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ABSTRACT

Software hang bugs are notoriously difficult to debug,which
often cause serious service outages in cloud systems. In this
paper, we present HangFix, a software hang bug fixing frame-
work which can automatically fix a hang bug that is trig-
gered and detected in production cloud environments. Hang-
Fix first leverages stack trace analysis to localize the hang
function and then performs root cause pattern matching
to classify hang bugs into different types based on likely
root causes. Next, HangFix generates effective code patches
based on the identified root cause patterns. We have imple-
mented a prototype of HangFix and evaluated the system
on 42 real-world software hang bugs in 10 commonly used
cloud server applications. Our results show that HangFix
can successfully fix 40 out of 42 hang bugs in seconds.
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ability; Cloud computing; • Software and its engineer-
ing→ Software performance; Software testing and de-
bugging.
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1 INTRODUCTION

Many production server systems (e.g., Cassandra [6], HBase
[2], Hadoop [7]) are migrated into cloud environments for
lower upfront costs. However, when a production software
bug is triggered in cloud environments, it is often difficult
to diagnose and fix due to the lack of debugging informa-
tion. Particularly, software hang bugs causing unresponsive
or frozen systems instead of system crashing are extremely
challenging to fix, which often cause prolonged service out-
ages. For example, in 2015,AmazonDynamoDB experienced
a five-hour service outage [3, 4] affecting many AWS cus-
tomers including Netflix, Airbnb, and IMDb. The root cause
of the service outage was a software hang bug where an
improper error handling kept sending new requests to the
overloaded metadata server, causing further cascading fail-
ures and retries. In 2017, British Airways experienced a se-
rious service outage with a penalty of more than £100 mil-
lion [5] due to a software hang bug triggered by corrupted
data during data center failover.
Unfortunately, software hang bugs are notoriously diffi-

cult to debug because they typically produce little diagnostic
information. Recent studies [13–15, 20, 21] have also shown
that many hang bugs are caused by unexpected runtime data
corruptions or inter-process communication failures, which
makes those hang bugs particularly difficult to be caught
during the testing phase. Although previous bug detection
tools [12, 14, 21, 29, 38] can detect those hang bugs, pro-
duction service outage cannot be truly resolved until the
hang bugs are correctly fixed. Otherwise, the service outage
will happen again when the bug-triggering condition is met
again in the production system.
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// FSHDFSUtils .java HBase -8389( v0.94.3)

long recoveryTimeout = conf.getInt("hbase.lease.

recovery .timeout ", 900000) + startWaiting ;

48 public void recoverFileLease (..., final Path p,

49 ...) throws IOException {

...

62 boolean recovered = false;

63 int nbAttempt = 0;

64- while (! recovered ) {

+ for (int nbAttempt = 0; !recovered ; nbAttempt ++){

65- nbAttempt ++;

...

71 recovered = dfs. recoverLease (p);// send to HDFS

+ if (recovered ) break;

+ if (checkIfTimedout (conf , recoveryTimeout ,

+ nbAttempt , p, startWaiting ))

+ break;

...

104 }}

+boolean checkIfTimedout (final Configuration conf ,

+ final long recoveryTimeout , final int nbAttempt ,

+ final Path p, final long startWaiting ) {

+ if (recoveryTimeout <

+ EnvironmentEdgeManager.currentTimeMillis ()) {

+ LOG.warn(...);

+ return true;

+ }

+ return false;

+}

Figure 1:When the blocks are corrupted, the recoverLease()

function keeps polling the recovery results, getting “false”

and sending a new recovery request, hanging in an infinite

loop. “+” means added code, representing the manual patch

for this bug.

Previous work [27, 30, 38] often assumes full stack do-
main knowledge or complete source code (e.g., distributed
platform and application), which however is often impracti-
cal for the production cloud system. Cloud environments of-
ten involvemultiple parties where infrastructure, distributed
platforms (e.g., MapReduce, Cassandra and HDFS), and ap-
plications are developed by different parties. Therefore, it
is essential to design domain-agnostic, byte-code-based soft-
ware hang bug fixing techniques that can be applied to dif-
ferent cloud systems without requiring domain knowledge
or source code.

1.1 A Motivating Example

We use the HBase-8389 bug as an example to describe how
the hang bug is triggered and how it causes cloud service
outage. Figure 1 shows the buggy code snippet and the patch.
HBase inquires the previous recovery results of the path
p from HDFS at line #71. Due to an unexpected data cor-
ruption, the return results from all the inquiries are always
false, which causes HBase to get stuck in this infinite loop
between lines #64-104. This bug is difficult to fix because
HBase does not produce any log information and HDFS pro-
vides manymisleading error messages. It took the developer

24 days to fix the bug after submitting 10 versions of unsuc-
cessful patches. The final patch created by the developer is
actually quite simple, that is, adding a timeout check mech-
anism to break out of the loop when the recovery operation
persistently fails after a certain number of retries.

1.2 Our Contribution

This paper presents HangFix, a domain-agnostic, byte-code-
based software hang bug fixing tool that aims at providing
automatic bug fix patches for software hang bugs that are
triggered in production cloud computing environments. We
currently focus on fixing Java hang bugs in commonly used
cloud server systems. Upon a hang bug detected by a bug
detection tool [12, 14, 21, 29, 38] in the production environ-
ment, HangFix takes the application byte code and hang bug
triggering test cases as inputs, and produces a hang bug fix
patch as the output. To make HangFix practical for produc-
tion cloud environments, we do not require any application
source code or application-specific knowledge.
In order to create effective and non-intrusive fixes [31],

HangFix consists of four closely integrated steps shown by
Figure 2: 1) hang function localization which leverages stack
trace analysis to pinpoint exact function which causes the
application to get stuck in the hang state; 2) likely root cause
pattern matching which leverages static code analysis over
the identified hang function to automatically match a set of
common hang bug root cause patterns; 3) patch generation

which automatically produces a hang bug fix patch based on
the matched likely root cause pattern by inserting existing
exceptions or timeout mechanisms to break the application
out of the stuck state; and 4) patch validation which applies
the initial bug detection tool and the hang function detec-
tion to the patched code to validate whether the hang bug
still exists. We also test the patched code with the whole
regression test suites to check whether our fix violates any
required regression tests. The patch is deemed to be success-
ful only if the patched code passes both bug detection and
regression tests.
Specifically, this papermakes the following contributions:

• We present a new hang bug fixing framework to auto-
matically fix a hang bug that is triggered in production
cloud environments.
• We describe a hang bug root cause pattern matching
scheme that can quickly classify hang bugs into differ-
ent likely root cause types.
• We develop an automatic hang fix patch generation
system that can produce proper patched code accord-
ing to identified likely root cause patterns.
• We conduct an empirical study over 237 real produc-
tion hang bugs to quantify the generality of our root
cause patterns.
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Figure 2: The system architecture of HangFix.

We have implemented a prototype of HangFix and evalu-
ated our system using 42 reproduced real-world software
hang bugs in 10 commonly used cloud server systems (e.g.,
Cassandra, HDFS,Mapreduce, HBase).HangFix successfully
fixes 40 of them in seconds, many of which take days for the
developers to manually fix them. Our empirical bug study
shows that our likely root cause patterns cover 76% of 237
hang bugs. HangFix can correct the hang symptom for all
of those matched bugs and completely fix the root cause for
75% of them.

The rest of the paper is organized as follows. Section 2
describes the hang function localization scheme. Section 3
describes the root cause pattern matching and patch gen-
eration schemes. Section 4 presents the empirical bug study
and experimental evaluation results. Section 5 compares our
work with related work. Finally, the paper concludes in Sec-
tion 6.

2 HANG FUNCTION LOCALIZATION

After a hang bug is detected in production cloud environ-
ments, HangFix leverages stack traces to localize the hang
function. Since the hang function often repeatedly appears
in the stack trace, we can capture the abnormal behavior of
the hang function after the hang bug is triggered. Specifi-
cally, HangFix uses the jstack [1] tracing tool to perform
continuous trace dumps after a hang bug is reported by exis-
ing hang bug detection tools (e.g., [14, 21]). We then analyze
the stack trace to localize the hang function. Intuitively, the
hang function will repeatedly appear in the stack trace as
the application’s execution gets stuck in the hang function.
Figure 3 shows the dumped stack traces of main thread

when Compress-451 bug is triggered. The trace contains the
running status of each thread’s status and the invoked Java
functions with the invoking line number. The trace also in-
dicates the call stack of the invoked functions in each thread.

//Dump 1

"main" #1 prio=5 os_prio =0 tid =0 x00007f899c00b000 nid =0

x76b9 runnable [0 x00007f89a27fa000 ]

java.lang.Thread.State: RUNNABLE

at java.io. FileInputStream .readBytes (Native Method)

at java.io. FileInputStream .read( FileInputStream .java

:233)

at org.apache.commons .compress .utils //hang function

.. .IOUtils .copy(IOUtils .java :47)

at testcode .testCopy (testcode .java :32)

at testcode .main(testcode .java:12)

//Dump 2

"main" #1 prio=5 os_prio =0 tid =0 x00007f899c00b000 nid =0

x76b9 runnable [0 x00007f89a27fa000 ]

java.lang.Thread.State: RUNNABLE

at java.io. FileOutputStream .writeBytes (Native Method )

at java.io. FileOutputStream .write( FileOutputStream .java

:326)

at org.apache.commons .compress .utils //hang function

.. .IOUtils .copy(IOUtils .java :49)

at testcode .testCopy (testcode .java :32)

at testcode .main(testcode .java:12)

...

Figure 3: Continuously dumped stack traces of main thread

for the Compress-451 hang bug.

The testcode.java is the bug triggering test case. The stack
trace shows that two functions of testcode.java are in-
voked, i.e., main() and testCopy(). The testcode.testC
opy() function invokes the compress.utils.IOUtils.co
py() function in the Compress system.
To localize the hang function, we extract the repeated

function(s) by comparing the function names among differ-
ent stack trace dump files. In each thread, we extract the
repeated function at the top of the call stack as the hang
function. For example, in the Compress-451 bug stack trace
shown in Figure 3, HangFix extracts three repeatedly in-
voked functions: the testcode.main(), testcode.testCo
py() and compress.utils.IOUtils.copy()functions. The
top of the call stack, that is, the last function on the call
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// StreamReader .java Cassandra -7330( v2 .0.8)

73 public SSTableWriter read( ReadableByteChannel channel

) throws IOException {

...

81 DataInputStream dis = new DataInputStream (new

LZFInputStream (Channels .newInputStream (channel )));

...

96 drain(dis , in.getBytesRead ());

...

102 }

114 protected void drain(InputStream dis , long bytesRead )

throws IOException {

115 long toSkip = totalSize () - bytesRead ;

116 toSkip = toSkip - dis.skip(toSkip);

117 while (toSkip > 0) {

118 - toSkip = toSkip - dis.skip(toSkip);

+ long skipped = dis.skip(toSkip );

+ toSkip = toSkip - skipped ;

+ if (skipped <= 0){ // immediate termination

+ throw new IOException ("Unexpected return"

+ +"value causes the loop stride to be"

+ +"incorrectly updated .");}

119 }

120 }

Figure 4: Example of hang bug pattern #1 and its fixing strat-

egy. When InputStream dis is inaccessible or corrupted by

bad encoding dis.skip can return -1 or 0, and -1/0 is used as

the stride. “ ” represents the function call invocation. “-”

means deleted code and “+” means added code, representing

the patch generated by HangFix.

path, is identified as the hang function. For example, in the
Compress-451 bug, the compress.utils.IOUtils.copy()
function is extracted as the hang function since it repeatedly
appears and is the last hop on the call path. The compress.u
tils.IOUtils.copy()function invokes different statements
(i.e., FileInputStream.read()and FileOutputStream.wr
ite()) inside the loop at two different dumps.

3 ROOT CAUSE PATTERN MATCHING
AND PATCH GENERATION

In this section, we describe our pattern-driven approach to
quickly identifying likely root causes of hang bugs and au-
tomatically generating hang fix patches. HangFix performs
root cause pattern matching by analyzing intermediate rep-
resentation (IR) code produced by Java Soot compiler [9].
The patched code is created by inserting proper IR code into
the hang function.

3.1 Likely Root Cause Pattern #1:
Unexpected Function Return Values in
Loops

Root cause pattern description: If the hang function in-
volves loops and the loop stride depends on the return val-
ues of some functions which could be either Java library
functions (e.g., InputStream.skip) or application-specific
functions (e.g., dfs.recoverLease(p)), we infer that the

//FSHDFSUtils .java HBase -8389( v0 .94.3)

+private String RECOVERY_TIMEOUT_KEY = "recover .

timeout ";

+private int DEFAULT_RECOVER_TIMEOUT = 900000;

+private long timeout = conf.getInt (

+ RECOVER_TIMEOUT_KEY , DEFAULT_RECOVER_TIMEOUT);

48 public void recoverFileLease (..., final Path p,

49 ...) throws IOException {

...

62 boolean recovered = false;

63 int nbAttempt = 0;

+ long st = System. currentTimeMillis ();

64 while (! recovered ) {

65 nbAttempt ++;

...

71 recovered = dfs.recoverLease (p);//send to HDFS

...

85 if (! recovered ) {

...

96 Thread.sleep(nbAttempt < 3 ? 500 : 1000);

...

103 }

+ long elapsed = System.currentTimeMillis () - st;

+ if (timeout > 0 && elapsed >= timeout )

+ throw new TimeoutException ("Timeout ."

+ +"Breaking infinite polling !");

// delayed termination

104 }}

Figure 5:When the blocks are corrupted, the recoverLease()

function keeps polling the recovery results, getting “false”

and sending a new recovery request, hanging in an infinite

loop. “+” means added code, representing HangFix’s patch

for this bug.

hang is caused by unexpected function return values. For
example, the HBase-8389 bug shown by Figure 5 falls in this
root cause pattern. For this pattern, HangFix extracts the
loop index, stride, and bound abstraction as “while(index
== 0){stride = Method(); index += stride;}”. The
loop stride depends on an application-specific RPC invoca-
tion dfs.recoverLease(p),matching this likely root cause
pattern.
Patch generation: If the loop stride impacting function fi

is a known Java library function, our patch is to add proper
checks over possible incorrect return values and break out
of the hang state by throwing an exception that has been de-
clared in the hang function in order to minimize unwanted
side-effect from our patch. If function fi does not contain
“throws exception” clause in its signature, HangFix checks
the call stack of fi backwards until it identifies the n-hop
caller function of f whodeclares a checkable exception in its
function signature. HangFix then inserts the same checkable
exception in the signatures of the function fi and its i-hop
callers, i = 1, 2, ...,n−1. If there aremore than one checkable
exceptions, HangFix chooses the first and most specific one.
We choose to fix this type of hang bug through imme-

diate loop termination by throwing exceptions because we
observe that Java library functions typically produce persis-
tent errors. For example, the InputSteam.skip(long len)

function can return any value in the following three subsets:
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{

− 1
}

∪
{

0
}

∪ [1, |n |]. However, once it returns -1 (i.e., end

of file) or 0 (i.e., corruption), it cannot return any positive
values in the subsequent invocations.

If the loop stride impacting function fi is an application-
specific function (e.g., RPC calls to a remote server), our
fix is to insert a timeout checking code at the tail of the
loop to break out of the loop if the loop execution time
exceeds a certain timeout threshold. In contrast to Java li-
brary functions which typically have persistent return er-
rors, the errors from application-specific functions can be
transient (e.g., file reading errors due to transient network
failures). Therefore, instead of terminating the loop right
away, HangFix allows the application to retry the function
invocation within a certain time limit but prevents the appli-
cation from entering a hang state by enforcing the timeout
check. Specifically, the timeout checking code consists of
an if branch with the condition of vare >= varnew . The
vare denotes the elapsed time of the loop’s execution while
varnew is a pre-set timeout variable. Inside the if branch, a
known exception is thrown with a timeout error message.
We will discuss how HangFix picks the right timeout value
in Section 3.4.
Examples: Figure 4 shows the patch produced by Hang-

Fix for the Cassandra-7330 bug. The loop stride impacting
function is the Java library function InputStream.skip().
HangFix inserts a check after the invocation of skip(),which
includes introducing a local variable skipped to store the
return value, generating an extracted error value set1 (i.e.,
<= 0), comparing skipped with “<= 0”, and throwing an
IOExceptionwhich is already defined in the hang function
with an error message.

Figure 5 shows the patch produced by HangFix for the
HBase-8389 bug. The loop stride impacting function is the
application-specific function dfs.recoverLease().The patch
adds a timeout checking code block at the end of the while
loop body, which is similar to the manual patch that is pro-
duced by the developer shown by Figure 1.

3.2 Likely Root Cause Pattern #2:
Misconfigured Parameters in Loops

Root cause pattern description: If the hang function in-
volves loops and the loop stride depends on a configurable,
constant variable, we infer the hang is caused by some mis-
configured or incorrectly hard-coded values. For example,
the Hadoop-15415 bug shown by Figure 6 falls in this root
cause pattern where the bufferSize parameter is miscon-
figured to be 0 at line #97 and passed in as an argument at
line #74. InputStream in performs the read() operation

1HangFix extracts the error value set by analyzing the loop body to infer

the error-inducing loop stride values (e.g., <=0) and possible return values

of the Java library functions (e.g.,
{

− 1
}

∪
{

0
}

∪ [1, |n |]).

//IOUtils .java Hadoop -15415( v2.5.0)

96 public static void copyBytes ( InputStream in, ...,

Configuration conf) throws IOException {

97 int buffSize =

98 conf.getInt("io.file.buffer.size" ,4096) ;

+ if(buffSize == 0) // early termination

+ throw IOException ("Misconfigued buffSize "

+ + "with 0");

98 copyBytes (in, ..., buffSize , true);

99 }

49 public static void copyBytes ( InputStream in, ..., int

buffSize , boolean close) throws IOException {

...

52 copyBytes (in , ..., buffSize );

...

65 }

74 public static void copyBytes ( InputStream in, ..., int

buffSize ) throws IOException {

+ if(buffSize == 0) // early termination

+ throw IOException ("buffSize cannot be 0");

...

77 byte buf [] = new byte[buffSize ];

78 int bytesRead = in.read(buf);

79 while (bytesRead >= 0) {

...

84 bytesRead = in.read(buf);

85 }}

Figure 6: Example of hang bug pattern #2 and its fixing

strategy. Misconfiguration causes bufferSize to be 0, which

in turn makes the InputStream in perform read operation

on a zero-size byte array and return 0. “ ” represents the

function call invocation, while “ ” represents the data

dependency flow. “+” means added code, representing the

patch generated by HangFix.

on a zero-size byte array and returns zero at line #84, indi-
cating nothing being read from the continuous flow and the
end of the flow can never been reached (i.e., bytesRead <

0). As a result, the copyBytes() function endlessly spins in
the loop. HangFix identifies this bug as a root cause pattern
#2 bug because the hang function copyBytes() at line #74
contains a loop and the loop stride is constantly updated by
a configurable parameter buffSize in each loop iteration.
Specifically, HangFix first retrieves the loop index, stride
and bound abstraction for the InputStream.read(byte[]
buf) function as “while(index < bound){index += buf

.size;}”,where bound is the end of the InputStream.After
analyzing the data dependency flow, HangFix identifies that
the stride is misconfigured at line #97-98, causing bytesRead
to be constantly assigned with zero. Different from Pattern
#1, here 0 is a legitimate return value for the in.read()

function. So the root cause is the misconfigured parameter.
Patch generation: To fix Pattern #2 hang bugs, we add

proper checkers over themisconfigured values or arbitrarily
hard-coded values before they are used in the loop. HangFix
cuts those error values’ data flow by throwing a known ex-
ception before the fault gets propagated and manifested as
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system hang, which we call early termination. Early termi-
nation saves unnecessary resource consumption compared
with immediate or delayed termination.

During pattern identification, HangFix parses the hang
function’s call graph and the error-prone variable’s data de-
pendency flow to locate the misconfiguration (or faulty as-
signment) statement s1. If the error-prone value is not checked
properly, HangFix inserts a checker (i.e., c1) after s1. The
checker is an if branch with the condition of v == ver r .
If v has more than one error values, HangFix generates a
combined condition in the form of v >= ver rmin

or v <=
ver rmax

. Inside the if branch, a known exception is thrown
with an error message such as “variable v is misconfigured/-
falsely assigned with ver r , affecting loop stride, leading to
an infinite loop.”
In addition, HangFix inserts another checker (i.e., c2) at

the beginning of the hang function before the loop is exe-
cuted, if 1) the statement s1 cannot be identified or 2) the
error-prone variable is a hang function’s parameter and the
hang function is “public”, meaning it can be directly accessed
by user-defined classes or classes in other integrated sys-
tems. This c2 checker is similar as the c1 checker but with
a different error message, e.g., “variable v cannot be ver r ,
which can lead to an infinite loop.”

Examples: The Hadoop-15415 bug in Figure 6 can be
fixed using this patching strategy. HangFix’s pattern iden-
tification indicates that the infinite loop happens when the
buffSize is non-positive. HangFix also detects that buffSiz
e is non-negative because it is used as an array’s size at line
#77. Intersecting “non-positive” with “non-negative,” Hang-

Fix generates the error-prone value as
{

0
}

. After detecting

that buffSize is passed in as a parameter and configured at
line #97-98, HangFix inserts a checker after line #98, includ-
ing an if branch with condition “buffSize == 0” and an
IOExceptionwith error message “misconfigured buffSize
with 0.” Since the copyByte() function at line #74 is public,
it can be accessed by user-defined classes or classes in any
other integrated systems (e.g., HBase, Hive, etc). The argu-
ment value of buffSize passed in from those classes are
inaccessible in our analysis currently. Thus, another checker
inside the copyByte() function before the loop is necessary.
After line #74, HangFix inserts an if branch with condition
“buffSize == 0” and an IOExceptionwith error message
as “buffSize cannot be 0.”

3.3 Likely Root Cause Pattern #3:
Improper Exception Handling in Loops

Root cause pattern description: If the hang function in-
volves loops and the loop stride update is skipped due to
some exceptions, we infer the hang is caused by improper

//CompactionManager .java Cassandra -9881( v2.0.8)

436 private void scrubOne (...) throws IOException {

...

444 scrubber .scrub();

...

459 }

//Scrubber .java

103 - public void scrub (){

+ public void scrub () throws IOException {

...

120 while (! dataFile .isEOF ()){

...

+ int index = 0;

129 try{ /* dataFile is corrupted */

130 key = sstable .partitioner . decorateKey (

ByteBufferUtil .readWithShortLength(dataFile ));

+ index += 3;// trace index change

...

134 dataSize = dataFile .readLong ();

+ index += 8;// trace index change

...

139 } catch (Throwable th){

140 ...; // ignore Exception

Throw

IOException

+ if(index == 0) //no index update ,

+ throw th; //immediate termination

141 }

...

}}

Figure 7: Example of hang bug pattern #3 and its fixing

strategy. Data corruption causes readWithShortLength() to

throw exception at line #130-131, which makes the loop

skip the index updating statement (i.e., zero-stride) at line

#134. “ ” represents the function call invocation, while

“ ” represents the control flow. “-”meansdeleted code and

“+” means added code, representing the patch generated by

HangFix.

exception handling in loops. For example, the Cassandra-
9881 bug shown by Figure 7 falls in this root cause pattern.
When dataFile is corrupted, an IOException is raised by
the readWithShortLength() function at line #130. The IO
Exceptiongives up the correct execution of readWithShort
Length() and skips the readLong() function at line #134.
The above read functions are both loop index-forwarding
operations. This IOException is then simply ignored at line
#140. Without moving the loop index forwards at line #130
and #134, the scrub() function keeps reading from the loca-
tion, spinning forever. HangFix identifies this bug as a Pat-
tern #3 bug, because in the exception handling control flow
path 120→129→130→139→140→141, there is no loop stride
update along the path. Specifically, HangFix first extracts
all the invocations of the DataInput instance dataFile, in-
cluding isEOF() at line #120, readUnsignedShort() and
readByte()2 at line #130, and readLong()at line #134.Hang-
Fix then generates the loop index, stride, and bound abstrac-
tion for the above DataInput functions as “while(index <

bound){index += 2; index += 1; index += 8;}”.

2readUnsignedShort() and readByte() are the callees of

readWithShortLength(). To save space, we omit them in Figure 7.
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Moreover, all the abstractions for the loop stride (i.e., index
+= 2 and index += 1 at line #130, index += 8 at line
#134) do not appear in the exception handling control flow,
matching this root cause pattern.
Patch generation:To fix this type of hang bugs, HangFix

conducts index tracing to check whether the loop has no
stride or ineffective loop stride. If the index updating oper-
ation is not correctly executed (i.e., the loop index does not
change) at one iteration, this loop does not contain effective
stride along this iteration’s control flow. HangFix inserts
a counter variable index with the value of v at the begin-
ning of a loop. It then extracts the loop index and bound
abstraction (i.e., index += stride) for each index updating
operation, and inserts such abstraction after the operation.
If the loop index is not updated in the exception or error

handling control flow, HangFix first tries to fix the hang
bug by re-executing the loop index updating operations to
restore loop stride properly. Specifically, HangFix inserts a
checker inside the exception handling block (e.g., catchblock)
or after the error return statement. The checker is an if

branchwith condition of “index == v”, inside which, Hang-
Fix inserts the unexecuted index-updating operations. If the
loop hasmultiple index-updating operations, HangFix chooses
the first one in each control flow from the loop header to
the exception/error handling block. The chosen operation is
inserted with the conditions along its control flow. For exam-
ple, for the following control flow if(cond){op1();op2();}

else{op3();},HangFix inserts “if(index == v){if(cond)

{op1();} else{op3();}” in the checker. If the loop stride
restoration fails to fix the hang bug, HangFix terminates the
loop with a known exception to break out of the hang state.
Examples: Figure 7 shows the patch produced by Hang-

Fix for the Cassandra-9881 bug. HangFix starts index tracing
by inserting a counter variable indexwith the original value
0 before the try block at line #129. HangFix first identifies
that the readWithShortLength() function at line #130 and
the dataFile.readLong() function at line #134 are index
updating operations and can be abstracted as “index += 3”
and “index += 8”, respectively. HangFix then inserts these
abstractions after line #130 and #134. In the exception han-
dling block at line #139-141, HangFix inserts an if branch
with the condition of index == 0 and a throw exception
statement to immediately terminate the loop. This is doable
because HangFix adds the throws IOException clause in
the scrub() function’s signature at line #103 and relies on
Cassandra’s existing exception handling mechanisms to re-
pair failures by propagating the exception backwards to the
caller function, scrubOne(), and we refer to it as exception
heritage. HangFix does not re-execute the index updating
operation inside the catch block because re-executing the

//ZlibCodec .java Hive -5235( v1.0.0)

81 public void decompress (ByteBuffer in, ByteBuffer out)

throws IOException {

93 try {

94- int cnt = inflater .inflate (out.array(),

+ int cnt = inflateWithTO (inflater , out.array(),

95 out.arrayOffset () + out.position (),

96 out .remaining ());

...

97 } catch (DataFormatException e) {

98 throw new IOException ("Bad compressed data",e);

99 }

...

105 }

+private Configuration conf = new Configuration ();

+private String INFLATE_TIMEOUT_KEY = "orc.zlibcodec .

inflate .timeout ";

+private long DEFAULT_INFLATE_TIMEOUT = 5000;

+private long timeout = conf.getLong (INFLATE_TIMEOUT_KEY ,

DEFAULT_INFLATE_TIMEOUT);

//a callable thread with timeout setting

+public int inflateWithTO (final Inflater inflater , final

byte[] b, final int off , final int len ) throws

DataFormatException {

+ ExecutorService executor =

+ Executors . newSingleThreadExecutor();

+ Callable <Integer > callable =new Callable <Integer >(){

+ @Override

+ public Integer call() throws DataFormatException {

+ return inflater .inflate (b, off , len);

+ }};

+ Future <Integer > future = executor .submit(callable );

+ int cnt = 0;

+ try { // timeout setting

+ cnt = future.get(timeout , TimeUnit . MILLISECONDS );

+ } catch (Exception e) {

+ future.cancel(true); // acceptable exception

+ throw new DataFormatException("Endless blocking ");

+ } finally { executor .shutdown (); }

+ return cnt;

+}

Figure 8: Example of hang bug pattern #4 and its fixing

strategy. Inflater.inflate() is a blocking-pone function.

When an ORC file is corrupted, conducting the inflate()

operation on a corrupted file causes an infinite loop in

the underlying JNI code. “ ” represents the function call

invocation. “-” means deleted code and “+” means added

code, representing the patch generated by HangFix.

operation (i.e., readWithShortLength) will still throw ex-
ceptions due to the corrupted dataFile and Cassandra will
still hang.

3.4 Likely Root Cause Pattern #4: Blocking
Operations Without Loops

Root cause pattern description: If the hang function does
not contain any loop and the hang function consists of some
blocking operation (e.g., Java library functions, JNI meth-
ods), HangFix infers that the hang is caused by blocking
operations. For example, the Hive-5235 bug shown in Fig-
ure 8 falls into this root cause pattern. The hang bug is trig-
gered when the hang function decompress invokes a block-
ing Java library function inflate(). The underlying JNI
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code of the library function hangs in an infinite loopwhen it
is invoked over a corrupted ORC file. HangFix classifies this
bug as a Pattern #4 bug since the hang function decompress()
does not contain any loop but one blocking Java library func-
tion call.
Patch generation: To fix hang bugs caused by block-

ing operations, HangFix first isolates the blocking opera-
tion from the main application execution using a callable or
runnable thread. Next, HangFix adds a timeout check to end
the blocking operation after a certain waiting period defined
byvarnew (e.g., future.get(varnew), thread.join(varnew).
The newly introduced timeout variable varnew is first con-
figured with the default value of a known timeout variable
v . HangFix extracts the default value by searching the sys-
tem’s configuration files using keywords, such as “timeout,”
“interval,” “block,” and “poll.” HangFix chooses the variable
which matches the most keywords, and assigns its default
value v to varnew . The rationale is that variables share sim-
ilar names most likely have similar purposes, thus similar
default values. During the patch validation phase, we can
adjust the timeout variable values if the patch does not pass
any test. We can also leverage timeout value prediction tech-
niques (e.g., [22]) to infer the timeout valuesmore efficiently.
Examples: Figure 8 shows the patch produced by Hang-

Fix for fixing the Hive-5235 bug. HangFix first introduces
the timeout variable with the default value of 5000millisec-
onds. This default value is read from the HiveConf.HIVE_SE
RVER2_LONG_POLLING_TIMEOUT variable. HangFix replaces
the blocking operation Inflater.inflate()at line #94with
a new function called inflateWithTO() isolated by a callable
thread. The timeout setting is in the future.get() func-
tion with the timeout variable timeout. To break out of the
blocking state, the function uses a known exception type
DataFormatException which has been used by this hang
function with a useful log message “endless blocking.” So
the patch provided by HangFix can not only prevent the ser-
vice outage caused by the hang bug but also provide useful
information for the developer to know the root cause of the
auto-patched hang bug.

3.5 Discussion

This paper focuses on hang bug fixing, rather than hang bug
detection. We rely on previous work [14, 21] to detect hang
bugs. It is possible that hang bug detection tools raise false
alarms, which is not the focus of this paper.
We pick those four likely root cause patterns to imple-

ment in HangFix based on previous hang bug study results
[13–15, 20, 21] as well as our past experiences. However,
the root causes of hang bugs are definitely not limited to
those patterns only. We have conducted an empirical hang
bug study to understand the representativeness of our root

cause patterns in real production hang bugs. Our empirical
study shows that HangFix root cause patterns can cover all
of the hang bugs which are not related to synchronizations.
We will describe our hang bug root cause study results in
detail in Section 4.
As mentioned in the introduction, we validate the patch

produced byHangFix using existing bug detection tools, our
hang function localization tool, and the application’s regres-
sion test suites. Due to the complexity of cloud computing
environments andmodern server systems, HangFix currently
does not provide any theoretical proof on the correctness
and completeness of the auto-patched code. AlthoughHang-
Fix proactively takes cautious steps (e.g., reuse existing ex-
ceptions) to avoid unwanted effects, HangFix cannot guar-
antee the automatically generated patches do not bring any
side effect to the application especially when the hang func-
tion involves application-specific stateful operations. One
key objective of our empirical bug study described in Sec-
tion 4 is to understand the coverage of our root cause pat-
terns for real world production hang bugs.

4 EVALUATION

In this section, we present our evaluation results on Hang-
Fix. Our evaluation consists of two parts: 1) an empirical
study over 237 real hang bugs; and 2) an experimental eval-
uation over 42 real hang bugs that can be reproduced by us
successfully. We first describe our evaluation methodology
followed by detailed results and analysis.

4.1 Evaluation Methodology

Cloud systems:We collect hang bugs from the bug-tracking
systems, e.g., Apache Jira [8], for 10 open source cloud sys-
tems: Cassandra key-value store, Compress I/O compression
library, Hadoop common library, Hadoop Mapreduce big-
data processing framework,HadoopHDFS file system, Hadoop
Yarn resource management service, HBase database man-
agement system, Hive datawarehouse, Kafka streaming plat-
form, and Lucene text searching engine. These 10 systems
are representatives of popular open source production sys-
tems used in cloud environments. They cover a wide range
of different systems, varying from distributed big data pro-
cessing to log search.
Benchmarks:Weuse the “hang”, “stuck” and “block” key-

words to search for hang bugs. However, those keywords
can appear in bug descriptions, test cases (the bug causes
test cases hanging), or patch evaluation (the proposed patch
causes system hanging). Therefore, we manually examine
each bug to determine whether it is a real hang bug trig-
gered in production environments. We include both fixed
and open bugs, but eliminate bugs labeled as “Not a prob-
lem” or “Will not fix.”We target bugs occurred in production
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(a) Root cause pattern distribution.

(b) Percentage of completely and partially fixed bugs.

Figure 9: The pattern matching and fixing results of the

237 hang bugs in our empirical study. 76% of them fall into

HangFix’s four root cause patterns. 75% of them can be

completely fixed.

systems and eliminate the bugs in the test suites. To the
best of our efforts, we collect 237 bugs in total from the 10
commonly used server systems.
Root cause pattern matching and patching evalua-

tion in the empirical study: After collecting these real-
world software hang bugs, we manually study each of them
to match it with HangFix’s likely root cause patterns. Based
on our understanding of the root cause of the bug, we an-
alyze whether HangFix’s patch can fix the bug completely
without introducing new bugs, i.e., we checkwhether Hang-
Fix can fix the bug and does not influence the code logic
after jumping out of the infinite loop or blocking. If amanual
patch exists for a bug, we compare the manual patch with
HangFix’s patch. If the bug is not fixed yet or the manual
patch is different from HangFix’s patch, we analyze the root
cause and the patch of the bug to check whether HangFix’s
patch introduces new bugs or side effects.

Setup:All the experiments were conducted in our labma-
chine with an Intel® i7-4790 Octa-core 3.6GHz CPU, 16GB
memory, running 64-bit Ubuntu v16.04 with kernel v4.4.0.
Implementation:HangFix is implemented on top of Soot

compiler [9] in Java, using BodyTransformer and SceneTr

ansformer to conduct intra- and inter-procedural analysis,
and ForwardFlowAnalysisto conduct data flowdependency
analysis.

4.2 Empirical Study Results

Figure 9a shows the results of pattern matching results of
the 237 studied bugs. As shown in the figure, 76% bugs, i.e.,
a total of 180, fall into HangFix’s four patterns. The other
24% bugs are related to synchronization and concurrency.

4.2.1 Negative Case Study. Figure 9b shows the fixing re-
sults of the 180 bugs which fall into HangFix’s four fixable
patterns. 136 out of the 180 bugs can be fixed by HangFix
completely. For the 44 bugs partially fixed by HangFix, their
manual patches contain application-specific operations or it
is required to restore system’s state to fix the bugs.
We describe three bug examples, which cannot be fixed by

HangFix. We analyze the root cause of the bugs and explain
why HangFix’s patch is not complete.

Yarn-3999 (Pattern 1): The bug occurs when Yarn sys-
tem is draining events to an external system, e.g., Zookeeper.
When the external system becomes very slow or unrespon-
sive, the Resource Manager hangs on waiting to flush all
the events into the external system. When all the events are
flushed, the Resource Manager transitions to the STANDBY
state. Due to the hang on draining events, the ResourceMan-
ager’s transition to the STANDBY state cannot be completed,
expiring all current applications on the Yarn system. Hang-
Fix identifies the bug as Pattern 1 because the bug hangs on
an infinite loop and the loop stride depends on a function’s
invocation. HangFix’s patch can ensure the Yarn systemwill
jump out of the draining events loop by adding a timeout,
even if not all the events are flushed. However, the Resource
Manager still cannot enter STANDBY state. In this case, the
Resource Manager cannot work after applying HangFix’s
patch.
Kafka-1238 (Pattern 3): The bug occurs when a client

updates metadata of a Kafka cluster. The Kafka cluster up-
dates the cluster after the metadata is received from the
client each time. However, if none of the nodes are alive,
the Kafka cluster reports an error and the client retries the
updating request endlessly in an infinite loop. The reason is
that at least one node needs to be alive to update the whole
Kafka cluster. HangFix identifies the bug as the Pattern 3
because loop stride update is skipped. HangFix’s patch en-
ables the client to jump out of the requesting infinite loop.
However, the Kafka cluster has no live node and the whole
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Table 1: 42 reproducible hang bug benchmarks. Although some bugs have the same description, they happen in
different functions or classes.

Bug name Version Description

Cassandra-7330 v2.0.8 Skipping on a corrupted InputStream returns error code, affecting loop stride.
Cassandra-9881 v2.0.8 Improper exception handling skips loop index-forwarding API.
Compress-87 v1.0 Reading on a truncated zip file returns error code, affecting loop stride.
Compress-451 v1.0 Misconfigured variable bufferSize indirectly affects loop index.
Hadoop-8614 v0.23.0 Skipping after EOF returns error code, affecting loop stride.
Hadoop-15088 v2.5.0 Skipping on a corrupted InputStream returns error code, affecting loop stride.
Hadoop-15415 v2.5.0 Misconfigured variable buffSize indirectly affects loop index.
Hadoop-15417 v2.5.0 Misconfigured variable bufferSize indirectly affects loop index.
Hadoop-15424 v2.5.0 Misconfigured variable buff causes loop stride be 0.
Hadoop-15425 v2.5.0 Misconfigured variable sizeBuf indirectly affects loop index.
Hadoop-15429 v2.5.0 Unsynchronized index is set and reset periodically, causing DataInputByteBuffer hangs.
HDFS-4882 v0.23.0 Corruption handling causes loop index update operation skipped.
HDFS-5438 v0.23.0 Incorrect block report processing causes corrupted replicas to be accepted during commit.
HDFS-10223 v2.7.0 TcpPeerServer endlessly waits for a response from an unresponsive DataNode.
HDFS-13513 v2.5.0 Misconfigured variable BUFFER_SIZE indirectly affects loop index.
HDFS-13514 v2.5.0 Misconfigured variable BUFFER_SIZE indirectly affects loop index.
HDFS-14481 v2.5.0 Misconfigured variable BUFFER_SIZE causes loop stride be 0.
HDFS-14501 v2.5.0 Misconfigured variable BUFFER_SIZE causes loop stride be 0.
HDFS-14540 v0.23.0 Block deletion failure causes an infinite polling.
Mapreduce-2185 v0.23.0 Improper error handling causes the loop index updating operation skipped.
Mapreduce-5066 v2.0.3 JobEndNotifier endlessly waits for a response from an unresponsive Hadoop job.
Mapreduce-6990 v0.23.0 Skipping on a corrupted InputStream returns error code, affecting loop stride.
Mapreduce-6991 v2.5.0 File creation failure and improper exception handling skips loop index-forwarding API.
Mapreduce-7088 v2.5.0 Misconfigured variable bufferSize causes loop stride be 0.
Mapreduce-7089 v2.5.0 Misconfigured variable bufferSize causes loop stride be 0.
Yarn-163 v0.23.0 Skipping on a corrupted FileReader returns error code, affecting loop stride.
Yarn-1630 v2.2.0 YarnClient endlessly polls the state of an asynchronized application.
Yarn-2905 v2.5.0 Skipping on a corrupted aggregated log file returns error code, affecting loop stride.
HBase-8389 v0.94.3 HBase endlessly sends lease recovery requests to HDFS but HDFS fails on recovery.
Hive-5235 v1.0.0 Uncompressing a corrupted ORC file blocks the Hive task.
Hive-13397 v1.0.0 Reading on a corrupted ORC file returns error code, affecting loop stride.
Hive-18142 v1.0.0 Reading on a corrupted ORC file returns error code, affecting loop stride.
Hive-18216 v2.3.2 bytesToPoint function returns error code and skips loop index-forwarding API.
Hive-18217 v2.3.2 bytesToPoint function returns error code and skips loop index-forwarding API.
Hive-18219 v2.3.2 Skipping on a corrupted InputStream returns error code, affecting loop stride.
Hive-19391 v1.0.0 RowContainer endlessly retries to create a file but failed.
Hive-19392 v1.0.0 Unsynchronized index is set and reset periodically, causing DataInputByteBuffer hangs.
Hive-19395 v1.0.0 Misconfigured variable bufferSize causes loop stride be 0.
Hive-19406 v2.3.2 HiveKVResultCache endlessly retries to create a file but failed.
Kafka-6271 v0.10.0 Skipping on a corrupted file returns error code, affeting loop stride.
Lucene-772 v2.1.0 Index corruption causes Lucene stuck on uncompression task.
Lucene-8294 v2.1.0 Misconfigured variable bufferSize causes loop stride be 0.

Kafka cluster cannot work after applying HangFix’s patch.
In comparison, the manual patch ensures that there is al-
ways at least one live node in the whole Kafka cluster.

HBase-8729 (Pattern 4): This bug occurs when multi-
ple SSH handlers are replaying logs. When the assigned Re-
gion Server of one of the handlers fails, log replaying hangs
because the handler keeps waiting on the response of the
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Table 2: The comparison of HangFix and manual fix-
ing.

Bug name

Manual HangFix

Fixed? Fixed?

Root
cause
pattern
type

Fixing
time
(sec)

Cassandra-7330 ✓ ✓ #1 1.2±0.2
Compress-87 ✓ ✓ #1 1.1±0.1
Hadoop-8614 ✓ ✓ #1 0.7±0.1
Hadoop-15088 ✕ ✓ #1 1.0±0.1
Hadoop-15424 ✕ ✓ #1 0.9±0.1
Hadoop-15425 ✕ ✓ #1 1.1±0.1
Mapreduce-6990 ✕ ✓ #1 0.8±0.1
Yarn-163 ✕ ✓ #1 0.9±0.0
Yarn-1630 ✓ ✓ #1 1.1±0.1
Yarn-2905 ✓ ✓ #1 0.8±0.0
HBase-8389 ✓ ✓ #1 0.9±0.0
Hive-13397 ✓ ✓ #1 0.8±0.1
Hive-18142 ✕ ✓ #1 0.9±0.1
Hive-18219 ✕ ✓ #1 1.0±0.1
Kafka-6271 ✕ ✓ #1 0.9±0.0

Compress-451 ✓ ✓ #2 0.8±0.1
Hadoop-15415 ✕ ✓ #2 0.9±0.1
Hadoop-15417 ✕ ✓ #2 22±1.0
Hadoop-15429 ✕ ✓ #2 0.8±0.1
HDFS-13513 ✕ ✓ #2 0.9±0.1
HDFS-13514 ✕ ✓ #2 1.1±0.1
HDFS-14481 ✕ ✓ #2 0.7±0.0
HDFS-14501 ✕ ✓ #2 0.8±0.1
Mapreduce-7088 ✕ ✓ #2 1.0±0.1
Mapreduce-7089 ✕ ✓ #2 0.8±0.0
Hive-19392 ✕ ✓ #2 0.9±0.1
Hive-19395 ✕ ✓ #2 1.0±0.0
Lucene-8294 ✓ ✓ #2 1.0±0.1

Cassandra-9881 ✕ ✓ #3 0.9±0.1
HDFS-4882 ✓ ✕ #3 -
Mapreduce-2185 ✓ ✓ #3 1.3±0.2
Mapreduce-6991 ✕ ✓ #3 1.2±0.1
Hive-18216 ✕ ✓ #3 1.2±0.2
Hive-18217 ✕ ✓ #3 1.1±0.2

HDFS-10223 ✓ ✓ #4 1.0±0.1
HDFS-5438 ✓ ✕ #4 -
HDFS-14540 ✕ ✓ #4 1.1±0.1
Mapreduce-5066 ✓ ✓ #4 0.9±0.1
Hive-5235 ✕ ✓ #4 0.8±0.1
Hive-19391 ✕ ✓ #4 1.2±0.2
Hive-19406 ✕ ✓ #4 0.8±0.1
Lucene-772 ✕ ✓ #4 0.7±0.0

dead server. HangFix identifies the bug as the Pattern 4 bug
because log replaying is a blocking call. HangFix’s patch
terminates the log replaying call directly by throwing the ex-
ception. Compared with HangFix’s patch, the manual patch
enables the handler to re-route the regions to another live
Region Server. Therefore, log replaying job moves forward
on the newly assigned Region Server.

4.2.2 Synchronization-Related Bug Pa�erns. Besides Hang-
Fix’s four patterns, we found four other bug patterns that
are related to synchronization and concurrency, i.e., miss-
ing unlock, race-induced infinite loop or blocking, and dead-
lock.
Missingunlock:These bugs are caused by programming

mistakes on synchronization operations. When one thread
is holding a lock but does not release the lock upon unex-
pected failures, other threads are hanging on acquiring on
the lock. When missing unlock bugs happen, we observe
multiple threads blocked and they all wait for the lock with
the same lock ID. The safest way to fix this kind of bug is
to release the lock, while terminating the blocked threads
cannot fix the bug completely.
Race-induced infinite loopor blocking:The root causes

of these bugs are race conditions, which further causes infi-
nite loop or blocking. HangFix cannot ensure to fix such bug
completely as currently we do not target hang bugs with
race conditions as their root causes. For example, in HBase-
16211 bug, if clearing JMX cache and injecting the data sink
are done at the same time, the two operations access the
cache simultaneously, causing the race condition. The con-
sequence is that the injected sink lost, further leading to an
reading data operation hanging. HangFix’s patch jumps out
of blocking reading operation, without fixing the data loss
or the race condition nevertheless. The correct fix for the
bug is to add a lock for cache writing operations.
Deadlock: Deadlock bugs are easy to observe through

stack traces. Two threads are in BLOCKED states and they
are holding different locks while they are waiting for the
lockheld by the other thread. HangFix’s patch can terminate
the deadlock but it cannot fix the deadlock.

4.3 Experimental Results

To the best of our abilities, we reproduce 42 bugs falling into
HangFix’s four patterns, as shown in Table 1. We list the
buggy system version and the detailed description. Through
the empirical study, 40 out of the 42 bugs can be completely
fixed. We further validate them in our experiments. Addi-
tionally, we reproduce two partially fixed bugs and present
the experimental results to illustrate why HangFix cannot
fix them completely.
As shown in Table 2, HangFix successfully fixes 40 out of

42 hang bugs completely in our benchmarks, including 15
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bugs in Pattern #1, 13 bugs in Pattern #2, six bugs in Pattern
#3, and eight bugs in Pattern #4.
Our experiments show that for the 40 fixed bugs, the hang

bug localization tool and existing bug detection tools do not
raise alarms and the patched program executes successfully
without hanging or crashing using the regression test suites.
For the two partially bugs, HangFix cannot restore the sys-
tem state or corrupted data. In contrast, 14 out of the 42
bugs are fixed by developers with manual patches, while
the remaining bugs are still open or pending for developers’
check to merge patches.
To further evaluate the patches generated by HangFix,

we compare them with the manual patches for the 14 fixed
bugs by both approaches. We find that HangFix’s patches
are similar as the manual ones except for the Compress-
451 bug. Its manual patch throws runtime exceptions after
identifying the buffersize variable is misconfigured to be
non-positive, while HangFix throws an IOExceptionwhich
can be properly handled by the Compress system without
interrupting the program’s execution. We applied the man-
ual patch on the buggy Compress program, ran our bug-
triggering test case, and found that the program with the
manual patch crashed after we triggered the bug.
HangFix fixed the 40 bugs completely in seconds. Hang-

Fix supports inter-procedural analysis using either iterative
BodyTransformer or SceneTransformer from Soot, which
decides the fixing time of the bugs. BodyTransformer is
faster but can fail sometimes while SceneTransformer is
relatively slower but always succeeds. HangFix first gener-
ates the patch using iterative BodyTransformer and evalu-
ates the patch. If the patched code cannot fix the bug, Hang-
Fix then uses the SceneTransformer approach. For exam-
ple, HangFix generates the patch for the Hadoop-15417 bug
using SceneTransformerapproach,which results in a longer
fixing time (22 seconds) than other bugs. Note that it usually
takes several weeks or even longer for developers to man-
ually fix the bugs. It might be unfair to directly compare
HangFix’s patch generation time with the bug’s manual re-
solve time becauseHangFix is an automatic fixing tool while
manual patches involve human efforts. However, we believe
that HangFix can help developers to efficiently fix hang bugs
in massive cloud systems.
After adoptingHangFix’s patch,wemeasure the additional

performance overhead by running the sameworkload again.
We observe that the overhead of HangFix’s patch is within
1%. Compared with the original root cause function, Hang-
Fix’s patch only adds a checker (e.g., return value checker
or configuration parameter checker) to the function, which
imposes little overhead.

4.3.1 Two Partially Fixed Bugs. We discuss the two bugs
partially fixed by HangFix, i.e., HDFS-4882 and HDFS-5438,

//LeaseManager .java HDFS -4882( v0 .23.0)

369 public void run () {

370 for (; fsnamesystem . isRunning (); ) {

...

374 checkLeases ();

...

388 }}

393 private synchronized void checkLeases () {

...

395 for (; sortedLeases .size() > 0; ) {

396 final Lease oldest = sortedLeases .first ();

... //p is a file's lease path

+ int index = oldest.getPaths ().size();

412 if(fsnamesystem .internalReleaseLease(p, ...)) {

413 LOG.info("... ");

414 removing .add(p);//remove p from sortedLeases

+ index -= 1;

416 } else {

417 LOG.info("... block recovery for file " + p);

418 }

+ if(index == 0) removing .add(p); //restore stride

...

429 }}

Figure 10: Example of a pattern #3 hang bug which cannot

be fixed by HangFix. A corrupted file f associated with

the lease path p makes the internalReleaseLease function

fail for recovering the lease for f. When it happens, p is

not removed from sortedLeases (skip updating loop index),

LeaseManager keeps recovering lease for the file f endlessly.

“ ” represents the function call invocation, while “ ”

represents the control flow. “+”means addedcode, represent-

ing the patch generated by HangFix.

in detail. HangFix cannot fix them completely becauseHang-
Fix cannot restore corrupted data, which can further cause
other hang problems.
HDFS-4882 (Pattern3):As shown by Figure 10, HangFix

inserts the loop index updating operations for stride restora-
tion in the patch after line #418. HangFix’s patch enables
HDFS system to jump out of the infinite loop inside the
hanging function checkLeases(). However, the outer loop
between line #370 and line #388 is processing the data. Since
HangFix cannot restore the corrupted data, HDFS falls into
another infinite loop to process the corrupted file block end-
lessly.
HDFS-5438 (Pattern4):HangFix successfully inserts the

timeout settings to break an infinite polling loop. However,
this patching strategy can only move forward the hanging
function completeFile(). It cannot restore the corrupted
blocks in the pipeline recovery. As a result, corrupted repli-
cas are accepted causing another missing unlock problem in
the DFSInputStream.fetchBlockByteRange() function.

5 RELATEDWORK

In this section, we compareHangFixwithmost related work.
Automatic bug fixing: Previous work has proposed au-

tomatic bug fixing solutions for different bugs. AFix [23]
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fixes atomicity violation bugs by quarantining critical sec-
tions using locks. CFix [24] fixes concurrency bugs by en-
forcing the order relationship of synchronization operations
to prevent the buggy interleaving. ClearView [33] fixes in-
variant violation bugs by enforcing the buggy invariant to
be true after changing its control state and control flow.
TFix [22] proposes a drill-down bug analysis approach to

identify timeout bug’s root cause and suggest correct time-
out values. DFix [28] adopts the rollback and fast-forward
strategy to fix distributed timing bugs.
Tufano et al. [36] applied an encoder/decoder model to

mine the existing patches and automatically generate new
patches. Genprog [27] is a search-based genetic program-
ming approach for automated program repairs. SemFix [30]
is a semantic-based program repair tool, which derives re-
pair constraints from a set of tests and solves the repair
constraints to generate a valid repair. Assure [35] fixes run-
time faults by restoring program execution to a rescue point
where error-handling is performed to recover the program
execution.
Ares [18] recovers the program from runtime unexpected

errors with the program’s existing error-handlers. Ares syn-
thesizes a number of error-handlers and selects the most
promising one via virtual testing techniques. Gulwani et al.
[19] proposed an automated program repair algorithm to
use the existing correct student solutions to provide feed-
back for incorrect ones in programming education. Remix
[16] leverages Intel’s performance counter techniques to de-
tect and repair false sharing bugs inmultithreaded programs.
Huron [26] presents a hybrid false sharing and repair frame-
work with a low overhead.

Compared to those existing bug auto-fixing schemes, Hang-
Fix focuses on developing a root cause pattern driven ap-
proach to auto-patching software hang bugs in production
cloud systems.
Hang bug detection:Previous work has been done to de-

tect software hang bugs. Hang doctor [10] detects soft hangs
at runtime to address the limitations of offline detection.
PerfChecker [29] and HangWiz [38] automatically detect
soft hang bugs by searching the application code for known
blocking APIs. Cotroneo et al. [12] proposed to detect hangs
in software by monitoring the response time of user actions.
TScope [21] detects hang problems caused by missing time-
out settings or misued timeout mechanisms. DScope [14]
focuses on detecting data corruption induced software hang
problems.
Tools also exist to detect hang bugs caused by inefficient

loops. Jolt [11] dynamically detects infinite loops by check-
ing each loop iteration’s run-time state. Carburizer [25] stat-
ically analyzes device driver code and identifies infinite driver-
polling problems.

BLeak [37] automatically debugs the memory leak prob-
lem which increases garbage collection frequency and over-
head, further degrading responsiveness. Faddegon et al. [17]
presented a computation tree generaration method that re-
quires only a simple tracing library, for debugging anyHaskell
programs. CLARITY [32] applies static analysis to identify
redundant traversal bugs, which cause serious performance
problems, e.g., system hanging. DeadWait [34] constructs
program representation to capture control flow and identify
deadlocks in asynchronous C# programs.
In comparison to previous hang bug detection schemes,

HangFix focuses on auto-fixing a detected hang bug that is
triggered in production cloud environments. HangFix can
leverage those hang bug detection schemes for both patch
generation triggering and patch validation.

6 CONCLUSION

In this paper, we have presented HangFix, a new hang bug
fixing framework for automatically patching a hang bug that
is detected in production cloud environments. HangFix lever-
ages both dynamic and static analysis techniques to local-
ize hang functions and identify likely root cause patterns.
HangFix then generates corresponding patches to fix the
hang bug automatically. We have implemented a prototype
of HangFix and evaluated it on 42 real-world software hang
bugs in 10 commonly used cloud server systems. HangFix
successfully fixes 40 out of 42 hang bugs within seconds.We
have also conducted an empirical study over 237 real world
hang bugs and found that our likely root cause patterns
cover 76% of the 237 bugs and the rest 24% bugs are either
synchronization or concurrency bugs. HangFix does not re-
quire application source or any application-specific knowl-
edge, which makes it practical for production systems.
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