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This article systematically studies 99 distributed performance bugs from five widely deployed distributed

storage and computing systems (Cassandra, HBase, HDFS, Hadoop MapReduce and ZooKeeper). We present

the TaxPerf database, which collectively organizes the analysis results as over 400 classification labels and

over 2,500 lines of bug re-description. TaxPerf is classified into six bug categories (and 18 bug subcategories)

by their root causes; resource, blocking, synchronization, optimization, configuration, and logic. TaxPerf can

be used as a benchmark for performance bug studies and debug tool designs. Although it is impractical to

automatically detect all categories of performance bugs in TaxPerf, we find that an important category of

blocking bugs can be effectively solved by analysis tools. We analyze the cascading nature of blocking bugs

and design an automatic detection tool called PCatch, which (i) performs program analysis to identify code

regions whose execution time can potentially increase dramatically with the workload size; (ii) adapts the

traditional happens-before model to reason about software resource contention and performance dependency

relationship; and (iii) uses dynamic tracking to identify whether the slowdown propagation is contained

in one job. Evaluation shows that PCatch can accurately detect blocking bugs of representative distributed

storage and computing systems by observing system executions under small-scale workloads.
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1 INTRODUCTION

Large-scale distributed storage and computing systems, such as distributed key-value stores,
scalable file systems, synchronization services, data-parallel computing frameworks, streaming
systems, and cluster management services, have become a backbone for the cloud. Unfortunately,
the performance and quality of service (QoS) of cloud distributed systems is severely threatened
by performance bugs. Distributed systems deal with large workloads upon many complicated dis-
tributed protocols running on hundreds or thousands of machines and have to deal with a variety of
types of error handling and failure recovery. This makes distributed systems prone to performance
bugs caused by excessive resource consumption, blocking, synchronization, and more. These bugs
can lead to severe performance loss symptoms (implications) such as increased latency, wasted re-
sources, and decreased throughput. These performance bugs are difficult to detect, diagnose, and
fix, and cannot be directly tackled by existing single-node debugging techniques.

Combating real-world performance bugs in distributed systems is challenging due to poor under-
standing of the complexity and diversity of these bugs. Designing effective techniques to address
performance bugs requires a deep understanding of how performance bugs are introduced, ex-
posed, diagnosed and fixed. Therefore, conducting an empirical and comprehensive performance
bug study is needed. There have been a few past studies [6, 28, 47] examining performance bugs,
most of which focus only on single-machine systems and not on large-scale distributed systems.
Moreover, only a few studies consider the characteristics (e.g., root causes) of performance bugs
comprehensively. For example, the study conducted by Jin et al. [28] only looks at several com-
mon root causes of performance problems and inefficient code sequences that could be fixed by
simple patches. SyncPerf [6] conducts an extensive study of categories and root causes only for
synchronization issues.

The following characteristics of distributed performance bugs make them difficult to dissect,
categorize, and diagnose. (i) Complex and diverse bug causes. Compared with single-node bugs,
performance bugs in distributed systems are a result of a much wider variety of complex causes
and lead to more different types of symptoms as software systems are getting increasingly more
complex. (ii) Big impact scope. The errors and failures caused by distributed performance bugs can
propagate to other threads, nodes, and even the cluster.

This article presents our in-depth analysis of 99 representative real-word distributed perfor-
mance bugs (Section 2). These bugs are sampled from five popular distributed systems (Cassandra,
HBase, HDFS, Hadoop MapReduce, and ZooKeeper). We collectively organize the analysis results
as over 400 classification labels and over 2,500 lines of bug re-description in the TaxPerf database,
classified into six bug categories (and 18 bug subcategories) by their root causes: resource, blocking,
synchronization, optimization, configuration, and logic. TaxPerf can be used as a bug benchmark
for researchers to tackle distributed performance problems and evaluate the effectiveness of per-
formance debugging tools.

Although it is impractical to automatically detect all categories of performance bugs in Tax-
Perf, an important category of blocking bugs can be effectively solved by analysis tools. We ana-
lyze the cascading nature of blocking bugs and design an automatic detection tool called PCatch

(Section 3). The blocking bugs with performance cascading influence (referred to as PCbugs for
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Fig. 1. A PCbug in MapReduce: The client’s job delays heartbeats through lock contentions and causes the

whole Tasktracker node to fail.

short) are widely discovered in our studied systems. Figure 1 illustrates a real-world PCbug [8]
from Hadoop MapReduce. The figure shows a TaskTracker node in which threads belonging to
different jobs may execute in parallel and a JobTracker node. In the TaskTracker node, thread t1
downloads Hadoop Distributed File System (HDFS) files for a job. Inevitably, a client may sub-
mit a job that demands a large file, which leads to a time-consuming file-copy loop in t1, denoted
by the red polyline. Sometimes, the slowness of this file copy could propagate through lock con-
tentions and eventually delay the sending of TaskTracker’s heartbeats in thread t4. Such a delay
of heartbeats is catastrophic. Failing to receive the heartbeat on time, the JobTracker node would
consider the TaskTracker node dead, causing all tasks, which belong to various jobs, running on
that TaskTracker to restart on a different node. This PCbug has been fixed by changing thread t2
on TaskTracker, so that when t2 fails to acquire lock l1, it immediately releases lock l2. PCbugs are
often triggered by large workloads and end up with global performance problems. The workload
first causes non-scalable code to slow down, such as the file-download loop in Figure 1. The slow-
down is inevitable and benign if well isolated. Unfortunately, software-resource contention, such
as the lock contention in Figure 1, may cause a local slowdown to propagate to a different job or a
critical system routine, such as the heartbeat routine. This eventually leads to severe slowdowns
affecting multiple jobs and sometimes multiple physical nodes in the system.

Although extensive studies have been conducted on detecting performance problems in single-
node systems — such as loop inefficiency problems [42–44], cache false-sharing problems [37, 40],
and lock contention problems [6, 15, 58] — there are no effective solutions for detecting PCbugs
in cloud systems. It is highly desirable to build automated PCbug detection tools that can deter-

ministically predict PCbugs and pinpoint the performance cascading chains by analyzing small

workloads during in-house testing.
PCatch automatically detects PCbugs through a combination of static and dynamic program

analyses. PCatch observes a run of a distributed system under a small-scale workload. It then au-
tomatically predicts PCbugs that can affect the performance of any specified user job or system
routine (referred to as a sink). Specifically, PCatch identifies an 〈L,C, S〉 triplet for every PCbug: L is
a code region, such as a loop, referred to as source, whose execution time could be greatly delayed
under future workloads; C is a slowdown chain that could propagate the slowdown of L under
certain timing; and S is the time-sensitive sink in a different job from L, whose execution time mat-
ters to users but is affected by the long delay from L propagating through Chain C . The detection
is done by the three key components of PCatch: performance cascading model and analysis, job
identity analysis, and non-scalable source identification.

We evaluated PCatch on widely used distributed systems (Section 4). We test small-scale work-
loads on these systems. By observing system execution under small-scale workloads, PCatch re-
ports 33 PCbugs, with 22 of them being true PCbugs. Among these 22 PCbugs, 15 explain the
8 failures that we were aware of and the remaining 7 lead to failures we were unaware of. These
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Table 1. Classification and Statistics of Categorized Performance Bugs for Five Open-Source Systems:

Cassandra (CA), HBase (HB), HDFS (HD), MapReduce (MR), and ZooKeeper (ZK)

The data in “()” denotes proportions of corresponding bug categories (or subcategories) out of total bugs (or total bugs of

each category). Subscripts denote the count of real unique studied bugs.

PCbugs are difficult to catch without PCatch — even under workloads that are thousands or
hundreds of thousands of times larger; only 4 out of the 22 PCbugs manifest after 10 runs. The
whole bug-detection process incurs 3.7× ∼ 5.8× slowdown, suitable for in-house use.

2 CATEGORIZED PERFORMANCE BUG ANALYSIS

2.1 Background of Bug Study

A distributed system runs on a collection of nodes interacting with each other. Each node can run
multiple protocols in multiple threads. A local performance bug is one that happens locally within
a node and leads to performance loss within a node. A distributed performance bug is one that
happens in distributed systems and leads to performance loss due to the running or interaction of
distributed components. We view local performance bugs as a subset of distributed performance
bugs and refer to both as performance bugs in the rest of this article.

To perform a comprehensive study of performance bugs for the cloud, we select five widely
deployed open-source distributed systems that cover a diverse set of system architectures: Hadoop
MapReduce (MR) [12], representing distributed computing frameworks; HDFS (HD) [3], repre-
senting distributed file systems; HBase (HB) [1] and Cassandra (CA) [31], representing different
distributed key-value stores, and ZooKeeper (ZK) [2], representing distributed synchronization
services. These are all big Java applications (144K-2.8M lines of code) with mature bug tracking
systems.

For accurately identifying performance bugs, we start our study from the open-source cloud
bug study (CBS) database [22], which contains over 3,000 sampled bugs reported to the JIRA bug
databases of the aforementioned five cloud systems over a period of three years (1/1/2011-1/1/2014)
and already labels issues related to performance bugs. From the CBS, we randomly sample
99 performance bugs (Table 1) from over 2,500 bugs after excluding through manual inspection
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the bugs that are not real performance bugs but are mistakenly labeled by the CBS (e.g., zk1239)
and that do not contain clear description information of root causes, symptoms, and fixes.

We study the characteristics of performance bugs along two key stages: root causes and impli-
cations. Our study is based on careful manual checking of the related materials of the 3,000+ bugs
in the CBS, including bug report description, bug discussion of developers and users, bug patch
or confirmed fix strategies, and corresponding source code. For each bug, we first ensure that the
developers marked it as a real bug (not a false positive) and its bug description information is clear.
We then re-describe the full step sequence of bug causality in a clearer and more concise manner.
To ensure the quality of the taxonomy in our study, each bug and the resultant statistics are care-
fully studied and examined with several rounds by more than one author who all have previous
experience with these distributed systems.

2.2 Classification Overview

Performance bugs may be caused by both software and hardware faults. As hardware can fail,
reliability and dependability must come from software. That is, error-handling code is a necessity
to deal with hardware failure as well as software failure. Thus, in this article, we study the root
causes and other characteristics of performance bugs mainly at the software level.

Table 1 shows the classifications and counts of performance bugs in the five popular distributed
systems. Performance bugs can be divided into six bug categories and 18 bug subcategories in total
by their root causes. Note that a performance bug may belong to two or more bug subcategories.
We present each type of performance bugs next.

2.3 Resource Bugs

We refer to performance bugs that improperly use computing resources of distributed systems as
resource-related bugs, or briefly, as resource bugs. Resource bugs make up 22% of those studied.
From our study, resource bugs can be categorized into four types: excessive resource consumption,
resource leak, resource overuse, and resource underuse.

In addition to common computing resources such as the CPU, disk, memory, I/O bandwidth, and
network bandwidth, resources in distributed systems include a variety of system resources, such
as nodes, file descriptors, socket connections, processes/threads, queues, heaps and stacks, and
system-specific resources (e.g., streams). For example, hd1865 is a case of overusing the number
of threads in which each DFSClient has its own worker thread for checking leases, which is not
necessary. This bug is fixed by keeping only one worker thread shared by all DFSClients, because
those worker threads essentially need to be synchronized to do their work.

2.3.1 Excessive Resource Consumption. Excessively consuming any type of system resources,
caused by high loads (i.e., high request or operational loads), can make the type of resource insuf-
ficient. For example, for disk consumption, a variety of large history data — such as old error logs,
commit logs, and temporary outputs — can easily take up disk space if not cleaned in a timely fash-
ion. Then, the contention for remaining insufficient resources can affect part of or all of system
activities and lead to performance loss.

An interesting case (hb3813) is that a remote procedure call (RPC) queue of HBase stores client
requests with data waiting to be handled. Since the default queue size is big and a large number
of requests are waiting, this large queue can cause an out-of-memory (OOM) failure. The bug is
fixed by reducing the queue size. Overall, excessive resource consumption is usually caused under
high loads.

2.3.2 Resource Leak. Resource leak is a form of bad resource management, such as forgetting to
release occupied resources. We observed that, in cloud systems, almost all of the aforementioned
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resources can be leaked, such as memory, file descriptor, and the like. Note that resource leak bugs
are also logic bugs (Section 2.8). For example, in hd3359, memory leaks happen because DFSClient
does not close all cached sockets and leads to increasing numbers of unavailable threads. This bug
is fixed by explicitly closing cached sockets.

Note that resource leak bugs under high load can excessively consume resources, which are
similar to excessive resource consumption bugs (Section 2.3.1). However, resource leak bugs
mean an exceptional state while excessive resource consumption bugs are about normal resource
requirements.

2.3.3 Resource Overuse. Resource overuse means that the code implementation of a relevant
function or algorithm consumes more resource than it should. This might not cause severe perfor-
mance problems on daily running of a system. For example, in hd5470, HDFS uses more memory
(i.e., more object allocation) than it actually needs. The bug is fixed by using a better algorithm
that uses less memory.

2.3.4 Resource Underuse. Insufficient resource allocation for an implementation of a function or
algorithm can also cause performance problems. We refer to this type of bug as resource underuse
bugs. They are opposite to resource overuse bugs (Section 2.3.3). Note that, although both resource
underuse and excessive resource consumption bugs (Section 2.3.1) manifest the same symptoms of
insufficient resources, they are different. That is, resource underuse bugs are caused by insufficient
resource allocation while excessive resource consumption bugs are caused by excessive resource
usage leading to insufficient resources.

For example, in hd5497, the default initial size of a queue for holding under-replicated blocks
is only 16, which is small. If there are many under-replicated blocks during HDFS startup, the
queue would grow and shrink with the insertion and removal of under-replicated blocks, which
is very expensive. The bug is fixed by allocating large initial queue size and disabling the queue
growth/shrinkage option for users.

2.4 Blocking Bugs

Blocking bugs, which make up 10% of bugs studied, are prevalent in performance bugs. One or
more operations (referred to as causer operations) whose executions are supposedly short but take
a significantly long time to finish, block other operations (referred to as affected operations). Block-
ing is transitive through causality relationships and software/hardware resource contention, such
as contention for locks, handler thread pools for queues, and shared variables. Compared with
traditional only causal relationship–based bugs, blocking bugs are more complicated and difficult
to dissect.

Generally speaking, a blocking bug consists of three elements: source, chain, and sink. At the
source-code level, the operations in source or sink could be any statement, function calls or code
regions that conduct time-consuming, expensive work. The sink must be an important, time-
sensitive operation such as heartbeats and regular reads or writes of systems. The chain represents
the propagation path of delay or the influence way from source to sink. Note that those bugs that
propagate a delay only through causality relationship and occur inside one job, slowing down the
job itself, are considered to be optimization bugs (Section 2.6).

In a blocking bug, the delay of source is usually caused by large workload processing with a big
size such as cluster size, data size, and load size. Specifically, in distributed systems, a long delay
is usually formed by (1) a non-scalable loop whose execution time may increase with workload
changes, (2) a handling of backlog of tasks such as RPC requests or events, or (3) high-concurrency
request loads or heavy operational loads. Thus, blocking bugs are often relevant to scalability
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problems. The delay also could be generated by downtimes of Java GC under high loads, manual
delays such as timeouts or sleeps, or slowdowns caused by hardware failures.

Performance blocking bugs usually have a series of cascading causes. Thus, they are referred
to as performance cascading bugs or PCbugs. They usually have a single time-consuming causer
operation that blocks another one or more important operations through a causality relationship
and software/hardware resource contention. PCbugs violate the performance isolation property of
distributed systems. They can be divided into local and global cascading bugs based on intra-job or
inter-job problems. A job means a user job or a system routine that can be identified in job-origin
analysis by our performance blocking bug detection tool (PCatch), which will be introduced in the
next section.

Local PCbugs mean that a time-consuming operation blocks other operations inside the same
job. Although the causer and affected operations of the local PCbugs could be in different threads,
they all belong to the same job. That is, this type of bug is an intra-job problem from the perspective
of bug impact scope.

Global PCbugs propagate a local delay from one job to others, which can affect multiple jobs and
even multiple physical nodes in the system. For example, in ca6744, a slow clean-up loop in one job
could slow down another job on a different Daemon node due to race for an event-handling thread.
That is, an event queue is handled by a single handler thread that contains two event handlers from
two different jobs. The slow loop in one event handler blocking the other one affects the other job.
This bug is fixed by increasing the number of handler threads.

A handling of backlog of tasks such as RPC requests or events also can lead to cascading blocking
bugs. This may lead to heavy-load blocking bugs, described next.

Heavy-load blocking. A subset of blocking bugs is caused by large numbers of operations from
high-concurrency request loads or heavy operational loads that block other important operations.
They are referred to as heavy-load blocking bugs that are essentially caused by the contention for
resources. They are similar to excessive resource consumption bugs (Section 2.3.1) that excessively
consume some resources listed in Section 2.3 and lead to contention for the insufficient remaining
resources. However, we categorize them as blocking bugs because they mainly focus on obvious
blocking problems caused by contention for target systems’ application resources, such as synchro-
nization resources. In contrast, excessive resource consumption bugs focus on resources of host
operating systems. For example, in hd5790, when a huge number of leases need recovery, NameN-
ode may receive tens of thousands of blockcommit request calls from DataNodes. Each request
takes a long time to handle because the problematic algorithm requires holding NameNode’s lock,
which affects and slows down all regular operations in NameNode.

2.5 Synchronization Bugs

Synchronization bugs, or lock-related problems, which make up 8% of bugs studied, are common
in distributed systems as well as single-machine multiple-threaded software. Also, distributed sys-
tems are more prone to synchronization bugs when writing synchronization–related codes due to
their complexity. Note that synchronization bugs are related to but different from blocking bugs
(Section 2.4) in that blocking bugs have the cascading property and time-sensitive sinks.

2.5.1 Improper-Grained Locking. Granularity is an important property of a lock. It represents a
measure of the amount of data a lock is protecting. Generally, using a coarse granularity (a small
number of locks, each protecting a large segment of data) results in less lock overhead when a
single process is accessing the protected data but more lock contention (i.e., worse performance)
when multiple processes are running concurrently. Conversely, using a fine granularity (a larger
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number of locks, each protecting a fairly small amount of data) increases the overhead of the locks
themselves but reduces lock contention.

From our study, coarse-grained locking bugs are more common than fine-grained locking bugs
in distributed systems. A coarse-grained locking bug means that a lock (i.e., a big lock) used to
protect the corresponding operations is at a higher level than it should be. Thus, the position of a
coarse-grained lock needs to be changed.

For example, in hb3483, when a RegionServer hits its global memstore upper limit, all writes on
it have to wait until memory has flushed down to the low water mark since this flushing process
holds a relevant lock. This bug has been fixed by triggering flushes in advance in a daemon thread
whenever memory size is above the low water mark.

2.5.2 Unnecessary Locking. Unnecessary locking bugs can be viewed as over-synchronization
problems already discussed in some previous studies [6, 28]. Over-synchronization indicates a sit-
uation in which a synchronization becomes unnecessary because the corresponding computations
do not require any protection or they are already protected by some other synchronizations.

For example, in hd4702, the function of DatanodeManager::fetchDatanodes holds the namesys-
tem read lock while iterating through data nodes that contain operations requiring mutual exclu-
sion. However, the operations are already synchronized in another internal function of fetchDatan-
odes. The bug is fixed by simply dropping the lock.

2.5.3 Improper Locking. Developers can use a variety of synchronization primitives (e.g.,
atomic instructions, spin locks, try-locks, read/write locks, mutex locks, etc.) to protect shared
accesses. Different synchronization primitives have different use cases.

From our study, synchronization mechanisms such as synchronized methods, read/write locks,
and custom synchronizations are more common and are prone to improper locking bugs. Also,
improper locking bugs usually are seen in domain-specific scenarios.

For example, in hd5064, NameNode uses a fair read-write lock to handle read/write requests
waiting in a queue. When handling a long read while a write is waiting at the head of queue, later
concurrent short reads in the queue cannot go together with the long read because their priority
is lower than the concurrent write. That is, the concurrent write is waiting for the long read to
finish and those short reads are waiting for the write to finish. The bug is fixed by optimizing the
read-write lock.

2.5.4 Swollen Locking. Swollen locking mean that the enclosed critical section of a lock involves
large numbers of operations unnecessary to be synchronized. We differentiate swollen locking
bugs from improper-grained locking bugs because of their prevalence in performance bugs. Un-
like previous coarse-grained locking bugs (Section 2.5), the root causes of swollen locking bugs are
in those operations that do not need to be synchronized while the root causes of coarse-grained
locking bugs are the locks themselves whose positions needed to be changed. In addition, swollen
locking bugs are different from redundant operation bugs (Section 2.6.4), whose contained redun-
dant operations are really unnecessary.

2.6 Optimization Bugs

Optimization means making a program execute more rapidly, that is, getting shorter completion
time or using less CPU resource (i.e., execute less number of CPU instructions). An optimization
bug is a performance bug whose execution speed of corresponding buggy code regions needs
to be improved, that is, reducing the execution completion time of the buggy codes. Note that
optimization bugs are specific to CPU-related optimizations.
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Optimization bugs make up 26% of bugs studied. From the perspective of performance impact
propagation, optimization bugs are also slowness propagation issues such as blocking bugs
(see Section 2.4). However, they are performance bugs whose slowness propagation are through
causality relationships and from blocking bugs. Optimization bugs can be categorized into the
following types.

2.6.1 Excessive CPU Consumption. Excessively consuming CPU resources caused by high loads
can cause contention for remaining insufficient CPU resources and affect part or all of system
activities. That can lead to performance loss just like excessive resource consumption bugs. For
example, in hd4992 mentioned later, the load balancing conducted by large numbers of worker
threads in HDFS creates significant load on NameNode. This excessively consumes CPU resources.
The bug is fixed by making the balancer thread numbers configurable, that is, uses can limit the
number of threads manually.

2.6.2 CPU Overuse. CPU overuse bugs are common optimization bugs whose code implementa-
tion of a relevant function or algorithm takes more time and consumes a little more CPU resources
than it should. They might not cause severe performance problems on daily running of systems.

For example, in ca5389, Cassandra deserializes the data to trees that consume CPU cycles. How-
ever, this tree feature is useless, because on the write path the tree is not needed and on the read
path the deserialized data will be cloned and merged to the new result. The bug is fixed by simply
deserializing the data to list now that it is only the intermediate product.

2.6.3 CPU Underuse. CPU underuse bugs are a type of optimization bugs whose code imple-
mentation of a relevant function or algorithm consumes less CPU resource than it should be. They
are opposite to CPU overuse bugs (Section 2.6.3).

For example, in mr4720, the web UI page of Job History Server, using a bad algorithm, takes
long time to download and render with 20,000 jobs. The bug is fixed by using deferred rendering
algorithm for speeding.

2.6.4 Redundant Operation. Redundant operation (or unnecessary operation) bugs are bugs
containing code units that conduct unnecessary work and generate unused results or do not always
generate useful results given the calling context. This is similar to “skippable functions” [28]. Note
that redundant operation bugs, in fact, are a special case of CPU overuse bugs and considered as
an independent category in our study.

For example, in zk1642, the leader server needs to load the database for figuring out the zxid
before running leader election. However, it loads the database again when it starts leading. This
is problematic for larger databases. The bug is fixed by skipping the database load process if it is
loaded before and using the zxid already calculated.

2.7 Configuration Bugs

Configuration bugs [10, 24], which make up 10% of bugs studied, have become significant deploy-
ment problems in cloud systems. They refer to unsuitable configuration parameter settings that
negatively impact performance. Note that those bugs with logic problems inside code, which can
be exposed by certain configuration values and cause hang or others that indirectly lead to perfor-
mance loss, are considered as logic bugs (Section 2.8) rather than configuration bugs.

2.7.1 Numeric Configuration. Numeric configuration bugs [50] are dominant (> 90%) in con-
figuration bugs. The corresponding configuration parameter values are integers or floating-point.
Numeric configuration bugs, which are performance sensitive to different configuration parameter
values, affect the performance by wrong/unreasonable parameter value settings.
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For example, in hb2149, the default value of hbase.regionserver.global.memstore.lowerLimit of
25% is too low. When the global memstore size reaches the upper limit (40%), memory flushing
starts and all write operations are blocked during flushing. The bug is fixed by improving the
lower limit value from 25% to 35%.

2.7.2 Non-numeric Configuration. Generally, non-numeric configuration refers to (1) the con-
figurations that are binary and determine whether a performance optimization is enabled, and
(2) the configurations that contain several configuration items for users to choose a suitable data
structure or algorithm for a specific scenario (e.g., runtime environment).

2.8 Logic Bugs

Logic bugs, which make up 24% of bugs studied, can occur in any code and involve a wide vari-
ety of buggy codes, including incorrect or incomplete data structure, algorithm, error handling,
failure recovery, and more. Logic bugs in performance bugs are a special category —a type of
side effect of functional bugs. We also call logic bugs of performance bugs pseudo-functional bugs

because they can manifest symptoms like functional bugs, such as crashes or hangs, but finally
cause performance loss rather than functional misbehavior (i.e., incorrect software functionality)
of distributed systems.

Note that those bugs with logic problems inside code, which can be exposed by certain configura-
tion values and cause hang or other issues that indirectly lead to performance loss, are considered
to be logic bugs instead of configuration bugs (see Section 2.7). In addition, if a performance bug is
a logic bug, we will not tag it with other bug categories except resource leak bugs (Section 2.3.2),
which are caused by wrong logics of forgetting to normally release occupied resources.

2.8.1 General Logic. General logic bugs refer to performance bugs involving incorrect logics
in code implementation. They are related to a wide variety of bugs, covering all four main bug
categories discussed earlier (resource, blocking, synchronization, and optimization). General logic
bugs may affect system resources such as the size of memory, the I/O bandwidth of disk, code
execution time, and more.

For example, in mr3862, when a NodeManager attempts to shut itself down cleanly, it is possible
for it to appear to hang due to lingering DeletionService threads that are not correctly shut down.
The bug is fixed by correctly shutting down DeletionService threads first. This bug is caused by
wrong logic, which leads to local delay propagation through causality relationships inside a job
itself. This is related to optimization bugs (see Section 2.6).

As shown in Section 2.3.2, ca5175 is a resource leak bug as well as a general logic bug caused
by wrong logic. In addition, error-handling code dealing with hardware/software errors/failures
always contains general logic bugs.

2.8.2 Error Unawareness. Error unawareness bugs are a special category in logic bugs. They are
unaware of (or ignore) systems’ errors such as invalid values (e.g., mr4919), insufficient permission
(e.g., hd4485), bad resources such as bad nodes (e.g., mr4599, hd3703), and the like, and then con-
tinue to execute. This type of bug is often caused by missing error detection, error handling, failure
detection, failure recovery, and more.

For example, in hd4485, the MapReduce (MR) job does not run as the same user as HDFS when
reading data from HDFS. This makes MR clients not able to use short-circuit read to directly access
local DataNode (DN) data for reducing read/write time because of a “permission denied” error
when connecting to the socket of local DN. The bug is fixed by setting read/write permission via
chmod(666) automatically after DN creates the socket.
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Fig. 2. PCatch overview.

3 PCATCH: DETECTING CASCADING BUGS

Although it is impractical to automatically detect all categories of performance bugs in TaxPerf,
we find that an important category of blocking bugs can be automatically detected by leveraging
their cascading nature to design an efficient detection tool called PCatch.

3.1 Causality Relationship

An important property of blocking bugs is the cascading impacts that can be modeled as the tra-
ditional causality relationship [32, 36, 38, 41]: an operation o1 happens before another operation o2

if there exists a logical relationship between them so that o2 cannot execute unless o1 has finished
execution. We also refer to this relationship as o2 causally depends on o1, denoted as o1 → o2. We
refer to o1 as the causor of o2, denoted as Causor (o2). Causal relationship is transitive: if o1 → o2

and o2 → o3, then o1 → o3.
PCatch directly uses the causal relationship model and some analysis techniques presented by

DCatch [36]. PCatch traces causal operations and uses them to construct happens-before (HB)

graphs. PCatch uses this graph to decide whether two operations are concurrent and what are
the causors of a given operation.

Figure 2 shows the workflow of PCatch that can automatically detect a PCbug 〈L,C, S〉. The
inputs to PCatch bug detection include the distributed system D to be checked, a small-scale work-
load that allows PCatch to observe a run of D, and code regions in D whose execution time mat-
ters to users (i.e., sinks). Developers can use PCatch application programming interfaces (APIs)
_sink_start and _sink_end to specify any code region as a sink.

The first step of PCatch is dynamic cascading analysis. At this step, PCatch analyzes runtime
traces to identify a set of potential PCbug sources whose execution time could propagate to affect
the duration of the sink through software-resource contention and (optionally) causality relation-
ships. Here, we consider only loops as potential PCbug source candidates because loops are most
likely to become performance bottlenecks, as shown by previous empirical studies [28]. We ana-
lyze potential causality and software-resource contentions based on our cascading model, which
will be presented in Section 3.2. At the end of this step, we get a set of PCbug candidates {〈L,C, S〉}.

The second step of PCatch conducts dynamic job-origin analysis for every PCbug candidate.
By analyzing the runtime trace, PCatch automatically judges whether the source L and the sink
S belong to the same user/system job. Only those that belong to different jobs remain as PCbug
candidates. The others are pruned as they are at most local performance problems. This step is
explained in Section 3.5.
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Fig. 3. A real PCbug in Cassandra, where a slow clean-up loop in one job could slow down another job on a

different node due to competition on the event-handling thread t2.→ represents must-HB and� represents

may-HB.

The last step of PCatch conducts dynamic-static hybrid loop scalability analysis to check
whether the source in a PCbug candidate has the potential to be time-consuming under a future
workload. We look for loops that satisfy two conditions: (1) each loop iteration takes time and
(2) the total number of loop iterations does not have a constant bound and can potentially increase
with the workload. For the first condition, PCatch simply looks for loops whose loop body contains
I/O operations. For the second condition, PCatch designs an algorithm that leverages loop-bound
analysis and dataflow analysis. The details are provided in Section 3.6. After this step, all of the
remaining candidates are reported as PCbugs.

3.2 Cascading Analysis

3.2.1 Goals. We consider two code regions to have a performance dependency on each other
if the slowdown of one region can lead to the slowdown of the other. Such a dependency can
be established through two causes. (1) Causality relationship can force an operation to deter-

ministically execute after another operation (e.g., message receiving after sending) or one region
to deterministically contribute to the duration of the other (e.g., RPC execution time contributes to
the RPC caller’s time). (2) Resource contention1 can cause a resource acquisition operation to
non-deterministically wait for another party’s resource release. Consequently, a delayed release
will cause an extended waiting.

The PCatch cascading analysis aims to identify 〈L,C, S〉, where delays in code region L can
propagate to slow down sink S through a chainC that contains resource contention and (optionally)
causality relationships.

3.2.2 Challenges. There are three key challenges here.

• Non-determinism. Resource contention is non-deterministic, as resource-acquisition order
may vary from one run to another. PCatch needs to predict potential dependencies.
• Diversity. Distributed systems have a variety of communication and synchronization mech-

anisms (synchronous or asynchronous, intra- or inter-node) that can cause performance
dependencies, such as locks, RPCs, events, and messages shown in Figures 1 and 3. Missing
any of them would hurt coverage and accuracy of PCbug detection.
• Composition. Performance dependency between L and S may include contentions of mul-

tiple resources, such as the three locks in Figure 1, as well as multiple causality chains, as
shown in Figure 3. PCatch needs to carefully handle not only individual causality/contention
operations but also their compositions.

1Hardware resource contention can also cause lack of performance isolation [62] but is out of the scope of PCbugs.
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Fig. 4. May-HB relationship.

To systematically and accurately reason about and predict execution delays caused by such
complicated and entangled resource contentions and semantics dependencies, we will first build a
performance-dependency model, and then design a dependency analysis algorithm based on that
model.

3.3 Cascading Model

We will first discuss causality relationships and resource-contention relationships separately in
Section 3.3.1 and Section 3.3.2, followed by a discussion in Section 3.3.3 about how to compose
them together to reason about performance cascading relationships in distributed systems.

3.3.1 Causality (must-HB) Relationships. Under causal relationship o1 → o2, the delay of o1

would delay the start of o2. For example, the delay of message sending would always delay the
start of the message handling on the message-receiving node.

3.3.2 Resource Contention (may-HB) Relationships. Under resource contention, one resource-
acquisition operation could non-deterministically wait for another resource-release operation. For
example, an attempt to acquire lock l has to wait for whoever happens to acquire l earlier to release l .
This non-deterministic relationship is a crucial ingredient of performance cascading in the context
of PCbugs — the slowdown of any operation o while holding a resource l would lead to an extended
wait at a corresponding resource acquisition a, denoted as o� a.

PCatch models two key types of software-resource contention: locks and thread pools. They
play crucial roles in coordinating execution, which inevitably brings contention, in synchronous
thread parallel execution, asynchronous event-driven concurrent execution, synchronous RPC pro-
cessing, and asynchronous socket-message handling.

Locks. For two critical sections that are concurrent with each other and protected by the
same lock, the delay inside one could postpone the start of the other, and vice versa. Consider
Figure 4(left). For two pairs of lock-unlock operations, {lock1(l), unlock1(l)} and {lock2(l),
unlock2(l)}, if lock1(l) // lock2(l), we can infer that o2 � lock1(l) and o1 � lock2(l),
where o1 and o2 are any operations inside the {lock1(l), unlock1(l)} and {lock2(l), unlock2(l)}
critical sections, respectively, which consequently result in a May-HB relationship. Note that such
a delay could directly affect another node in a distributed system when the critical section is inside
a message/RPC handler.

In practice, there are different variations of this rule depending on different lock primitives. For
example, given a reader-writer lock, the may-HB relationship has to involve a writer-lock critical
section and does not exist between two reader-lock critical sections.

Thread-Pool. Distributed systems often maintain a fixed number of threads that are responsible
for executing handlers of events inserted into a specific queue or RPCs delivered to a specific
node. In these cases, the handler threads become a target of resource contention. If one event
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(RPC) happens to be inserted into the handling queue (or dispatched to the thread pool) later than
another event (RPC), the start of its handler function inside the thread (e.g., t2 in the Daemon-2
node in Figure 3) could be unexpectedly delayed by the execution of the other event/RPC handler.
Consequently, we have the following may-HB rule related to thread pools. For two event/RPC
handler functions h1 and h2 that are processed by the same thread pool, if the start of function
h1 is concurrent with the start of function h2, denoted as starth1

// starth2
, we can infer that

o1 � starth2
and o2 � starth1

, where o1 and o2 are any operations inside handler functions
h1 and h2, respectively. Figure 4 (right) shows an example of a may-HB relationship in which there
are three handlers (h1,h2,h3) inside two handler threads of the same thread pool. If the starts of
h1 and h2 are concurrent, then operations inside h1 may-happen-before the start of h2. Similarly,
if the starts of h2 and h3 are concurrent, then operations inside h2 may-happen-before the start of
h3. Both result in a may-HB relationship.

The may-HB relationship is transitive — if A� B� C , we know that A� C as long as A//C .2

That is, a slowdown of executingAwould indirectly cause a slowdown of executingC . For example,
in Figure 1, a slowdown of the file-copy loop in thread t1 of the TaskTracker node could cause extra
wait time in thread t4’s lock acquisition through three pairs of lock contention: file-copy loop�
lock(l1) in t2� lock(l2) in t3� lock(l3) in t4.

Clearly, resource contention caused by thread pools is the most intense when the thread pool
contains only one thread, and is much less intense when multiple threads are available. Our mod-
eling does not consider the number of threads in the pool because many thread pools in real-
world systems leave the number of threads configurable — the number of threads could become
one even if it is currently not. Furthermore, even when there are multiple threads in the pool,
the slow processing of one handler function could still delay the start of later handler functions
due to decreased handling throughput.

3.3.3 Composing must-HB and may-HB Relationships. Now, we can reason about the perfor-
mance dependency between any two code regions R1 and R2 considering both must-HB and may-
HB relationships.

May-HB relationships directly translate to performance dependencies. That is, if we find an
operation o1 inside R1 and an operation o2 in R2 so that o1 � o2, we know that slowdowns in R1

could lead to slowdowns in R2.
The must-HB relationship does not always mean performance dependencies. For example, the

thread-creation operation in a parent thread happens before every operation inside the child thread.
However, delays in the parent thread cannot lead to extra execution or waiting time inside the
child thread through this must-HB relationship.

The must-HB relationship leads to performance dependencies in the following situation. Sup-
pose that the last operation of R1 is oend1 and the first operation of R2 is ostar t2. If we can find
an operation o2 in R2 so that oend1 → o2 and oend1 �→ ostar t2, then we know that slowdowns in
R1 would delay the execution of oend1, which would delay o2 but not ostar t2 and hence extend
the execution time of R2. For example, in Figure 3, since the message Write in t1 of Daemon-2 is
concurrent with SinkStart on Daemon-1 and happens-before the message Read on Daemon-1,
slowdowns in t1 on Daemon-2 before the Write could cause slowdowns in the sink on Daemon-1.

We can now compose may-HB and must-HB relationships together, as performance dependen-
cies among code regions are clearly transitive: if slowdowns in region R1 could lead to slowdowns
in region R2 and slowdowns in R2 could lead to slowdowns in R3, naturally R1 could slow down R3.
For example, in Figure 3, we can infer that the slowness of the cleanup loop in Daemon-2 could

2A//B and B//C does not guarantee A//C .
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ALGORITHM 1: Cascading analysis algorithm

Input: A sink region S
Output: A set of loops L = {L|L� S }
Set<Loop> L← Null;

Queue<Pair> R← {S };
while R = R.pop() do

for L in R do

if L // Send then
L.add (L)

end

R.push(mustHB (R));
R.push(mayHB (R));

end

return L;

unexpectedly propagate to delay the ending of the file-stream job in Daemon-1 through the
following propagation chains: (1) the cleanup loop inside Event1 could slow down the execution
of Event2, as cleanup-loop� start of Event2; (2) Event2 could slow down thread t1’s execution be-
fore Write, as the end of Event2→ the event-join on t1 and �→ the start of t1; and (3) t1’s execution
before Write could slow down the sink, as Write→ Read and �→ SinkStart on Daemon-1.

3.4 Analysis Algorithm

PCatch analyzes runtime traces to identify every loop L in the trace upon which sink S has
contention-related performance dependencies, denoted as L � S . Following the performance-
dependency model discussed earlier, for every L, PCatch needs to identify a sequence of code
regions R1,R2, . . . ,Rk , where R1 has performance dependencies on L, Ri+1 depends on Ri , and,
finally, S on Rk , with at least one such dependency based on resource contention.

In this section, we assume that the trace contains all of the information needed by PCatch’s
analysis. We also assume that any loop could execute for a long time under some workload; we
will discuss how to prune out those loops whose execution time is guaranteed not to increase with
any workload in Section 3.6.

Algorithm. The outline of our algorithm is shown in Algorithm 1. At a high level, we maintain a
working region set R. The sink S has a performance dependence on every member region R in this
working set. We process one region R in R at a time, until R becomes empty. For every R, we check
whether it contains a loop L that is concurrent with the end of the sink (Send ). If so, we conclude
that L� S . We then add to the working set regions that R has a performance dependence on based
on must-HB analysis (i.e., the mustHB(R) function in Algorithm 1) and may-HB analysis (i.e., the
mayHB(R) function in Algorithm 1).

The mustHB function works as follows. Given an input region R, PCatch iterates through every
node in the HB graph that corresponds to an operation in R. For every node v , PCatch checks
whether there is an edge on the HB graph that reachesv from a nodev’ that belongs to a different
thread or handler. Once such a v’ is identified, its corresponding region R’ is added to the output
of mustHB(R) — R’ ends at v’ and starts at p so that p and v’ belong to the same thread/handler
and p �→ Rstar t . Tracing backward along the must-HB graph could produce many code regions.
In general, the farther away the less likely is performance impact, because any part of the chain
may not be on the critical path. Consequently, we set a threshold to limit the number of cross-
handler/thread/node must-HB edges in the traversal. We currently use a threshold of 2.

The mayHB function works as follows. Given an input region R, the analysis goes through every
operation in R. Whenever a lock acquisition or an event/RPC handler start o is encountered, we
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will identify from the trace all of the lock critical sections or handler functions that compete on
the same lock or the same handler thread with o and are concurrent with o, and put them all into
the output set.

For example, in Figure 3, our analysis starts from the sink in the file-stream job thread. The
mustHB analysis will discover the code region in thread t1 on Daemon-2 that ends with the socket
write, and then discover the Event2 handler in thread t2. While applying mayHB analysis to the
latter, we discover the Event1 handler also in thread t2. Finally, analyzing the Event1 handler will
reveal the cleanup loop that has a cascading relationship with the sink.

3.5 Job-origin Analysis

PCatch analyzes and prunes out PCbug candidates whose source and sink belong to the same job,
as these do not reflect global performance-cascading problems.

To figure out which job an instruction belongs to, PCatch identifies the corresponding node of
this instruction in the HB graph and searches backward along causality edges on the graph. For
example, in Figure 1, the file-copy loop is inside an RPC function in TaskTracker thread t1; its caller
is inside another RPC function in JobTracker’s thread t1; its caller is from the client, which ends
the back tracing. At the end of the back tracing, instructions that belong to different jobs will end
up with different nodes in the HB graph.

PCatch distinguishes the origins between user jobs and system routines. For an instruction that
belongs to a user job, such as the loop in Figure 1, the origin tracing usually would end up at an RPC
function or a message handler that was invoked by the client, such as the submitJob RPC call in
Figure 1. On the other hand, for an instruction that belongs to a system routine, the origin tracing
usually ends up at the main thread of a process that was started during system startup (i.e., not by
interaction with clients). For example, in Figure 1, when we search for the origin of the heartbeat
function in thread t4 of the TaskTracker node, we find that it is not inside any event/RPC/message
handler and is inside the main thread of the TaskTracker process.

If the origin is a main thread, PCatch uses the process ID paired with the thread ID as the job
ID. If the origin is an RPC function or a message handler, PCatch uses the handler’s process ID
paired with the RPC/message ID as the job ID. Then, we can easily tell whether two (groups of)
instructions belong to the same job.

3.6 Loop Scalability Analysis

3.6.1 Goals. As discussed in Section 3.1, we aim to identify loops satisfying the following
two conditions as potential slow-down sources of PCbugs: (1) each iteration of the loop is time-
consuming, conducting I/O operations such as file system accesses, network operations, and ex-
plicit sleeps; and (2) the number of loop iterations does not have a constant upper bound and can
potentially increase together with the workload. We refer to such loops as non-scalable.

Identifying loops that satisfy the first condition (time-consuming iterations) can be conducted
by watching specific API calls which will be introduced in Section 4.1. Identifying loops that satisfy
the second condition (non-scalable loops) is more challenging and is the focus of this section.

3.6.2 Challenges. Identifying non-scalable loops is related to but different from loop complexity
analysis [20, 21] and program slicing [52], and thus demands new analysis algorithms.

Traditional loop-complexity analysis tries to figure out the complexity of a loop L in a program
variable V , which is both unnecessary and insufficient for PCbug detection. It is unnecessary be-
cause we only need to know whether the loop count could scale up with the workload but not
the exact scaling relationship — whether it is O(V 2) or O(V 3) does not matter. It is also insufficient
because it does not tell whether the value of V can increase with the workload or not.
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Fig. 5. Data dependence may not affect loop bound (Line 1 affects the content but not the size of vector,

which defines the loop count).

Fig. 6. A simplified loop example from HDFS.

Traditional analysis for program slicing tries to figure out what affects the content of a variable
V at a program location P . Clearly, it alone is insufficient to identify non-scalable loops because we
first need to identify which variable V can approximate the loop count (e.g., vector in Figure 5).
Furthermore, even if V has data dependence on an operation O , O may not be able to affect the
upper bound ofV , as illustrated by Figure 5. Even ifV has no data dependence on an operation O ,
O may actually affect the upper bound ofV , as we will explain later in Section 3.6.5 and Figure 6 (in
Figure 6, the size of toAdd approximates the loop count at line 21; toAdd has no data dependence
on report.NumBlocks() on line 17, but its size is decided by the latter).

3.6.3 Our Solution. Since accurately computing the loop count and identifying all non-scalable
loops is impractical [20, 21], we give up on soundness and completeness, instead aiming to identify
some common types of non-scalable loops with good efficiency and accuracy.

To choose those common types, we focus on the two important aspects of every loop exit con-
dition — the loop index (e.g., i in Figure 5) and the loop index bound (e.g., vector.size() in
Figure 5), which clearly have a large impact on when a loop exits and hence on the loop count.
Thinking about what types of loop index variables and loop index-bound variables might lead to
non-scalable loops produces the following three patterns:

(1) Loops with a loop-invariant index. The loop cannot exit until another thread updates a
shared variable with a loop-terminating value. The durations of these synchronization loops
are non-deterministic and could be affected by workloads (e.g., Figure 7).
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Fig. 7. Synchronization loop in MapReduce (rjob. localing is a loop invariant if not considering other

threads).

Fig. 8. MapReduce loop with workload-sensitive index.

(2) Loops with a workload-sensitive index. Return values of I/O operations define the loop index
variable and hence determine the loop count (e.g., Figure 8).

(3) Loops with a workload-sensitive bound. Return values of I/O operations contribute to the
loop bound and hence affect the loop count (e.g., in Figure 6, the return value of an I/O
operation at line 1 affects the loop bound at line 21).

Our analysis goes through three steps. The first step (Section 3.6.4) conducts static analysis
inside a loop body to identify non-scalable loops of type 1 and type 2. It also identifies a variableV
that can approximate the bound of the loop count. The second step conducts global static analysis
to identify I/O operations O that may contribute to the value of V (Section 3.6.5). The last step
runs the system again to see whether operations O can indeed be executed and hence finishes
identifying non-scalable loops of type 3. The last step is straightforward; thus, it is skipped in the
following subsection.

3.6.4 Loop-local Analysis. Given a loop L, we first identify all of the exit conditions of L. That is,
PCatch uses WALA, the Java byte code analysis infrastructure [26], to identify all of the loop exit
instructions and the branch conditions that predicate these exit instructions’ execution. In WALA,
every condition predicate follows the format of AopB, where A and B are numerical or Boolean
typed, and op is a comparison operator. In the following, we first present a baseline algorithm and
then extend it to handle more complicated loops.

Baseline algorithm. Suppose that we identify a loop-exit condition Vlower < Vupper or Vlower ≤
Vupper . We will then analyze how Vlower and Vupper are updated inside the loop.

If both are loop invariants, we consider this loop as a synchronization loop and hence type-1
non-scalable loop. For example, in the loop shown in Figure 7, the exit condition is rjob.localing
== FALSE. Since rjob.localing is a loop invariant variable and FALSE is a constant, this loop has
to rely on other threads to terminate it.

If neither is a loop invariant, we give up on analyzing the loop and simply consider it as scal-
able — this design decision may introduce false negatives, but will greatly help the efficiency and
accuracy of PCatch.

If only one is a loop invariant, we check how the other one Vvar iant is updated in the loop.
IfVvar iant is updated with a constant increment or decrement in every iteration of the loop, such

as idx in Figure 9, we consider this loop as a possibly type-3 non-scalable loop and consider the
value ofVupper at the start of the loop, such as volumnes.length in Figure 9, as an approximation
for the loop-count’s upper bound. The global analysis in Section 3.6.5 will then analyze how the
value of Vupper is computed before the loop to decide whether loop L is scalable.

If Vvar iant is not updated with a constant stride, we then check whether it is updated with
content returned by an I/O function in the loop, such as in.read(buf) shown in Figure 8. If so,
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Fig. 9. A loop with constant stride in HDFS.

Fig. 10. Collection-related loop in HDFS.

we identify a type-2 non-scalable loop. Otherwise, we stop further analysis and exclude the loop
from PCbug-source consideration.

Handle collections. Many loops iterate through data collections like the one shown in Figure 10.
In WALA, exit conditions of this type of loop contain either hasNext() (i.e., Iterator::hasNext()
== FALSE) or size() (e.g., i≤list.size()). We then adapt the baseline algorithm to analyze these
container-related loops.

We consider Java Collection APIs like next(), remove (obj), and add(obj) as a constant-
stride decrement or increment to the iterator, and consider APIs like addAll(...) and
removeAll(...) as a non-constant update. If the loop contains no such update operation, it is con-
sidered as a synchronization loop (i.e., non-scalable); if it contains only constant-stride increment
or only constant-stride decrement in every loop iteration, the loop is considered as potentially
non-scalable and the size of the corresponding collection, C .size () will be identified for further
analysis later.

Handle equality conditions. When the loop-exit condition is V1 � V2 or V1 == V2, our analysis
presented earlier that identifies type-1 and type-2 loops still applies. If the loop exits whenV1 == V2,
type-3 loop analysis is conducted similarly as discussed earlier. That is, if one ofV1 andV2 is a loop
invariant and one has a constant stride inside the loop, we will move on to analyze whether the
initial value of eitherV1 orV2 at the beginning of the loop is affected by I/O operations. If the loop
exits when V1 � V2, we give up type-3 loop analysis, as its loop bound is too difficult to efficiently
approximate.

Handle multiple exit-conditions. A loop may contain more than one exit and hence may have
more than one exit condition. In principle, we consider a loop to be scalable unless the analysis on
every exit condition shows that the loop is non-scalable.

3.6.5 Global Loop Count Analysis. After loop-local analysis, every type-3 non-scalable loop
candidate L and its loop-count approximation V are passed on for global analysis, which checks
whether there exists an I/O operation O that can contribute to the value of V .

This checking could be done dynamically — instrumenting every I/O operation and every mem-
ory access, and checking the dependency online or through a trace. However, the overhead of such
a dynamic slicing analysis is huge [4, 63]. This checking could also be done statically — analyzing
the program control and dataflow graphs to see whether any I/O operation O could contribute to
the value of V along any path p that might reach L. However, such a path p may not be feasible
at runtime. Consequently, we use a hybrid analysis. We first conduct static analysis, which will
be explained in detail later, and then run the software to see whether any such path p is feasible
under the testing workloads.

Algorithm 2 shows an outline of our analysis. At the high level, our analysis maintains a contrib-

utor working-set C — every member element of C is a variable c whose value at program location
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ALGORITHM 2: Global loop count analysis algorithm

Input: A loop L and its loop-count approximation V
Output: A set of I/O operations O = {O |O contibutes to V }
Set<Variable> C← {V };
Set<I/O Operation> O← Null;

while c = C.pop() do

if expc == constant then
continue

if expc == I/O function then
O.add (expc )
continue

for x in ContributorOf(expc ) do
C.add (x )

end

end

return O;

lc contributes to the value of V . C is initialized as a set that contains V . In every iteration of the
working loop shown in Algorithm 2, we pop out an element c , such as V at the first iteration. We
analyze backward along the dataflow graph to find every update to c , c = expc , that might be used
by the read of c . This could result in three different scenarios: (1) if expc is a constant, our analysis
moves on to analyze the next element in the working set C; (2) if expc is an I/O function, such
as listFiles() in Figure 6, we add expc into the output set; (3) otherwise, we analyze expc to
potentially add more contributors into C before we move on to analyze the next contributor in C.
When C becomes empty, we check the output setO. If it is empty, we conclude that L is scalable; if
it is not empty, we move on to dynamic analysis to see whether these contributing I/O operations
in O can indeed execute at runtime.

Next, we discuss how we analyze expression expc to find potential I/O operations that contribute
to its value.

Intra-procedural baseline analysis. Given an expression c = exp, we simply put all operands in
exp into the working set C (e.g., blockList.length and LONGS_PER_BLOCK for line 14 of Figure 6).

We need to pay attention to augmentation operations such as c += exp or Collection::
add(..), such as line 18 in Figure 6. In addition to adding variables involved in exp into the
working set, we also analyze whether this statement is enclosed in a loop L′. If it is, we add the
loop-count variable of L′ into the working set — if x++ is conducted for N times, with N being
workload-sensitive, we consider the value of x also workload-sensitive.

Intra-procedural collection analysis. We adapt the above algorithm slightly to accommodate for
loops and operations related to collections and arrays.

Given a loop L whose loop count is approximated by the size of a collection or an array C ,
we search backward along the dataflow graph for update operations that can affect the collection
size, such as Collection::add(ele), Collection::addAll (set), or the array length, such as
new String[len], instead of operations that update the content but not the size of C , such as
Collection::fill(..), Collection:: reverse(), and so on.

For every size update, we add corresponding variables or collection sizes into S, such as len
for new String[len] (i.e., 0 for new long [0] on line 10 of Figure 6), and the size of set for
Collection:: addAll(set). We also distinguish augmentation operations such as Collection
::add(ele) from regular assignments such as new String[len] and analyze the enclosing loop
for augmentation operations as discussed earlier.
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Inter-procedural loop-count analysis. If a contributor v is assigned by a function return, v =
foo(..) (e.g., NumBlocks() on line 17 of Figure 6), we will put the return value of foo into the
contributor working set C and then analyze inside foo to see how its return value is computed
(e.g., line 14 of Figure 6). Of course, if foo is an I/O function itself, we directly add foo into the
output set O.

When a contributor variable v is the parameter of function foo or is used as an argument in in-
voking a callee function foo∗, we conduct inter-procedural analysis. In the former case, we identify
every caller function foo∗, and add the corresponding function-call argument into the contribu-
tor working set. In the latter case, since foo∗ can modify the content of v when v is passed as
a reference, we trace reference variables through WALA’s default alias analysis for further data
dependence analysis.

4 PCATCH IMPLEMENTATION AND EVALUATION

4.1 Implementation

We have implemented the PCatch static analysis tool using the WALA Java byte code analysis
infrastructure [26] and the PCatch dynamic tracing tool using Javassist, a dynamic Java bytecode
transformation framework [27]. PCatch does not require large-scale distributed-system deploy-
ment to detect PCbugs — different nodes of a distributed system can be deployed on either differ-
ent physical machines or different virtual machines in a small number of physical machines. Next,
we explain some implementation details, such as how PCatch identifies I/O operations and how
PCatch implements runtime tracing.

In the current prototype of PCatch, we consider the following API calls as I/O operations: file-
related APIs, including both Java library APIs such as java.io.InputStream::read and Hadoop
library APIs fs.rename, network Java APIs such as java.net.InetAddress::getByName, and
RPC calls. As mentioned in Section 3.6, PCatch uses static analysis to identify loops that conduct
time-consuming operations in loop bodies. We consider all of the I/O operations mentioned earlier
to be expensive and also consider sleep-related functions to be expensive. Our analysis checks
whether any such expensive API is called in the loop body, including the callee functions of a loop.

The PCatch cascading analysis (Section 3.2) is conducted upon runtime traces, which are gen-
erated for every thread of the target distributed system. Every trace records the following three
types of operations.

First, synchronization and communication operations related to must-HB analysis, such as RPC
calls, message sending/receiving, event enqueue/dequeue, thread creation and join, and other
causal operations.

Second, resource acquisition and release operations that are related to may-HB analysis. For
lock contention, we record all object-level and class-level lock and unlock operations, such as syn-
chronized method entrances and exits, synchronized block entrances and exits, and explicit locks
and unlocks. For thread-pool contention, we record the start and end of every RPC/event/message
handler and which thread it is running on, which, in fact, is already recorded for must-HB analysis.

Third, PCbug source and sink candidates. Specifically, we identify every loop in the program
and record the start of every loop. We also record the execution of every instance of _sink_start
and _sink_end.

Every trace record contains three pieces of information: (1) the type of the recorded operation,
(2) the callstack of the recorded operation, and (3) an ID that uniquely identifies the operation or
the resource under contention.

For causal operations, the IDs will allow PCatch trace analysis to correctly apply may-HB and
must-HB rules. For every event, thread, or lock operation, the ID is the object hashcode of the
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Table 2. Evaluation benchmarks

BugID Workload Sinks

CA-6744
write table

Streaming
+ cleanup table

HB-3483 write table Region assignment, RegionServer write

HD-2379
write file

Heartbeat, DataNode write,
HD-5153 NameNode write

MR-2705

wordcount Heartbeat, Map task
MR-4088
MR-4576
MR-4813

Different HD and MR bugs affect different versions.

corresponding event, thread, or lock object. For an inter-node communication operation, PCatch
tags each RPC call and each socket message with a random number generated at runtime.

For source and sink candidates, IDs uniquely identify them in bug analysis and report. Every
ID is a combination of keyword source/sink, start/end, and a mix of the corresponding class
name, method name, and line numbers.

4.2 Evaluation Methodology

4.2.1 Benchmarks. We evaluate PCatch using four widely used open-source distributed sys-
tems: the Hadoop MapReduce distributed computing framework (MR); the HBase distributed key-
value stores (HB); the HDFS distributed file system (HD); and the Cassandra distributed key-value
stores (CA). These systems range from about 100 thousand lines of code to more than three million
lines of code.

4.2.2 Workloads. Our experiments use common workloads, such as word-count for MapRe-
duce, writing a file for HDFS, updating a table for HBase, and updating and then cleaning a table
for Cassandra. We were aware of 8 different reports in corresponding bug-tracking systems, as
shown in Table 2, in which severe performance slowdowns or node failures were observed by
users under similar types of workloads at large scales.

Note that although triggering PCbugs requires large-scale workloads and sometimes special
timing among threads/events/messages, PCatch predicts PCbugs by monitoring execution under
a small-scale workload without any requirements on special timing. More details about PCatch
bug detection workloads are in Section 4.6.

4.2.3 Time-sensitive Sinks. PCatch provides APIs to specify sinks – code regions whose execu-
tion time users/developers care about. A naïve way to specify a sink is to put every client request
into a sink. However, in practice, finer-granularity sinks would work better, as finer-granularity
performance cascading analysis is not only faster but also more accurate.

In our experiments, we specify important system routines (e.g., heartbeats) and main tasks
within a client request (e.g., region assignment and region server write task in HBase) as sinks, as
shown in Table 2. We mostly simply surround a function call with _sink_start and _sink_end.
Take the heartbeat sink illustrated in Figure 1 as an example. TheTaskTracker process sends heart-
beats to the JobTracker process by invoking the transmitHeartBeat function. Consequently, we
simply put a _sink_start right before the function call and a _sink_end right after the function
call. In practice, developers can put _sink_start and _sink_end anywhere as long as they make
sure that _sink_start executes before _sink_end.
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Table 3. PCatch Bug Detection Results

BugID
Detected? #Static 〈L, S〉s #Static 〈L,C, S〉s

Bugs FalsePositives Bugs FalsePositives

CA-6744 � 22 0 22 0
HB-3483 � 21 0 32 0
HD-2379 � 62 5 84 8
HD-5153 � 55 3 55 4
MR-2705 � 21 0 41 0
MR-4088 � 11 1 11 2
MR-4576 � 21 1 21 2
MR-4813 � 22 1 22 1

Total 2215 11 2718 17

Subscript denotes bug reports related to the known bug listed in Column 1.

4.2.4 Experiment Settings. We run each node of a distributed system in a virtual machine (VM),
and run all VMs in two physical machines that use the Intel® Xeon® CPU E5-2620, and 64 GB of
RAM. In practice, these systems are mostly deployed on more than one physical machine. Fortu-
nately, PCatch can predict bugs using small-scale workloads without relying on time profiling.

We report PCbug counts by both the unique number of static source-sink pairs 〈L, S〉 and the
unique number of static triplets 〈L,C, S〉. These two counts’ results are mostly similar. All of our
performance numbers are based on an average of 5 runs.

To confirm whether a PCatch bug report is indeed a PCbug, we increase the corresponding work-
loads following the loop-source reported by PCatch. We then measure (1) whether the execution
time of the source indeed increases and (2) whether the execution time of the sink has a similar
and sufficiently large increase. The detailed results will be presented in Table 7.

4.3 Bug Detection Evaluation

Overall, PCatch successfully detects PCbugs for all benchmarks while monitoring correct execution
of these applications, as shown by the � in Table 3. In addition, PCatch found a few truly harmful
PCbugs that we were unaware of. PCatch is also accurate: only about one-third of all PCatch bug
reports are false positives.

4.3.1 True Bugs. PCatch successfully predicts the 8 PCbug benchmarks using small-scale work-
loads. These 8 benchmarks were originally noticed by users and developers under much larger
workloads and many runs, as we will discuss in Section 4.6.

PCatch also found a few harmful PCbugs, 7 unique source-sink pairs (9 unique source-chain-sink
triplets), that we were unaware of, as shown in Table 4. We have triggered all of them successfully
and then carefully checked the change log of each software project. We found that 6 out of these 7
〈L, S〉 pairs (7 out of 9 〈L,C, S〉 triplets) have been patched in the latest versions of these systems.3

Our experiments judge whether a harmful PCbug is successfully triggered in the following way.
We run software using a workload, designed based on the PCatch bug report (see Section 4.6),
that is larger than the one used during PCatch bug detection but still has reasonable size. We then
monitor the duration of the sinkTsink . For every PCbug mentioned earlier, we have observed that
Tsink increases from less than 1 second to around 10 seconds or more, or from a few seconds to
a few minutes, once the non-deterministic performance-propagation chain reported by PCatch
is hit. This indicates that delays are indeed unintentionally propagated from one job to another

3HB-3621, HADOOP-4584, HD-5153, MR-1895, MR-2209, and MR-4088.
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Table 4. True PCbugs Reported by PCatch

BugID What does the source loop

do?

Sink Chains Loop Job Sink Job Loop

CA-67441 table-cleanup Streaming 1P Table CleanupU File StreamingS Type3

CA-67442 metadata-scan Streaming 1P Table CleanupU File StreamingS Type3

HB-34831 region-flush RegionServer

Write

1L/1L HBase Write-1U HBase Write-2U Type2

HB-34832 region state-check RegionServer

Write

1L Timeout

MonitorS

HBase WriteU Type3

HD-23791 blocks-scan DateNode Write 1L/1L BlockReport

ScannerS

HDFS WriteU Type3

HD-23792 blocks-scan HeartBeat 1L BlockReport

ScannerS

HeartBeatS Type3

HD-23793 blockreport-generate DataNode Write 1L/1L BlockReport

ScannerS

HDFS WriteU Type3

HD-23794 blockreport-generate HeartBeat 1L BlockReport

ScannerS

HeartBeatS Type3

HD-23795 removedblock-process NameNode

Write

1L BlockReportS HDFS WriteU Type3

HD-23796 addedblock-process NameNode

Write

1L BlockReportS HDFS WriteU Type3

HD-51531 first-blockreport-process NameNode Write 1L BlockReportS HDFS WriteU Type3

HD-51532 removedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3

HD-51533 addedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3

HD-51534 underconstructionblock-

process

NameNode Write 1L BlockReportS HDFS WriteU Type3

HD-51535 corruptedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3

MR-27051 file-download Map Task 1P MapReduce-1U MapReduce-2U Type2

MR-27052 file-download HeartBeat 2L/2L/3L MapReduce-1U HeartBeatS Type2

MR-40881 job init-wait Map Task 1P MapReduce-1U MapReduce-2U Type1

MR-45761 file-download HeartBeat 3L MapReduce-1U HeartBeatS Type2

MR-45762 job init-wait Map task 1P MapReduce-1U MapReduce-

2U

Type1

MR-48131 files-commit HeartBeat 1L MapReduce-1U HeartBeatS Type3

MR-48132 files-move HeartBeat 1L MapReduce-1U HeartBeatS Type3

New bugs outside the benchmarks are in bold fonts. The “Chains” column lists the number of resource contentions

involved in performance cascading and the type of resources (P: thread pool; L: lock); different chains for the same

pair of source and sink are separated by “/”. Subscript U: user-submitted jobs; Subscript S: system background or

periodic jobs.

through resource contention and causal operations. More bug-triggering details will be presented
in Section 4.6.

Table 4 shows all the true bugs reported by PCatch. As we can see, PCatch can detect PCbugs
caused by a wide variety of non-scalable loops and resource-contention chains.

4.3.2 False-positive Bug Reports. PCatch reports 11 false positives. Three are caused by inac-
curate static analysis of time-consuming operations. For example, some I/O wrapper functions in
these systems use Java I/O APIs in an asynchronous way and hence do not introduce slowdowns at
the call site. For 8 of them, their source loops’ bounds are indeed determined by content returned
by file systems, network, or users’ commands. However, program semantics determine that those
contents have a small upper bound.

In our triggering experiments, we easily identify these false positives. When we increase the
workload size based on the PCatch bug report, we observe that the duration of the source loop
—and, consequently, the corresponding sink — increases little, if at all.
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Table 5. Extra False Positives in 〈L,S〉 Count and in Static

〈L,C, S〉 Count for Alternative Designs

BugID Alternate No Origin Alternative Loop
may-HB Analysis Analysis

#LS #LCS #LS #LCS #LS #LCS
CA-6744 4 7 2 4 7 8
HB-3483 1 3 1 2 5 5
HD-2379 10 53 2 2 6 16
HD-5153 6 8 0 0 12 21
MR-2705 7 9 2 5 8 25
MR-4088 9 12 3 6 3 3
MR-4576 9 12 4 9 6 7
MR-4813 7 17 0 0 9 14

Table 6. Performance of PCatch (Total) and Main Components

BugID Base Total PCatch Tracing Cascading Scalability Trace
bug detection Analysis Analysis Size

CA-6744 120 703 (5.8x) 150 103 319 31 MB
HB-3483 28 123 (4.5x) 47 11 30 9.4 MB
HD-2379 73 268 (3.7x) 78 20 96 4.5 MB
HD-5153 118 433 (3.7x) 132 17 158 11 MB
MR-2705 44 223 (5.1x) 58 22 96 18 MB
MR-4088 65 250 (3.8x) 85 26 67 11 MB
MR-4576 83 373 (4.5x) 134 38 106 31 MB
MR-4813 71 383 (5.4x) 93 55 156 24 MB

Base is the runtime without PCatch. Unit: seconds.

4.4 Comparison with Alternative Designs

PCatch contains three key components. To evaluate the effectiveness of each component, we tried
removing part of each component while keeping the other two components unchanged and mea-
sured how many extra false positives would be introduced. For cascading analysis, we slightly
revised the may-HB rules (discussed in Section 3.3.2) so that two lock critical sections or two
event/RPC handlers do not need to be concurrent with each other in order to have a may-HB
relationship. For job origin analysis (Section 3.5), we tried simply skipping this check. For non-
scalable loop analysis, we tried declaring every loop that contains I/O operations in the loop body
as a potential PCbug candidate source. As we can see in Table 5, these three alternative designs
all lead to many extra false positives, even when analyzing exactly the same traces as those used
to produce results in Table 3. Clearly, all three components of PCatch are important in PCbug
detection.

4.5 Performance Results

As shown in Table 6, PCatch performance is reasonable for in-house testing. In total, PCatch bug
detection incurs 3.7X–5.8X slowdown compared with running the software once under the small-

scale bug-detection workload. Note that without timing manipulation, many of these bugs do not

manifest even after running the software under large-scale bug-triggering workloads of many
runs. In comparison, PCatch can greatly improve the chances of catching these PCbugs in a much
more efficient way during in-house testing.
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Table 7. Detection Run vs. Triggering Run

BugID
Detection Run Triggering Run

Workload Sink Workload Sink Time
Size Time Size !Buggy Buggy

CA-6744 1-row table 1.44 s 10,000-row table 1.80 s 8.6 s
HB-3483 1 K data 0.02 s ∼300 M data 0.05 s 62 s
HD-2379 3 blocks 0.22 s ∼835,000 blocks 0.22 s 19 s
HD-5153 3 blocks 0.05 s ∼786,000 blocks 0.06 s 14 s
MR-2705 1 KB sidefile 3.83 s 1GB sidefile 4.29 s 12 m 21 s
MR-4088 1 KB sidefile 4.37 s 1GB sidefile 4.98 s 12 m 32 s
MR-4576 1 KB sidefile 0.03 s 1GB sidefile 0.03 s 12 m 42 s
MR-4813 1 reducer 0.07 s 1000 reducers 0.12 s 22s

!Buggy: measured when the resource contention did not occur; Buggy: measured

when the resource contention occurred.

Table 6 also shows the three most time-consuming components of PCatch: runtime tracing,
trace-based cascading analysis, and static loop scalability analysis. As we can see, PCatch tracing
consistently causes 1.1X-1.7X slowdowns across all benchmarks. The cascading analysis is rela-
tively fast. In comparison, static loop scalability analysis is the most time-consuming, Note that
more than half (up to 80%) of the analysis time is actually spent for WALA to build the whole-
program dependency graph (PDG) in every benchmark except for CA-6744. This PDG building
time actually can be shared among all analyses on the same software project. Future work can
also speed up the static analysis using parallel processing — analyzing the scalability of different
loops in parallel. The execution time of the dynamic part of loop-scalability analysis and job-origin
analysis is part of the PCatch total bug-detection time, but is much less than the three components
presented in Table 6.

4.6 Triggering Results

We consider a PCbug to be triggered if we observe that (1) the sink executes much slower in a run
when resource contention occurs than when contention does not occur;4 and (2) the amount of
slowness increases with the workload size.

We have successfully triggered all of the true PCbugs detected by PCatch (i.e., every one in
Table 4), with the details of the 8 benchmark bugs’ triggering listed in Table 7.

Note that without the guidance of PCatch bug reports, triggering these PCbugs is extremely
difficult. In fact, without carefully coordinating the timing, which we will discuss later, only 4

out of 22 PCbugs manifest themselves after 10 runs under large workloads listed in Table 7. In
these 4 PCbugs, the source can affect the heartbeat through contention of just one lock. Since
heartbeat function is executed periodically (usually once every 3 seconds in MapReduce and
HDFS), there is a good chance that the resource contention would happen to at least one heartbeat
instance.

To trigger the remaining 18 PCbugs, we have to carefully coordinate the workload timing (i.e.,
when to submit a client request) in order to make the resource contention occur. This is true
even for bugs MR-27052 and MR-45761 in Table 4, which, although they have periodic heart-
beat functions as sinks, require multiple lock contentions to cause the buggy performance to
cascade.

4During triggering runs, we use featherweight instrumentation to check whether the reported resource contention

happens.
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These results show that PCatch can greatly help discover PCbugs during in-house testing — it
can catch a PCbug (1) under regular timing without requiring rare timing to trigger resource con-
tentions; and (2) under a small-scale workload that runs many times faster than large workloads.

The current triggering process is not automated yet, although it benefits greatly from PCatch
bug reports. It mainly requires two pieces of manual work. First, based on the result of the PCatch
loop-scalability analysis, we figure out which aspect of the workload size can affect the execution
time of the loop source (e.g., should we increase the number of mappers or should we increase the
size of a file) and prepare a larger workload accordingly, such as those shown in Table 7. Second,
we monitor whether the bug-related performance propagation chain is triggered or not at runtime
and conduct time coordination to help trigger that chain. Among these two scenarios of manual
effort, the second can be automated in the future by techniques similar to those that automatically
trigger concurrency bugs [36, 39]. The first is more difficult to automate and may require advanced
symbolic execution and input-generation techniques.

Note that PCatch is capable of detecting PCbugs that can be triggered only by large clusters
through experiments on small clusters (e.g., the bug’s source loop count is determined by the
number of cluster nodes). However, we did not encounter such bugs in our experiments; hence,
none of the triggering workload requires different cluster sizes.

4.7 Discussion

PCatch could have false positives and false negatives for several reasons.
(1) Performance-dependence model: PCatch cascading analysis is tied with our may-HB and

must-HB models. It may miss performance dependencies caused by semaphores, custom synchro-
nizations, and resource contentions currently not covered by our must-HB and may-HB models,
resulting in false negatives.

(2) Workload and dynamic analysis: PCatch bug detection is carefully designed to be largely
oblivious to the size of the workload and timing of the bug-detection run. However, PCatch would
still inevitably suffer false negatives if some bug-related code is not executed during bug-detection
runs (e.g., the loop sources, I/O operations inside a loop source, causal operations, resource-
contention operations, sinks), which is a long-standing testing coverage problem.

(3) Static analysis: PCatch’s scalability analysis intentionally focuses on common patterns of
non-scalable loops in order to scale to analyzing large distributed systems, but it could miss truly
non-scalable loops that are outside the three types discussed in Section 3.6, leading to false nega-
tives. On the other hand, some loops that scale well may be mistakenly reported as non-scalable
loops and lead to false positives.

5 RELATED WORK

5.1 Performance Bug Detection

Many tools have been built to detect performance problems common in single-machine sys-
tems, such as performance-sensitive API misuses [28], inefficient and redundant loop computation
[42–44], object bloat [18, 55], low-utility data structures [56], cache-line false sharing [37, 40], and
problematic inputs [17]. In general, these tools have a different focus and hence a completely differ-
ent design from PCatch. Particularly, previous loop-inefficiency detectors [42–44] analyze loops to
detect inefficient computation inside a loop, such as redundant computation among loop iterations
or loop instances, and dead writes performed by the majority of the loop iterations. The main dif-
ference between PCatch and these studies is that PCatch’s loop analysis is focused not on efficiency
but rather on scalability (i.e., how the execution time of a loop scales with the workload size).

MacePC [30] detects non-deterministic performance bugs in distributed systems developed on
MACE [29], a language with a suite of tools for building and model checking distributed systems.
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It essentially conducts model checking for MACE systems – while traversing the system state
space, it reports cases in which a special timing can cause significant slowdown of the system.
The model checking technique and the program analysis techniques used by PCatch complement
each other: model checking provides completeness guarantees if finished but suffers from
state explosion problems and may work only for systems built on a special framework such as
MACE.

5.2 Causality Analysis in Distributed Systems

Many studies have been done to model, trace, and analyze causal relationships in distributed sys-
tems [11, 32, 36, 38] and leverage the knowledge of causal relationships to detect functional bugs
[36].

PCatch used the previous DCatch model and techniques [36] in its causal relationship analysis.
However, as discussed in Section 3.3.1, analyzing such causal relationships is only one compo-
nent of the cascading analysis in PCatch. To detect cascading performance bugs in distributed
systems, PCatch has to go way beyond causal relationship analysis: PCatch has to also model
resource-contention (may-HB) relationships and compose them together with traditional causal
relationships (must-HB). Furthermore, PCatch needs to conduct job-origin analysis, which is not
needed in DCatch concurrency-bug detection, and loop-scalability analysis, which is completely
unrelated to traditional causal relationship analysis.

5.3 Lock Contention and Impact Analysis

Many tools have been proposed to profile lock contention [15, 45, 60]. Recently proposed
SyncPerf [6] profiles runtime lock-usage information, such as how frequently a lock is acquired
and contended, to diagnose performance problems related to frequently acquired or highly con-
tended locks, including load imbalance, asymmetric lock contention, over-synchronization, im-
proper primitives, and improper granularity.

Past research also looked at how to identify high-impact performance bottlenecks in multi-
threaded software. Coz [14] tries to insert delays at various places in software to measure the
performance impact at different program locations. Coz considers only waits that are incurred by
lock contention and that have already been recorded in the trace. Coz builds graphs to represent
such wait relationships. By analyzing the graph and other information, Coz can figure out which
code regions or critical sections have the biggest impact on a past run. Similarly, SyncProf [58]
and work by Yu et al. [59] tries to identify performance bottlenecks by analyzing traces of many
runs.

PCatch is related to previous works that analyze inefficient lock usages and lock contention.
However, PCatch has fundamentally different goals and hence designs from the works discussed
earlier. First, PCatch aims to predict performance problems that may happen in the future, not to
diagnose problems that have been observed. Consequently, the cascading analysis in PCatch mod-
els potential dependence and performance cascading instead of lock contention that has already
happened. Second, PCatch looks at resource contention inside distributed systems, which goes
beyond locks. Third, PCatch focuses on PCbugs that violate scalability and performance-isolation
properties, which is different from pure resource contention problems. For example, many locks in
PCbugs may be neither highly contended nor frequently acquiredin contrast to those in the bugs
found by SyncPerf [6].

TaxDC [33] is a comprehensive taxonomy of non-deterministic concurrency bugs that studies
distributed concurrency (DC) bugs from Cassandra, Hadoop MapReduce, HBase, and ZooKeeper.
Our analysis (Section 3) follows the methodology of TaxDC to present the taxonomy of perfor-
mance bugs in distributed systems.
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5.4 Scalability Problems in Software Systems

Profiling techniques have been proposed to help developers discover code regions that do not
scale well with inputs [13, 19, 54, 61]. Previous work has proposed techniques to better evaluate
scalability of distributed systems by co-locating many distributed nodes in a single machine [23,
51]. These profiling and testing techniques are orthogonal to the performance-problem prediction
conducted by PCatch.

5.5 Performance Anomaly Diagnosis

Many tools have been built to diagnose system performance anomalies [7, 9, 16, 46–48, 53], in-
cluding many built for diagnosing and reasoning about performance problems in distributed sys-
tems [5, 11, 38, 49, 57, 64]. Some of them [11, 64] can approximate some performance dependency
relationships by analyzing a huge number of traces together. PerfScope [25] conducts lightweight
performance risk analysis (PRA) to improve performance regression diagnosis via testing target
prioritization. All of these tools focus on performance diagnosis based on large numbers of runtime
traces, which is orthogonal to the bug-prediction goal of PCatch.

6 CONCLUSIONS

This article systematically studies 99 distributed performance bugs from five widely deployed dis-
tributed storage and computing systems (including Cassandra, HBase, HDFS, Hadoop MapReduce,
and ZooKeeper). We collectively organize the analysis results as over 400 classification labels and
over 2,500 lines of bug re-description in the TaxPerf database. We further analyze the cascad-
ing nature of an important category of blocking bugs and design an automatic detection tool
called PCatch, which enables users to detect PCbugs under small workloads and regular non-bug-
triggering timing. We believe that PCatch is just a starting point in tackling performance problems
in distributed systems. Future work includes (i) extending PCatch to detect other categories of per-
formance bugs and (ii) automatically generating patches [35] for performance bugs.
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