
DScope: Detecting Real-World Data Corruption Hang Bugs
in Cloud Server Systems

Ting Dai
North Carolina State University

Raleigh, NC, USA
tdai@ncsu.edu

Jingzhu He
North Carolina State University

Raleigh, NC, USA
jhe16@ncsu.edu

Xiaohui Gu
North Carolina State University

Raleigh, NC, USA
xgu@ncsu.edu

Shan Lu
University of Chicago
Chicago, Illinois, USA

shanlu@cs.uchicago.edu

Peipei Wang
North Carolina State University

Raleigh, NC, USA
pwang7@ncsu.edu

ABSTRACT

Cloud server systems such as Hadoop and Cassandra have enabled

many real-world data-intensive applications running inside com-

puting clouds. However, those systems present many data-corrup-

tion and performance problems which are notoriously di�cult to

debug due to the lack of diagnosis information. In this paper, we

present DScope, a tool that statically detects data-corruption re-

lated software hang bugs in cloud server systems. DScope stat-

ically analyzes I/O operations and loops in a software package,

and identi�es loops whose exit conditions can be a�ected by I/O

operations through returned data, returned error code, or I/O ex-

ception handling. After identifying those loops which are prone

to hang problems under data corruption, DScope conducts loop

bound and loop stride analysis to prune out false positives. We

have implemented DScope and evaluated it using 9 common cloud

server systems. Our results show that DScope can detect 42 real

software hang bugs including 29 newly discovered software hang

bugs. In contrast, existing bug detection tools miss detecting most

of those bugs.

CCS CONCEPTS

• Computer systems organization → Cloud computing; Re-

liability; • Software and its engineering→ Automated static

analysis; Software performance;

KEYWORDS

static analysis, data corruption, performance bug detection

ACM Reference Format:

TingDai, Jingzhu He, Xiaohui Gu, Shan Lu, and PeipeiWang. 2018. DScope:

Detecting Real-WorldData Corruption Hang Bugs in Cloud Server Systems.

In Proceedings of SoCC ’18: ACM Symposium on Cloud Computing, Carlsbad,

CA, USA, October 11–13, 2018 (SoCC’18), 13 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full
citation on the �rst page. Copyrights for components of this work owned by others
than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

SoCC’18, October 11–13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267844

/ / LeaseManager . j a v a #HDFS−4882(v0 . 2 3 . 0)
393 private synchronized void che ckL ea s e s () {

. . .
395 for (; s o r t e d L e a s e s . s i z e () > 0 ;) {

. . .
411 t ry { / / p i s a f i l e ' s l e a s e pa th
412 i f (fsnamesystem . i n t e r n a l R e l e a s e L e a s e (
413 o l d e s t , p , . . .)) {

. . . / / remove p from s o r t e dL e a s e s
416 }

. . .
420 } catch (IOExcept ion e) {

return false;
skip removing p

. . . / / remove p from s o r t e dL e a s e s
423 }

. . .
429 }
430 }

Figure 1: A real-world data corruption hang bug from HDFS.

A corrupted �le f associated with the lease path p makes the

internalReleaseLease function fail for recovering the lease for f.

When this failure happens, p is not removed from sortedLeases

(skip updating loop index), LeaseManager keeps recovering lease

for the �le f endlessly.

https://doi.org/10.1145/3267809.3267844

1 INTRODUCTION

Cloud server systems such as Hadoop and Cassandra [3, 4] have

enabled many real-world data-intensive applications ranging from

security attack detection to business intelligence. However, due

to their inherent complexity, those cloud server systems present

many performance challenges. Particularly, previous studies [23,

25] have shown that many tricky performance bugs in cloud server

systems are caused by unexpected data corruptionswhich aremore

likely to be overlooked by the developer. For example, in May 2017,

a data corruption bug triggered in a data center failover operation

brought down the British Airway service for hours [2].

Performance bugs1 are notoriously di�cult to debug because

they typically produce little useful debugging information. The

problem exacerbates in cloud server systems since the developer

typically does not have the access to the original input data that

triggered the performance bug or the large scale infrastructure

1We use performance bugs to broadly refer to all non-functional bugs, which could
cause slowdown or system unavailability.

https://doi.org/10.1145/3267809.3267844
https://doi.org/10.1145/3267809.3267844

SoCC’18, October 11–13, 2018, Carlsbad, CA, USA T. Dai et al.

to replay the failed production run. Although previous work has

extensively studied data corruptions (e.g., [11, 15, 23, 28, 44]) and

performance bugs (e.g., [17, 26, 31, 40]), little research has been

done to study the intersection between the two, that is, the perfor-

mance problems caused by data corruptions. Particularly, ourwork

focuses on detecting software hang bugs that are triggered by data

corruptions in cloud server systems. Software hang bugs make the

system become unavailable to either part of or all of the users,

which is one of the most severe performance problems production

systems try to avoid [17–19, 29].

1.1 A Motivating Example

To better understand how real-world data corruption hang bugs

happen, we use a known HDFS-4882 2 bug as one example shown

by Figure 1. This hang bug happenswhen the improper handling of

a corrupted �le f causes the loop to skip updating its loop index. In

HDFS, when a client’s leases get expired, the lease recovery is trig-

gered by the LeaseManager on the NameNode. The LeaseManager

sends a lease recovery request for each lease in the sortedLeases

set to the FSNamesystem via a RPC call (line #412-413). If a lease is

successfully recovered (e.g., released or renewed) (line #412-416),

or an IOException happens during the lease recovery (line #420-

423), the lease path p is removed from the sortedLeases. The

LeaseManager keeps recovering and removing the leases until the

sortedLeases set is empty (line #395). However, the FSNamesystem

only considers the case where the last block is corrupted if data

corruption happens in a �le. Thus, when the second-to-last block

of a �le f (i.e., an INode) is corrupted but the processing state

of the last block of f is complete, the FSNamesystem improperly

handles this case and returns false by mistake (line #412). This

bug occurs when the HDFS client �nished writing the second-to-

last block, starts to write the last block and part of the DataNodes

experience a shut-down failure. To resume the process, the Na-

meNode marks the second-to-last block as committed, unblocks

the HDFS client from writing the last block, and marks the last

block as complete [1]. As a result, the lease path p is not removed

from the sortedLeases, and the LeaseManager keeps invoking the

lease recovery for the same lease endlessly.

1.2 Our Contribution

This paper presents DScope, an automated corruption-hang bug

detection tool for server systems commonly used in computing

clouds. DScope is a static analysis tool — it can detect data-corrup-

tion related hang bugs without running the target system and it

requires no system-speci�c knowledge. To achieve both high cov-

erage and low false positives, DScope �rst uses static control �ow

and data �ow analysis to identify loops whose exit conditions may

be a�ected by external data (i.e., I/O operations), and then conducts

loop bound and loop stride analysis to �lter out loops which are

guaranteed not to have hang problems. To support such analysis,

DScope models Java data-related APIs which are commonly used

in cloud server systems.

This paper makes the following contributions:

2We use “system name-bug #" to denote di�erent bugs.

• We present a hang-bug detection scheme that identi�es po-

tential in�nite loops caused by data corruptions in cloud

server systems.

• We describe a false-positive pruning technique that identi-

�es always-exit loops through loop stride and bound anal-

ysis. Di�erent from generic loop analysis, our analysis fo-

cuses on a wide variety of Java I/O APIs widely used in

cloud systems, and helps greatly improve the accuracy of

our data-corruption hang-bug detection.

• We categorize real-world data-corruption hang bugs into

four common types based on DScope detection results. This

categorization will help future work on avoiding, detecting,

and preventing data-corruption hang bugs.

We have implemented DScope and evaluated it using 9 com-

monly used cloud server systems (e.g., Cassandra, HDFS, Mapre-

duce, Hive, etc). DScope reports 42 true data corruption hang bugs,

with 29 of them are newly discovered bugs. We also applied two

state of the art static bug detectors, Findbugs [7] and Infer [6], to

the same set of systems. They detect very few corruption hang

bugs (2 for Findbugs and 1 for Infer), indicating the need for a

dedicated corruption hang bug detector like DScope.

The rest of the paper is organized as follows. §2 describes the

design of the DScope system. §3 presents the types of the data cor-

ruption hang bugs. §4 shows the experimental evaluation. §5 dis-

cusses the future work. §6 compares our work with related work.

Finally, the paper concludes in §7.

2 SYSTEM DESIGN

This section �rst provides an overview of DScope (§2.1). It then

presents the detailed designs of how to discover corruption-hang

bug candidates (§2.2) and how to prune false positives (§2.3).

2.1 Approach Overview

DScope focuses on detecting software hang bugs caused by poten-

tial data corruptions in cloud server systems. Our bug detection

scheme consists of two major steps: 1) discovering all candidate

data corruption hang bugs that aims at maximizing detection cov-

erage; and 2) �ltering out false positive detections by identifying

code patterns that assure the program will not hang under any

circumstance.

Since many software hang problems are caused by in�nite loop

bugs [19, 29], our work focuses on detecting possible in�nite loops

caused by data corruptions in cloud server systems written in Java.

To detect those loop bugs, DScope leverages the Soot compiler

framework [8] to compile application bytecode into intermediate

representation (IR) code (i.e, Soot Jimple) and perform static anal-

ysis over the IR code in three steps: 1) loop path extraction, 2) I/O

depdent loop identi�cation, and 3) loop stride and bound analysis.

Speci�cally, DScope �rst extracts di�erent execution pathswhich

start from the loop header and end at the loop header by travers-

ing the control �ow graph (CFG) of all loops. Next, DScope de-

rives the exit conditions of each loop path and checks whether

those exit conditions depend on any I/O operations. The rationale

is that if the loop exit condition depends on an I/O operation, a data

corruption (e.g., hardware failure [11, 12, 27, 30, 36, 39], software

DScope SoCC’18, October 11–13, 2018, Carlsbad, CA, USA

549 for (int j = 0 ; j < l eng th ; j ++) {
550 S t r i n g rack = oneb lock . r a c k s [j] ;

. . .
559 }
560

549

560

No

550

Yes

...

559

Figure 2: The example of a simple loop with the source code block

and the corresponding CFG in the CombineFileInputFormat class in

Hadoop v0.23.0.

fault [44]) can cause the loop exit condition to be never met and

thus an in�nite loop software hang bug.

After discovering candidate data corruption hang bugs, DScope

performs false positive pattern �ltering to improve the bug de-

tection precision. The false positive �ltering is based on the loop

index, loop stride (i.e., the delta value applied to the loop index in

each iteration) and loop bound analysis on every loop path. For

example, if the loop stride is always positive when the loop bound

is an upper bound (or if the loop stride is always negative when

the loop bound is a lower bound), and if the loop bound is un-

changed during each loop iteration and the loop exit conditions

involve bound checking, we say that the detected hang bug is a

false positive because the loop will always exit without causing a

software hang.

2.2 Identify Bug Candidates

DScope discovers candidate corruption-hang bugs by 1) traversing

the CFGs of all loops in application functions to derive their loop

paths and 2) checking whether the exit conditions of those loop

paths are I/O dependent.

Loop path extraction. For a simple loop, the execution path

within one loop iteration, called a loop path, consists of all the state-

ments that start from the loop header and end at the loop header.

We can extract the loop path easily by traversing the CFG of the

loop. For example, Figure 2 shows the source code and its CFG of a

simple loop3. DScope generates a loop path {549, 550, ..., 559, 549}.

For a nested loop, the loop path consists of concatenations of

the execution paths of both inner loops and outer loops. DScope

extracts all loop paths using three steps. First, for the execution

path, denoted as Pouter whose tail is the outer loop header, we

add the path into a path set called Spath . Second, for the execution

path Pouter whose tail is a loop body statement, we infer this

statement must be the header of an inner loop and extracts the

inner loop execution path denoted as Pinner from Pouter . Third,

for each loop path in Spath , DScope �rst clones it and replaces

any statement si with Pinner if si is an inner loop header and the

current loop path does not contain Pinner . This new concatenated

loop path is then added to the path set Spath . DScope repeats the

third step until there is no more new loop path generated. Fig-

ure 3 shows an example of nested loops. First, DScope extracts one

loop path {544, ..., 549, 560, ..., 571, 544}. Second, DScope extracts

{549, 550, .., 559, 549} as an inner loop path. Third, DScope replaces

549 with {549,550, ..., 559, 549} on {544, ..., 549, 560, .., 571, 544}, to

3DScope analyzes IR code directly to extract the execution path of di�erent loops. For
easy understanding, we illustrate the execution paths using source code in the rest of
the paper.

544 for (OneBlock Info oneb lock : b l k s) {
. . .

549 for (int j = 0 ; j < l eng th ; j ++) {
550 S t r i n g rack = oneb lock . r a c k s [j] ;

. . .
559 }
560

. . .
571 }

544

...

Yes

572

No

549

550

Yes

560

No

...

559

...

571

Figure 3: The example of nested loops with the source code block

and the corresponding CFG in the CombineFileInputFormat class in

Hadoop v0.23.0.

120 while (! d a t a F i l e . i sEOF ()) {
. . .

128 DecoratedKey key = null ;
129 t ry {
130 key = . . . ; / / throws Exc ep t i on

. . .
139 } catch (Throwable th) {
140 . . .
141 }

. . .
185 t ry {
186 i f (key == null)
187 throw new IOEr ror (. . .) ;
188 i f (d a t a S i z e > l eng th)

.
206 ou tpu tHandle r . warn (. . .) ; . . .
207 } catch (Throwable th) {

. . .
255 }
256 }
257

Infeasible
path

120

128

Yes

257

No

129

130

139

140

141

185

186

187

Yes

188

No

207

255

256

...

206

Figure 4: The example of a loop containing exception handling

constructs with the source code block and the corresponding CFG

in the Scrubber class in Cassandra v2.0.8.

create a new loop path {544, ..., 549, 550, ..., 559, 549, 560, ..., 571,

544}.

The third group of complicated loops involve exceptions. For

those loops, some sub-paths become infeasible due to the excep-

tion handling, which should not be considered in our loop exit

condition checking. For example, Figure 4 shows a while loop

containing exception handling. The assignment statement at line

#130 can throw an exception when the operation on the right hand

side processes a null argument. As a result, the variable key is

not updated and remains to be the default value which is null.

So when the exception is triggered, the if statement (line #186)

always returns true. Thus, all the statements in the else branch

(line #188-206) are unreachable and any path consists of those state-

ments are infeasible paths. In this example, DScope only generates

the loop path as {120, 128, 129, 130, 139, 140, 141, 185, 186, 187, 207,

255, 256, 120}.

It can be computationally expensive to traverse the CFG of the

loops containing multiple exceptions because every statement in

the try block has two branches (i.e., triggering or not triggering

the exception) resulting in a large CFG. DScope addresses the prob-

lem by grouping all the statements based on the data they pro-

cess. Speci�cally, DScope identi�es all the statements which in-

volve function invocations in the try blocks and groups them based

on the arguments of those function invocations. Since DScope aims

SoCC’18, October 11–13, 2018, Carlsbad, CA, USA T. Dai et al.

/ / Soot IR
198 $ i 1 = r0 . < InputS t r eam : r ead () >(r 2) / / $ i 1 i s an I /O

/ / r e l a t e d v a r i a b l e
199 i f $ i 1 == −1 goto l i n e #203 / / $ i 1 == −1 i s the

. . . / / e x i t c o nd i t i o n
202 goto l i n e #198

Figure 5: The example of the loop’s exit condition directly depends

on I/O operations. It is in the IOUtils class of Compress v1.0.

/ / Soot IR
3 i f l 8 >= l 0 goto l i n e #12 / / l 8 >= l 0 i s the

. . . / / e x i t c o nd i t i o n
5 $ l 2 = l 0 − l 8
6 $ l 4 = $r2 . < InputS t r eam : sk ip > ($ l 2) / / $ l 4 i s an I /O
7 $b5 = $ l 4 cmp 0L / / r e l a t e d v a r i a b l e
8 i f $b5 == 0 goto l i n e #12 / / $b5 == 0 i s the
9 $ l 7 = $ l 8 + $ l 4 / / e x i t c o nd i t i o n

10 i 8 = $ l 7
11 goto l i n e #3

Figure 6: The example of the loop’s exit condition indirectly de-

pends on I/O operations. It is in the NonSyncDataInputBuffer class

of Hive v2.3.2.

at detecting data corruption hang bugs, we can assume all the state-

ments in the same group throw exceptions when their arguments

get corrupted. Suppose there are m statements in the try blocks.

DScope divides allm statements into n groups and runs the loop

path discovery algorithm 2n times. Thus, DScope can reduce the

loop path search space from 2m to 2n (n ≪ m), which reduces

DScope’s analysis time and resource requirements (e.g., avoiding

analysis failures caused by OutofMemoryException).

I/O dependent loop identi�cation.To discover candidate data

corruption hang bugs, DScope identi�es those loops whose exit

conditions depend on I/O operations, which are called I/O depen-

dent loops. After extracting a loop path, DScope identi�es all the

loop exit instructions and derives the loop path’s exit conditions by

performing a union over the exit conditions of all the branch state-

ments. We consider a loop path is I/O dependent if any of its exit

conditions depend on I/O operations. The rationale is that a data

corruption can cause the corresponding I/O operations to return

unexpected values or throw exceptions, making the loop never

exit and thus software hang. DScope considers the operations per-

formed on I/O classes via virtual invocations or on the I/O variables

via instance invocations as I/O operations. The I/O classes include

all classes and interfaces in java.io and java.nio packages and

their subclasses and implementation classes. The instances of the

I/O classes are called I/O variables. Additionally, DScope allows

users to easily add application I/O classes in the con�guration �les

to maximize detection coverage by identifying more application

I/O dependent loops.

DScope checks whether the loop exit conditions directly depend

on I/O operations by identifying the appearance of I/O classes in

the exit checking statements. Figure 5 shows an example where

the loop exit condition directly depends on the I/O operations. In

this example, the variable $i1 in the exit condition checking state-

ment (line #199) is directly derived from a Java I/O class called

InputStream.

DScope checks whether the loop exit conditions indirectly de-

pend on I/O operations by performing data dependency analysis

/ / Soot IR
10 $r13 = new j a v a . u t i l . HashMap

/ / J a v a s ou r c e code
269 HashMap<OneBlockInfo , S t r i n g [] > blockToNodes =
270 new HashMap<OneBlockInfo , S t r i n g [] > () ;

/ / J a v a by tecode
Constant pool :
#219 = blockToNodes
#232 = L j a v a / u t i l / HashMap<

Lorg / apache / hadoop / mapreduce / l i b /
i npu t / Comb ineF i le InputFo rma t$OneBlo ck In f o ;
[L j a v a / lang / S t r i n g ; > ;

. . .
LocalVariableTypeTable :
name index s i g n a t u r e index
#219 #232

Figure 7: The java.util.HashMap<K,V> example in the

CombineFileInputFormat class in Hadoop v0.23.0.

on all the statements of the corresponding application function.

Speci�cally, DScope �rst identi�es all the I/O related variables which

are assigned with the return values of the I/O operations. Second,

for each assignment statement of the application function that in-

volves any I/O related variables on its right-hand-side, DScope iter-

atively labels the variable on the left-hand-side of the assignment

statement as I/O related variables as well. After identifying all the

I/O related variables, DScope checks whether the loop exit con-

ditions are I/O dependent by identifying the appearance of I/O

related variables in the exit checking statements. Figure 6 shows

an example of indirectly I/O dependent loop exit condition. In this

example, the loop exit checking involves $l8 (line #3) and b5 (line

#8) whose value is derived from l4 which is derived from a Java

I/O operation InputStream.skip().

To further check whether the loop exit conditions depend on

I/O operations conducted on complex I/O related variables (i.e., vari-

ables with composite types), DScope performs an integrated analy-

sis by linking variable information from IR code, Java source code,

and Java bytecode 4. DScope considers a variable with compos-

ite type as I/O related if any of the variable’s elements is I/O re-

lated. Note that, by checking only the IR code, DScope might miss

identifying some complex variables as I/O related. For example, in

Figure 7, by checking only the IR code, DScope cannot identify

the variable $r13 as an I/O related variable, thus all the opera-

tions conducted on $r13 will not be considered as I/O operations.

This is because $r13 is of type HashMap and HashMap is not an

I/O class. To identify complex I/O related variables, DScope needs

to retrieve the full type information (i.e., class path) in the Java

bytecode for a target variable in the IR code. However, there is

no direct mapping from IR code to Java bytecode. So, DScope has

to leverage the source code to establish the mapping from. Specif-

ically, DScope �rst retrieves the source code line number from

Soot via getLineNumber() API for each variable valIR in the IR

code. DScope then analyzes the corresponding source code and

extracts valIR ’s name in the source code, denoted as valsrc . In

Figure 7, DScope extracts that the variable $r13 is de�ned at line

#269 in the source code with name blockToNodes. Next, DScope

4DScope mainly works on Soot IR code, except the integrated analysis in the I/O
dependent loop identi�cation module.

DScope SoCC’18, October 11–13, 2018, Carlsbad, CA, USA

Table 1: The 60 commonly used Java classes and interfaces

which contain APIs related to the loop index, stride and

bound.

Pre�x Class
of classes

or interfaces

java.io

DataInput family 2

File 1

InputStream family 12

Reader family 10

java.nio
Bu�er family 8

channels.Channel family 20

java.util

Iterator, Enumeration 2

List, Queue, Set, Stack 4

StringTokenizer 1

leverages Co� [43], a Java bytecode parser, to extract the full type

information for the target variablevalsrc . Speci�cally, the constant

pool provides index lookup for each variable and LocalVariable-

TypeTable provides the mapping from the variable’s index to the

index of its signature which contains the full type information. In

Figure 7, the constant pool indicates that the index of the variable

blockToNodes is #219 and the LocalVariableTypeTable lookup tells

its corresponding signature index is #232. DScope checks the con-

stant pool using the index number #232 to derive the full type infor-

mation of blockToNodes. Since blockToNodes consists of Combine-

FileInputFormat$OneBlockInfo class which is I/O related (i.e,

an application I/O class), DScope infers blockToNodes is also I/O

related. Thus the operations conducted on blockToNodes are I/O

operations and the loops whose exit conditions depend on those

I/O operations are I/O dependent loops.

2.3 Prune False Positives

Since our goal of candidate bug detection is to maximize cover-

age, false positives can be inevitably included in the candidate list.

To improve DScope’s bug detection precision, we further develop

false positive pattern �ltering schemes by identifying those loops

which will always exit without causing any software hang. Our

false positive �ltering is achieved by analyzing the loop stride and

loop bounds. DScope prunes false positive candidates by checking

whether 1) the loop stride is always positive when the loop has an

upper bound or the loop stride is always negative when the loop

has a lower bound; 2) the loop bound value is unchanged in every

loop iteration; and 3) the loop exit conditions contain bound check-

ing. Intuitively, any loops satisfying all those conditions will al-

ways exit without causing software hang, which should be pruned

from DScope’s detection list.

DScope’s loop stride and bound analysis schemes consider two

cases: a) the loop index, stride, and bounds are denoted by nu-

meric primitives (e.g., integer); and b) the loop index, stride, and

bounds are denoted by APIs in 60 commonly used Java classes

and interfaces, shown in Table 1. Note that those Java classes and

interfaces are not necessarily the I/O classes but appear frequently

in the I/O dependent loops. Moreover, they do not include all the

Java classes and interfaces which contain the loop related APIs.

We plan to further extend our analysis to cover other Java classes

/ / Soot IR
127 $b6 = i 1 cmp i 0 / / i 1 i s the loop index
128 i f $b6 >= 0 goto l i n e #139 / / i 0 i s the upper bound
129 . . .
130 i 7 = i 1 + 1
131 i 1 2 = i 7 + 1
132 i 1 7 = i 1 2 + 1
133 i 2 2 = i 1 7 + 1
134 i 2 7 = i 2 2 + 1
135 i 3 2 = i 2 7 + 1
136 i 3 7 = i 3 2 + 1
137 i 1 = i 3 7 + 1 / / a l l the 1 ' s a r e the s t r i d e s
138 goto l i n e #127

Figure 8: The example of multiple strides. It is in the OffHeapBitSet

class of Cassandra v2.0.8.

/ / Soot IR
530 $ i 5 = r1 . < By t eBu f f e r : l im i t > / / $ i 5 i s the upper bound
531 i f i 1 >= $ i 5 goto l i n e #536 / / i 1 i s the loop index
532 $ i 9 = <STEP_LENGTH> ; / / $ i 9 i s the s t r i d e
533 i 1 = i 1 + $ i 9

. . .
535 goto l i n e #531

Figure 9: The example of the stride is assigned outside of the

function total where the loop resides. It is in the CounterContext

class of Cassandra v2.0.8. The stride STEP_LENGTH is a static variable,

which is assigned with 34 in the class initializer.

in our future work, which can further improve our false positive

�ltering e�cacy.

When the loop index, stride, and bounds are denoted by numeric

primitives, DScope �rst extracts the loop index variable from the

loop exit conditions. The loop index is a variable that appears in

the loop exit conditions and is updated by another variable in an

assignment statement via arithmetic operations (e.g., addition and

subtraction). After identifying the loop index, the variable towhich

it compares in the exit conditions is the loop bound and the variable

which is added to or subtracted from the loop index is the loop

stride. DScope further checks whether the numeric stride is posi-

tive when the loop has an upper bound or negative when the loop

has a lower bound. For example, in the expression “index = index

op stride”, if the “op” is an addition operation, the loop stride is

positive. In the expression “index symbol bound”, if the “symbol” is

≤ or <, the loop has an upper bound. Finally, DScope examines all

the loop paths and checks whether the bound is unchanged within

every loop path. Based on all the extracted information, DScope

canmake decisionwhether a discovered loop bug is a false positive.

When the loop index, stride, and bounds are denoted by multi-

ple numeric primitives or the numeric primitives outside the cur-

rent application function where the loop resides, DScope performs

intra-procedure data �ow analysis on all the statements of the cor-

responding application class to achieve accurate false positive �l-

tering. For example, Figure 8 shows a loop with multiple strides in

the OffHeapBitSet class in Cassandra. The variable i1 is the loop

index while the variable i0 is the upper bound. The loop index

i1 is updated multiple times from line #130 to line #137. DScope

recursively applies all the assignments from line #130 to line #137

to get i1 = i1 + 8, and extracts the aggregated stride (i.e, 8).

Figure 9 shows an example where the stride variable $i9 is up-

dated by STEP_LENGTH in the CounterContext class in Cassandra.

SoCC’18, October 11–13, 2018, Carlsbad, CA, USA T. Dai et al.

Table 2: The APIs that are related to loop stride and bound

update in 60 commonly used Java classes and interfaces. “*”:

a set of APIs perform similar operations; and “-”: does not

contain the corresponding type APIs.

Class

The type and name of APIs

Forward

index

Reverse

index

Reset

index

Check

bounds

Update

bounds

File create* get* new
is*, can*

exists, get*
-

InputStream

& Reader

family

read* reset new read* new

DataInput

family
read* - new read* new

Bu�er

family

position

get*

put*

position

reset

clear

duplicate

allocate

new

has*

remaining

�ip

limit

clear

new

Channel

family

read

write
- -

read

write
-

List & Set - remove new is*

add

clear

new

Queue -
poll

remove
-

poll

remove

add

o�er

new

Stack - pop -
empty

pop

push

new

Iterator &

Enumeration
next -

iterator

elements

new

has* new

StringTokenizer next - new has* new

The loop resides in the function total() while STEP_LENGTH is a

static variable de�ned in the class initializer. DScope performs data

�ow analysis to extract the value of STEP_LENGTH from the class

initializer and then checks whether the stride is positive because

the loop index has an upper bound.

We now describe how to perform false positive �ltering when

the loop index, stride and bounds are denoted by the APIs in 60

commonly used Java classes and interfaces, listed in Table 1.

We classify those APIs into �ve categories, shown by Table 2: 1)

the APIs which move the index forward when the Java class/in-

terface has an upper bound; 2) the APIs which move the index

backward when the Java class/interface has a lower bound; 3) the

APIs which reset the index; 4) the APIs which check bounds; and

5) the APIs which update bounds. The APIs’ names ending with

“*” denote those APIs which perform similar operations and share

the same pre�x in their names. For example, in the InputStream

family, there are read() and readLine() functions which both

perform read operations on the corresponding InputStream.

DScope �rst extracts all the invoked APIs for each of the 60

Java classes and interfaces in the loop paths, and then prunes false

positive candidates by checking whether 1) the “forward index”

APIs or the “reverse index” APIs are invoked; 2) the “reset index”

APIs and “update bounds” APIs are not invoked; and 3) the “check

bounds” APIs are invoked in the exit conditions. Note that, DScope

/ / DFSOutputStream . j a v a #HDFS−5438(v0 . 2 3 . 0)
1665 private void c omp l e t e F i l e (ExtendedBlock l a s t) . . . {

. . .
1667 boolean f i l e C omp l e t e = f a l s e ;
1668 while (! f i l e C omp l e t e) {
1669 f i l e C omp l e t e = d f s C l i e n t . namenode . comple te (s r c ,

d f s C l i e n t . c l ientName , l a s t) ;
. . .

1689 } }

Figure 10: The code snippet of the HDFS-5438 Bug. When the

ExtendedBlock last is corrupted, the fileComplete variable is never

set to be true, causing an in�nite loop in DFSOutputStream.

cannot prune the case where both the “forward index” APIs and

the “reverse index” APIs are invoked in the loop paths because the

loop stride cannot be guaranteed to be always positive or negative.

The APIs in the �ve categories do not necessarily change the

loop index or bounds. Those APIs’ arguments should also be con-

sidered when DScope performs the false positive �ltering. For ex-

ample, ByteBuffer contains overloading methods which have an

attribute called relative or absolute. The ByteBuffer.get() is a

relative method while the ByteBuffer.get(int) is an absolute

method. Invoking a relative method can change the loop index (i.e.,

ByteBuffer.position) while invoking absolute methods cannot.

Another example is the InputStream class. Invoking the Input-

Stream.read(byte[], int, int) with a zero size byte array or

with 0 as the third parameter cannot change the loop index.

To achieve accurate pruning, DScope �rst annotates all the com-

monly used Java APIs with the attribute change-positive, change-

negative or change-possible. The positive APIs can change the loop

index (or bounds). The negative APIs cannot change either one.

The possible APIs can possibly change the loop index (or bounds).

For positive APIs, DScope’s pruning steps are the same. For neg-

ative APIs in the type of “forward index”, “reverse index”, “reset

index” or “update bounds”, DScope ignores themwhen performing

the pruning. For possible APIs, DScope performs intra-procedural

data �ow analysis on their parameters to decide whether these

APIs change loop index/bounds or not.

DScope’s false positive �ltering only considers the commonly

used Java APIs. If the loop index, stride or bounds are only related

to speci�c application functions, which means the loop paths do

not invoke any Java APIs in Table 2, DScope skips analyzing the

loop and simply considers it as a false positive — this design deci-

sion may introduce false negatives, but greatly help the e�ciency

and accuracy of DScope.

One false negative example is the HDFS-5438 bug, shown by

Figure 10. This hang bug is caused by a corrupted block, i.e, last.

DFSOutputStream keeps polling NameNode to check the complete-

ness of the committing block operation (line #1669). When the

last block is corrupted, NameNode fails to commit it to the disk

but returns false instead. This results in an in�nite loop (line

#1668-1689) causing a software hang in DFSOutputStream. DScope

prunes this case because the loop paths do not invoke any Java

APIs in Table 2. In fact, the loop path only invokes a speci�c appli-

cation function, i.e., complete(). DScope should be able to detect

this bug after adding inter-procedural analysis, which is however

beyond the scope of this work.

DScope SoCC’18, October 11–13, 2018, Carlsbad, CA, USA

/ / IOU t i l s . j a v a #Hadoop −8614(v0 . 2 3 . 0)
183 public s t a t i c void s k i p F u l l y (InputS t r eam in , long l e n

) throws IOExcept ion {
184 while (l e n > 0) {
185 long r e t = in . s k i p (l en) ; / ∗ i n i s c o r r up t ed ∗ /
186 i f (r e t < 0) { / ∗ r e t = 0 ∗ /
187 throw new IOExcept ion (. . .) ;
188 }
189 l en −= r e t ;

} }

Figure 11: The example when error code returned by I/O operations

directly impacts the loop stride. Data corruption causes the I/O

function, InputStream.skip returns 0, and 0 is used as the stride.

3 DATA CORRUPTION HANG BUG TYPES

This section summarizes common types of corruption-hang bugs

based on the detection results of DScope (the details of all the bugs

detected by DScope will be presented in §4). Although DScope

design was not a�ected by these types, this categorization can

help future work on avoiding, detecting, and �xing corruption-

hang bugs, and help developers better understand the impact of

data corruption and corruption-hang bugs.

Our categorization is along two dimensions:

• What is the cause — is it speci�c error code returned by

data operations (Type 1), or speci�c corrupted data content

(Type 2), or speci�c exception thrown by data operations

(Type 3, Type 4)?

• How did the cause lead to an in�nite loop — is it through

a direct data assignment (Type 1) or control-�ow change

(Type 3), or indirect data and control �ow (Type 2, Type 4)?

Type 1: Error codes returned by I/O operations directly

a�ect loop strides. For this type, the loop stride is directly as-

signed with a return value of an I/O operation. An in�nite loop

occurs when an unexpected error code is returned due to under-

lying data corruption. For example, as shown by Figure 11, when

the log �le (InputStream in at line #183) is corrupted due to bad

encoding (Yarn-2724) or corruption propagation (Yarn-7179), the

InputStream in becomes null. The skip() function returns 0

instead of the EOF indicator -1 (line #185). The return value ret

is then used as the stride at line #189, which makes len never get

updated but always stay larger than the lower bound (len > 0).

As a result, the skipFully() function causes the system to hang

by spinning in the loop forever. Variations of this hang bug type

include the cases where the stride is always negative when the

loop exit condition contains an upper bound or the stride is always

positive when the loop exit condition contains a lower bound.

Type 2: Corrupted data content indirectly a�ects loop stri-

des. This type of bugs occur when a speci�c piece of data is cor-

rupted to certain unexpected values. Those values will then af-

fect loop strides through data and/or control �ow propagation and

lead to in�nite loops. For example, as shown by Figure 12, when

a con�guration �le (conf at line #190) is corrupted, the variable

BUFFER_SIZE read from conf becomes 0. Calling read() function

on a zero-size byte array at line #87 causes the loop stride to be zero

and zero is then returned, which makes the loop’s exit condition

(size < 0) never be satis�ed.

Figure 13 shows an example when the loop stride is indirectly

impacted by the corrupted data content which involves multiple

/ / BenchmarkThroughput . j a v a #HDFS−13514 (v2 . 5 . 0)
172 public int run (. . .) throws IOExcept ion {
190 Con f i gu r a t i on conf = ge tConf () ; / ∗ conf i s c o r r up t ed ∗ /

. . .
194 BUFFER_SIZE = conf . g e t I n t (. . .) ; / ∗ BUFFER_SIZE = 0 ∗ /

. . .
229 }

78 private void r e a d L o c a l F i l e (Path path , . . .) throws
IOExcept ion {
. . .

83 InputS t r eam in = new F i l e I n p u t S t r e am (. . .) ;
84 byte [] da t a = new byte [BUFFER_SIZE] ;
85 long s i z e = 0 ;
86 while (s i z e >= 0) { / ∗ s i z e = 0 ∗ /
87 s i z e = in . r ead (da t a) ;

} }

Figure 12: The example when corrupted data content indirectly

impacts the loop stride. The corrupted con�guration �le causes

“BUFFER_SIZE = 0”, which in turn makes the InputStream in

perform read operation on a zero-size byte array and return 0. The

loop’s exit condition become infeasible because “size < 0” is never

satis�ed.

/ / Comb ineF i le Inpu tFo rma t . j a v a #Mapreduce−2185(v0 . 2 3)
477 private s t a t i c c l a s s One F i l e I n f o {

. . .
544 for (OneBlock Info oneb lock : b l o ck s) {
545 blockToNodes . put (oneblock , oneb lock . ho s t s) ;

. . . / ∗ c o r r up t ed b l o ck ' s r a ck s . l e ng th i s 0 ∗ /
549 for (int j = 0 ; j < oneb lock . r a c k s . l e ng th ; j ++) {
550 S t r i n g rack = oneb lock . r a c k s [j] ;

. . .
554 rackToBlocks . put (rack , b l k l i s t) ;

. . .
} } }

255 private void g e tMo r e S p l i t s (. . .) throws . . . {
. . .

348 while (b lockToNodes . s i z e () > 0) {
. . .

359 for (I t e r a t o r < . . . > i t e r = rackToBlocks .
360 e n t r y S e t () . i t e r a t o r () ; i t e r . hasNext () ;) {
361 Map . Entry < . . . > one = i t e r . next () ;

. . .
363 L i s t <OneBlockInfo > b lo ck s = one . g e tVa lu e () ;

. . .
369 for (OneBlock Info oneb lock : b l o ck s) {
370 i f (b lockToNodes . c on t a i n sKey (oneb lock)) {
371 blockToNodes . remove (oneb lock) ;

. . .
} } } } }

Figure 13: The example when corrupted data content indirectly

impacts the loop stride. Data corruption causes blockToNodes and

rackToBlocks to be di�erent on the dimension of the blocks’ num-

ber. This di�erence makes the corrupted block never been removed

from the blockToNodes (i.e., zero-stride), causing the loop’s exit

condition to be infeasible. This is because “blockToNodes.size() <=

0” is never satis�ed.

I/O related variables. The blockToNodes and racktoBlock are two

maps which store di�erent metadata information about every data

block. If everything works correctly, these two maps should con-

tain information about exactly the same set of blocks (i.e., every

record in the blocks on line #544). However, if a block (oneblock

at line #549) is corrupted and its racks.length becomes 0, this

block will still be inserted into blockToNodes at line #545, but not

SoCC’18, October 11–13, 2018, Carlsbad, CA, USA T. Dai et al.

/ / T e s t P r o c f s B a s e dP r o c e s sT r e e . j a v a #Yarn −6991(v0 . 2 3 . 0)
/ / Thread #1
62 private c l as s RogueTaskThread extends Thread {
63 public void run () {
64 t ry {

. . .
72 a r g s . add (" echo $$ > " + p i d F i l e + " ; ") ;
73 shexec = new Shel lCommandExecutor (a r g s . . .) ;
74 shexec . e xe cu t e () ;

. . .
79 } catch (IOExcept ion i oe) {
80 LOG . i n f o (" E r r o r e xe cu t i ng cmd ") ;

Throw
Exception

} } } / ∗ f i l e c r e a t i o n s i l e n t l y f a i l e d ∗ /

/ / Thread #2
87 private S t r i n g getRogueTaskPID () {
88 F i l e f = new F i l e (p i d F i l e) ;
89 while (! f . e x i s t s ()) {

. . .
91 Thread . s l e e p (5 0 0) ;

. . .
} }

Figure 14: The examplewhen improper exception handling directly

impacts the loop stride. ShellCommandExecutor.execute() causes

IOException. The exception is simply logged, and the creation

of the pidFile is silently failed (i.e., zero-stride), which makes

File.exists() always be false.

/ / S c r ubb e r . j a v a # Cassandra −9881(v2 . 0 . 8)
44 private f ina l RandomAccessReader d a t a F i l e ;

. . .
103 public void s c r ub () {

. . .
120 while (! d a t a F i l e . i sEOF ()) {

. . .
129 t ry { / ∗ d a t a F i l e i s c o r r up t ed ∗ /
130 key = s s t a b l e . p a r t i t i o n e r . decora teKey (/ / key= nu l l
131 B y t e B u f f e r U t i l . r eadWi thShor tLength (d a t a F i l e)) ;

. . .
134 d a t a S i z e = d a t a F i l e . readLong () ; / / s k i pped

. . .
139 } catch (Throwable th) {
140 t h r ow I f F a t a l (th) ; / / i gno r e Exc ep t i on

Throw
Exception

141 }
. . .

185 t ry {
186 i f (key == null)
187 throw new IOEr ror (. . .) ;

. . .
207 } catch (Throwable th) {
208 t h r ow I f F a t a l (th) ; / / i gno r e IOEr ror

. . .
} } }

Figure 15: The example when improper exception handling in-

directly impacts the loop stride. Data corruption causes the I/O

function decorateKey() to throw exception at line #130-131, which

makes the loop skip the index updating statement (i.e., zero-stride)

at line #134.

be put into the rackToBlocks map with line #554 skipped. This

would eventually cause the while loop on line #348 to hang. The

reason is that this while loop keeps iterating until every block in

blockToNodes is removed. Unfortunately, since only blocks that

also exist in rackToBlocks map can be removed (line #369 – #371),

the corrupted block will never be removed from blockToNodes

and cause an in�nite loop.

Type 3: Improper exception handling directly a�ects loop

strides. Sometimes, a data-related operation itself is expected to

Table 3: The cloud server systemsused in our evaluation and

the number of detected data corruption hang bugs in each

system.

System Description
of

bugs

Cassandra Distributed database management system 2

Compress Libraries for I/O ops on compressed �le 2

HD Common Hadoop utilities and libraries 10

Mapreduce Hadoop big data processing framework 5

HDFS Hadoop distributed �le system 4

Yarn Hadoop resource management platform 4

Hive Data warehouse 12

Kafka Distributed streaming platform 1

Lucene Indexing and search server 2

Total 42

update the loop stride. When this operation throws an exception,

an improper exception handling may give up the operation, to-

gether with the associated stride updates, causing in�nite loops.

For example, the Yarn-6991 bug belongs to this type, shown by

Figure 14. The ShellCommandExecutor.execute() function is ex-

pected to create a pidFile, whose existence will help a while loop

(line #89) to exit. When the disk is full, ShellCommandExecutor.

execute() throws an exception at line #74. This exception is sim-

ply logged. Consequently, without the creation of pidFile, the

while loop at line #89 never exits.

Type 4: Improper exception handling indirectly a�ects lo-

op strides. For this type of bugs, the stride-update operation itself

did not raise any exceptions. However, an exception handling of

another operation, a data-related operation, changes the control

�ow and causes the stride update to be skipped. For example, the

Cassandra-9881 bug matches this type, shown by Figure 15. When

the dataFile (RandomAccessReader at line #131) is corrupted, the

decorateKey() function cannot recognize it, thus throws an ex-

ception without assigning key at line #130 (i.e., key == null), or

executing dataFile.readLong() at line #134. But this exception

is simply ignored because it’s not fatal at line #140. When the

key is null, the scrub() function throws an IOError (line #187),

catches it (line #207), and ignores it because it’s not a fatal error

(line #208). Without moving the index (i.e., zero-stride) by calling

dataFile.readLong() at line #134, the scrub() function keeps

reading from the same place, looping forever.

Discussion Theoretically, other types of corruption-hang bugs

could exist, like corruption a�ecting loop bounds, instead of loop

strides, or corrupted data content directly, instead of indirectly,

a�ects loop strides. DScope bug detection algorithm can detect

those types of bugs too. However, we did not observe them in the

real-world bugs that we have encountered.

4 EVALUATION

In this section, we present our experimental evaluations onDScope.

We �rst describe our evaluation methodology and then discuss our

evaluation results in detail.

DScope SoCC’18, October 11–13, 2018, Carlsbad, CA, USA

4.1 Evaluation Methodology

DScope is implemented on top of Soot v2.5.0 [8], a Java bytecode

analysis infrastructure, with the latest Co� library [43], written

in Java language with about 18,000 lines of code. Our experimen-

tal evaluation covers a wide range of popular cloud server sys-

tems listed in Table 3: Cassandra is a distributed key-value store;

Compress provides libraries for I/O operations on compressed �les;

Hadoop common provides utilities and libraries for all Hadoop

projects; Hadoop MapReduce is a big data processing platform;

HDFS is a distributed �le system; Hadoop Yarn is a distributed

resource management service; Hive is a data warehouse; Kafka is

a distributed streaming system; and Lucene is a data indexing and

searching server. We try to cover as many cloud server systems as

possible to show that data corruption hang bugs are widespread in

the real world.

All the experiments were conducted in our lab machine with an

Intel® Xeon® E5-1630 Octa-core 3.7GHz CPU, 16GB memory, run-

ning 64-bit Ubuntu 16.04 with kernel v4.13.0. Our evaluation con-

siders both coverage (i.e., true positives) and precision (i.e., false

positives) of data corruption hang bug detection. We also compare

DScope with two state-of-the-art static bug detection tools, Find-

bugs(v3.0.1) [7] and Infer(v0.9.2) [6].

For all the hang bugs reported by DScope, we �rst manually

validate them by checking whether we can reproduce the software

hang symptom after injecting data corruption into the correspond-

ing data. We �rst check DScope’s analysis results to identify which

faulty I/O operations a�ect the loop strides. We then inject the

faults (e.g., corrupted data content, corrupted con�guration �les,

disk exhaustion) into the corresponding I/O operations. If the soft-

ware hang does happen, we mark the bug as a true positive. Oth-

erwise, we consider it as a false positive. For all the true positives,

we then search the bug repository (i.e., JIRA [5]) to see whether

they are already reported. If they are, we mark them as the existing

data corruption hang bugs. Otherwise, we report them in the bug

repository and mark them as newly discovered data corruption

hang bugs.

We then use the true positives detected by DScope as the bench-

mark to evaluate the detection e�cacy of Findbugs and Infer. For

these two tools, if they report at least one line of the code related to

a data corruption hang bug (e.g, a line of the data corruption loop

body or a line contains a variable which is then used in the loop),

we consider the reported issue as a true positive. We omit the false

positives of Findbugs and Infer in our evaluation because these

two generic bug detection tools can report hundreds or thousands

of suspicious issues. For example, Findbugs and Infer reports 5,434

and 13,993 issues in Hive v2.3.2, respectively. It is extremely time-

consuming to validate all of their detection results manually. It is

also wrong to label all the issues identi�ed by Findbugs or Infer

but not DScope as false positives since some of those issues are

true bugs although they are not related to data corruption hang

bugs.

4.2 Bug Detection and Precision Results

Table 4 and 5 show the detection results achieved by di�erent sche-

mes. DScope reports 79 data corruption hang bugs, with 42 of them

being true bugs, and 29 out of the 42 bugs are newly discovered

Table 4: The detection comparison of DScope with Findbugs

and Infer on all the 9 systems. “TP”: the number of true

positive bugs by each scheme; “FP”: the number of false

positive bugs reported by DScope; “-”: runtime execution

errors (Infer).

System
Release

date

DScope Findbugs Infer

TP FP TP TP

Cassandra v2.0.8 2014/05/29 2 1 0 1

Compress v1.0 2009/05/21 2 2 0 -

HD

Common

v0.23.0 2011/11/11 4 6 0 0

v2.5.0 2014/08/11 6 6 0 0

Mapreduce
v0.23.0 2011/11/11 3 0 0 0

v2.5.0 2014/08/11 2 0 0 0

HDFS
v0.23.0 2011/11/11 1 1 0 0

v2.5.0 2014/08/11 3 5 1 -

Yarn
v0.23.0 2011/11/11 2 2 1 0

v2.5.0 2014/08/11 2 5 0 0

Hive
v1.0.0 2015/05/20 7 6 0 -

v2.3.2 2017/11/18 5 1 0 0

Kafka v0.10.0.0 2016/05/22 1 1 0 0

Lucene v2.1.0 2007/02/17 2 1 0 0

Total 42 37 2 1

bugs. Note that, we ran DScope on the target cloud server systems

and identi�ed those 42 bugs. But it does not mean that those 42

bugs include all the data corruption bugs in those systems. There

are some other types of data corruption hang bugs that we cannot

identify. For example, data corruption causes the recursive func-

tions never end, making system hang. However, it is out of the

scope of this paper, which is part of our future work.

In contrast, existing generic bug detection tools cannot detect

most of those 42 data corruption hang bugs. Findbugs only identi-

�es the HDFS-5892 and Yarn-163 bugs while Infer only identi�es

the Cassandra-9881 bug. Those results are expected because no

previous static analysis tools, including Findbugs and Infer, have

targeted data corruption hang bugs. Findbugs targets bugs that

follow speci�c anti-patterns in Java programs, such as “private

method is never called”, “method concatenates strings using + in

a loop”, and “unchecked type in generic call”, none of which are

related to data corruptionhang bugs detected byDScope. Note that,

Findbugs does contain one speci�c anti-pattern called “an apparent

in�nite loop” which is related to data corruption hang bugs. How-

ever, Findbugs only reports two suspicious issues on the target

cloud server systems and both issues involve a while(true) type

loop. After further inspection, these two loops can exit eventually

due to timeouts. Infer mostly focuses onmemory and resource leak

bugs, and hence cannot detect most corruption-hang bugs shown

in Table 5.

Findbugs identi�es the HDFS-5892 bug, as it discovers getFina-

lizedDir() can be “null” in the loop body. This bug happens when

corrupted data content indirectly a�ects the loop stride (i.e, the

getFinalizedDir().length becomes 0). Indeed, the getFinal-

izedDir() function is called during the loop’s execution, but it is

not the root cause of this data corruption hang bug. Findbugs iden-

ti�es the Yarn-163 bug, as it discovers that encoding the InputStre-

amReader reader to a FileReader can corrupt the reader, which

SoCC’18, October 11–13, 2018, Carlsbad, CA, USA T. Dai et al.

Table 5: The detection comparision of DScopewith Findbugs

and Infer on all the 42 data corruption hang bugs.

Bug name
System

version

B
u
g
ty
p
e

Known

or

new

Deteced

D
S
co

p
e

F
in
d
b
u
g
s

In
fe
r

1 Cassandra-7330 v2.0.8 #1 known ✓ ✗ ✗

2 Cassandra-9881 v2.0.8 #3 known ✓ ✗ ✓

3 Compress-87 v1.0 #1 known ✓ ✗ ✗

4 Compress-451 v1.0 #2 new ✓ ✗ ✗

5 Hadoop-8614 v0.23.0 #1 known ✓ ✗ ✗

6 Hadoop-15088 v2.5.0 #1 new ✓ ✗ ✗

7
Hadoop-15415

v0.23.0 #2 new ✓ ✗ ✗

8 v2.5.0 #2 new ✓ ✗ ✗

9
Hadoop-15417

v0.23.0 #2 new ✓ ✗ ✗

10 v2.5.0 #2 new ✓ ✗ ✗

11 Hadoop-15424 v2.5.0 #1 new ✓ ✗ ✗

12 Hadoop-15425 v2.5.0 #1 new ✓ ✗ ✗

13
Hadoop-15429

v0.23.0 #2 new ✓ ✗ ✗

14 v2.5.0 #2 new ✓ ✗ ✗

15 HDFS-4882 v0.23.0 #3 known ✓ ✗ ✗

16 HDFS-5892 v2.5.0 #2 known ✓ ✓ ✗

17 HDFS-13513 v2.5.0 #2 new ✓ ✗ ✗

18 HDFS-13514 v2.5.0 #2 new ✓ ✗ ✗

19 Mapreduce-2185 v0.23.0 #2 known ✓ ✗ ✗

20 Mapreduce-2862 v0.23.0 #2 known ✓ ✗ ✗

21 Mapreduce-6990 v0.23.0 #1 new ✓ ✗ ✗

24 Mapreduce-7088 v2.5.0 #1 new ✓ ✗ ✗

25 Mapreduce-7089 v2.5.0 #1 new ✓ ✗ ✗

26 Yarn-163 v0.23.0 #1 known ✓ ✓ ✗

27 Yarn-2905 v2.5.0 #1 known ✓ ✗ ✗

22
Yarn-6991

v0.23.0 #4 new ✓ ✗ ✗

23 v2.5.0 #4 new ✓ ✗ ✗

28 Hive-5235 v1.0.0 #1 known ✓ ✗ ✗

29 Hive-13397 v1.0.0 #2 known ✓ ✗ ✗

30 Hive-18142 v1.0.0 #2 new ✓ ✗ ✗

31 Hive-18216 v2.3.2 #1 new ✓ ✗ ✗

32 Hive-18217 v2.3.2 #1 new ✓ ✗ ✗

33
Hive-18219

v1.0.0 #2 new ✓ ✗ ✗

34 v2.3.2 #2 new ✓ ✗ ✗

35 Hive-19391 v1.0.0 #2 new ✓ ✗ ✗

36
Hive-19392

v1.0.0 #2 new ✓ ✗ ✗

37 v2.3.2 #2 new ✓ ✗ ✗

38 Hive-19395 v1.0.0 #1 new ✓ ✗ ✗

39 Hive-19406 v2.3.2 #2 new ✓ ✗ ✗

40 Kafka-6271 v0.10.0 #1 new ✓ ✗ ✗

41 Lucene-772 v2.1.0 #2 known ✓ ✗ ✗

42 Lucene-8294 v2.1.0 #2 new ✓ ✗ ✗

Total # 42 2 1

is related to the data corruption hang bugs — performing skip op-

erations on a corrupted FileReader can cause the skip function

to return error code (i.e, 0).

Infer identi�es the Cassandra-9881 bug, as it discovers that the

scrub() function in the Scrubber class could invoke a throwIf-

Commutative() function at line #248 with null parameter, shown

by Figure 16. As we discussed in §3, when data corruption happens,

key fails to be assigned to new values and sticks with the default

/ / ca s sandra − 2 . 0 . 8 : S c r ubb e r . j a v a
41 private boolean i sCommuta t ive = f a l s e ;

. . .
103 public void s c r ub () {

. . .
120 while (! d a t a F i l e . i sEOF ()) {

. . .
127 DecoratedKey key = null ;

. . .
248 throwI fCommuta t i ve (key , th) ; / / I n f e r : n u l l pa rameter

. . .
} }

327 private void throwI fCommuta t i ve (DecoratedKey key ,
328 Throwable th) {
329 i f (i sCommuta t i ve && ! s k i pCor r up t ed) {
331 outpu tHandle r . warn (S t r i n g . forma t (" . . . " , key)) ;

. . .
} }

Figure 16: Infer identi�es a null parameter problem in the

throwIfCommutative() function at line #248. The Cassandra-9881

bug happens at line #103-256.

Table 6: The types of false positives pruned by DScope.

System
Pruned FP

Numeric primitives Java APIs

Cassandra v2.0.8 386 71

Compress v1.0 147 20

HD Common
v0.23.0 1023 378

v2.5.0 1650 790

Mapreduce
v0.23.0 377 363

v2.5.0 938 641

HDFS
v0.23.0 312 323

v2.5.0 1723 1073

Yarn
v0.23.0 151 214

v2.5.0 451 665

Hive
v1.0.0 4268 3003

v2.3.2 5269 3663

Kafka v0.10.0.0 186 441

Lucene v2.1.0 287 44

Total 17168 11689

value, “null”. This makes the scrub() function skip updating the

index, causing an in�nite loop. Indeed, the throwIfCommutative()

function is called during the loop’s execution, but it is not the

root cause of this data corruption hang bug. In fact, it does not

break the loop to prevent scrub() from hanging. This is because

the isCommutative variable is false, which makes the if branch

at line #329 unreachable. Thus, even with a null parameter, the

throwIfCommutative() can still execute successfully at line #248.

Table 5 also shows the types of the detected data corruption

hang bugs. As we can see, “Type 1” and “Type 2” cover most of

the detected bugs — 16 and 22 bugs respectively. This indicates

that most of the data corruption hang bugs happen when the data

corruption causes the error code returned by I/O operations to

directly impact the loop stride or corrupted data content indirectly

impacts the loop stride.

To understand howDScope does not prune all the false positives,

we manually study those 37 false positives in Table 4. We �nd

DScope SoCC’18, October 11–13, 2018, Carlsbad, CA, USA

most of cases require inter-procedural analysis to identify. We will

discuss it in §5.

As shown in Table 6, DScope prunes 28,857 false positives in to-

tal, including 17,168 cases where the loop index, stride and bounds

are denoted by numeric primitives, and 11,689 caseswhere the loop

index, stride and bounds are denoted by commonly used Java APIs.

We should note that, we do not intend to claim that DScope

can replace those generic bug detection tools such as Findbugs and

Infer. We believe our bug detection schemes are complementary

to those existing tools and could be used in combination by the

software developer.

5 DISCUSSION

We observe that inmost of the 37 false positive cases, the forwarding-

index/reversing-index JavaAPIs and the checking-bounds JavaAPIs

are located in di�erent application functions. These APIs are indi-

rectly invoked in the application functions which are invoked in

the looppaths. To further reduce false positives, we plan to conduct

inter-procedural analysis on all the bug candidates to generate the

loop paths where the loop index, stride, and bounds are denoted

by either numeric primitives or Java APIs. We then adopt DScope’s

false positive pruning principles to prune the false positives with-

out missing true positives.

DScope focuses on detecting data-corruption hang bugs. We

plan to explore auto-�x schemes to correct those bugs based on

their types, as described in §3. For example, when the error code

returned by the I/O operations directly a�ects the loop strides, one

possible �x is to add extra error code checking statements in the

loop exit conditions to avoid the software hang. If the corrupted

data content indirectly a�ects loop strides, one possible �x could

be adding additional check over the data content before it is used

in the loop body. When the improper exception handling causes

the loop stride update to be skipped, one possible �x is to add

additional exception handling to properly update the stride when

data corruption occurs.

6 RELATED WORK

Data corruption study and detection: Previous work has been

extensively studied the data corruption problems in storage sys-

tems. Hwang et al. [27] and Schroeder et al. [39] studied the data

corruptions in memory devices. They found that DRAM failures

occur more frequently than expected. Bairavasundaram et al.[11,

12] and Oleksenko et al. [36] detected the data pointer corruptions

on disks. They showed that disk failures are prevalent for data

corruptions. Previous works have also been done to detect data

corruptions in �le systems. ZFS [14] detected �le system corrup-

tion caused by storage hardware, e.g., latent sector errors. Fryer et

al. [22, 41] implemented runtime data corruption detectors for the

Ext3 and Btrfs �le systems.

The above work provides motivations for us to study data cor-

ruption induced performance problems. Our work focuses on de-

tecting data corruption hang bugs in software-level rather than

detecting the data corruption itself (hardware-level).

Performance bug detection and diagnosis: Much work has

been done to detect and diagnose performance bugs in large scale

systems. X-ray [9] uses symbolic execution to automatically iden-

tify and suggest �xes to performance bugs caused by con�gura-

tion or input-based problems. Xu et al. [47] presented a clustering-

based scheme to detect system anomalies. Jin et al. [29] employed

rule-basedmethods to detect performance bugs that violate known

e�ciency rules. Caramel [33] statically detects ine�cient loops

that can be �xed by adding conditional-breaks. LDoctor [40] pro-

vides statistical diagnosis for ine�cient loops. Jolt [16] dynami-

cally detects in�nite loops by checking each loop iteration’s run-

time state. Tools also exist to detect ine�cient nested loops [34]

and workload-dependent loops [46].

In comparison, our work focuses on detecting data corruption

induced software hang problems before they are triggered in the

production system. We adopt a pattern-driven approach instead

of rule-based or anomaly detection approaches to achieving both

high coverage and precision for our targeted data corruption hang

bugs.

Previous work Carburizer [30] statically analyzes device driver

code and identi�es in�nite driver-polling problems. That is, a dri-

ver may wait for a device to enter a given state by polling a de-

vice register. Once the register data is corrupted, a buggy driver

may be stuck forever. DScope and Carburizer both statically ana-

lyze loops and loop-exit conditions. However, they face di�erent

design challenges due to the di�erent types of bugs they target.

DScope targets cloud systems written in Java, instead of low-level

device drivers, and hence needs to handle a much broader set of

I/O functions and I/O related data (e.g., not only data retrieved

by I/O operations but also status returned by I/O operations), and

more complicated control �ows caused by Java exceptions. Car-

burizer false-positive pruning only involves identifying loop time-

outs. However, DScope has to conduct sophisticated loop stride

and bound analysis in its false-positive pruning. Finally, as indi-

cated in §3, the type of corruption-hang bugs identi�ed by DScope

in cloud systems go much beyond simple I/O-state in�nite polling

problems, where the device register content often directly updates

the loop stride.

Fault injection: Previous work [13, 24, 42] used fault injection

techniques to analyze the failure behaviors (e.g., hang, crash) of

both software and hardware systems. For example, HSFI [42] in-

jected faults in the source code. Fault injection is also widely used

to check whether �le systems can handle certain type of data cor-

ruptions [21, 23, 38, 48]. For instance, Bairavasundaram et al. [10]

used context aware fault injections to �nd disk errors in virtual

memory systems. Zhang et al. [48] conducted a comprehensive

reliability case study of local �le systems to analyze both on-disk

and in-memory data integrity in Sun’s ZFS. Their results show that

�le systems are robust to disk corruption but less resilient to mem-

ory corruptions. Cords [23] exposed data losses, block corruptions,

and unavailability problems commonly exist in distributed �le sys-

tems. Cords also indicated that modern distributed �le systems

are not equipped to e�ectively use redundancy across replicas to

recover from local �le system faults. In contrast, our work focuses

on detecting potential data corruption hang bugs before they are

triggered by the data corruption faults. We only rely on static code

analysis, which can be easily applied to di�erent cloud server sys-

tems. We believe our work is complementary to the fault injection

SoCC’18, October 11–13, 2018, Carlsbad, CA, USA T. Dai et al.

based approaches which can be used to validate our candidate bugs

and further reduce false positives.

Functional bug detection: Apart from performance bugs, re-

cent works have also been done to detect functional bugs. pbSE [45]

conducted concolic execution to detect functional bugs and gen-

erate test cases for those bugs. Kollenda et al. [32] detected the

crash bugs by identifying the crash-resistant primitives via system

calls on Linux, Windows API functions, and exception handlers. In

contrast, our work focuses on detecting performance bugs, which

requires the bug detection system to focus on di�erent aspects of

the program such as loop exit checking.

Software testing:DeepXplore [37] is a whitebox framework to

test deep learning systems. DeepXplore takes unlabeled test inputs

as seeds in DNN systems. It uses gradient ascent to modify the

input to maximize chance of �nding rare corner cases. Fex [35] is

a software system evaluator, which collects a set of reused scripts

to develop a matured evaluation framework. Fex addressed the

limitation of rigid, simplistic and inconsistent in large system test-

ing. Elia et al. [20] designed an interoperability certi�cation model,

which facilitates testing interoperability among di�erent web ap-

plications. Our work is complementary to those software testing

tools. Our tool can identify potential buggy functions with in�nite

loops, which can guide the test case generation to further test our

detection results.

7 CONCLUSION

In this paper, we have presented DScope, a new data corruption

hang bug detection tool for cloud server systems. DScope com-

bines candidate bug discovery and false positive pattern �ltering

to detect software hang bugs that are related to data corruptions.

DScope is fully automatic without requiring any user input or pre-

de�ned rules. We have implemented a prototype of DScope and

evaluated it over 9 commonly used cloud server systems. DScope

successfully detects 42 true corruption hang bugs (29 of them are

new bugs) while existing bug detection tools can only detect very

few of them (2 by Findbugs and 1 by Infer).

ACKNOWLEDGMENTS

We would like to thank Ennan Zhai, our shepherd, and the anony-

mous reviewers for their insightful feedback and valuable com-

ments. This work was sponsored in part by NSF CNS1513942 grant

and NSF CNS1149445 grant. Any opinions expressed in this paper

are those of the authors and do not necessarily re�ect the views of

NSF or U.S. Government.

REFERENCES
[1] 2013. HDFS-4882. https://issues.apache.org/jira/browse/HDFS-4882.
[2] 2017. What Lessons can be Learned from BA’s Systems Outage? http://www.

extraordinarymanagedservices.com/news/what-lessons-can-be-learned-from-
bas-systems-outage/.

[3] 2018. Apache Cassandra. http://cassandra.apache.org/.
[4] 2018. Apache Hadoop. http://hadoop.apache.org/.
[5] 2018. Apache JIRA. https://issues.apache.org/jira.
[6] 2018. Facebook Infer. http://fbinfer.com/.
[7] 2018. Findbugs. http://�ndbugs.sourceforge.net/.
[8] 2018. Soot: A Framework for Analyzing and Transforming Java and Android

Applications. https://sable.github.io/soot/.
[9] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating Root-

Cause Diagnosis of Performance Anomalies in Production Software. In OSDI.

[10] Lakshmi N. Bairavasundaram,Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2006. Dependability Analysis of Virtual Memory Systems. In DSN.

[11] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Garth R. Goodson, and Bianca Schroeder. 2008. An Analysis of Data
Corruption in the Storage Stack. TOS 4, 3 (nov 2008), 8:1–8:28.

[12] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Michael M. Swift. 2008. Ana-
lyzing the E�ects of Disk-Pointer Corruption. In DSN.

[13] JamesH. Barton, EdwardW. Czeck, Zary Z. Segall, and Daniel P. Siewiorek. 1990.
Fault Injection Experiments Using FIAT. TC 39, 4 (apr 1990).

[14] Je� Bonwick and Bill Moore. 2007. ZFS–The Last Word In File Systems. https://
wiki.illumos.org/download/attachments/1146951/zfs_last.pdf .

[15] Nedyalko Borisov, Shivnath Babu, Nagapramod Mandagere, and Sandeep Ut-
tamchandani. 2011. Dealing Proactively with Data Corruption: Challenges and
Opportunities. In SMDB.

[16] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard. 2011.
Detecting and Escaping In�nite Loops with Jolt. In ECOOP.

[17] Ting Dai, Daniel Dean, Peipei Wang, Xiaohui Gu, and Shan Lu. 2018. Hytrace:
A Hybrid Approach to Performance Bug Diagnosis in Production Cloud Infras-
tructures. IEEE Transactions on Parallel and Distributed Systems (2018).

[18] Daniel J Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang, Junghwan Rhee, Nipun
Arora, and Geo� Jiang. 2014. PerfScope: Practical Online Server Performance
Bug Inference in Production Cloud Computing Infrastructures. In SOCC.

[19] Daniel J. Dean, Peipei Wang, Xiaohui Gu, Willam Enck, and Guoliang Jin. 2015.
Automatic Server Hang Bug Diagnosis: Feasible Reality or Pipe Dream?. In
ICAC.

[20] Ivano Alessandro Elia, Nuno Laranjeiro, and Marco Vieira. 2015. Test-Based
Interoperability Certi�cation for Web Services. In DSN.

[21] David Fiala, FrankMueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and
Ron Brightwell. 2012. Detection and Correction of Silent Data Corruption for
Large-scale High-performance Computing. In SC.

[22] Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, and
Ashvin Goel. 2014. Checking the Integrity of Transactional Mechanisms. TOS
10, 4 (oct 2014), 17:1–17:23.

[23] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2017. Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to Single Errors and Corruptions. In
FAST.

[24] Weining Gu, ZbigniewKalbarczyk, Ravishankar K. Iyer, and Zhen-Yu Yang. 2003.
Characterization of Linux Kernel Behavior Under Errors. In DSN.

[25] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Je�ry Adityatama, Kurnia J Eliazar, Agung Laksono, Je�rey F
Lukman, Vincentius Martin, et al. 2014. What Bugs Live in the Cloud?: A Study
of 3000+ Issues in Cloud Systems. In SOCC.

[26] Jian Huang, Xuechen Zhang, and Karsten Schwan. 2015. Understanding Issue
Correlations: A Case Study of the Hadoop System. In SOCC.

[27] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. 2012. Cosmic
Rays Don’t Strike Twice: Understanding the Nature of DRAM Errors and the
Implications for System Design. In ASPLOS.

[28] Weihang Jiang, Chongfeng Hu, Arkady Kanevsky, and Yuanyuan Zhou. 2008. Is
Disk the Dominant Contributor for Storage Subsystem Failures? A Comprehen-
sive Study of Failure Characteristics. In FAST.

[29] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-World Performance Bugs. In PLDI.

[30] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. 2009. Tolerating
Hardware Device Failures in Software. In SOSP.

[31] Jonathan Kaldor, Jonathan Mace, MichałBejda, Edison Gao, Wiktor Kuropatwa,
Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017. Canopy: An
End-to-End Performance Tracing And Analysis System. In SOSP.

[32] Benjamin Kollenda, Enes Göktaş, Tim Blazytko, Philipp Koppe, Robert Gawlik,
RK Konoth, Cristiano Giu�rida, Herbert Bos, and Thorsten Holz. 2017. Towards
Automated Discovery of Crash-Resistant Primitives in Binary Executables. In
DSN.

[33] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015. Caramel:
Detecting and Fixing Performance Problems That Have Non-intrusive Fixes. In
ICSE.

[34] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. 2013. Toddler:
Detecting Performance Problems via Similar Memory-Access Patterns. In ICSE.

[35] Oleksii Oleksenko, Dmitrii Kuvaiskii, PramodBhatotia, andChristof Fetzer. 2017.
Fex: A Software Systems Evaluator. In DSN.

[36] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Christof Fetzer, and
Pascal Felber. 2016. E�cient Fault Tolerance using Intel MPX and TSX. In DSN.

[37] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore:
Automated Whitebox Testing of Deep Learning Systems. In SOSP.

[38] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2005. IRON
File Systems. In SOSP.

https://issues.apache.org/jira/browse/HDFS-4882
http://www.extraordinarymanagedservices.com/news/what-lessons-can-be-learned-from-bas-systems-outage/
http://www.extraordinarymanagedservices.com/news/what-lessons-can-be-learned-from-bas-systems-outage/
http://www.extraordinarymanagedservices.com/news/what-lessons-can-be-learned-from-bas-systems-outage/
http://cassandra.apache.org/
http://hadoop.apache.org/
http://fbinfer.com/
http://findbugs.sourceforge.net/
https://sable.github.io/soot/
https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf
https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf

DScope SoCC’18, October 11–13, 2018, Carlsbad, CA, USA

[39] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. 2009. DRAM
Errors in the Wild: A Large-Scale Field Study. In SIGMETRICS.

[40] Linhai Song and Shan Lu. 2017. Performance Diagnosis for Ine�cient Loops. In
ICSE.

[41] Kuei Sun, Daniel Fryer, Dai Qin, Angela Demke Brown, and Ashvin Goel. 2014.
Robust Consistency Checking for Modern Filesystems. In RV.

[42] Erik van der Kouwe and Andrew S Tanenbaum. 2016. HSFI: Accurate Fault
Injection Scalable to Large Code Bases. In DSN.

[43] Clark Verbrugge. 1996. Using Co�. http://www.sable.mcgill.ca/~clump/Co�/
Co�.ps.

[44] Peipei Wang, Daniel J. Dean, and Xiaohui Gu. 2015. Understanding Real World
Data Corruptions in Cloud Systems. In IC2E.

[45] Qixue Xiao, Yu Chen, Chengang Wu, Kang Li, Junjie Mao, Shize Guo, and
Yuanchun Shi. 2017. pbSE: Phase-Based Symbolic Execution. In DSN.

[46] Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie. 2013. Context-Sensitive
Delta Inference for Identifying Workload-Dependent Performance Bottlenecks.
In ISSTA.

[47] Kui Xu, Ke Tian, Danfeng Yao, and Barbara G. Ryder. 2016. A Sharper Sense of
Self: Probabilistic Reasoning of Program Behaviors for Anomaly Detection with
Context Sensitivity. In DSN.

[48] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2010. End-to-End Data Integrity for File Systems: A ZFS Case
Study. In FAST.

http://www.sable.mcgill.ca/~clump/Coffi/Coffi.ps
http://www.sable.mcgill.ca/~clump/Coffi/Coffi.ps

	Abstract
	1 Introduction
	1.1 A Motivating Example
	1.2 Our Contribution

	2 System Design
	2.1 Approach Overview
	2.2 Identify Bug Candidates
	2.3 Prune False Positives

	3 Data Corruption Hang Bug Types
	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Bug Detection and Precision Results

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

