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Abstract—Server applications running inside production cloud infrastructures are prone to various performance problems (e.g., software

hang, performance slowdown). When those problems occur, developers often have little clue to diagnose those problems. In this paper,

we present Hytrace, a novel hybrid approach to diagnosing performance problems in production cloud infrastructures. Hytrace combines

rule-based static analysis and runtime inference techniques to achieve higher bug localization accuracy than pure-static and pure-dynamic

approaches for performance bugs. Hytrace does not require source code and can be applied to both compiled and interpreted programs such

as C/C++ and Java. We conduct experiments using real performance bugs from seven commonly used server applications in production cloud

infrastructures. The results show that our approach can significantly improve the performance bug diagnosis accuracy compared to existing

diagnosis techniques.

Index Terms—Static analysis; Dynamic analysis; Reliability, availability, and serviceability; Debugging aids; Performance

✦

1 INTRODUCTION

Cloud computing infrastructures [3], [5] have become in-
creasingly popular by allowing users to access comput-
ing resources in a cost-effective way. However, when a
performance problem (e.g., software hang, performance
slowdown) occurs in production cloud infrastructures, it
is notoriously difficult to diagnose because the developer
often has little diagnostic information (e.g., no error log or
core dump) to localize the fault. A recent study [23] has also
shown that performance bugs widely exist across different
server applications that are commonly used in production
cloud environments.

Previous work on performance bugs can be broadly
classified into two groups: 1) static analysis schemes [6], [7],
[23], [35] that detect bugs by searching specific performance
anti-patterns in software, such as inefficient call sequences
or loop patterns; and 2) dynamic runtime analysis schemes
[13], [19] that closely monitor runtime application behaviors
to infer root causes of performance problems.

Both approaches have advantages but also limitations.
The static analysis approach imposes no runtime overhead
to production systems. However, without run-time infor-
mation and without focusing on the specific anomaly oc-
curred in a production run, this approach inevitably suffers
from excessive false alarms, reporting code regions that are
unrelated to the production run performance problem. To
address this problem, previous work proposed specialized
rule checkers to detect specific and known performance
bugs [23], [35]. However, specialized rule checkers cannot
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cover many real world performance bugs as shown in our
experiments.

In contrast, a dynamic approach can target the specific
problem that has occurred in the production environment.
However, it needs to perform monitoring on production
systems, inevitably imposing overhead. To avoid excessive
runtime overhead, previous research proposed performance
diagnosis based on system-level metrics or events that
can be easily collected with low overhead, such as CPU
utilization, free memory, system calls, and performance-
counter events [13], [19]. Unfortunately, without knowledge
about program semantics, those dynamic techniques suffer
from both false positives and false negatives too [13], [19].

1.1 A Performance Bug Example

To illustrate the challenge of performance bug diagnosis,
we discuss Apache-376801 bug. This bug was discovered
when a user conducted a graceful restart to Apache server,
after he/she modified Apache configuration, changing the
web server from listening to two ports to just one port. The
graceful restart option attempts to minimize any downtime
by only restarting parts of the application. However, instead
of coming back online in a few seconds as expected, Apache
server hangs, consuming 100% CPU in the process.

The direct cause of this problem is a blocking call
Apache attempts to make on the single port during graceful
restart. Since the configuration of the socket does not allow
blocking calls, Apache endlessly re-tries the call and hangs.
The root cause is related to the (un)blocking setting of the
port. In this bug, graceful restart reuses the socket from
the previous running instance, without changing the socket
setting. Unfortunately, this socket was set to not allow
blocking calls in ap_setup_listeners function through
the apr_socket_opt_set function in previous running
instance, when two ports were configured.

1. We use “application name dash bug identifier” in the repository to
denote each bug in this paper.
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- if (ap_listeners && ap_listeners->next) {

+ use_nonblock = ap_listeners && ap_listeners->next;

for (lr = ap_listeners; lr; lr = lr->next) {

apr_status_t status;

...

status = apr_socket_opt_set(lr->sd,

APR_SO_NONBLOCK,

- 1);

+ use_nonblock);

if (status != APR_SUCCESS) {

ap_log_perror(APLOG_MARK, APLOG_STARTUP |

APLOG_ERR, status, pool,

"ap_listen_open: unable to "

- + "make socket non-blocking");

+ + "control socket non-blocking status");

return -1;

}

}

- }

Fig. 1. The patch for Apache-37680 bug. The patch is

inside function ap_setup_listeners. The bug occurs
as a result of the constant value “1” being passed to the

apr_socket_opt_set function, causing an infinite loop in
another function at runtime. “+” means the added lines, and

“-” means the deleted lines.

The patch only makes one major change, as
shown in Figure 1. Instead of a constant value
“1”, a variable use_nonblock is passed to the
invocation of apr_socket_opt_set inside the function
ap_setup_listeners. This variable controls whether the
socket is configured to allow or not allow blocking calls.
This change allows graceful restarts to enable blocking
calls on the reused socket before making blocking calls.

It is challenging to precisely detect the above problem
using pure static checking. A rule that precisely captures
the root cause of this bug is that blocking calls should not
be made on a socket configured to not allow blocking calls.
This rule is almost infeasible to check statically — the socket
configuration can happen long before the blocking call, and
inter-procedural path-sensitive static analysis cannot scale
to complicated production server software. Furthermore,
even if this rule is checkable, it is too specific. Providing
good diagnosis coverage using such specific rule checking
is difficult if not totally impossible. Note that, a traditional
generic infinite loop detector would not work here, because
it cannot reason about the fact that a blocking call will
always fail on a socket under certain configuration.

It is also challenging to precisely diagnose the above
problem using purely dynamic techniques. Dynamic tech-
niques often try to discover (statistically) abnormal ex-
ecution behaviors based on traces of system calls [18],
[19], performance counters [13], or other system metrics
[32], [39]. Unfortunately, for bugs like the one in Figure
1, the above dynamic techniques will discover the symp-
tom but unable to discover the root cause, which does
not produce abnormal system-call or performance-counter
features. Furthermore, these techniques tend to introduce
false alarms due to the inherent uncertainty nature of the
statistical behavior modeling. Finally, without source code
access, it could be nontrivial for developers to associate
dynamic diagnosis results with specific source-code level
buggy functions or buggy lines.

1.2 Our Contribution

This paper presents Hytrace, a novel hybrid performance
bug diagnosis scheme for production cloud infrastructures.
Our technique does not require any application source code
and imposes little overhead, which makes it practical for
the production cloud environment. Hytrace achieves both
higher coverage and better precision than existing pure-static
and pure-dynamic schemes.

The key challenge in designing such a hybrid scheme is
to retain the strengths and alleviate the weakness of each
individual scheme. Our idea is to construct a static anti-
pattern detector and a dynamic abnormal behavior detector
that each individually provides high coverage maybe at the
expense of precision. When combining such schemes, the
high coverage will naturally be retained and the lost preci-
sion fortunately can be regained as most false alarms would
not be reported by both schemes that conduct diagnosis
from different perspectives.

Specifically, we propose a generic rule checker that stat-
ically detects functions that bear code patterns vulnerable
to potential performance problems. When a performance
problem such as hang or slowdown is observed by users
or automated monitors [15], [30], [34], [42], we use run-time
analysis to identify a ranked list of functions that produce
abnormal system-level metrics during the production run
either themselves or through their immediate callees. Func-
tions that appear suspicious from both static and dynamic
analysis are reported.

Intuitively, our static scheme captures performance-bug-
prone code patterns while our dynamic scheme captures
abnormal runtime behaviors. The combination of the two
leverages both program semantic and run-time behavior
information, and hence can achieve higher precision than
pure-static or pure-dynamic techniques.

This paper makes the following contributions:

• Hytrace — We present Hytrace, a novel hybrid per-
formance diagnosis approach that combines runtime
inference with static analysis to achieve a better com-
bination of accuracy, coverage, and efficiency in per-
formance anomaly diagnosis than existing schemes.

• Hytrace-static — We develop a rule-based static analy-
sis tool that can detect potential performance problems
in server applications. This tool aims at achieving
higher detection rate than existing static analysis tools.
For generality, our tool strives to support both C/C++
and Java.

• Hytrace-dynamic — Hytrace leverages and extends
an existing dynamic analysis tool [19] to conduct
low-overhead run-time performance anomaly inference
with higher diagnosis coverage than existing pure-
dynamic analysis schemes.

• We implement Hytrace and evaluate it using 133 real
performance bugs (14 of them are reproduced by us)
in seven commonly used server applications (Apache,
MySQL, Lighttpd, Memcached, Hadoop, Cassandra,
Tomcat) reported by production cloud users.

Note that, Hytrace framework is extensible and config-
urable: we can add new rules or drop existing rules to
and from Hytrace-static module easily, and we can replace
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Hytrace-dynamic module with any other runtime analysis
tools as long as those tools follow our design principles
(e.g., low overhead, high coverage).

Our results show that Hytrace significantly improves
the accuracy, with the true root-cause’ ranking improved
from top 10 to top 3 (on average) for diagnosing 14
reproduced performance bugs compared to existing pure-
dynamic analysis tools (PerfScope [19]). None of these bugs
can be covered by traditional pure static checkers that target
on general software bugs (Infer [6], Findbugs [7]) or specific
types of loop inefficiency bugs (Caramel [35]). Moreover,
Hytrace-static improves the coverage by at least 69% for
diagnosing 133 performance bugs compared to Infer, Find-
bugs and Caramel. Hytrace is light-weight: imposing less
than 3% overhead to the systems and localizing suspicious
functions for complex server applications with millions
lines of code within tens of minutes.

The rest of the paper is organized as follows. Section 2
describes the design of the Hytrace system. Section 3
presents our implementation of Hytrace. Section 4 talks
about the methodology. Section 5 shows the experimental
evaluation. Section 6 discusses the limitation and future
work of Hytrace. Section 7 compares our work with related
work. Finally, the paper concludes in Section 8.

2 DESIGN

This section first describes our static analysis and dynamic
analysis components separately, and then describes how
their results are combined.

2.1 Hytrace Static Analysis

Our static analysis module focuses on detecting potential
faulty functions that are prone to performance problems.
Its design includes two parts. First, design the target for
static analysis — identify a few static code patterns that
are vulnerable to performance problems, which we will
refer to as rules. Second, design the static analysis algorithm
— design how to analyze the program and discover code
regions that match those rules.

Rule Design Principles Our rule design follows two
principles. First, different from many stand-alone static
checkers, our design favors generality over precision. We
should look for code patterns that are maybe-indicators of
performance problems, not patterns that are guaranteed to
cause performance problems. This principle helps us avoid
missing true buggy functions. Since the runtime inference
component of Hytrace can effectively filter out many falsely
identified functions detected by the static analysis, the final
precision of Hytrace will be much better than the precisions
of these static rules.

Second, like that in all static checkers, we should find
statically checkable rules. That is, whether a code region
matches a rule or not should be decidable without any
runtime information. For example, checking whether a
function call uses a constant value as a parameter is
statically checkable. In contrast, whether a variable can
take on a particular value during program execution often
cannot be checked statically.

if (fill_record_n_invoke_before_triggers ( thd,

*info->update_fields, *info->update_values,

- 0,

+ info->ignore,

table->triggers, TRG_EVENT_UPDATE))

Fig. 2. Example for R1: constant parameter (MySQL-

28000 bug). The bug occurs as a result of the
constant value 0 being passed to the invocation of

fill_record_n_invoke_before_triggers in function
write_record, causing an endless loop at runtime.

We randomly sampled 20 out of 133 performance bugs.
We have derived a set of rules that meet our design princi-
ples empirically based on our experience of studying those
20 real-world performance bugs in server applications. For
the purpose of cross validation, we use another disjoint set
of 20 bugs to perform the same rule extraction process. (the
details about all the 133 bugs are available online [8]). We
found that we extract the same set of generic performance
bug detection rules. Those 40 sample bugs are our rule
generation training set. The 133 bugs form Hytrace testing
set and are used in our experimental evaluation. Note that,
Hytrace can be easily extended with other rules that follow
our design principles and integrated with any static anal-
ysis tools that can identify a set of candidate performance-
problem-prone functions. We now describe the rules used
by Hytrace static analysis component in detail as follows.

R1: Constant parameter function calls. A function call
that uses a constant value as a primitive-type parameter
matches this rule; the function that issues such a constant-
parameter function call will be considered as a candidate
faulty function. Clearly, this rule is generic, not limited to
any specific software, and statically checkable. Furthermore,
it does reflect a common performance problem — hard-
coded parameters cannot handle unexpected workload,
configuration, or environment. For example, the Apache
bug discussed in the introduction uses a constant pa-
rameter in function apr_socket_opt_set, which makes
the socket only support non-blocking calls. This prede-
fined functionality cannot handle unexpected configuration
changes (i.e., changing the number of the listening ports
from 2 to 1). As another example, the MySQL-28000 bug
shown by Figure 2 uses a hard-coded constant value of
0, which causes MySQL to never ignore errors when exe-
cuting the fill_record_n_invoke_before_triggers

function. In most cases, this is not a problem as errors
would be handled appropriately (e.g., logged). However, in
certain circumstances, such as, when executing the INSERT
IGNORE command, errors should be ignored but are not,
which causes the system to hang.

Many performance problems are related to function calls
that match this rule, yet matching this rule does not
mean performance problems will necessarily happen. This
matches our design principle.

R2: Null parameter function calls. A function call that
uses null as a pointer/object parameter matches this rule;
the function that issues such a null-parameter function call
will be considered as a candidate faulty function. This
type of function calls can be related to performance prob-
lems in several ways. The null parameter is sometimes
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AllocateRequest allocateRequest =

AllocateRequest.newInstance( lastResponseID,

super.getApplicationProgress(),

new ArrayList<ResourceRequest>(ask),

new ArrayList<ContainerId>(release),

- null);

+ blacklistReq);

Fig. 3. Example for R2: null parameter (Mapreduce-5489

bug). The bug occurs as a result of not using node blacklist-
ing feature in Resource-Manager requests, hanging MapRe-

duce jobs.

- cl_val = atol(old_cl_val);

+ if (APR_SUCCESS != (status = apr_strtoff(

+ &cl_val, old_cl_val, NULL, 0))) {

+ return status;

+ }

...

while (!APR_BUCKET_IS_EOS(...input_brigade)){

...

bytes_streamed += bytes;

...

if (bytes_streamed > cl_val)

continue;

...

//input_brigade is changed after

}

Fig. 4. Example for R3: unsafe function (Apache-40883

bug). The bug occurs as a result of calling atol to convert a
string, whose value is greater than 2 GB, into a long integer

in stream_reqbody_cl function, hanging Apache system.

unexpected and hence not properly handled, leading to
unexpected execution behavior. Sometimes, the null is the
default parameter. When developers “lazily” use a default
parameter, inefficiency may follow. Figure 3 shows an ex-
ample for this rule. In this bug, null is the default value for
the last parameter of AllocateRequest::newInstance
method. Using the default value causes the Resource-
Manager to not blacklist any bad Node-Managers during
job allocation, even when a bad Node-Manager is already
blacklisted by the Application-Master. As a result, the
Resource-Manager could keep allocating the same black-
listed Node-Manager to the Application-Master, leading to
a hang problem.

R3: Unsafe function calls. Some widely used I/O library
functions, such as atol and fopen, may return unex-
pected output. When those unexpected return values are
not properly handled, the affected system may hang. We
define those functions as unsafe functions. This rule checks
whether an unsafe function is called and reports the func-
tion that calls an unsafe function as a candidate faulty func-
tion. For example, Figure 4 shows the patch for Apache-
40883 bug. In this bug, an unsafe function atol is called by
stream_reqbody_cl to convert the old_cl_val string
into the long integer, cl_val. This string happened to be
larger than 2GB on the user’s 32-bit machine. The integer
overflow caused atol to return 0, which in turn caused
the if branch be taken in every iteration of the while loop.
Once that happens, a continue statement is executed
without updating input_brigade and then goes to the
loop header, the same input_brigade value makes the
condition of while loop always be true, causing whole
Apache to hang. The patch simply replaced atol with its

apr_bucket *e = APR_BRIGADE_FIRST(bb);

while (1) {

...

if (APR_BUCKET_IS_EOS(e)) {

ap_remove_output_filter(f);

return ap_pass_brigade(f->next, bb);

}

if (APR_BUCKET_IS_METADATA(e)) {

+ e = APR_BUCKET_NEXT(e);

continue;

}

...

}

Fig. 5. Example for R4: unchanged loop exit condition
variables (Apache-51590 bug). The bug occurs as the high-

lighted while loop becomes an infinite loop due to wrong

handling along the APR_BUCKET_IS_METADATA branch,
hanging Apache system.

if (len < 0) { ... return -1; }

else if (len == 0) { ... return -2; }

+ else { joblist_append(srv, con); }

return 0;

Fig. 6. Example for Rule 5: uncovered branch (Lighttpd-2197

bug). The bug occurs as a result of unhandling fragmented
ssl request case, stalling Lighttpd.

large-file alternate: apr_strtoff.

R4: Unchanged loop exit condition variables. This rule
looks for the loops whose exit condition variables should be
updated but not changed by mistake and reports the func-
tion that contains such a loop as a candidate faulty function.
The rationale behind the rule is that an infinite loop can
occur when the exit condition variables are unchanged,
which may cause software hang performance problems.
Figure 5 shows the patch for Apache-51590 bug. In this bug,
a while loop is called by function deflate_out_filter

when reading buckets. When the input brigade contains
a metadata bucket, the second if branch will be taken.
Once that happens, a continue statement is executed
without moving the pointer e. The pointer e is a loop
exit condition related variable. After that, in each itera-
tion, function deflate_out_filter processes the same
metadata bucket without moving the pointer e and then
goes back to the loop header, i.e., while(1), causing a
hang. The patch updates the loop exit variable e by adding
a statement to move the pointer to the next bucket in
the APR_BUCKET_IS_METADATA branch, making sure that
loop does not stuck at a metadata bucket.

R5: Uncovered branch. A function which does not
cover all branches of conditional statements matches
this rule. Those uncovered cases might be poorly
handled, leading to unexpected execution behavior.
Figure 6 shows the patch for Lighttpd-2197 bug.
Function connection_handle_read_ssl did not
handle the len > 0 branch. When ssl requests are
sent in multiple fragments (i.e., len is positive),
connection_handle_read_ssl just drops the
fragmented packages silently, which in turn stalls Lighttpd
system and causes frequent timeouts at client ends.
The patch simply added the else branch to push the
fragmented package into joblist.

Rule-Checking Analysis We develop static checkers to
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find suspicious functions that match the above rules. We
choose to analyze intermediate representation (e.g., LLVM
bitcode) or object code (e.g., Java bytecode) as opposed to
source code, which allows Hytrace to work in production
cloud infrastructures where applications often belong to the
third-party and the source code is often unavailable. Of
course, not operating at the source level has its challenges.
For example, in Java, function calls are converted into the
invokedynamic instruction, with n arguments being the
previous n instructions before it. We need tools that can
correctly extract arguments. We have developed several
extensible binary bug checkers using existing static analysis
frameworks. Specifically, we use LLVM [9] for C/C++
applications and Findbugs [7] for Java applications. In addi-
tion to providing rule-checking functionality, our checkers
provide several utility functions, such as invokedynamic
argument extraction. Additionally, Hytrace framework al-
lows users to easily add new rules with few code changes.
We will describe the implementation details in Section 3.

2.2 Hytrace Dynamic Analysis

The design principle of Hytrace dynamic analysis compo-
nent is similar to that of static analysis part. Our goal is to
relax the requirement for precision and maximize the cov-
erage (i.e., avoid miss detections) by including all potential
root cause related functions. The current Hytrace-dynamic
module extends an existing dynamic cloud performance de-
bugging tool PerfScope [19] to achieve our design goal. We
chose PerfScope because it imposes low overhead and does
not require source code access, which makes it practical
for production cloud infrastructures. However, like other
dynamic techniques [13], [14], [22], [29], [43], PerfScope
sacrifices coverage in order to achieve high precision, which
makes it inevitably miss identifying buggy functions that
have major contributions to the root cause. Based on this,
Hytrace-dynamic is proposed to address the coverage issue
in PerfScope.

When a performance anomaly is detected by an existing
online anomaly detection tool [18], [42], we first trigger
a runtime system call analysis to identify abnormal sys-
tem call sequences produced by the server applications.
Specifically, we analyze a window of recent system call
trace and identifies which types of system calls (e.g.,
sys_read, sys_futex) experience abnormal changes in
either execution frequency or execution time. We first divide
a window of system call trace into multiple execution units
based on the thread ID. We then apply a top-down hierar-
chical clustering algorithm [28] to group those execution
units that perform similar operations together based on
the appearance vector feature. Next, we use the nearest
neighbor algorithm [41] to perform outlier detection within
each cluster to identify abnormal execution units. Frequent
episode mining [11], [37] on those abnormal execution
units is then used to identify common abnormal system
call sequences (i.e., S1). For example, from the trace of
HDFS-3318, a sequence {sys_gettimeofday, sys_read,
sys_read, sys_gettimeofday} is discovered to be exe-
cuted more often than usual.

Next, we identify application functions that have is-
sued the abnormal system call sequences identified above.

We again use frequent episode mining to extract com-
mon system call sequences (i.e., S2) produced by dif-
ferent application functions. These sequences (S2) are
then used as signatures to match with system call se-
quences (S1) whose execution frequencies or time are
identified to be abnormal. For example, in HDFS-3318,
function Reader.performIO is found to often produce
system call sequence {sys_gettimeofday, sys_read,

sys_read, sys_gettimeofday}, which is then used
as its signature. When we detect {sys_gettimeofday,
sys_read, sys_read, sys_gettimeofday} as one of
the abnormal system call sequences, Reader.performIO
is matched as one candidate buggy function.

In comparison to existing dynamic analysis tools (e.g.,
PerfScope), Hytrace-dynamic integrates runtime execution
path analysis with abnormal function detection in order
to increase the bug detection coverage. Specifically, we
extend the candidate function list by adding the k-hop caller
functions of those abnormal functions identified by the
dynamic analysis tool. We also conducted sensitivity study
on the number of caller function hops (e.g., k) to evaluate
the tradeoff between coverage and precision.

We then calculate a rank score for each identified abnor-
mal function using a maximum percentage increase metric
(i.e., the largest count increase percentage among all the
matched syscall sequences between S1 and S2) to quantify
the abnormality degree of different abnormal functions. We
rank all the identified abnormal functions using increasing
rank scores. The rank of the inserted caller function inherits
the rank of the callee function (i.e., the identified buggy
function). If a function is called multiple times and has
multiple different caller functions, we add all the caller
functions into the final list. We currently rely on the call
path information extracted runtime to identify caller func-
tions. We can also leverage any in-situ call path extraction
tool that do not require application source code and impose
low overhead to the production cloud environment (e.g.,
[33]). If a function has multiple appearances in the final
buggy function list, we only keep its highest rank.

2.3 Hybrid Scheme

The key idea of Hytrace is to combine static and dynamic
analysis techniques for achieving both high coverage and
high precision performance diagnosis.

Hytrace-static favors the coverage (i.e., completeness) over
precision. It captures all the potential buggy functions who
are vulnerable to the performance problems over static
code pattern matching. Hytrace-dynamic favors both the
coverage and the “relaxed” precision. It identifies all the caller
functions and the buggy functions who have abnormal
practices during runtime.

Hytrace approach leverages the two carefully designed
static and dynamic analysis components that are comple-
mentary to each other. Although each component is prone
to false positives, the combination of the two leverages both
program semantic and run-time behavior information, and
hence can achieve much higher precision than pure-static
or pure-dynamic techniques.

When a performance symptom like a hang or a slow-
down is observed by either users or an automated moni-
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toring tool, Hytrace runs its dynamic component to identify
a ranked list of functions that behave suspiciously, judging
by the abnormality of system-level metrics. Hytrace then
compares this list produced by the dynamic component
with the list of suspicious functions identified by Hytrace
static component, removes the functions that only appear
in one list, and adjusts the ranks of the remaining functions
accordingly. For example, if Hytrace-dynamic identifies
three buggy functions foo (rank: 1), bar (rank: 2), and baz

(rank: 3) but bar does not include any static anti-patterns,
bar is removed and the final list becomes foo (rank: 1), baz
(rank: 2). The rank of baz gets improved because we remove
the false positive function bar.

Hytrace enhances the bug detection precision by pruning
those false positive functions which are detected by either
Hytrace-static or Hytrace-dynamic but not the both. For
example, in the Apache-45856 bug, Hytrace-dynamic identi-
fies the connect function as suspicious because it invokes a
set of system calls with abnormal execution time. However,
connect does not include any static anti-patterns. Thus,
connect is a false positive function, which is pruned
by Hytrace. Another example is the Cassandra-5064 bug.
Hytrace-static identifies the extractKeysFromColumns

function as suspicious because it matches the “uncovered
branch” rule. However, extractKeysFromColumns does
not have any abnormal behavior during runtime. Thus,
extractKeysFromColumns is a false positive function,
which is pruned by Hytrace.

Hytrace can also support distributed performance bug
diagnosis. We define a distributed performance bug to
be a bug that causes a performance anomaly (e.g., hang,
slowdown) to a distributed system with more than one
node. When a performance anomaly is detected, we run
Hytrace concurrently on all the nodes or a subset of
faulty nodes identified by other online anomaly detection
tool [34]. We can derive a buggy function list for each faulty
node. We can also present a consolidated buggy function
list by taking the intersection among all the buggy function
lists produced by different faulty nodes.

3 IMPLEMENTATION

To perform static analysis for C/C++ applications, we have
developed code analysis passes using LLVM [9]. LLVM
is a compiler infrastructure which allows developers to
examine/modify code as it’s being compiled. We have
implemented our static analysis as LLVM passes through
the FunctionPass and LoopPass class interfaces: the
former examines every application function, and the latter
identifies and examines every loop inside every function.
Hytrace takes the application binary code as input and
converts the binary into LLVM IR using Clang [4].

For Java applications, we implemented our transforma-
tions using Findbugs analysis infrastructure [7]. Findbugs is
a tool designed to analyze Java bytecode using the Apache
Byte Code Engineering Library (BCEL). Apart from a va-
riety of built-in patterns that reflect bad coding practices,
Findbugs also allows users to write custom bug detectors in
the form of plugins, through which we have implemented
Hytrace static analysis for Java programs. These plugins can

TABLE 1

Descriptions of the 14 real-world bugs we reproduced.

Bug name Root-cause description Symptom

Apache-
37680

Make a blocking “accept” call with
non-blocking configuration.

hang

Apache-
43238

Set up new connections with non-
keep-alive configuration.

slowdown

Apache-
45856

Call fopen on file > 2 GB on 32-bit
systems.

hang

Lighttpd-
1212

Keep processing same event
when the return value errno is
mishandled.

hang

Lighttpd-
1999

Keep reading and discarding
response data while processing
header information.

slowdown

Memcached-
106

Keep reading a non-existent
package when the previous
packages overwrite the read
buffer.

hang

MySQL-
54332

Two threads execute the INSERT

DELAYED statement but one of them
has a locked table.

hang

MySQL-
65615

5 ✕ slowdown in the table insertions
after truncating a large table.

slowdown

Cassandra-
5064

ALTER TABLE command keeps
flushing empty Memtable.

hang

HDFS-3318
HDFS client keeps reading a >

2 GB file when the file length is
represented by an int.

hang

Mapreduce-
3738

Endless wait for an atomic variable
to be set.

hang

Tomcat-
53450

Tomcat tries to upgrade a read lock
to a write lock.

hang

Tomcat-
53173

Keep dropping incomming requests
when the count is improperly
updated.

hang

Tomcat-
42753

Keep processing the same Comet

events on a request whose filter
chain is not configured.

hang

be used directly on a target directory of Java programs or
easily integrated into the build process of the whole target
program.

4 EVALUATION METHODOLOGY

Our experimental evaluation uses 133 real-world perfor-
mance bugs: 53 C/C++ performance bugs from 5 server
applications (Apache http web server, Lighttpd web server,
Memcached distributed memory caching system, MySQL
database engine, and Squid web proxy) and 80 Java per-
formance bugs from 4 server applications (Cassandra dis-
tributed key-value store, Hadoop MapReduce distributed
computing infrastructure, HDFS distributed file system,
and Tomcat application server). Those bugs are collected by
searching for the terms hangs, 100% CPU, stuck, slowdown
and performance in JIRA [2] and Bugzilla [1].

Note that, using those keywords to search performance
bugs is not an accurate but easy, fast and possibly complete
way to do in practice. And in this paper, we consider perfor-
mance bugs as those bugs when they happen, they can waste
either partial (manifested as performance degradation) or
all system resources (manifested as hang). The performance
bugs in our benchmark are difficult to diagnose. Even
if their symptoms are hang, figuring out the root cause
functions behind the hang is non-trivial.
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TABLE 2

The coverage and precision of different schemes. “perf.”: using only performance-related patterns/rules in Infer and
Findbugs; “all”: using all patterns/rules in Infer and Findbugs. “*”: Infer identifies bug-irrelevant problems in bug-related

functions; “-”: not supporting applications in specific languages (Caramel and Findbugs) or runtime execution errors (Infer).

Bug name
Hytrace

Hytrace-
dynamic

Hytrace-
static

Infer(all) Infer(perf.) Findbugs(all) Findbugs(perf.) Caramel PerfScope

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

Apache-37680 ✓ 17 ✓ 22 ✓ 40013 ✗ 18 ✗ 3 - - - - ✗ 4 ✓ 14
Apache-43238 ✓ 6 ✓ 12 ✓ 42273 ✗ 18 ✗ 2 - - - - ✗ 2 ✓ 8
Apache-45856 ✓ 5 ✓ 10 ✓ 32128 ✗ 18 ✗ 2 - - - - ✗ 4 ✓ 40
Lighttpd-1212 ✓ 2 ✓ 3 ✓ 4705 ✗ 181 ✗ 61 - - - - ✗ 0 ✓ 0
Lighttpd-1999 ✓ 4 ✓ 4 ✓ 5057 ✗ 171 ✗ 56 - - - - ✗ 0 ✓ 1

Memcached-106 ✓ 2 ✓ 4 ✓ 3983 - - - - - - - - ✗ 0 ✓ 3
MySQL-54332 ✓ 6 ✓ 11 ✓ 98408 - - - - - - - - ✗ 22 ✓ 2
MySQL-65615 ✓ 2 ✓ 21 ✓ 99076 - - - - - - - - ✗ 8 ✓ 4

Cassandra-5064 ✓ 1 ✓ 8 ✓ 2982 ✓∗ 2904 ✓∗ 2904 ✗ 322 ✗ 24 - - ✓ 3
Mapreduce-3738 ✓ 7 ✓ 17 ✓ 9646 ✓∗ 5077 ✓∗ 5077 ✗ 1261 ✗ 170 - - ✓ 11

HDFS-3318 ✓ 2 ✓ 13 ✓ 10767 ✗ 2367 ✗ 2367 ✗ 1401 ✗ 168 - - ✓ 4
Tomcat-53450 ✓ 8 ✓ 24 ✓ 4198 ✗ 4638 ✗ 4638 ✗ 477 ✗ 53 - - ✓ 1
Tomcat-53173 ✓ 15 ✓ 53 ✓ 3997 ✗ 4624 ✗ 4624 ✗ 422 ✗ 51 - - ✓ 13
Tomcat-42753 ✓ 2 ✓ 12 ✓ 4279 - - - - ✗ 889 ✗ 238 - - ✓ 28

Avg. 100% 6 100% 15 100% 25822 14% 2002 14% 1973 0% 795 0% 117 0% 5 100% 9

We successfully reproduced 14 performance bugs out of
the 133 bugs we studied. Those 14 bugs do not overlap
with the 40 sample bugs in our rule generation training
set. Reproducing real-world performance problems is ex-
tremely time-consuming, sometimes taking developers up
to a whole year [38], and tricky due to limited and often am-
biguous information [26] in bug reports. For each of these
14 bugs, we followed the original bug report to reproduce
the bug and confirm the manifestation of the corresponding
performance anomaly symptoms (e.g., 100% CPU usage,
unresponsive system, prolonged delay). Table 1 shows the
14 performance bugs that we reproduced and tested. 12 of
14 bugs follow single-node configuration and the other 2
follow two-node-cluster configuration. Among all the 133
bugs, we found 125 of them are hang bugs and only 8 are
slowdown bugs. The 14 reproduced bugs in Table 1 follow
the similar statistics. In addition, these 14 bugs include
all the benchmarks in the PerfScope paper [19]. Thus, we
believe that the 14 reproduced bugs are representative of
the 133 bugs.

The Apache, Memcached, Cassandra, HDFS, Mapreduce
and Tomcat systems were tested on a private cloud in
our lab where each host is equipped with a Quad-core
Xeon 2.53GHz CPU along with 8GB memory and runs
64-bit CentOS 5.3 with KVM 0.12.1.2. The Lighttpd and
MySQL systems were tested on the virtual computing lab
(VCL) [10], a production cloud infrastructure where each
host has a Dual-core Xeon 3.0GHz CPU and 4GB memory,
and runs 64bit CentOS 5.2 with Xen 3.0.3. In both cases,
each system trace was collected in a virtual machine using
the kernel system call tracing tool LTTng 2.0.1 [21] running
32-bit Ubuntu 12.04 kernel v3.2.0.

Our experiments use the same workloads as PerfS-
cope [19] for the 12 bugs used by PerfScope. For the
newly added Apache bug, we initiated 200 threads to use
httperf to request various pages from the Apache server
for 3 minutes. For Memcached, we set up a two-node cluster
and wrote a multi-threaded client to send 10 million UDP
requests to the server nodes.

Our evaluation looks at both coverage (i.e., true posi-
tives) and precision (i.e., false positives) of performance
bug diagnosis. We compare Hytrace with several state-
of-the-art static and dynamic bug analysis tools, such as,
Caramel [35], Findbugs [7], Infer [6] and PerfScope [19].

5 EXPERIMENTAL EVALUATION

Overall, Hytrace achieves both higher coverage and better
precision than existing pure static techniques and pure
dynamic techniques. We discuss these evaluation results in
detail below.

5.1 Coverage and Precision Results

Table 2 shows the coverage and precision results achieved
by different algorithms for the 14 real performance bugs
reproduced by us. Hytrace successfully identifies bug-
related functions in all cases. We manually validated that
the functions discovered by Hytrace are indeed related to
the performance anomaly. We will provide several examples
in Section 5.3. In contrast, existing pure static analysis
schemes achieved very low coverage. In fact, most of them
fail to identify any bug related functions in the 14 real
performance bugs. This is because existing static analysis
schemes focus on matching unique rules of specific per-
formance problems or bad programming practices rather
than discovering all possible performance problems. For
example, Caramel focuses on loops that execute unnec-
essary iterations, which are not the root causes for any
of the 14 performance bugs shown in Table 2. Findbugs
targets bugs that follow specific patterns in Java programs,
such as “method calls static math class method on a
constant value”, “private method is never called”, “method
concatenates strings using + in a loop”. None of those rules
match the root cause of our tested 14 performance bugs.
Infer mostly focuses on memory and resource leak bugs,
especially in C programs, which are also not the root causes
for the performance problems shown in Table 2. In contrast,
Hytrace’s static patterns favor generality over specification,
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TABLE 3

Coverage comparison for all performance bugs and the matching frequency of each Hytrace static rule. “perf.”: using only
performance-related patterns/rules in Infer and Findbugs; “all”: using all patterns/rules in Infer and Findbugs. “-”: not

supporting applications in specific languages (Caramel and Findbugs), or not implemented by Hytrace static (R3: unsafe
function only checks C library functions).

System
name

Total #
bugs

Coverage
# of bugs matched by

each rule
Hytrace-static Infer(all) Infer(perf.) Findbugs(all) Findbugs(perf.) Caramel R1 R2 R3 R4 R5

Apache 13 100% 0% 0% - - 0% 12 9 2 3 13
Lighttpd 7 100% 0% 0% - - 0% 7 2 0 2 6

Memcached 1 100% 0% 0% - - 0% 1 1 0 0 1
MySQL 19 100% 11% 5% - - 5% 18 18 2 7 17
Squid 13 100% 0% 0% - - 0% 13 6 0 1 13

Cassandra 27 100% 44% 44% 0% 37% - 9 3 - 26 1
HDFS 18 100% 39% 39% 0% 17% - 13 4 - 17 6

Mapreduce 28 100% 59% 59% 48% 57% - 21 13 - 26 14
Tomcat 7 100% 43% 43% 14% 43% - 6 2 - 3 1

which enhances the coverage for the performance bugs in
our benchmark.

Infer identifies the bug-related function
maybeSwitchMemtable for Cassandra-5064, as it
discovers that maybeSwitchMemtable could invoke
a function returning null. However, the performance
anomaly actually happens when a non-null string
is returned. Infer identifies the bug-related function
AppLogAggregatorImpl.run for Mapreduce-3738, as it
discovers that this function may invoke a delete function
with null parameter. However, the performance bug is
not related to this delete function call.

Table 2 also shows the false positives of different schemes.
The “TP” means whether each scheme has identified bug-
related functions. The “FP” means the number of reported
functions by each scheme, which are not related to the
corresponding performance bug. For PerfScope, Hytrace-
dynamic, and Hytrace which have the ranking mechanisms,
the “FP” is the number of reported functions which are not
related to the corresponding performance bugs and have
higher rank than or the same rank as the bug-related func-
tions. Overall, Hytrace produces the fewest false positives
with the highest coverage among all techniques in com-
parison. It validates our hypothesis that combining static
code pattern checking and runtime anomalous behavior
detection achieve better bug diagnosis precision than pure
static or pure dynamic techniques. Infer and Findbugs incur
large false positives in anomaly diagnosis, especially for
all tested Java bugs, mainly because their checking is not
guided by specific performance anomaly. Since they are
designed for general bug detection not anomaly diagnosis,
they simply report all suspicious code regions, regardless
whether these code regions are related to the performance
anomalies under diagnosis or not. Note that, many of
these false positives in Table 2 could be true bugs or
bad programming practices. However, they are not related
to the performance anomalies under diagnosis. Moreover,
Infer encounters runtime execution errors in 4 bugs.

Even though Hytrace’s result is much better than other
static tools (i.e., Infer, Findbugs, Caramel) in Table 2, we
do not mean that Hytrace can replace them. We know that
those tools have different targets, but they are the best static
performance-related tools that we can find.

To further evaluate the generality of Hytrace static rules,
we applied the static component of Hytrace to all the 133
real-world performance bugs we could find on JIRA and
Bugzilla. Note that, evaluating Hytrace-dynamic compo-
nent requires us to reproduce the bugs. Since it is impracti-
cal to reproduce hundreds of real-world performance bugs
given the complexity of the performance problems and time
limitation, the evaluation presented below reflects our best
effort of evaluating the generality of Hytrace static rules.

As shown in Table 3, Hytrace static rules provide 100%
coverage for all 53 performance problems in C/C++ pro-
grams. That is, for each of these 53 performance problems,
at least one of the five Hytrace static rules can identify
a bug-related function as a suspicious function (i.e., po-
tential root cause). We call a function f related to a bug
b if developers modify f to fix b. In comparison, other
tools have poor coverage for these C/C++ performance
problems. Although Findbugs and Infer perform better for
Java performance problems, the best coverage they can
achieve is still below 60% (e.g., Mapreduce). In contrast,
Hytrace-static also achieves 100% coverage for all 80 Java
bugs. The average number of reported functions by each
scheme for the 133 bugs in Table 3 is similar to the average
number of false positive functions for the 14 bugs in
Table 2. Hytrace-static reports more potential root cause
functions than other static schemes, which matches our
design principle—Hytrace static rules favor generality over
precision to achieve high coverage.

Table 3 also shows the number of potential root cause that
are covered by each Hytrace static rule. As we can see, “R1:
constant parameter” rule and “R5: uncovered branch” rule
cover the most C/C++ bugs, while “R4: unchanged loop
exit condition variables” rule covers the most Java bugs.
The “R3: unsafe function” rule covers the least bugs, and
does not cover any Java bugs, as our current prototype only
includes a few C library functions as unsafe.

The reasons we use potential root cause instead of real
root cause in Table 3 are: 1) Hytrace-static only captures
the potential buggy functions who are vulnerable to the
performance problems; 2) Hytrace outputs the real root
cause functions relying on both static and dynamic results;
and 3) in order to use Hytrace-dynamic analysis on those
133 bugs, we have to reproduce them first, which is time-
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TABLE 4

The rank of root cause functions identified by different
schemes. Smaller numbers mean higher ranks.

Bug name
Hytrace

PerfScope
RankRank

Matched rules
R1 R2 R3 R4 R5

Apache-37680 7 ✓ ✓ ✗ ✗ ✓ 15
Apache-43238 7 ✓ ✓ ✗ ✗ ✓ 9
Apache-45856 1 ✓ ✗ ✓ ✗ ✓ 41
Lighttpd-1212 1 ✓ ✗ ✗ ✗ ✗ 1
Lighttpd-1999 2 ✓ ✗ ✗ ✗ ✓ 2

Memcached-106 2 ✓ ✓ ✗ ✗ ✓ 4
MySQL-54332 2 ✓ ✓ ✗ ✗ ✗ 3
MySQL-65615 2 ✓ ✗ ✗ ✗ ✓ 5

Cassandra-5064 2 ✓ ✗ ✗ ✓ ✗ 4
Mapreduce-3738 4 ✓ ✓ ✗ ✓ ✗ 12

HDFS-3318 2 ✓ ✗ ✗ ✓ ✓ 5
Tomcat-53450 1 ✗ ✗ ✗ ✓ ✗ 2
Tomcat-53173 10 ✓ ✗ ✗ ✗ ✓ 14
Tomcat-42753 2 ✓ ✓ ✗ ✗ ✗ 29

Avg. 3 93% 43% 7% 29% 57% 10

consuming (Section 4).
Table 4 provides a detailed comparison of Hytrace and

PerfScope, showing the bug-related functions identified by
them and their ranks. Smaller rank-number means higher
rank: “1” means the highest rank. The results show that
Hytrace can significantly improve the ranking of all the
bug related functions with exceptions only when the bug
related functions are already ranked the first or the buggy
function is not detected (one false negative case). The
benefit of the rank improvement is significant because the
developer might spend lots of time on examining those false
alarm functions that are ranked before the true root cause
function. By increasing the rank of the root cause function,
we can potentially cut down the performance diagnosis
time a lot (e.g., the rank of root cause function in Apache-
45856 is increased from the 41st to the 1st).

Hytrace achieves the rank improvement from two as-
pects: 1) filtering out many false positive functions iden-
tified by the purely dynamic scheme that do not exhibit
any static bug characteristics, which boost the ranks of
those true bug-related functions; and 2) some lower ranked
bug related functions are actually the immediate caller of
higher ranked functions. Because of the rank inheritance,
by adding the immediate callers of identified bug related
functions, those bug related functions get higher ranks.

5.2 Sensitivity Study

We conducted a sensitivity study in order to determine how
multi-hop caller functions added in the Hytrace-dynamic
list affect the coverage and precision of Hytrace diagnosis.

Our results in Table 5 show that adding more hops of
caller functions has little improvement over the rank of
the root cause functions but significantly increases the false
positives.

5.3 Case Study

To further understand how the output of Hytrace can be
used for debugging, we now discuss bug inference results
in detail. We pick 5 representative cases to cover both

C/C++ and Java applications. There is one case in this sec-
tion and four additional cases in the online supplementary
material due to space limitation.

Apache-37680 (C/C++): The patch and the cause of this
bug (Figure 1) is already discussed in Section 1.1. As men-
tioned earlier, a graceful restart after some configuration
change hangs Apache server. The direct cause of the hang
is that function child_main is stuck in a re-try loop. This
loop keeps issuing a blocking call accept to a socket until
the blocking call succeeds. Unfortunately, since the target
socket is configured to not allow blocking calls, accept
always returns EWOULDBLOCK/EAGAIN, and the loop never
exits. The root cause of this hang is that the graceful restart
did not change the configuration of the reused socket from
not allowing blocking calls to allowing blocking calls. This
root cause is inside function ap_setup_listeners shown
in Figure 1. The buggy code in apr_socket_opt_set

only allows non-blocking calls through the constant param-
eter ‘1’.

Hytrace effectively identified all the three key func-
tions related to this performance problem, child_main,
apr_socket_opt_set, and ap_setup_listeners, and
ranked them the 7th, 14th, and 14th respectively. In com-
parison, PerfScope only identified apr_socket_opt_set

and ranked it the 15th. PerfScope did not identify ei-
ther ap_setup_listeners or child_main, because both
of them do not produce many system calls. Hytrace-
dynamic can identify those two root cause related functions
by adding the caller function of apr_socket_opt_set,
which is ap_setup_listeners, and the caller function of
proc_mutex_sysv_acquire, which is child_main. Fi-
nally, Hytrace rule checking results show that child_main,
ap_setup_listeners, and apr_socket_opt_set all
match one or multiple performance-problem-prone rules.
They are kept in the suspicious function list. After removing
originally higher ranked functions by matching Hytrace
static rules, the ranks of these three root cause related
functions all rise to top 14.

In this case, Hytrace report exactly reflects the root
cause. As discussed in Section 1.1, the patch ex-
actly changes the “constant parameter”, 1, passed to
the invocation of apr_socket_opt_set in function
ap_setup_listeners.

5.4 Hytrace Overhead

Hytrace-static is efficient in its program analysis, benefiting
from the simplicity of its rules. It takes less than a minute
to process most applications in our experiments. For the
largest software in our experiments, HDFS with more than
1 million lines of code, Hytrace finishes the static analysis in
about 100 seconds. Note that, Hytrace-static only needs to
process each program once for all the performance anomaly
diagnosis one might want to do inside the program.

Hytrace-dynamic needs to collect system-level metrics
through LTTng at run time and then analyze the corre-
sponding trace. Its run-time CPU overhead is always less
than 3%. Its trace analysis time depends on the trace size.
As shown in Table 6, it can finish analyzing hundreds of
mega-bytes of traces usually within a couple of minutes.
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TABLE 5

The rank of root cause functions and the number of false positive functions identified by different schemes. Smaller
numbers mean higher ranks.

Bug name
PerfScope Hytrace

Hytrace w/
2-hop callers 3-hop callers 4-hop callers 5-hop callers

Rank FP Rank FP Rank FP Rank FP Rank FP Rank FP

Apache-37680 15 14 7 17 7 34 7 51 1 39 1 51
Apache-43238 9 8 7 6 7 12 7 14 5 17 5 25
Apache-45856 41 40 1 5 1 107 1 181 1 205 1 208
Lighttpd-1212 1 0 1 2 1 11 1 14 1 27 1 34
Lighttpd-1999 2 1 2 4 2 8 2 21 2 34 2 42

Memcached-106 4 3 2 2 1 2 1 2 1 2 1 2
MySQL-54332 3 2 2 6 2 163 1 196 1 228 1 228
MySQL-65615 5 4 2 2 4 44 4 55 3 55 3 55

Cassandra-5064 4 3 2 1 3 5 3 15 1 21 1 29
Mapreduce-3738 12 11 4 7 4 13 4 15 4 16 4 17

HDFS-3318 5 4 2 2 3 6 3 27 1 5 1 12
Tomcat-53450 2 1 1 8 2 32 2 157 2 245 2 315
Tomcat-53173 14 13 10 15 10 28 5 100 5 207 4 276
Tomcat-42753 29 28 2 2 2 14 2 26 3 118 3 196

Avg. 10 9 3 6 4 34 3 62 2 87 2 105

TABLE 6

Performance of Hytrace-static program analysis and
Hytrace-dynamic trace analysis (the run-time workload is

described in Section 4).

Bug name
Static

analysis
time (sec)

Application
lines of
code (K)

Dynamic
analysis

time (min)

Trace
size
(MB)

Apache-37680 5.9± 0.02 266.7 1.3± 0.01 406
Apache-43238 4.5± 0.01 312.8 3.5± 0.01 306
Apache-45856 4.8± 0.02 314.7 2.4± 0.01 324
Lighttpd-1212 2.1± 0.01 53.9 1.1± 0.01 337
Lighttpd-1999 3.0± 0.01 58.4 13.1± 0.02 1,365

Memcached-106 29.2±0.01 11.0 25.6± 0.32 3,603
MySQL-54332 9.6± 0.01 1,233 9.2± 0.41 316
MySQL-65615 12.9±0.03 1,759 5.8± 0.12 77

Cassandra-5064 29.2±2.23 259.0 21.7± 0.40 1,054
Mapreduce-3738 40.5±3.02 935.8 16.0± 0.20 550

HDFS-3318 108±0.60 1,114 15.7± 1.22 473
Tomcat-53450 35.2±0.38 407.9 5.7± 0.34 35
Tomcat-53173 49.7±0.40 405.0 2.0± 0.02 143
Tomcat-42753 49.5±0.20 456.9 9.1± 0.80 274

Avg. 27.4±0.50 542.0 9.4± 0.28 662

The core part of the Hytrace trace analysis, frequent episode
mining, can be easily parallelized and achieve much better
performance, if needed. Note that, our evaluation uses
workloads described in Section 4. To trigger the perfor-
mance problems under diagnosis, we could have used
shorter-running workloads, which would take less analysis
time for Hytrace-dynamic.

6 LIMITATION DISCUSSION

Our current evaluation focuses on single node performance
bugs. For distributed performance bugs, Hytrace’s diagno-
sis schemes are still preliminary. It generates a consolidated
buggy function list by taking the intersection among all
the buggy function lists produced by different faulty nodes.
However, distributed system bugs can manifest as a chain
of abnormal functions over multiple dependent nodes.
Hytrace currently does not consider such causal relation-
ships between distributed components. Previous work (e.g.,
FChain [34], PCatch [31]) has developed distributed bug
diagnosis tools based on distributed system causal analysis.

Hytrace can integrate with those tools to achieve more
precise distributed system performance bug diagnosis.

Hytrace-static component currently has five generic rules.
Although our rule set can achieve 100% coverage on the
133 performance bugs, we do not claim that those five
rules can identify all the performance problems reported by
production cloud users. Hytrace framework allows users to
easily add new rules with few code changes. Furthermore,
we currently did not find any unsafe function in Java
programs which matches our rule R2. We plan to extend
this rule by adding more I/O related functions in Java,
which is part of our future work.

Hytrace-dynamic integrates runtime execution path anal-
ysis with abnormal function detection to achieve high
coverage. However, it cannot identify all the root cause
functions in every case. For example, in Mapreduce-3738
bug (Section 5.3), Hytrace-dynamic identifies the join

function but fails to identify the run function because the
run function and its callee functions produce few system
calls during runtime. The miss detection can be addressed
by integrating data flow analysis into Hytrace-dynamic. For
example, we can add run function into the candidate func-
tion list because both join and run perform operations on
the same data (i.e, appAggregationFinished), which is
also part of our future work.

7 RELATED WORK

Static rule-based bug detection. Much work has been done
to develop static bug detection tools. Each work uses pre-
defined heuristics/rules to specifically target certain types
of performance bugs. Jin et al. [23] employ rule-based
methods to detect performance bugs that violate efficiency
rules that have been violated before. Chen et al. [16] detect
database related performance anti-patterns, like fetching
excessive data from database and issuing queries that could
have been aggregated. There are also tools that detect
loop break conditions [40], inefficient nested loops [36] and
workload-dependent loops [44]. These bug-detection tools
are only suitable for bug detections, not for diagnosing
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specific performance bugs occurred in production envi-
ronments. Once applied for performance diagnosis, they
will suffer the false positive and false negative problems
discussed in Section 1.

On-site bug diagnosis. Dynamic analysis techniques
have been used to identify and fix performance bugs that
are triggered in production environments. X-ray [14] uses
symbolic execution to automatically identify and suggest
fixes to performance bugs caused by configuration or input-
based problems. Strider [43] uses state-based analysis of
a known configuration error to identify the likely config-
uration source of that error. These approaches work well
when a configuration error or error input is the source of a
problem. However, the root cause comes from other sources
(e.g., unexpected component interactions, unexpected re-
turn value, incorrectly handled exceptions).

PerfCompass [20] focuses on differentiating external
faults (e.g., interference from co-located applications) from
internal faults (e.g., software bugs) for system performance
anomalies. IntroPerf [29] automatically infers the latency
of user-level and kernel-level function calls based on OS
tracers. StackMine [22] automatically identifies certain call
stack patterns that are correlated with performance prob-
lems of event handlers. All these diagnosis tools are very
useful in practice, but have different focus from our work.
They do not aim to identify root cause related functions of
performance problems.

Many techniques have been proposed to diagnose per-
formance problems in distributed systems. For example,
Aguilera et al. [12] identify the performance bottleneck
nodes by conducting causal path analysis on the message-
level traces (e.g., RPC message). Kasick et al. [27] identify
the faulty components (e.g., storage or network) by statis-
tically debugging the OS-level metrics (e.g., I/O requests
rate, packet reception rate). Xu et al. [45] and CloudSeer [46]
detect the faulty nodes by mining the workflows from the
console logs. Those tools focus on identifying the faulty
components, nodes or interactions that lead to performance
problems, which are different from our work (i.e., identify-
ing root cause related functions).

Hybrid bug diagnosis. Hybrid techniques have been
used to fix concurrency bugs. For example, AFix [24] and
CFix [25] statically analyze blocking operations (e.g., lock-
acquisitions, condition-wait and thread join operations) as
potential failure points to construct a concurrency bug
patch and perform dynamic runtime testing to evaluate
the effectiveness of the patch. Previous work also uses
static analysis and dynamic instrumentation for statistical
debugging. For example, HOLMES [17] statically identifies
potential buggy code regions using given failure points and
stack trace, and instruments the program to profile those
regions. It then dynamically analyzes the collected profiles
from subsequent runs of the program to identify the root
cause. Work has also been done to perform replay debug-
ging by combining static analysis with symbolic execution.
For example, ESD [47] statically identifies candidate paths
that can reach a failure point and symbolically executes
the program to synthesize the failure-triggering input. In
contrast, our work does not require failure points, error
statements, or application instrumentation, which makes it

more practical for diagnosing performance bugs in produc-
tion cloud environments.

8 CONCLUSION

In this paper, we have presented Hytrace, a hybrid ap-
proach to diagnosing real-world performance bugs in pro-
duction cloud systems. Hytrace combines rule based static
analysis and runtime inference techniques to achieve higher
accuracy than pure-static or pure-dynamic approaches.
Hytrace does not require any application source code or
instrumentation, which makes it practical for production
cloud environments. We have implemented a prototype
of Hytrace and tested it over 133 real performance bugs
discovered in different commonly used server applications.
Our results show that Hytrace can greatly improve cov-
erage and precision comparing with existing state-of-the-
art techniques. Hytrace is light-weight, which imposes less
than 3% CPU overhead to the testing cloud environments.
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