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ABSTRACT
Diagnosing a performance bug triggered in production cloud envi-
ronments is notoriously challenging. Extracting performance bug
signatures can help cloud operators quickly pinpoint the problem
and avoid repeating manual efforts for diagnosing similar perfor-
mance bugs. In this paper, we present PerfSig, a multi-modality
performance bug signature extraction tool which can identify prin-
cipal anomaly patterns and root cause functions for performance
bugs. PerfSig performs fine-grained anomaly detection over various
machine data such as system metrics, system logs, and function call
traces. We then conduct causal analysis across different machine
data using information theory method to pinpoint the root cause
function of a performance bug. PerfSig generates bug signatures
as the combination of the identified anomaly patterns and root
cause functions. We have implemented a prototype of PerfSig and
conducted evaluation using 20 real world performance bugs in six
commonly used cloud systems. Our experimental results show that
PerfSig captures various kinds of fine-grained anomaly patterns
from different machine data and successfully identifies the root
cause functions through multi-modality causal analysis for 19 out
of 20 tested performance bugs.
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1 INTRODUCTION
Cloud systems are becoming increasingly complex, which dramati-
cally increase the occurrence chance of various software bugs. In
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this work, we focus on those performance bugs [23, 33] which cause
cloud systems to get stuck in a hang state or experience perfor-
mance slow down. Performance bugs triggered in production cloud
environments are notoriously difficult to diagnose and fix due to the
lack of diagnostic information. When a performance bug occurs in
production cloud environments, system operators and developers
often need to put a lot of manual efforts to diagnose and fix the
problem under time pressure. For example, it took more than 12
hours for Amazon to recover its membership service outage caused
by a performance bug [4]. The bug was triggered by a limit on the
allowable thread count, that is, the server hung when the number
of server threads exceeded its pre-defined limit.

During our empirical bug study using popular bug repositories
such as Jira and Bugzilla [2, 5], we observe that many performance
bugs repeatedly occur in different versions of open source systems,
which causes the community to perform redundant debugging
over the same bug. Moreover, micro-services using containers [6]
make the bug replication easier than ever – the same bug occurs in
multiple containers that are created from the same container image.
To this end, we believe creating signatures for different performance
bugs can help system operators quickly identify recurrent bugs and
expedite debugging process. A performance bug signature uniquely
characterizes a performance bug in both symptoms (i.e., anomalous
resource usages and/or abnormal log sequences) and root cause
functions.

Previous work on performance bug detection and diagnosis (e.g.,
[14, 19, 20, 23, 25, 57, 59]) has two major limitations when applying
to the production cloud environment. First, previous work (e.g.,
[14, 19, 20, 23]) mainly focuses on depicting performance bugs via
analysis over single data type such as system metrics, system calls,
system logs, or performance counters. However, a performance
bug may manifest as anomalies in different data types. For exam-
ple, an infinite loop bug may cause a persistently high CPU usage
while a timeout bug can cause abnormal log sequences. Thus, it is
likely that we may fail to extract bug signatures for some perfor-
mance bugs if we only focus on analyzing one data type. Moreover,
extracting anomalies alone often cannot uniquely characterize a
performance bug because different performance bugs may exhibit
similar anomaly patterns in one data modality. For example, dif-
ferent infinite loop bugs can all show increased CPU consumption.
Thus, it is necessary to perform multi-modality analysis to extract
representative signatures for different performance bugs. Second,
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//RPC class
341 public static <T> ProtocolProxy <T>

waitForProtocolProxy (...) throws IOException {
- return waitForProtocolProxy (...,0 ,...);
+ return waitForProtocolProxy (...
+ ,getRpcTimeout(conf) ,...);
346 }

+ public static int getRpcTimeout
(Configuration conf) {

+ return conf.getInt(CommonConfigurationKeys
+ .IPC_CLIENT_RPC_TIMEOUT_KEY ,
+ CommonConfigurationKeys
+ .IPC_CLIENT_RPC_TIMEOUT_DEFAULT);
+ }

Figure 1 The code snippet of the Hadoop-11252 Bug. The buggy
code is invoked at the DataNode.
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Figure 2 Logs generated by Hadoop-11252 bug. The logs are pro-
duced at the NameNode.

the existing tools [25, 57, 59] are not application-agnostic. The ex-
isting tools often require domain knowledge extracted from the
source code or binary code. However, such information is not easily
accessible in production systems. Therefore, it is essential to design
a light-weight performance bug signature extraction tool without
requiring domain knowledge.

1.1 A Motivating Example
We use Hadoop-11252 [1] bug to illustrate how a performance

bug happens and how it manifests in different machine data types.
The root cause of Hadoop-11252 bug is that the DataNode does not
properly timeout the connection with the NameNode. Timeout is a
commonly used failover mechanism to close the broken connection.
As shown in Figure 1, the root cause function is waitForProtocolP
roxy functionwhich passes 0 timeout value (0means never timeout)
to the timeout configuration incorrectly at the DataNode side.When
the NameNode experiences some unexpected problems such as
network outage, the DataNode hangs on waiting for the response
from the remote serverwithout producing any error information. As
shown in Figure 2, we observe that the log entries that are typically
produced by server stopping are missing at the NameNode side.
Even if developers can discover the missing log anomaly at the
NameNode side, it is still difficult for them to pinpoint the root
cause function which is actually located at the DataNode side.

1.2 Contribution
In this paper, we present PerfSig, an automatic performance bug
signature extraction tool which performs multi-modality analysis
across different machine data including systemmetrics, system logs,
and function call traces. When a performance alert or service level
objective (SLO) violation is detected, PerfSig is triggered to analyze
a time window of recent machine data. PerfSig first employs signal

processing techniques and unsupervised machine learning methods
to identify fine-grained anomaly patterns in various machine data.
For example, for system metrics such as CPU usage time series, we
employ fast Fourier transform (FFT) and time series discord mining
to identify anomaly patterns such as fluctuation pattern changes,
persistent increase, and cycle period changes. For system logs, we
identify abnormal log sequences such as missing log entries in
a certain common sequence or overly long time span for certain
sequences. Next, PerfSig performs causal analysis between abnor-
mal metric/log patterns and function call traces using information
theory method mutual information (MI) [42]. Our causal analysis
reveals the Granger causality (i.e., dependencies) [26] between the
anomalies detected in different monitoring data (e.g., system met-
rics, system logs, function call traces). The goal is to identify the
root cause function which is the top contributor to the metric or
log anomaly. PerfSig outputs the performance bug signature as the
combination of the detected anomaly pattern and the pinpointed
root cause function.

Specifically, this paper makes the following contributions.
• We present a newmulti-modality performance bug signature
extraction framework which can precisely depict a perfor-
mance bug using both fine-grained anomaly patterns and
root cause functions.

• We describe a set of fine-grained anomaly detection methods
to capture specific manifestation of a performance bug in
system metrics or logs.

• We introduce an information theory based causal analysis
approach to pinpointing root cause functions by discover-
ing the causal relationship between function call traces and
anomaly patterns of system metrics or logs.

• We have implemented a prototype of PerfSig and evaluated
it over 20 real-world bugs that are discovered in six com-
monly used cloud systems. The results show that PerfSig
can produce precise signatures for 19 out of 20 performance
bugs.

The rest of the paper is organized as follows. Section 2 discusses
the system design details. Section 3 presents the experimental evalu-
ation. Section 4 discusses the threats to validity. Section 5 discusses
the related work. Section 6 concludes the paper. Section 7 presents
the data availability.

2 SYSTEM DESIGN
In this section, we describe the system design of the PerfSig system
in details. We first give an overview of the system. Next, we present
how we identify various fine-grained anomaly patterns in system
metric and system log data, respectively. Finally, we discuss how
we perform causal analysis between system metric/log anomalies
and function call traces to identify the root cause function which
contributes to the anomaly.

2.1 Approach Overview
PerfSig adopts a two-phase approach to extracting signatures for a
performance bug, shown by Figure 3. When a performance alert is
generated or a service level objective (SLO) violation is detected,
PerfSig is triggered to extract performance bug signatures on-the-fly
by analyzing a recent time window of system metrics, system logs,
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Figure 3 The architecture overview of PerfSig.

and function call traces. During the first phase (Phase I), PerfSig em-
ploys various signal processing and machine learning techniques to
extract fine-grained anomaly patterns to capture the manifestation
of the performance bug in either system metrics or system logs.
Specifically, for system metrics, PerfSig uses time series analysis
schemes to extract principal features such as fluctuation pattern
changes, persistent increases, and cycle period changes (Section
2.2). For system logs, we leverage classification and frequent se-
quence mining to extract anomalous log patterns such as missing
certain log entries or overly long time span of certain log sequences
(Section 2.3). During the second phase (Phase II), PerfSig uses in-
formation theory approach to performing causal analysis between
function call traces and detected abnormal system metric or system
log patterns to pinpoint root cause functions (Section 2.4). Per-
formance bugs often manifest as abnormal resource consumption
and/or system log outputs (i.e., performance bug symptoms), which
are typically caused by the root cause functions (e.g., infinite loops,
missing timeout, costly operations). Therefore, we leverage the
Granger causality between anomaly patterns and function time
span anomalies to identify the root cause functions. Combining the
phase I and Phase II results, PerfSig outputs the performance bug
signature as the combination of the fine-grained anomaly pattern
and the pinpointed root cause function.

2.2 System Metric Anomaly Pattern Detection
Many performance bugs can manifest as changes in system metrics
such as CPU utilization, memory utilization, and network traffic.
However, different performance bugs can exhibit different anomaly
patterns. For example, Figure 4 shows different CPU usage abnormal
patterns for three real performance bugs. To extract distinctive
signatures for different performance bugs, we need to not only
detect anomalies but also extract fine-grained anomaly patterns.

We observe that the system metrics such as CPU consumption
are inherently fluctuating. In order to extract principal anomaly
patterns, we first leverage low pass filters to remove random noises
from the raw system metric time series. The low pass filter per-
forms data denoising by filtering out high frequency signals in
original system metric time series. The rationale is that random
fluctuations usually manifest as the high frequency signals. We
transform the time series to the signals in frequency domain and

drop high frequency signals. Note that we use relational values
instead of absolute values, which avoids setting manual thresh-
olds. If we choose a too large filtering percentage, we filter out
too many signals which might include anomalies. If we choose a
too small filtering percentage, we cannot filter out noises. In our
experiment, we filter out top 50% high frequency signals. After
that, we transform the signals in the frequency domain back to
the time series. We conduct extensive experiments to compare the
time series patterns before and after performing low pass filters.
The results show that the anomaly patterns become more salient
after filtering. For example, Figure 4b and Figure 9a show the same
CPU usage patterns before and after the filtering, respectively. We
can see the anomaly pattern is much clearer in Figure 9a. Next,
we employ signal processing methods over denoised time series to
extract principal anomaly patterns.

Fluctuation pattern changes. For dynamic data-intensive com-
puting systems such as Hadoop, CPU utilization usually has pe-
riodical large fluctuations during normal run. It is because the
application workload contains different types of interleaving jobs.
For example, Figure 4a shows the CPU utilization’s fluctuation
change when Hadoop-15415 bug occurs. During the normal run
(the first half of the figure), we observe large fluctuations. After the
bug is triggered (the second half of the figure), the system hangs
inside an infinite loop which fully consumes one CPU core and
then CPU utilization stays at a steady value. We observe that many
hang bugs in dynamic data-intensive systems often manifest as
fluctuation pattern changes which refer to the cases when the sys-
tem usage changes from normal fluctuating patterns caused by
dynamic workloads during normal runs to nearly non-fluctuating
patterns caused by the hang bugs during buggy runs. To capture
this anomaly pattern, PerfSig calculates the standard deviations
of a moving window in the system metric time series and identify
the time when the moving window standard deviation experiences
significant changes (e.g., dropping from a large value to a small
value).

Persistent increases. Besides software hang bugs, slowdown
bugs are another common category of performance bugs. We ob-
serve slowdown bugs caused by code inefficiency often consumes
a large amount of computational resources (e.g., CPU) during the
abnormal period. For example, Figure 4b shows the CPU increase
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(a) Hadoop-15415 bug’s fluctuation pattern change.
The bug starts at 10:33:02.

(b) Hadoop-6133 bug’s persistent increase. The bug
starts at 00:02:54 and ends at 00:03:30.

(c) Cassandra-7330 bug’s cyclic pattern change. The
bug starts at 01:48:50.

Figure 4 Three commonly seen system metric anomaly patterns.

caused by the Hadoop-6133 bug. PerfSig detects such abnormal
pattern using time series discord [56]. A sliding window is applied
on the filtered system metric time series where the nearest neigh-
bor distance [56] between the previous sliding windows and the
current sliding window is computed. PerfSig detects the persis-
tent increase pattern when the nearest neighbor distance shows
significant increases.

Cyclic pattern changes.Many production server systems ex-
hibit cyclic resource consumption patterns. It is because production
server resource usage patterns are typically driven by production
workload patterns. When the production workload exhibits regu-
lar patterns, the corresponding system usage patterns show cyclic
patterns. We observe that when a performance bug is triggered,
the workload changes, leading to the cyclic resource usage pattern
changes. Figure 4c shows the CPU cyclic pattern change caused
by the Cassandra-7330 bug. During normal run, CPU shows a cy-
cle of nine seconds, while during buggy run, CPU does not show
cyclic pattern. To detect such cyclic pattern changes, we employ
fast Fourier transform (FFT) algorithm on a sliding window of sys-
tem metric time series to extract the dominating frequencies whose
magnitude values are in the top rank list. We detect the cyclic
pattern change when the top frequency values experience changes.

2.3 System Log Anomaly Pattern Detection
We now describe how PerfSig extracts anomaly patterns from sys-
tem logs. Much existing work focuses on detecting abnormal error
logs that only appear in a buggy run. However, we observe that
when a performance bug is triggered, the system usually does not
produce any error log message. Instead, some log entries included
in the normal run are missing during the buggy run, which are quite
common among software hang bugs. In other cases like slowdown
bugs, some log sequences could exhibit longer time span (i.e., the
time duration from the start time of the first log entry in a sequence
to the end time of the last log entry in a sequence) during the buggy
run when compared with normal run.

Previous work in reconstructing execution path from the system
logs contains three limitations: 1) focusing on sequential task exe-
cution [25]; 2) is combined with domain knowledge extracted from
binary code [59]; and 3) is not generic for all the systems [57]. Com-
pared with the existing work, PerfSig considers concurrent task
execution and only takes the log entries and vector timestamp as
the input. PerfSig does not require any application-specific knowl-
edge. To discover the log sequences from interleaving log entries,
PerfSig first classifies the log entries generated by different tasks.
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Figure 5 The log entry classification framework.

After the task classification is done, we further separate the log
entries based on the time gaps. Then we perform frequent sequence
mining to extract the log sequences.

Semantics-based Grouping. After we collect logs from dis-
tributed hosts, PerfSig classifies logs generated by different tasks.
The idea is that logs generated by the same task have similar se-
mantic meanings. To achieve this goal, we use the word embedding
vector [45] to represent each word’s contextual meaning. After
that, we use the average of the word embedding vectors of the
words’ to represent each log entry, which is common for generating
representation for natural language sentences [39]. Intuitively, log
entries which have similar meanings have similar word embedding
vectors. Therefore, we can apply clustering algorithm to grouping
the similar log entries together. Figure 5 summarizes the classifi-
cation procedures. Specifically, PerfSig pre-processes the logs to
split the log entries into words, extracts word embedding vectors
for each word, builds log entry representation by aggregating the
word embeddings associated with each log entry, and classifies the
entries generated by different tasks with the Self-Organizing Map
(SOM) algorithm [36].

First, we pre-process each log entry to extract the words for
learning word embedding vectors. The first step is to split the log
entries based on brackets and parentheses, because content inside
a pair of brackets and parentheses often represents one command
or operation, e.g., database query command. After that, we split the
log entry based on comma, full stop, colon, and semi-colon. Then
we further separate them according to the spaces between words.

Once we have extracted words from the log entries, we treat each
entry as a sentence and learns the word embedding representation
for each word. The major advantage of using word embedding is
that it considers words’ semantic meaning in the contexts. It is
based on the hypothesis that words occurred in the similar contexts
tend to be semantically similar. We choose to use word embedding
as the feature vector because log entries generated by the same task
typically use short sentence with similar terms. We use word2vec
with Continuous Bag of Words (CBoW) [45] to learn the word
embedding vector to represent each word’s meaning. Each word
embedding is initialized as a 𝑛-dimensional vector. In each iteration,
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Figure 6 The log entries’ embedding vectors forms two clusters,
one for each task.

we train each word’s embedding using the sum of𝑚 surrounding
context words’ embedding vectors. We update each word’s embed-
ding vector until the convergence is reached. In our experiment, 𝑛
is set to 100 and𝑚 is set to five.

We construct each log entry’s embedding vector by taking the
average of all the words’ embedding vectors in the log entry. After
that, we apply the SOM clustering algorithm [36] to clustering log
entries that belong to different tasks. Compared with the traditional
distance-based methods, SOM model has better performance to
cluster high-dimensional vectors.

Figure 6 shows an example of classification results. The log en-
tries are split into two clusters and each cluster represents one type
of task. For example, log cluster A represents Hadoop system estab-
lishes IPC connection between different processes. Log cluster B
represents Hadoop system runs the map and reduce computational
jobs.

Frequent Sequence Mining: After task classification, we suc-
cessfully separate interleaving logs into log entry clusters, repre-
senting different tasks. The goal of this step is to extract frequent
system log sequences with each log cluster, which often represent a
set of execution such as client-server connection or threads commu-
nication. Performance bugs manifest as missing log entries in the
log sequence or the log sequence has abnormal time span. For exam-
ple, Figure 2 shows a complete log sequence. When Hadoop-11252
bug happens, the last three log entries are missing. Our idea is to
only extract the constants (log keys) from the log entries. Then we
split the log entries based on the time gaps and extract frequently
occurred log sequences.

The log entries contain variables like socket reader number and
port number, which are different in each IPC connection. We extract
the constants (log keys) by adopting simple regular expressions.
After we split the log entries into words, we keep the words that
only contain alphabetic letters and replace other words with “∗”.
Then we concatenate the words with a space as the log key. For
each log entry cluster, we separate it based on the time gaps. The
rationale is based on the observation that the same log sequence
occurs after long time gap comparedwith its time span.We calculate
the time gaps between each two consecutive log entries and derives
the average value and standard deviation of each cluster. If the time
gap between two consecutive log entries exceeds the average value
+ 2.0 × standard deviation, we separate the log cluster.

After we get separated log clusters and replace each log en-
try with the log key, we perform frequent sequence mining to
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Figure 7 Logs generated by HDFS-4301 bug.

extract log sequences from normal run data. We use PrefixSpan
[28] to perform frequent sequence mining because it is more effi-
cient compared with other methods. After we extract top frequent
log sequences from normal run, we use them to detect anomalies
during buggy run. Specifically, we detect two anomaly patterns, i.e.,
missing logs and abnormal log sequence time span.

Missing log entries anomaly pattern: During the anomaly
detection phase, we first perform semantics-based grouping. In
each cluster, we extract log keys and check whether the log keys
belong to any extracted log sequence. If the answer is yes, we check
whether other log keys of the log sequence also appear in the log
cluster. For example, Figure 2 shows how we detect Hadoop-11252
bug. During normal run, we extract the complete log sequence
from starting the socket reader to stopping the server responder.
During buggy run, we perform semantic-based grouping to cluster
log entries generated from IPC connection tasks together. For the
extracted the log sequence, We find the log keys to start the server
but we cannot find the log keys to stop the server.

Excessive time span anomaly pattern: Similar to missing log
pattern detection, we perform semantics-based grouping and log
key extraction. If all the log keys of one particular log sequence
appear in one cluster, PerSig extracts the log sequence time span
which starts from the first log key’s occurring time to the last log
key’s occurring time. If the time span is excessive long, PerSig
reports the abnormal log sequence time span pattern. For example,
Figure 7 shows how we detect HDFS-4301 bug. During normal run,
we extract the log sequence and the log sequence spans six seconds.
During buggy run, the log sequence spans 97 seconds and PerSig
reports the abnormal log sequence time span pattern.

2.4 Root Cause Analysis via Multi-modality
Causal Analysis

After we identify the anomaly patterns, we perform causal analysis
to localize the root cause function.

2.4.1 Causal Analysis between System Metrics and Function Call
Traces. After we identify three anomaly patterns of the system
metric time series, we retrieve a window of the filtered time series
which contains the anomaly patterns. Suppose the bug happens
between time [𝑡1, 𝑡2], then we retrieve the system metric between
[𝑡1 −𝑤, 𝑡2 +𝑤], where𝑤 is the parameter to control the window
size. Then we retrieve all the function call traces which occurs in
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{"i":"2960606995495142","s":"ab3c06709e3bbab4",
"b":1622001774031 ,"e":1622001774058 ,
"d":"DFSInputStream#byteArrayRead",
"r":"YarnChild","p":[],
"n":{"path":".../ job_1621397508582_0005/job.split"}}
...

{"i":"37 dada28edec1ea0","s":"5cbe565f9c5a3c8b",
"b":1622001775036 ,"e":1622001810393 ,
"d":"conf.getClassByName","r":"Test","p":[]}

Figure 8 The extracted function call traces. “b” represents func-
tion’s start timestamp, “e” represents function’s end timestamp
and “d” represents the function name. All the traces have the start
time no earlier than 00:02:54 and end time no later than 00:03:30.

the time window, i.e, [𝑡1 −𝑤, 𝑡2 +𝑤]. For example, Figure 9a shows
the CPU utilization time series. It contains the CPU spike occurred
between 00:02:54 and 00:03:30. We set𝑤 to one minute, therefore,
we include the normal run data from 00:01:54 to 00:02:54 and data
from 00:03:30 to 00:04:30, because we want to include the sharp
CPU changes at 00:02:54 and 00:03:30. Including normal run data
can increase the accuracy of causal analysis. If we only consider
the buggy run data, the frequently used functions also occur in
the buggy run and may infer a high causality score. However, if
we consider both normal run and buggy run, the frequent used
functions always appear, which decreases the causal relationship
between the system metrics and them. Figure 8 shows the retrieved
function call trace snippet. All the function call traces are in the
chronological order. We extract all the function call traces occurred
between 00:02:54 and 00:03:30, i.e„ their start times are no earlier
than 00:02:54 and end time no later than 00:03:30. We extract three
kinds of information, i.e, beginning timestamp, ending timestamp
and function name, to formulate the function call trace into time
series.

Next, we formulate the function call traces into the time series.
we extract the aggregated time span of each function between two
consecutive time points of system metric time series. If CPU utiliza-
tion are sampled at 𝑡1, 𝑡2, ..., 𝑡𝑁 , then the function time series can
be formulated as𝑇 [𝑡1, 𝑡2),𝑇 [𝑡2, 𝑡3), ...,𝑇 [𝑡𝑁 , 𝑡𝑁+1), where𝑇 [𝑡𝑖 , 𝑡𝑖+1)
represents the function’s aggregated time span during [𝑡𝑖 , 𝑡𝑖+1)
period. For example, Figure 9b shows the conf.getClassByName
function time series. During the time [00:02:25, 00:02:26), the bug
happens and conf.getClassByName is invoked for all the one sec-
ond period. Therefore, conf.getClassByName time series has the
value of 1000 milliseconds at the time point 00:02:25. If 𝑀 func-
tions are invoked during the whole time window, then there are 𝑀
function time series. In this way, the function time series is aligned
with system metric time series, and we can apply causal analysis
algorithm on them. We extract the time span as the function call’s
feature because performance issues such as hang or slowdown,
usually manifest as the changes in function time spans.

After we get all the function time series, we normalize each
function time series and the system metric time series. After nor-
malization, the sum of all the data points in one time series is equal
to one. We adopt information theoretic method, i.e., mutual infor-
mation (MI) [3, 42, 44], to infer the causal relationship between each
function’s time series and CPU time series. Because performance
bugs often manifest as abnormal system usages and/or abnormal

(a) The CPU utilization time series after filtering. The bug starts at 00:02:54 and
ends at 00:03:30. We retrieve one minute normal run data before and after bug
is triggered.

(b) The function call time series in Hadoop-6133 bug. conf.getClassByName is
the root cause function and DFSInputStream#byteArrayRead is an non-root cause
function.

Figure 9 Hadoop-6133 bug’s time series.

system log outputs, we leverage the Granger causality between sys-
tem anomalies and function time span anomalies to identify root
cause functions. Mutual information is one of the entropy-based
methods which are important methods to perform exploratory
causal analysis for time series data [42, 52]. Compared with linear
correlation methods such as Pearson and Spearman coefficient, mu-
tual information captures non-linear causal relationship between
two time series. Mutual information measures how much knowing
one of the two time series reduces uncertainty about the other.
Mutual information not only consider the absolute value of each
data point, but also consider the data distribution across the whole
time series. Therefore, we can filter out the frequently invoked
functions. It is because the frequently invoked functions have long
time span during both buggy run and normal run. Considering the
data distribution, they cannot have a larger mutual information
than those functions which are only frequently invoked during
buggy run. In comparison, the frequent invoked functions can have
high correlation scores with system metric time series because they
have long time spans during buggy run.

Mutual information between two time series 𝑋 and 𝑌 is defined
as:

𝑀𝐼 (𝑋,𝑌 ) =
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦) log( 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) ) (1)

where 𝑝 (𝑥) and 𝑝 (𝑦) represent the probabilities of𝑋 and𝑌 occurred
at the sampling point. 𝑝 (𝑥,𝑦) represents the probability that 𝑋 and
𝑌 occur at the same time.

We calculate the mutual information between each function
time series and the system metric time series. We rank all the
candidate functions based on the mutual information scores. We
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(a) The log sequence time series. The bug is triggered at 12:05:58.

(b) The function call time series. RPC.waitForProtocolProxy is the root cause
function and ClientProtocol.create is an non-root cause function.

Figure 10 Hadoop-11252 bug’s time series.

then determine the function that contributes to the anomaly most
as the one with the largest mutual information.

2.4.2 Causal Analysis between System Logs and Function Call Traces.
Weperform causal analysis on function time series and log sequence
time series to localize the root cause function that contributes to
the log anomaly. Even though system logs contain rich information,
e.g., the class name that generates the logs, it is still essential to
perform causal analysis, because the function that generates the
log sequence is usually not the root cause function.

After we identify the missing log or longer execution patterns,
we retrieve the log sequence’s information, i.e., beginning time
and end time, during both normal run and buggy run. The start
time is the first log entry’s invoking time and the end time is the
last log entry’s invoking time. For example, in Figure 2, the log
sequence start time is 12:04:53 and end time is 12:04:56. If missing
log pattern happens, we regard its time span as infinity because the
log sequence never ends. Besides that, we retrieve all the function
call trace within the same time window, i.e, during the period that
the log sequences are produced.

We formulate the log sequences and the function call traces
into time series. We sample them every one second and collect the
aggregated time span during the one second interval. It is similar
to how we formulate the function time series in Section 2.4.1. Note
that the function time series still needs to be aligned with the log
sequence time series. Figure 10a shows the log sequence time series
and Figure 10b shows the function call time series. The root cause
function has similar shape with the log sequence.

After generating log sequence and function time series, we cal-
culate the mutual information between each function’s time series
and the log sequence to identify the root cause function, similar to
Section 2.4.1.

3 EXPERIMENTAL EVALUATION
In this section, we first present the evaluation methodology fol-
lowed by the experimental results. Next, we present several real
bug examples including one negative case study where PerfSig fails
to extract a signature for the bug.

3.1 Evaluation Methodology
Cloud systems:We studied 20 real performance bugs from six com-
monly used open-source cloud systems: Hadoop common library,
Hadoop MapReduce big data processing framework, Hadoop HDFS
file system, Hadoop Yarn resource management service, HBase data-
base system, and Cassandra database system. Four Hadoop systems
are set up in distributed modes to evaluate PerfSig’s effectiveness
over distributed system performance bugs.

Benchmarks: We use the “hang”, “stuck”, “block”, “log”, “CPU”,
“performance” and “slowdown” keywords to search for performance
bugs. We manually examine each bug to determine whether it is a
real performance bug triggered in production environments and
whether it is reproducible in deterministic ways. To the best of our
efforts, we successfully reproduced 20 bugs in six cloud systems.
Table 1 shows our collected bug benchmark.

Setup: All the experiments were conducted in our lab machine
with an Intel i7-4790Octa-core 3.6GHzCPU, 16GBmemory, running
64-bit Ubuntu v16.04 with kernel v4.4.0.

3.2 Implementation
Function call tracing: The function call traces are collected using
Google Dapper framework. Dapper has various implementations
on different production systems. For example, an implementation
of Dapper, HTrace [7] is integrated into Hadoop since version 2.7.0.
Another implementation of Dapper, Zipkin [9] is integrated into
Hadoop, HBase, and Cassandra. Those implementations collect
traces for error-prone functions in cloud systems. We can configure
the parameters for Dapper tracing in the configuration files directly
and deploy the production systems to trace the function calls.

Anomaly pattern analysis:We implement the anomaly pat-
tern detection in Python 3.9. We use scikit-learn [46] package to
implement FFT analysis and log classification.We use theWord2vec-
CBoW implemented in Gensim [47] for embedding learning.

Hyperparameter in word embedding learning: We use the
Word2vec-CBoW algorithm [45] with the embedding vector size
of 100 and the window size of 5 words. The SOM is set to be 5x5
grid map and the weight vector length in SOM is set to be 100, the
same as the embedding vector size.

3.3 Alternative Approaches
Performance bug signature is quite new. Previous tools only ad-
dressed partial problems. PerfSig first provides a comprehensive
end-to-end solution to extract both symptoms and root causes as
the bug signatures. To compare with PerfSig, we implement several
alternative approaches to perform log analysis and causal analysis.

3.3.1 Logs Anomaly Pattern Detection. For system log anomaly
pattern detection, we implement four alternative approaches to
compare with PerfSig.
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Table 1 Bug benchmark. bug ID∗ represents it is a distributed system performance bug.

Bug ID Version Symptom Description
Cassandra-7330 2.0.8 Hang The corrupted InputStream returns error code, causing an infinite loop.
Cassandra-9881 2.0.8 Hang Improper exception handling skips loop index-forwarding API, causing an infinite loop.
Hadoop-11252∗ 2.5.0 Hang the RPC connection timeout is missing, leading to system hanging.
Hadoop-15415 2.5.0 Hang Misconfigured parameter indirectly affects loop index, causing an infinite loop.
Hadoop-5318 0.19.0 Slowdown The AtomicLong operations cause contention with multiple threads.
Hadoop-6133 0.20.0 Slowdown Extra calls cause 80x performance slowdown.
Hadoop-8614 0.23.0 Hang Skipping after EOF returns error code, affecting loop stride.
Hadoop-9106∗ 3.0.0-alpha1 Slowdown IPC connection timeout is hard-coded, causing a much longer failure recovery time.

MapReduce-5066∗ 2.0.3-alpha Hang Timeout is missing when JobTracker calls a URL, causing system hanging.
MapReduce-4089 2.0.0-alpha Hang Task status updates cause hung task never timeout.
MapReduce-3862 0.23.1 Hang NodeManager hangs on shutdown due to struggling DeletionService threads.
MapReduce-7089 2.5.0 Hang Misconfigured variable causes loop stride to be set to 0.
MapReduce-6990 2.5.0 Hang Skipping on a corrupted InputStream returns error code, affecting loop stride.
HDFS-1490∗ 2.0.2-alpha Hang Timeout is missing for image transfer operations, causing system hanging.
HDFS-4301∗ 2.0.3-alpha Slowdown Timeout value on image transfer operation is large.
HDFS-7005∗ 2.5.0 Hang DFS input streams do not timeout.
HBase-17341 1.3.0 Slowdown Timeout is missing for terminating replication endpoint.
Yarn-163 2.0.0-alpha Hang Skipping on a corrupted FileReader returns error code, affecting loop stride.
Yarn-1630 2.2.0 Hang YarnClient endlessly polls the state of an asynchronized application.
Yarn-2905 2.5.0 Hang Skipping on a corrupted aggregated log file returns error code, affecting loop stride.

DBScan-embedding:We use the same embedding representa-
tion. However, instead of the SOM clustering algorithm, we use
DBScan [49] to group the log entries generated by different tasks.
DBScan is a popular non-parametric density-based clustering al-
gorithm. It automatically determines the number of clusters when
trained.

SOM-TFIDF: We use Term-Frequency-Inverse-Document-Freq-
uency (TFIDF) [34] to extract features from each log entry. Term
frequency (TF) captures the frequent words in a log entry. Inverse
document frequency (IDF) is used to weight down the frequently
used meaningless words such as “the”, “an”, and “on”. The SOM
algorithm is used to classify the TFIDF vectors associated with
different log entries into different task groups.

DBScan-TFIDF: We use TFIDF to represent each log entry and
DBScan [49] to classify the log entries into different task groups.

Topic-LDA: Latent Dirichlet Allocation (LDA) [16] is a popular
technique to analyze the topics of natural language documents.
When log entries are fed into the LDA algorithm, the algorithm
estimates the probability of each log entry belonging to different
topics. We choose the topic with the largest probability as its topic.
Then we classify the log entries with the same topic into one task
group.

3.3.2 Causal Analysis. We implement two alternative approaches
for causal analysis for comparison with PerfSig. Both alternative
approaches use correlation coefficients to predict causality. Specifi-
cally, we test the Pearson Correlation Coefficient [27] and Spear-
man’s Rank Correlation Coefficient [27]. Pearson Correlation Coef-
ficient measures the correlation using normalized co-variances of
absolute values. Spearman’s Rank Correlation Coefficient measures
the correlation using normalized co-variances of ranked values. A
larger causal score means the two time series are strongly corre-
lated.

3.4 Results
Table 2 shows the results of signature extraction for bugs which
manifest as system metric anomalies. PerfSig can identify three

different anomaly patterns, i.e, fluctuation pattern changes, persis-
tent increases and cyclic pattern changes, from all the 11 tested
bugs. Moreover, PerfSig is capable of detecting the true root cause
functions for all the tested bugs.

We also evaluated three different causal analysis methods (i.e.,
MI, Pearson and Spearman) under two different settings: with low-
pass filter and without low-pass filter. Overall, the low-pass filter
improves the quality of causal analysis result, no matter which
causal analysis method is used. It is because smoothing the time
series reduces irrelevant fluctuations brought by dynamic work-
loads and makes the anomaly pattern more salient. For example, in
Hadoop-15415 bug, the hflush function ranks the highest when
filtering is not employed. The hflush function is CPU-intensive,
which is mis-detected as the root cause function due to a low causal
score. In our experiments, we observe that setting a 50-90% filter-
ing threshold produces the same results, so we choose 50% as our
default filtering threshold.

When comparing the three different causal analysis methods, we
can see that the proposed MI scheme outperforms the alternative
Pearson and Spearman methods. The experimental results show
that good causal analysis techniques needs to consider data dis-
tribution across the whole time series. Moreover, entropy based
method such as MI is better than co-variance based methods.

Table 3 shows the results of bug signature extraction results for
bugs which manifest as log anomalies. Specifically, We compare
PerfSig (i.e., SOM-embedding) with four other alternative designs:
DBScan-embedding, SOM-TFIDF, DBScan-TFIDF, and Topic-LDA.
Overall, PerfSig is capable of detecting the anomaly pattern for
eight out of nine bugs which show log anomalies.

First, we compare PerfSig with DBScan-embedding where the
workload classification method, SOM, is replaced with DBScan.
PerfSig outperforms DBScan-embedding because the word embed-
ding vector is 100-dimensional. DBScan has poor performance on
high-dimensional vectors due to the curse of dimensionality [37].

If we replace the embedding representation with the TFIDF rep-
resentation, we can see PerfSig outperforms both alternative ap-
proaches with TFIDF, i.e, SOM-TFIDF and DBScan-TFIDF. It is be-
cause TFIDF only considers individual word occurrence and fails to
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Table 2 Signature extraction results for bugs which have system metric anomalies. Pearson𝑓 is pearson method with filter. Similarly,
Spearman𝑓 is spearman method with filter. For each method, we present the root cause function’s rank using causal analysis.

Bug ID Anomaly Pattern Root Cause Function
Number of
Candidate
Functions

PerfSig Pearson𝑓 Spearman𝑓 MI Pearson Spearman

Hadoop-8614 Fluctuation
pattern change IOUtils#skipFully 91 1 31 1 6 14 12

Hadoop-15415 Fluctuation
pattern change IOUtils#copyBytes 91 1 3 1 6 13 20

Yarn-163 Fluctuation
pattern change ContainerLogsPage#printLogs 91 1 24 2 8 20 81

Yarn-2905 Fluctuation
pattern change

AggregatedLogsBlock
#readContainerLogs 91 1 37 2 6 46 35

Yarn-1630 Fluctuation
pattern change YarnClientImpl#submitApplication 91 1 2 1 12 10 21

MapReduce-7089 Fluctuation
pattern change ReadMapper#doIO 91 1 4 1 5 6 48

Mapreduce-6990 Fluctuation
pattern change TaskLog#Reader 91 1 41 1 2 58 20

Hadoop-5318 Persistent increase FSDataOutputStream#write 188 1 1 1 1 1 18
Hadoop-6133 Persistent increase conf#getClassByName 115 1 1 1 21 24 32

Cassandra-9881 Cyclic pattern
change Scrubber#scrub 41 1 1 1 1 1 1

Cassandra-7330 Cyclic pattern
change StreamReader#drain 41 1 1 1 1 1 1

Table 3 Signature extraction results for bugs which have system log anomalies. ✗ represents the anomaly pattern and the root cause func-
tion cannot be identified. For each method, we present the root cause function’s rank using causal analysis.

Bug ID Signature (Anomaly Pattern, Root Cause Function)
Number of
Candidate
Functions

PerfSig DBScan-
embedding

SOM
-TFIDF

DBScan
-TFIDF Topic-LDA

Hadoop-11252 Infinite log sequence timespan due to missing closing server log,
RPC.waitForProtocolProxy 91 1 1 1 1 ✗

MapReduce-5066 Infinite log sequence timespan due to missing closing server log,
JobEndNotifier.localRunnerNotification 81 1 ✗ ✗ 3 ✗

MapReduce-4089 Infinite log sequence timespan due to missing stopping service log,
PingChecker.run 79 1 1 1 1 1

Mapreduce-3862 Infinite log sequence timespan due to missing stopping service log,
DeletionService.delete 81 1 1 1 1 ✗

HDFS-7005 – – ✗ ✗ ✗ ✗ ✗

HDFS-1490 Infinite log sequence timespan due to missing closing server log,
TransferFsImage.getFileClient 93 1 ✗ 1 1 ✗

Hadoop-9106 Abnormal log sequence timespan,
Client.call() 84 1 1 ✗ ✗ ✗

HBase-17341 Abnormal log sequence timespan,
ReplicationSource.terminate() 8 1 1 ✗ ✗ ✗

HDFS-4301 Abnormal log sequence timespan,
TransferFsImage.getFileClient() 93 1 ✗ 1 1 ✗

capture the semantics of each word. The embedding representation
conversely captures the semantic information by modeling the con-
textual surrounding words. As system logs are written in a human
readable format for developers to diagnose problems of the system,
the advantage of embedding representation over TFIDF is clear
and also is observed from the experimental results. We observe
semantic grouping works well because the system log semantics
are much simpler than natural language textual data. SOM and
DBScan clustering have similar performance on TFIDF representa-
tion, because number of TFIDF dimensions is not large. Log entries
typically are short sentences with limited key words.

Next, we replace the classification framework with topic extrac-
tion model (i.e., Topic-LDA), which is another kind of semantic
analysis. We observe a much worse performance compared with
the other methods. Topic-LDA has poor performance because the
log entries are usually very short. According to a study on text

documents from micro-blogging platform Twitter [8, 32], the per-
formance of Topic-LDA degrades when the input text documents
are short. According to [32], it is hard for Topic-LDA to extract
semantics from short documents as Topic-LDA cannot obtain suffi-
cient statistics from short documents.

PerfSig considers all functions invoked around the performance
alert detection time as candidate root cause functions and ranks all
candidate root cause functions based on the MI scores. As shown in
Table 2 and Table 3, for 80% bugs, the number of candidate functions
exceeds 70. In our experiments, the true root cause functions have
the highest MI scores (102% higher than the second rank candidate
functions on average) in 19 out of 20 bugs.
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Table 4 The runtime overhead and diagnosis time. Hadoop rep-
resents the four Hadoop system, i.e., Hadoop Common, Hadoop
MapReduce, Hadoop HDFS and Hadoop Yarn.

System Workload Tracing
Overhead

Metric
Anomaly
Detection

Time

Log
Anomaly
Detection

Time

Causal
Analysis
Time

Hadoop 𝜋

calculation 0.18% 0.13±0.01s 0.22±0.26s 0.28±0.16s

HBase database
query 0.67% 0.13±0.01s 0.17±0.01s 0.02±0.002s

Cassandra database
query 1.7% 0.13±0.01s 0.36±0.03s 0.15±0.01s

// ReflectionUtils class
104 public static <T> T newInstance (...) {
117 setConf(result , conf);
119 }

59 public static void setConf (...) {
64 setJobConf(theObject , conf);
66 }

74 private static void setJobConf (...) {
80 Class <?> jobConfClass =
81 conf.getClassByName(

"org.apache.hadoop.mapred.JobConf");
95 }

// Configuration class
761 public Class <?> getClassByName (...)

throws ClassNotFoundException {
762 return Class.forName(name , true , classLoader);

/* duplicated costly operations to search for
the same configuration class */

763 }

Figure 11 The code snippet of the Hadoop-6133 Bug.

3.5 Overhead and Diagnosis Time
Table 4 shows the runtime overhead and diagnosis time. The run-
time tracing overhead is below 2%. The diagnosis time are all less
than one second. Note that although log anomaly detection uses
the deep learning model, i.e., word embedding model, the diagno-
sis time is still very short because log entries are typically short
sentences with repeated words.

3.6 Case Studies
We have described Hadoop-11252 bug’s root cause in Section 1.1.
PerfSig identifies the log sequence which starts from the first log
entry of starting server to the last log entry of stopping server as
in Figure 2. PerfSig identifies the bug as the missing log pattern.
PerfSig extracts the log sequence time series during normal run
and regard the log sequence’s time span as infinity due to missing
log during buggy run. PerfSig performs causal analysis on all the
function call time series and the log sequence time series. The time
series are shown in Figure 10. PerfSig determines the root cause
function as RPC.waitForProtoProxy because it has the largest MI
value.

Hadoop-6133 bug is caused by duplicated costly operations. As
shown in Figure 11, when we use ReflectionUtils.newInstance
function to initialize a new reflection instance at line 104, setConf
function is invoked at line 117 to set the job configuration. setConf
calls setJobConf function at line 64, then calls the conf.getClass
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Figure 12 Logs generated by HDFS-7005 bug.

ByName function at line 81 to find a particular configuration class.
However, the JDK function Class.forName invoked by conf.getCl
assByName is costly. When there are multiple threads which initial-
ize the instances, Class.forName is frequently invoked to search
for the same configuration class, which is unnecessary. When
the bug is triggered, we observe 80x slowdown in the system.
PerfSig identifies the bug anomaly pattern as the persistent in-
creases, because Class.forName consumes a lot of CPU resources,
as shown in Figure 9a. PerfSig then performs causal analysis on
the CPU utilization time series and all the function time series. As
shown in Figure 9b, PerSig determines the root cause function as
conf.getClassByName because it has the largest MI value.

Negative Case Study: HDFS-7005 bug is caused by missing
timeout for DFSClient#newConnectedPeer. When this bug hap-
pens, the Resource Manager hangs on waiting response from the
HDFS cluster. We observe that the logs of shutting down HDFS
cluster is missing as shown in Figure 12. PerfSig fails to classify the
log entries to the same cluster. For example, the first two log entries
are grouped in cluster A which represents DataNode’s tasks. Since
the log entries of the log sequence are classified to different tasks,
we cannot extract the right log sequence from the log clusters.

4 THREATS TO VALIDITY
Benchmark bias: For the experimental evaluation, we have repro-
duced 20 performance bugs, which are all the bugswe can reproduce
within a time limit. Up to the submission, we have exhaustively
searched the bug reports in six common cloud systems from JIRA
[5], selected all the true performance bugs and tried our best to
reproduce them.

Parameter bias: The choice of several hyperparameters in the
design can introduce bias on the system efficacy, such as the thresh-
old of the low pass filter. In our experiment, we adjust the hyperpa-
rameters several times and choose the best one. The experimental
results show that our design is less sensitive to the hyperparameters
than the alternative approaches.

5 RELATEDWORK
In this section, we discuss the existing work in the literature.

Single-modality data analysis: Previous work has worked
on bug diagnosis by performing single modality data analysis. Co-
hen et al. [19, 20] leveraged Tree-Augmented Naive Bayes models
and clustering methods to extract signatures from system metrics.
PerfScope [23], PerfCompass [24] and TScope [30] diagnosed per-
formance bugs by performing unsupervised machine learning on
system call traces. Stitch [58] and lprof [59] reconstructed the do-
main knowledge and system model from the logs. CloudSeer [57]
reconstructed the execution workflow entirely from interleaving
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OpenStack logs. PLELog [55] performed semi-supervised learning
combining HDBScan clustering and probabilistic label estimation to
detect log anomalies. LogFaultFlagger [10] extracted vectors based
on TF-IDF method and applied the kNN classifier to identifying
abnormal logs. Deeplog [25] applied a deep neural network model,
i.e., Long Short-Term Memory (LSTM), to detect anomalies from
the system logs. The mystery machine [18] analyzed logs from
Internet service to diagnose Facebook request latency. CSight [15]
modeled the system behavior in the form of CFSM from system
logs. Kabinna et al. [35] applied machine learning-based methods
to determine the change risk of system logs based on certain met-
rics such as file ownership and log density. Li et al. [40] adopted
the LDA method to extract topics from source codes automatically
and studied the likelihood of topics to be logged. Lou et al. [43]
constructed program workflow from event traces to understand
system behaviors and verify system executions. PBI [14] and REPT
[21] leveraged hardware traces, i.e., performance counters and Intel
Processor Trace, to understand the software bugs. PerfSig performs
multi-modality analysis to address the limitation that performance
bugs manifest in different data types compared with the existing
work.

Performance bug diagnosis and fixing: Previous work has
proposed detection and fixing solutions for performance bugs. Hang
doctor [17] detected soft hangs at runtime to address the limitations
of offline detection. PerfChecker [41], and HangWiz [53] automat-
ically detected soft hang bugs by searching the application code
for known blocking APIs. Yang et al. [54] and He et al. [29] pre-
sented comprehensive empirical studies and detection solutions
for two kinds of performance bugs, i.e., database-backed web appli-
cation performance bugs and configuration-related performance
bugs. PerfDebug [51] applied a data provenance-based technique
to diagnose performance issues in applications that exhibit compu-
tation skew. DScope [22] and HangFix [31] adopted pattern-driven
approaches to diagnosing and fixing software hang bugs in cloud
systems. PerSig complements the existingwork in providing amulti-
modality signature extraction framework to depict performance
bugs in a comprehensive fashion.

Causal analysis: Causal analysis attracts much attention in
software debugging recently. For example, UniVal [38] transformed
branch and loop predicates into variables and applied statistic causal
analysis to infer the faulty component. REPTRACE [48] performed
causality analysis on system call traces to identify the execution
dependencies. Compared with the existing work, PerfSig performs
multi-modality causal analysis among different types of data to
extract the root cause functions of performance bugs, taking a
further step in applying causal analysis in software debugging.

Causal analysis on time series data typically focused on identi-
fying Granger-causal relationship among different time series [11,
13, 50, 52]. McCracken [44] presented a comprehensive review to
perform exploratory causal analysis. The causal analysis techniques
could be divided into two categories, i.e., regression-based and in-
formation theory-based methods. For the regression-based method,
Arnold et al. [13] adopted linear lasso regression for identifying
Granger-causal relationship among time series. Tank et al. [50]
explored the possibility of detecting non-linear Granger-causal re-
lationship among time series by training deep learning models (i.e.,

multi-layer perceptrons and recurrent neural networks) with spar-
sity constrain. For the techniques using information theory, the
Granger-causal relationship was detected by entropy-based mea-
sures [11, 52]. Existing work leveraged different kinds of measures
like directed information theory [11, 12] or transfer entropy [52].
PerfSig makes the first step to apply the information theory method
mutual information to performance bug signature extraction.

6 CONCLUSION
In this paper, we present PerfSig, an automatic performance bug sig-
nature extraction tool. PerfSig can analyze various kinds of machine
data including system metric, system logs, and function call traces
to identify principal anomaly patterns and root cause functions as
unique signature patterns for representing performance bugs. We
have implemented a prototype of PerfSig and conducted extensive
evaluations using 20 real world performance bugs on six commonly
used cloud systems. Our results show that PerfSig can successfully
extract unique signatures for 19 out of 20 tested performance bugs.
PerfSig imposes low overhead to the cloud system, which makes it
practical for production environments.

7 DATA AVAILABILITY
The data and the implementation of PerfSig are publicly available
at https://github.com/jhe16/PerfSig.
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