL system. If the threshold is set too high, we cannot raise an
alarm early enough and may miss some anomalies. Alternatively,
if we set the threshold too low, we might raise too many alarms,
including false alarms. Additionally, neighborhood area size values
vary from map to map depending on the range of values in the
dataset. To address this issue, we set the threshold value based
on a percentile instead of a fixed value. We sort all calculated
neighborhood area size values and set the threshold value tobe
the value at a selected percentile. We found a percentile value
of 85% is able to achieve good results across all datasets in our
experiments. We further examine the effect of the thresholdon
accuracy in Section 3.

2.3 Anomaly Cause Inference
Determining the root cause of an anomaly is a highly non-trivial

task. UBL is able to ameliorate this task by giving a hint as towhat
metrics are the top contributors to an anomaly. While this does not
directly identify the root cause of the anomaly, it providesa clue
of where to start looking. As the SOM preserves the topological
properties of the measurement space, UBL can use this information
to identify the faulty metric causing an anomaly. The basic idea is
to look at the difference between anomalous neurons and normal
neurons, and output the metrics that differ most as faulty metrics.
Specifically, when we map a measurement sample to an anoma-
lous neuron, we calculate the Euclidean distance from the mapped
anomalous neuron to a set of nearby normal neurons. Here, it is
necessary to avoid comparing with anomalous neighbor neurons
as they represent unknown states and therefore may give incorrect
anomaly cause hints. We examine the neighborhood area valuefor
each neuron first. If it is above our threshold, we ignore it and move
on to the next neuron in our neighborhood. If no normal neuron
is found in the anomalous neuron’s neighborhood, we expand our
distance calculation to include more neurons in the map. In order
to ensure we get a good representation of normal metrics, we select
Q normal nearby neurons (e.g., Q = 5 in our experiments).

Once a set of normal neurons has been found, we calculate dif-
ference between the individual metric values of each normalneuron
and those of the anomalous neuron. As the change can be positive
or negative, we take the absolute value of the calculated difference.
We then sort the metric differences from the highest to the lowest
to determine a ranking order. After this process completes,we will
have Q metric ranking lists. Finally, we examine the rankingorders
of each of the Q rankings to determine a final order. To do this,
we use majority voting. Each list votes for which metric it had
identified as having the largest difference in values. We then output
the metric with the most votes as the first ranked metric, the metric
that has the 2nd most is the second ranked metric, and so on. Ties
indicate no consensus could be reached and we output the metric
that happens to come first in the output list construction. While we

4

have found ties to be rare, a potential refinement of this approach
would be to use the total difference of each metric to break ties. As
an example, suppose three ranking lists rank CPU usage as thetop
anomaly cause but two other ranking lists rank Memory usage as
the top cause. We will output CPU usage as the top anomaly cause
as it has been ranked the top anomaly cause by a majority.

2.4 Decentralized Behavior Learning
Based on the monitoring results of a production cloud infrastruc-

ture, we observe that many hosts have less than 100% resourceuti-
lization. UBL leverages theseresidual resources to perform behav-
ior learning as background tasks that are co-located with different
application VMs (foreground tasks) on distributed hosts. Through
this, we can achieve scalable infrastructure-wide behavior learning
with minimum add-on cost. Our approach is particularly amenable
for energy saving since a large portion of energy consumption is
wasted in machine’s idle state. To avoid affecting the foreground
tasks, UBL takes advantage of the isolation provided byXen to en-
capsulate itself within a speciallearning VM. We then use weight-
based priority scheduling provided by the Xen platform to ensure
the learning VM has a minimal effect on the foreground workload.
Specifically, we assign a very low weight (e.g., 8) to all learning
VMs which causes them to yield resources to the foreground appli-
cation VMs.

UBL monitors the residual resources on each host by aggregating
the resource consumption of all the VMs running on the host. If
we find the available residual resources are insufficient, weemploy
live migration to move the learning VM to a host with sufficient
residual resources. UBL maintains a resource demand signature
for each learning VM and the residual resource signature foreach
host [19]. UBL finds a suitable host for migrating the learning VM
by matching the resource demand signature of the learning VM
with the residual resource signature of the host. We define a host
to be overloaded when the total resource consumption of the host
exceeds a certain threshold (e.g.,> 90%). In this case, we relocate
all the learning VMs running on that host to the hosts with suitable
residual resources.

3. EXPERIMENTAL EVALUATION
We have implemented a prototype of UBL on top of the Xen plat-

form and conducted extensive experiments using three benchmark
systems: the RUBiS multi-tier online auction web application (EJB
version) [4], IBM System S data stream processing system [18],
and the Hadoop MapReduce framework [2]. We begin by describ-
ing our evaluation methodology. We then present our results.

3.1 Evaluation Methodology
Our experiments were conducted on the Virtual Computing Lab

(VCL) infrastructure [6] which operates in a similar way as Ama-
zon EC2 [1]. Each VCL host has a dual-core Xeon 3.0GHz CPU
and 4GB memory, and runs 64bit CentOS 5.2 with Xen 3.0.3. The
guest VMs also run 64bit CentOS 5.2 .

UBL monitors VMs’ resource demands from domain 0, using the
libxenstat andlibvirt libraries to collect resource usage
information (e.g., CPU usage, memory allocation, network I/O,
disk I/O) for both domain 0 and guest VMs. UBL also uses a small
memory monitoring daemon within each VM to get memory us-
age statistics (through the /proc interface in Linux). The sampling
interval is 1 second.

We have chosen three benchmark systems to evaluate UBL in
order to demonstrate the agnosticism necessary for such a system to
be used in the real world. Moreover, UBL can handle dynamic ap-
plications processing time-varying workloads. To demonstrate this,

we drive all the benchmark applications using dynamic workload
intensity observed in real world online services. We injected faults
at different times while the system was under dynamic workload.
Each experiment duration varies slightly but all last aboutone hour.
Fault injections also vary slightly depending on the fault type but all
last between 1 and 5 minutes. For each fault injection, we repeated
the experiment 30 to 40 times. We now describe all the systems
and fault injections in detail as follows.

RUBiS online auction benchmark: We used the three-tier on-
line auction benchmark system RUBiS (EJB version) with one web
server, two application servers, and one database server. In order
to evaluate our system under workloads with realistic time varia-
tions, we used a client workload generator that emulates thework-
load intensity observed in the NASA web server trace beginning at
00:00:00 July 1, 1995 from the IRCache Internet traffic archive [5]
to modulate the request rate of our RUBiS benchmark. The client
workload generator also tracks the response time of the HTTPre-
quests it made. A SLO violation is marked if the average request
response time is larger than a pre-defined threshold (e.g.,100ms).

We injected the following faults in RUBiS: 1)Memleak: we
start a memory-intensive program in the VM running the database
server; 2)CpuLeak: a CPU-bound program with gradually increas-
ing CPU consumptions competes CPU with the database server
inside the same VM; and 3)NetHog: we use httperf [3] tool to
send a large number of http requests to the web server.

IBM System S: We used the IBM System S that is a commercial
high-performance data stream processing system. Each System S
application consists of a set of inter-connected processing elements
(PEs). We measured the average per-tuple processing time. ASLO
violation is marked if the average processing time is largerthan a
pre-defined threshold (e.g., 20ms). In order to evaluate oursystem
under dynamic workloads with realistic time variations, weused
the workload intensity observed in the ClarkNet web server trace
beginning at 1995-08-28:00.00 from the IRCache Internet traffic
archive [5] to modulate the data arrival rate.

For System S, we injected the following faults: 1)MemLeak: we
start a memory-intensive program in one randomly selected PE; 2)
CpuHog: a CPU-bound program competes CPU with one randomly
selected PE within the same VM; and 3)Bottleneck: we make one
PE the bottleneck in the application by setting a low CPU cap for
the VM running the PE.

Hadoop: We run Hadoop sorting application that is one of the
sample applications provided by the Hadoop distribution. We mea-
sure the progress score of the job through Hadoop API. A SLO
violation is marked when the job does not make any progress (i.e.,
0 progress score increase). We use 3 VMs for Map tasks and 6 VMs
for Reduce tasks. The number of map slots on each VM running
map tasks is set to 2, and the number of Reduce slots on each VM
running reduce tasks is set to 1. We use this configuration because
the reduce task requires much more disk and memory space than
the map task in the sorting application. Since this is a smallHadoop
cluster, the JobTracker and NameNode are very light-weight. We
colocate them together with the first reduce VM. The data size
we process is 12GB, which is generated using the RandomWriter
application.

For Hadoop, we injected two types of faults into all the VMs run-
ning the map tasks: 1)MemLeak: we injected a memory leak bug
into all the map tasks, which repeatedly allocates certain memory
from the heap without releasing; and 2)CpuHog: we injected an
infinite loop bug into all the map tasks.

We evaluate the anomaly prediction accuracy using the standard
receiver operating characteristic (ROC) curves. ROC curves can
effectively show the tradeoff between the true positive rate (AT)

5

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-NS

PCA

k-NN

(a) MemLeak

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-NS

PCA

k-NN

(b) CpuLeak

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-NS

PCA

k-NN

(c) NetHog

Figure 4: Performance anomaly prediction accuracy comparison for RUBiS under different faults.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-NS

PCA

k-NN

(a) MemLeak

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-NS

PCA

k-NN

(b) CpuHog

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-NS

PCA

k-NN

(c) Bottleneck

Figure 5: Performance anomaly prediction accuracy comparison for IBM System S under different faults.

and the false positive rate (AF) for a prediction model. We use
standardtrue positive rate AT and false positive rate AF metrics
given in equation 5. TheNtp, Nfp, Ntn, andNfn values are the
same as those described in Section 2.

AT =
Ntp

Ntp + Nfn

, AF =
Nfp

Nfp + Ntn

(5)

We say the prediction model makes a true positive predictionif it
raises an anomaly alert at timet1 and the anomaly indeed happens
at timet2, t1 < t2 < t1 + W , whereW denotes the upper-bound
of the anomaly pending time.1. Otherwise, we say the prediction
model fails to make a correct prediction. If the predictor raises an
alert and the predicted anomaly does not happen within thet1+W ,
we say that the prediction model raises a false alarm. We further
evaluate the prediction capability of UBL usingachieved lead time,
which we define to be the amount of lead time we give prior to a
SLO violation occurring. For example, if we raise an alarm attime t
and the actual SLO violation occurs at timet+20 seconds, we have
achieved a lead time of 20 seconds.

For comparison, we also implemented a set of commonly used
unsupervised learning schemes: 1) thePCA scheme uses princi-
ple component analysis to identify normal and anomalous sam-
ples [26]; and 2) thek-NN scheme calculates a k-nearest neigh-
bor distance for each measurement sample to identify normaland
anomalous samples [32]. Different from UBL, both PCA and k-
NN models need to be trained with both normal and anomalous
data. In contrast, UBL does not require the training data to con-

1We have determined an appropriate anomaly pending time upper-
boundW for each dataset by manually examining the fault injec-
tion time to the SLO violation time. For example, if a fault is
injected at timet = 20 and a SLO violation is observed at time
t = 30, our window size would be 10.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-NS

PCA

k-NN

(a) CpuHog

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

UBL-5PtS

UBL-50Pt

UBL-NS

PCA

k-NN

(b) MemLeak

Figure 6: Performance anomaly prediction accuracy compari-
son for Hadoop under different faults.

tain anomalous data. We useUBL-NS to denote the UBL scheme
without applying any data smoothing. We useUBL-kPtS to repre-
sent the UBL scheme using thek-point moving average smoothing.
Through experimentation, we have defined our map to be 32x32
nodes, the neighborhood of each node to have a radius of 4, the
learning factor to be a constant 0.7, and the neighborhood function
to be a Gaussian function. We use 3-fold cross validation to se-
lect the best map among three randomly initialized map. We have
also conducted sensitivity study experiments on those parameters,
which will be presented in the next subsection.

3.2 Results and Analysis

3.2.1 Prediction Accuracy Results
We now present the anomaly prediction accuracy comparison

results. We acquire the ROC curves for the UBL schemes by ad-

6

 0

 10

 20

 30

 40

 50

 60

70 76 82 88

A
v
e
ra

g
e
 l
e
a
d
 t
im

e
 (

s
e
c
o
n
d
s
)

Percentile of Neighborhood Area Size

Memory Leak
Cpu Leak

Net Hog

(a) RUBiS

 0

 10

 20

 30

 40

 50

 60

70 76 82 88

A
v
e
ra

g
e
 l
e
a
d
 t
im

e
 (

s
e
c
o
n
d
s
)

Percentile of Neighborhood Area Size

Bottleneck
Mem Leak

Cpu Hog

(b) System S

 0

 5

 10

 15

 20

 25

 30

70 76 82 88

A
v
e
ra

g
e
 l
e
a
d
 t
im

e
 (

s
e
c
o
n
d
s
)

Percentile of Neighborhood Area Size

Cpu Hog
Mem Leak

(c) Hadoop

Figure 7: The achieved lead time by the UBL anomaly prediction model.

justing the neighborhood area size percentile threshold (i.e., 70’th
percentile to 98’th percentile). For PCA, we obtain the ROC curves
by adjusting the variance threshold. The ROC curves of k-NN is
calculated by adjusting thek′th nearest neighbor distance thresh-
old.

We begin with the results of our RUBiS experiments. Figure 4
shows the ROC curves for the RUBiS systems under three different
faults. The memory leak dataset was our best RUBiS dataset, we
were able to achieve a high true positive rate of 97% with a very low
false positive rate of 2%. This is consistent with what we expected
as the memory leak manifests gradually and slowly. Conversely,
we see our worst results from our NetHog dataset, achieving a
87% maximum true positive rate with a corresponding 4.7% false
positive rate. This is also consistent with what we expectedsince
the NetHog fault manifests more quickly than the other two faults.
In all cases, UBL consistently outperforms PCA and k-NN with
higher true positive rates and lower false positive rates.

We can see the positive effect of smoothing by looking at the
Memleak dataset. Due to the gradual nature of this fault, smoothing
allows us to achieve approximately 20% higher true positiverates
with corresponding false positive rates. This is expected as the
RUBiS dataset contains quite some transient noises. Additionally,
due to the gradual manifestation time of the fault, we do not smooth
out any pre-failure symptoms. Therefore, we see a marked im-
provement between the smoothed and non-smoothed data.

Figure 5 shows the prediction accuracy results for the IBM Sys-
tem S application under different faults. The results show that UBL
is able to achieve higher prediction accuracy than the otherschemes
in all cases. The best result we were able to achieve was a 98% true
positive rate along with a 1.7% false positive rate in the memory
leak dataset. The worst results we achieved were in the CPU Hog
dataset, with a 93% true positive rate and a 0.5% false positive rate.
This is expected as CPU spikes are more difficult to predict due
to the rapid onset of the fault. Similarly, the Bottleneck fault is
also hard to predict as the time from fault to failure is also short.
The System S dataset has relatively less noise than the RUBiS
datasets, so the high accuracy results are expected. Additionally,
the Bottleneck and CPU Hog datasets are harder to predict than the
Memleak dataset, while our results for these datasets are good, they
are lower than Memleak as expected.

It is interesting to observe smoothing does not always help achieve
better accuracy. In the Bottleneck and CPU Hog datasets, thebest
results we achieve are those without any smoothing. This is due
to two reasons. First, both faults manifest very quickly. Second,
System S datasets are inherently not very noisy. When we ap-
ply smoothing, even 5-point smoothing, we sometimes smoothout
those critical pre-anomaly symptoms. When this happens, our model

is unable to raise an alarm appropriately, leading to lower accuracy
than without smoothing.

We now present the results of our Hadoop experiments shown
by Figure 6. The MemLeak dataset was able to achieve the highest
overall true positive rate due to the gradual nature of the fault.
Hadoop is our noisiest dataset, which explains for the high false
positive rates observed in these datasets. As expected, therapid on-
set time of the CpuHog fault means the overall true positive rate we
could achieve here was lower than the gradual memory leak dataset.
As we can see, smoothing helps the MemLeak dataset, reducingthe
overall noise of the dataset while preserving the pre-failure symp-
toms. We show an additional curve to illustrate this point. Con-
versely, while smoothing reduced the noise of the CpuHog dataset,
reducing the overall false positive rate, it also smoothed out pre-
failure symptoms leading to a lower true positive rate as well. In
both cases, UBL still can achieve better prediction accuracy than
PCA and k-NN.

3.2.2 Lead Time Results
Figure 7 shows the average lead times achieved by UBL for

RUBiS, System S, and Hadoop, respectively. The results shown
only consider the lead time achieved for cases determined tobe true
positive results. We first discuss the RUBiS lead time results. We
were closest to the maximum achievable lead time in the CpuLeak
dataset. We achieved an average lead time of 38 seconds, with
a maximum lead time of 40 seconds. The memory leak results
for this dataset were the worst results we saw. We achieved an
average lead time of only 7 seconds, with a maximum lead time of
50 seconds. This can be explained by variations in the data. The
workload and background noise of the system caused the metrics
to approach unknown levels only when the system was close to the
anomaly state.

We next discuss the lead time we were able to achieve for the
System S datasets. Here, we were able to achieve an average lead
time of 47 seconds for the memory leak dataset with a maximum
lead time possible of 50 seconds. While the lead time is lowerfor
the CpuHog dataset, we achieved an average lead time of 3 seconds,
with a maximum possible lead time of 4 seconds. Similarly, we
achieved a lead time of 5 seconds in the Bottleneck dataset, with
a maximum lead time of 6 seconds possible. The memory leak
dataset had the best lead time because it was a gradual changewith
little memory fluctuation. The CpuHog and BottleNeck datasets
had much shorter manifestation durations, and thus our system had
little time to predict the anomaly, however we still are ableto achieve
results close to the maximum possible lead time.

Finally, we present the average lead time we are able to achieve
in the Hadoop experiments in. The average lead time we were able
to achieve in the memory leak dataset was 24 seconds. Here the

7

0 20 40 60 80 100
0

1

2

3

4
 RUBiS
 System S
 Hadoop

Cumulative percentage of failures

R
an

ki
ng

 o
f f

au
lty

 m
et

ric

Figure 8: Ranking results of the faulty metrics in different
failure instances. The Y axis is the faulty metric rank as
determined by UBL while the X axis represents the total
number of faults observed.

maximum lead time possible was 25 seconds. In this case, UBL
is able to quickly determine the pattern is not normal and raise an
early alarm. In contrast, the CpuHog lead time is lower, but as
before this is due to the rapid onset time. We achieved an average
lead time of 3 seconds with a maximum possible lead time of 4
seconds.

All in all, UBL can achieve close to maximum possible lead
time for different faults tested in our experiments. Our previous
study [34] shows that we can take local anomaly prevention ac-
tions such as VM resource scaling within one second and more
costly anomaly preventions such as live VM migration within10
to 30 seconds. Thus, the lead time achieved by UBL is sufficient
in most cases for the cloud system to provide automatic anomaly
preventions.

3.2.3 Anomaly Cause Inference Results
We now present our anomaly cause inference results shown by

Figure 8. We consider the faulty metric to be the metrics most
closely associated with a given failure. For example, for the Mem-
Leak datasets, we consider the memory metric as the faulty metric.
The figure shows the ranking of the faulty metric in the rank list
output by UBL. As the Figure shows, UBL can correctly rank the
faulty metric as top ranked metric in most failure cases. These
results indicate UBL is able to preserve the topological properties
of the input measurement space and is useful for diagnosis aswell
as prediction. In datasets where noise is less of an issue, such as
System S, UBL achieves near perfect ranking results.

3.2.4 Scalability Results
To demonstrate the benefit of using the decentralized approach,

we first measure the CPU load and power consumption of central-
ized system behavior learning approach. We run 25 learning VMs
on five physical hosts, each of which runs five VMs. This experi-
ment is conducted on a small cluster in our lab since VCL hostsare
not equipped with power meters. Each host has a quad-core Xeon
2.53GHz processor, 8GB memory and 1Gbps network bandwidth,
and runs CentOS 5.5 64 bit with Xen 3.4.3. In each physical host,
we pin down Domain 0 to one core and run all learning VMs on
three other cores, each VM is configured with one virtual core.

Figure 9 shows the total CPU consumption and energy consump-
tion of the 25 VMs using 6000 data samples. The X-axis shows
different numbers of learning VMs in the training state (therest
are in the prediction state). The left Y-axis shows the totalCPU
consumption and the right Y-axis shows the total energy consump-
tion. We find that in all three schemes (PCA, k-NN, UBL), the
learning VMs in the training state are CPU-greedy. The totalCPU

0 5 10 15 20 25
0

500

1000

1500

2000

 Energy
 CPU

Number of training VMs

To
ta

l C
PU

 c
on

su
m

pt
io

n
(%

)

0

200

400

600

Total Energy consum
ption (J)

Figure 9: CPU load of 25 learning VMs running on 15 cores.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
 UBL
 PCA
 k-NN

CPU Cap (%)

Ti
m

e
(m

in
ut

es
)

Figure 10: Training time comparison.

0

10

20

30

With Learning VMs

A
verage throughput
(K

tuples/second)

A
ve

ra
ge

 re
po

ns
e

tim
e

(m
ill

is
ec

on
ds

)

RUBiS System S

Without Learning VMs

0.0

0.5

1.0

1.5

2.0

Figure 11: Learning VM impact to co-located application VMs.

consumption and energy consumption exhibits linear growthac-
cording to the number of learning VMs in the training state. Since
there are a total of 15 cores on 5 hosts, the total CPU consumption
cannot exceed 1500%. This experiment shows that the centralized
learning approach will not be scalable.

Figure 10 shows the training time using 6000 data samples when
varying the CPU cap of the learning VM on the HGCC host. We
see that the training time of UBL is similar to PCA and much
faster compared to k-NN. This is expected since k-NN has higher
computation complexity than PCA and UBL. We also find that the
training time of UBL decreases linearly as the CPU cap increases,
from 7 minutes to 42 seconds. This motivates our idea of leveraging
residual resources with migration to achieve fast system learning
with low cost. Additionally, this demonstrates that even with few
resources available, UBL training time is reasonable.

We now examine the impact of learning VMs to the performance
of co-located application VMs. We set up a small cluster in which
we run both RUBiS and System S. We use the Xen credit scheduler
to set the scheduling weight of the application VMs to 256 andthe
weight of the learning VM to 8. Figure 11 shows the performance
of the RUBiS and System S with and without the presence of learn-
ing VMs. We observe that with the presence of learning VMs, the
average response time of RUBiS and the throughput of System S

8

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200

P
re

d
ic

tio
n

 T
im

e

(m
ill

is
e

co
n

d
s)

Time (seconds)

Without Migration
With Migration

(a) Prediction time

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200

M
o

d
e

l U
p

d
a

te
 T

im
e

(m

ill
is

e
co

n
d

s)

Time (seconds)

Without Migration
With Migration

(b) Model update time

Figure 12: Prediction time and model update time of UBL.

System Modules CPU cost
VM monitoring (8 attributes) 1.33±0.09 ms
3-fold cross validation (6000 samples)42± 1 sec
SOM model updating 245±54.9 ms
Anomaly prediction 2.4±2.6 ms

Table 1: UBL System overhead measurements.
Accuracy Accuracy
(NetHog) (Memleak)

Map 25x25 97% 93%
Map 32x32 98% 92.8%
Map 40x40 97.1% 93.3%

Neighborhood size 3 98.6% 93.6%
Neighborhood size 4 98.5% 92.8%
Neighborhood size 5 97.6% 92.5%

Gaussian function height 7 98.2% 92.9%
Gaussian function height 10 98.5% 92.8%
Gaussian function height 13 98.9% 93.8%

Table 2: Sensitivity experiment results for the NetHog fault in
RUBiS and MemLeak fault in System S.

have little difference compared to the case that the learning VMs
are not present. The results show that the learning VMs have little
impact to the performance of the co-located application VMs.

Figure 12 shows the benefit of using learning VM migration to
maintain the prediction time and online model update time. Since
we require the learning VMs to always yield to foreground applica-
tions, the performance of the learning VMs will be affected when
the foreground applications use up the resources. The results show
that, from time 450 to 700, the prediction time and the model up-
date time increase because residual resources are low. By migrating
the learning VMs to another physical host with more resources, the
performance of UBL is preserved.

Finally, we evaluate the overhead of the UBL system. Table 1
lists the CPU cost of each key module in our system. The VM
monitoring module runs within Domain 0 of each host and collects
eight resource attributes per second. Each collection takes about 1.3
milliseconds. 3-fold cross validation is the most time-consuming
operation, taking about 42 seconds. However, this step is only used
during bootstrap learning phase. Incremental SOM updates take
about 245 milliseconds for every 30 new data samples. Anomaly
prediction takes about 2.4 milliseconds. During the normalexecu-
tion, the learning VM imposes less than 1% CPU load and UBL
consumes less than 16MB of memory. Overall, the overhead mea-
surements show that UBL is light-weight, which makes it practical
for online system anomaly management.

3.2.5 Sensitivity Study
We have conducted sensitivity experiments to study how UBL

performs under different key parameter settings. Due to space lim-
itation, we only show a subset of our results in Table 2. The accu-

racy values are calculated using Equation 2. We observe thatUBL
is not very sensitive to different parameter values and is able to
achieve accuracy values which differ by less than 1% in most cases.
The map size parameter has the potential to affect the accuracy of
the system if it is set too low. For example, a 5x5 map is too small to
effectively capture the overall pattern of the system. Additionally,
if the map size is too large, the learning time becomes long. We
have found map sizes in the range we list are able to give good
results for all datasets we tested.

4. RELATED WORK
The idea of using machine learning methods to detect and predict

anomalies, faults, and failures has been of great interest to the
research community in recent years. Broadly, these approaches
can be classified into supervised approaches and unsupervised ap-
proaches. Supervised approaches rely on labelled trainingdata
to accurately identify previously known anomalies. Unsupervised
approaches do not require labelled training data to find problems,
but generally are less accurate than supervised approaches, looking
for a broader range of problems. These approaches can be further
divided into detection schemes and prediction schemes. Detection
schemes identify failures at the moment of failure, while prediction
schemes try to predict a failure before it happens.

Supervised anomaly prediction. The most closely related work
to ours is Tiresias [36], which also addresses the black-boxfailure
prediction problem in distributed systems. Tiresias relies on exter-
nal anomaly detectors to create anomaly vectors. The systemthen
applies Dispersion Frame Technique (DFT) prediction heuristics on
the anomaly vectors for anomaly prediction. Gu et al. [20] integrate
Markov feature value prediction with naive Bayesian classification
to predict performance anomalies. Tan et al. [33] use a hierarchical
clustering technique to discover different execution contexts of a
dynamic system but build context-aware prediction models to im-
prove prediction accuracy. Different from UBL, the above works
need labelled normal and failure data in the training data and do
not provide anomaly cause inference. In contrast, UBL does not
require any data labeling, which allows UBL to predict both known
and unknown performance anomalies.

Supervised anomaly detection. Cohen et al. [16] use clustering
over labelled failure data to extract failure signatures, which can
be used to detect recurrent problems. Powers et al. [27] study
different statistical learning methods to find the approaches that can
detect performance violations in an enterprise system. Bhatia et
al. [9] develop sketches of system events, which are then visualized
for diagnosis by an expert. The Fa system [17] uses anomaly-
based clustering to achieve automatic failure diagnosis for query
processing systems. Cha et al. [12] use a signature based approach
along with a bloom filter for malware detection. Bodik et al. [10]
use signatures along with feature selection and a regression model
to detect performance anomalies. In contrast, our approachfocuses
on predicting unknown anomalies and does not require prior knowl-
edge about different failure instances.

Unsupervised anomaly detection. Previous work has proposed
model-driven approach to performance anomaly detection. For ex-
ample, Stewart et al. [31] instrument the OS to gather data and
profile system performance using queuing models. Shen et al.[29]
use a reference based approach to detect performance anomalies by
looking at how metrics differ from the ideal case. Stewart etal. [30]
use a transaction mix model to predict the performance givena
certain workload, and hence can detect the anomaly if the observed
performance is different with the predicted performance. Com-
pared to UBL, those model-driven approaches typically require ex-
tensive model calibration using offline profiling and need tomake

9

certain assumptions about the workload type (e.g, transactions) and
user request arrival patterns. In contrast, UBL is application-agnostic
and does not require extensive application profiling. Cherkasova et
al. [13] build regression-based transaction models and application
performance signatures to provide a solution for anomaly detection
considering system changes. Different from UBL, this modelis
designed to consider a single metric. Wang et al. [35] have used
entropy based approaches to quantify the metric distribution and
detect anomalies using signal processing and spike detection. Sim-
ilarly, Jiang et al. [22] detect failures by looking at the entropy of
clustered system metric relationships. Makanju et al. [25]assign
entropy scores to event log data to detect anomalies. WAP5 [28]
detects the bottleneck in distributed systems by analyzingmessage
traces to infer the causal structure and timing of communication
within these systems. Kasick et al. [23] use peer comparisonto
determine the root cause of a problem in a distributed environ-
ment. Jiang et al. [21] employ linear regression models to extract
invariants and then track their changes to detect the anomaly in
transaction systems. In contrast to the above approaches, UBL can
predict future anomalies as opposed to detecting anomaliesat the
moment of failure. Moreover, UBL is broader in scope, designed
to learn system behavior for a variety of uses. We show anomaly
prediction as one of the uses of UBL.

5. CONCLUSION
In this paper, we have presented UBL, a novel black-box unsu-

pervised behavior learning and anomaly prediction system for IaaS
clouds. UBL leverages the Self-Organizing Map (SOM) learning
technique to capture dynamic system behaviors without any hu-
man intervention. Based on the induced behavior model, UBL can
predict previously unknown performance anomalies and provides
hints for anomaly causes. UBL achieves scalable behavior learning
by virtualizing and distributing the learning tasks among distributed
hosts. We have implemented a prototype of UBL on top of the Xen
platform and conducted extensive experiments using real world dis-
tributed systems running inside a production cloud infrastructure.
Our results show that UBL can achieve high prediction accuracy
with up to 98% true positive rate and 1.7% false positive rate, and
raise advance alarms with up to 47 seconds lead time. UBL is light-
weight, which makes it practical for large-scale cloud computing
infrastructures.

6. ACKNOWLEDGMENT
This work was sponsored in part by NSF CNS0915567 grant,

NSF CNS0915861 grant, NSF CAREER Award CNS1149445, U.S.
Army Research Office (ARO) under grant W911NF-10-1-0273, IBM
Faculty Awards and Google Research Awards. Any opinions ex-
pressed in this paper are those of the authors and do not necessarily
reflect the views of NSF, ARO, or U.S. Government. The authors
would like to thank the anonymous reviewers for their insightful
comments as well as Zhiming Shen, Yongmin Tan, and Kamal Kc
for their help.

7. REFERENCES
[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.
[2] Apache Hadoop System. http://hadoop.apache.org/core/.
[3] Httperf. http://code.google.com/p/httperf/.
[4] RUBiS: Rice University Bidding System. http://rubis.ow2.org.
[5] The IRCache Project. http://www.ircache.net/.
[6] Virtual computing lab. http://vcl.ncsu.edu/.
[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for

request extraction and workload modelling. InProc. of OSDI, 2004.
[8] P. Barham and et al. Xen and the Art of Virtualization. InProc. of

SOSP, 2003.

[9] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. Peterson.
Lightweight, high-resolution monitoring for troubleshooting
production systems. InProc. of OSDI, 2008.

[10] P. Bodik, M. Goldszmidt, and A. Fox. Hilighter: Automatically
building robust signatures of performance behavior for small- and
large-scale systems. InProc. of SysML, 2008.

[11] D. Breitgand, M. B.-Yehuda, M. Factor, H. Kolodner, V. Kravtsov,
and D. Pelleg. NAP: a building block for remediating performance
bottlenecks via black box network analysis. InProc. ICAC, 2009.

[12] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G.
Andersen. Splitscreen: enabling efficient, distributed malware
detection. InProc. of NSDI, 2010.

[13] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni.
Anomaly? application change? or workload change? InProc. of
DSN, 2008.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In Proc.
of NSDI, 2005.

[15] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating Instrumentation Data to System States: A Building Block
for Automated Diagnosis and Control. InProc. of OSDI, 2004.

[16] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.
Capturing, indexing, clustering, and retrieving system history. In
Proc. of SOSP, 2005.

[17] S. Duan, S. Babu, and K. Munagala. Fa: A system for automating
failure diagnosis. InProc. of ICDE, 2009.

[18] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: the
system s declarative stream processing engine. InProc. of SIGMOD,
2008.

[19] Z. Gong and X. Gu. PAC: Pattern-driven Application Consolidation
for Efficient Cloud Computing. InProc. of MASCOTS, 2010.

[20] X. Gu and H. Wang. Online anomaly prediction for robust cluster
systems. InProc. of ICDE, 2009.

[21] G. Jiang, H. Chen, and K. Yoshihira. Discovering likelyinvariants of
distributed transaction systems for autonomic system management.
In Proc. of ICAC, 2006.

[22] M. Jiang, M. Munawar, T. Reidemeister, and P. A. S. Ward.
Automatic fault detection and diagnosis in complex software systems
by information-theoretic monitoring. InProc. of DSN, 2009.

[23] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan. Black-box
problem diagnosis in parallel file systems. InProc. of FAST, 2010.

[24] T. Kohonen, M. R. Schroeder, and T. S. Huang, editors.
Self-Organizing Maps. Springer, 3rd edition, 2001.

[25] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios. Fastentropy
based alert detection in super computer. InProc. of DSN, 2010.

[26] I. T. Olliffe. Principal Component Analysis. Springer-Verlag, 2002.
[27] R. Powers, M. Goldszmidt, and I. Cohen. Short term performance

forecasting in enterprise systems. InProc. of KDD, 2005.
[28] P. Reynolds, J. Wiener, J. Mogul, M. Aguilera, and A. Vahdat. Wap5:

black-box performance debugging for wide-area systems. InProc. of
WWW, 2006.

[29] K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven performance
anomaly identification. InProc. of SIGMETRICS, 2009.

[30] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for
performance prediction. InProc. of Eurosys, 2007.

[31] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online service. InProc. of NSDI,
2005.

[32] P.-N. Tan, M. Steinbach, and V. Kumar.Introduction to Data Mining.
Addison Wesley, 2005.

[33] Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly prediction for
large-scale hosting infrastructures. InProc. of PODC, 2010.

[34] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D.Rajan.
PREPARE: Predictive Performance Anomaly Prevention for
Virtualized Cloud Systems. InProc. of ICDCS, 2012.

[35] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan. Online
detection of utility cloud anomalies using metric distributions. In
Proc. of NOMS, 2010.

[36] A. W. Williams, S. M. Pertet, and P. Narasimah. Tiresias: Black-box
failure prediction in distributed systems. InProc. of IPDPS, 2007.

10

