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ABSTRACT
Automatic management of large-scale production systems re-

quires a continuous monitoring service to keep track of the states
of the managed system. However, it is challenging to achieveboth
scalability and high information precision while continuously mon-
itoring a large amount ofdistributedand time-varyingmetrics in
large-scale production systems. In this paper, we present anew
self-correlating, predictive information tracking system calledIn-
foTrack, which employs lightweight temporal and spatial correla-
tion discovery methods to minimize continuous monitoring cost.
InfoTrack combines both metric value prediction within individ-
ual nodes and adaptive clustering among distributed nodes to sup-
press remote information update in distributed system monitoring.
We have implemented a prototype of the InfoTrack system and
deployed the system on the PlanetLab. We evaluated the perfor-
mance of the InfoTrack system using both real system traces and
micro-benchmark prototype experiments. The experimentalresults
show that InfoTrack can reduce the continuous monitoring cost by
50-90% while maintaining high information precision (i.e., within
0.01-0.05 error bound).

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Measurement techniques]

General Terms
Design, Experimentation

1. INTRODUCTION
Large-scale distributed computing infrastructures have become

important platforms for many important real-world production sys-
tems such as enterprise data centers, virtualized computing infras-
tructures, web service hosting centers, and online data stream pro-
cessing systems. As these distributed computing infrastructures
continue to grow, how to efficiently manage those complex in-
frastructures has become a challenging problem. Inspired by how
human nervous system reacts to external changes, the autonomic
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computing paradigm [24] has recently been proposed as a viable
approach to building self-managed systems.

To achieve automatic management of a large-scale production
system, the first step is to gain insightful understanding about the
managed system. Information tracking is one of the fundamental
building blocks of autonomic systems, which can capture complete,
time-varying system information (e.g., resource availability, ser-
vice response time, virtual machine (VM) resource consumptions,
application component states) and make it available via some query
interfaces to other system controllers. For example, a job scheduler
may issue a multi-attribute range query such as “find ten hosts that
have at least 10% free CPU time and 20MB memory and 10GB disk
space” or a top-k query such as “return the three hosts that have the
highest CPU load in the past one hour”. The anomaly predictor[31,
13] needs to acquire continuous runtime system measurements to
build system state classification models.

A large-scale distributed computing infrastructure typically con-
sists of i) hundreds of or thousands of distributedworker nodes
that execute different application tasks; and ii) a set ofmanagement
nodesthat monitor the conditions of all worker nodes and perform
various system management tasks. To perform automatic system
management, the management node first needs to gain understand-
ing about the managed systems. In many cases (e.g., global job
scheduling, resource optimizer, anomaly prediction and diagnosis),
the management node needs to acquire complete, fine-grained, and
continuous monitoring about the whole system. For this purpose,
we need to deploy monitoring sensors on all worker nodes that
periodically sample various metric values (e.g., resourcemetrics,
performance metrics) about the local worker nodes and continu-
ously report the metric values to the management nodes.

However, it is a challenging task to providescalableand pre-
cisecontinuous system monitoring for large-scale production sys-
tems. On one hand, system controllers reside within the manage-
ment nodes desire to get up-to-date, precise, and global informa-
tion about the whole distributed infrastructure in order tobetter
accomplish their management tasks. On the other hand, the system
can include a large number of geographically dispersed nodes, and
each node can be associated with tens of or hundreds of dynamic
attributes [1, 2]. For example, the World Community Grid [5]con-
sists of many thousands of nodes and IBM Tivoli Monitoring [2]
can collect over 600 metrics on a host running Windows OS. Ob-
taining accurate information about all nodes with their complete
information continuously would inevitably involve high monitoring
cost.

Existing production system monitoring solutions [1, 10] typi-
cally configure long information update interval (e.g., several min-
utes) to tradeoff information precision for low monitoringcost.
However, many automatic system management tasks desire more



Figure 1: Suppressed Information tracking for large-scale
distributed systems.

fine-grained, up-to-date, monitoring data. Previous research work
on scalable distributed monitoring can be broadly classified into
two categories: i) employing decentralized architecturessuch as
hierarchical aggregation [27] or peer-to-peer structure [30, 23] to
distribute monitoring workload; and ii) trading off information cov-
erage [21] or information precision [17] for lower monitoring cost.
In contrast, our research focuses on an orthogonal problem,that
is how toexplore temporal and spatial correlation patterns among
distributed monitoring metrics to perform online suppression over
continuous monitoring data so as to minimize system monitoring
cost. Our solution can be generally applied to any centralized or
decentralized monitoring architecture.

In this paper, we present the design and implementation of the
InfoTrack system, a newself-correlating, predictiveinformation
tracking system to reduce monitoring cost without losing informa-
tion coverage or precision. By suppressing remote information up-
date, our approach not only reduces monitoring network traffic but
also lower the end-system resource consumption (e.g., CPU,mem-
ory, disk storage, power) for processing monitoring data. InfoTrack
employs light-weight schemes to discover various metric correla-
tion patterns on-the-fly within the monitored system. We explore
both temporal correlation within one node (e.g., self-similarity) and
spatial correlation among distributed nodes (e.g., group-similarity)
to suppress unnecessary remote information update, illustrated by
Figure 1.

• To leverage the temporal correlations, we install a metric
value predictorPi at both the monitoring node and the man-
agement node. If the attribute value at timet, denoted by
ai,t can be predicted byPi within a pre-defined error bound,
we can suppress the remote update aboutai,t from the mon-
itoring node to the management node since the management
node can infer the attribute value using the same predictor.

• To leverage spatial correlation for a monitored attributeai,
we cluster all monitored nodes into different groups based
on the values ofai. We elect one node in the group (e.g.,
cluster head) to report its measurement values forai. The
management node can infer the attribute values of the other
nodes in the group based on the spatial correlation function.

• Our approach isintegrated, which comprehensively consid-
ers both temporal and spatial correlations for reducing track-
ing cost. Our approach is alsoadaptive, which dynamically
updates metric value predictors and clusters to adapt to chang-
ing correlation patterns.

We have implemented a prototype of the InfoTrack system and
tested it on both PlanetLab [25], a wide-area network testbed con-

notation meaning
N total number of monitored nodes
A set of all attributes
ai system state attribute
Si size of attributeai

li total number clusters forai

T tracking interval
CR total compression ratio
ei error bound requirement forai

pi,1 % of nodes with temporal correlation forai

pi,2 % of nodes with spatial correlation forai

pi,3 % of nodes with temporal&spatial correlation forai

Table 1: Notations.

sisting of several hundreds of hosts dispersed over wide-area net-
works, and Virtual Computing Lab [4], a virtualization-based com-
puting infrastructure consisting of several hundreds of blade servers.
The InfoTrack system is continuously running on the Planetlab and
VCL and the information tracking results can be accessed live via a
web interface[3]. Our experiments used about 300 PlanetLabnodes
and collected more than three months real system attribute data (66
attributes per node) on the PlanetLab. Our experimental results
show that InfoTrack can achieve 80-90% compression ratio (i.e.,
percentage of suppressed remote information updates) for tracking
highly dynamic attributes (e.g., CPU load, memory usage) within
0.05 error bound, and more than 95% compression ratio for track-
ing relatively stable attribute values within 0.01 error bound. We
also measured the overhead of our algorithms, which shows that
our approach is light-weight and scalable.

The rest of the paper is organized as follows. Section 2 gives
an overview about our system model, approaches, and problem
formulation. Section 3 describes the design details of the InfoTrack
system. Section 4 presents the prototype implementation and ex-
perimental evaluation. Section 5 compares our work with related
work. Finally, the paper concludes in Section 7.

2. SYSTEM OVERVIEW
In this section, we give an overview of the InfoTrack system.

We first introduce the information management system model.We
then describe our self-correlating predictive information tracking
approach. Third, we derive the system cost model and present
the problem formulation. We summarize the notations used inthis
paper in Table 1.

2.1 System Model
We consider a networked system that hasN nodes{v1, ...vN}to

be monitored and a set of management nodes, illustrated by Figure
1. Each node is associated with a set of attributes (e.g., resource
consumptions, performance metrics, system component states) that
are denoted byA = {a1, ..., a|A|}. Each attributeai is denoted
by a name (e.g., CPU load) and a value (e.g., 10%, 20KB). Unless
specified otherwise, we useai to represent both name and value
of the attribute. On each node, there is a monitoring sensor that
periodically samples the attribute values to produce a timeseries
{ai,1, ..., ai,t, ..., ai,k} whereai,t denote the sampled value for the
attributeai at time t. The management nodes receives continuous
information update from distributed monitoring sensors toprovide
the distributed information tracking service. The goal of the in-
formation tracking service is to gain insightful knowledgeabout
the managed system. With continuous monitoring, the information



tracking service can capture not only snapshots of the networked
system but also its evolving behavior.

2.2 Approach Overview
To achieve scalable distributed information tracking, we pro-

pose to explore temporal and spatial correlations among distributed
monitoring streams to compress tracking traffic. We say an attribute
exhibits temporal correlation if we can infer its value at time t
denoted byai,t using previousm values{ai,t−m, ..., ai,t−1}. We
can install a predictor at both monitoring site and the management
node. If the attribute time series{ai,1, ..., ai,t} can be inferred by
the predictor within the user-defined error bound, the monitoring
sensor does not need to report{ai,1, ..., ai,t} to the management
node since the managed node can infer the attribute values using
the same predictor.

We say a group of worker nodes exhibit spatial correlation for an
attributeai if the nodes within the group possess correlated values
for ai. Two nodes are said to have correlated attribute values if one
node has an attribute valueai,t at timet then the other node has an
attribute valuef(ai,t) wheref denotes some correlation function.
The correlation function can take different forms such asf(ai,t) =
ai,t, f(ai,t) = ai,t + C or f(ai,t) = ai,t · K, where C and K are
constants. In this paper, we assume the correlation function takes
the form of f(ai,t) = ai,t to simplify explanations. To reduce
tracking cost, we elect one node in the group (e.g., cluster head) as
the representative to report its measurement values forai. All the
other nodes in the group do not need to report the values forai,t if
the management node can infer their attribute values based on the
correlation functionf(ai,t) within the user-defined error bound.

Our approach is based on the observation that real-world dis-
tributed production systems often exhibit temporal and spatial cor-
relations. For example, a host can remain at a certain resource
level during night when no new jobs are allocated to the node.
In distributed systems, a group of hosts (e.g., nearby neighbors
within one administration domain) may exhibit similar behavior
when they are assigned to execute similar computing tasks. As we
will show in Section 4, we collected several months of measure-
ment traces on the PlanetLab and discovered significant temporal
and spatial correlation patterns. Thus, we can explore those cor-
relation properties to reduce distributed information tracking cost
without losing information coverage or precision. Note that our
approach can be applied to both centralized or decentralized mon-
itoring system where the system can consist of one management
node or multiple collaborative management nodes. For simplicity,
we will use the case of single management node to explain our
algorithm. However, our approach can be extended to the caseof
multiple management nodes straightforwardly.

2.3 Information Tracking Cost Analysis
Without exploring temporal or spatial correlations, a distributed

information tracking system will configure all monitoring sensors
to periodically report all attribute values to the management node.
Let us assume the networked system consists ofN nodes, each
of which is associated with|A| attributesA = {a1, ..., a|A|}, the
update interval isT , and the message size for reporting the attribute
ai is Si. We define the distributed information tracking cost as the
amount of total measurement data delivered from all monitoring
sensors to the management node every second. The original track-
ing cost without suppression is

COrig =
1

T
·

X

ai∈A

N · Si (1)

Our approach first reduces the tracking cost by exploring the

temporal correlation. If the attribute value ofai can be inferred at
timet within a certain error boundei (e.g.,|ai,t−Pi(t)|/ai,t ≤ ei)
at one node, the monitoring sensor on that node does not need to
report ai,t to the management node. Let us assume on average
the management node can infer attribute values forpi,1 percent of
nodes forai, the total tracking cost is reduced to

CT =
1

T
·

X

ai∈A

(1 − pi,1)N · Si (2)

We now derive the cost reduction brought by exploring spatial
correlations to suppress remote information updates. Let us assume
all monitored nodes can be clustered intoli groups based on the
values ofai. The nodes within one group possess similar values
for ai. To reduce tracking cost, we elect one node in the group
(e.g., cluster head) to report its measurement values forai. Thus,
the management node can infer the attribute values of the other
nodes in the group based on the spatial correlation function. If we
assume on average we can infer attribute values forpi,2 percent of
nodes forai, the total tracking cost consists of two parts: the cost
for cluster heads to report attribute values to the management node,
and the cost for cluster members whose attribute values can not be
inferred accurately to report their values, which can be defined as
follows,

CS =
1

T
·

X

ai∈A

li · Si + (1 − pi,2) · (N − li) · Si (3)

In order to minimize the monitoring cost, we need to form good
clusters, in which more attribute values of cluster memberscan be
inferred from the value reported by the cluster head. The number of
clusters is also an important factor in the monitoring cost function.
With fewer clusters, the first cost compoment is smaller. How-
ever, larger clusters tend to include heterogeneous cluster members
and increases the second cost component. Hence, to minimizethe
monitoring cost, we need to balance the two cost compoments by
forming proper number of clusters.

We now derive the tracking cost of an integrated approach con-
sidering both temporal and spatial correlations. Assume onaverage
the management node can infer attribute values forpi,1 percent of
cluster heads or cluster members based on the temporal correlation.
Assume also the management node can inferp′

i,2 percent of cluster
members whose attribute values cannot be inferred by the temporal
correlations but can be inferred based on the reported or predicted
values of the cluster heads. The total tracking cost becomes

CI =
1

T
·

X

ai∈A

li(1 − pi,1)Si+(1−pi,1−p′
i,2)·(N −li)·Si (4)

Compared to the original information tracking service, ourap-
proach reduce the information tracking cost by suppressingremote
updates of those attribute values that can inferred from temporal
or spatial correlations. We useCto to define the overhead of up-
dating temporal predictors on the management node; We useCso

to denote the dynamic cluster update cost. We will quantifyCto

andCso when we describe specific temporal and spatial correlation
discovery schemes in Section 3. We define the total tracking cost
of the InfoTrack system asCInfoTrack = CI + Cto + Cso. We
define the information tracking compression ratio (CR) as follows:

CR =
COrig − CInfoTrack

COrig

=
COrig − (CI + Cto + Cso)

COrig

(5)

The various cost functions derived in this section do not include
the cost of initializing the tracking system, which includes the cost
of building the initial predictors and clusters for each attribute value.



Such initial cost depends on the actual algorithms employedin the
system, and we give a detailed analysis in Section 4.5.

Different from the static, offline compression scheme (e.g., gzip)
that can only be applied after the data have been reported to the
management node, our approach performsdynamic, onlinecom-
pression over live monitoring data streams during monitoring run-
time. Thus, our approach can reduce end-system resource andnet-
work bandwidth consumption on both monitored worker nodes and
management node, which cannot be achieved by previous offline
compression techniques.

3. SYSTEM DESIGN AND ALGORITHMS
In this section, we present the design and algorithm detailsof

the InfoTrack system. We first describe the approach of exploring
temporal correlations to reduce information tracking cost. Next,
we present how to suppress information tracking cost by exploring
spatial correlations. Finally, we present the integrated approach
exploring both temporal and spatial correlations.

3.1 Exploring Temporal Correlation
To explore temporal correlation of an attributeai for reducing

tracking cost, we install a predictorPi at both the monitored site
and the management node. If the attribute value at timet denoted
by ai,t can be predicted byPi within a certain error bound (e.g.,
|ai,t − Pi(t)|/ai,t ≤ ei), the monitoring sensor does not need to
report ai,t to the management node since the management node
can infer the attribute value usingPi. If the monitoring sensor
detects that prediction error exceeds the pre-defined threshold by
comparing the inferred value with the real measurement value (e.g.,
|ai,t − Pi(t)|/ai,t > ei), the monitoring sensor performs normal
information update by sending the measurement value ofai to the
management node. If the monitoring sensor detects that the predic-
tor makes frequent errors, it constructs a new prediction function
P ′

i and transfersP ′
i to the management node to replace the old

prediction function.
Our InfoTrack system is a generic framework, in which any pre-

diction approach can be used to explore temporal correlation. How-
ever, to ensure low tracking cost, we need to keep the prediction
overhead low. In this paper, we consider two such light-weight
predictors, a last-value based simple method and Kalman filter [18].
The last value based method uses the value at timet− 1 as the pre-
dicted value for timet. Thus, if the attribute value does not fluctuate
frequently, the last value predictor can accurately predict the metric
value most of time. The advantage of this simple approach is that
the new predictorP ′

i is the measurement valueai,t itself. Hence, no
additional traffic is generated for updating the new predictor P ′

i at
the management node since the monitoring sensor already reports
ai,t to the management node based on our predictive monitoring
protocol.

We also apply the Kalman filter [8, 16] to achieve predictive
information tracking. The Kalman filter assumes that the process
hasn internal states andm observable measurements. The internal
states and measurements at timet − 1 andt are governed by the
following equations:

xt = Axt−1 + wt−1 (6)

zt = Hxt + vt (7)

wherex andz are the state and measurement vectors of the pro-
cess, respectively. The random variableswt andvt represent the
process and measurement noise, which follows normal probability
distributions with process noise covarianceQ and measurement
noise covarianceR, respectively. The internal states propagate

from time t − 1 to time t through the state transition matrixA,
and the measurements are determined by a linear combinationof
internal states through a(m×n) matrix H. For simplicity,A, H , Q
andR are assumed to be constant and we assume the internal states
are observable measurements. The Kalman filter estimates the state
vector in two steps:prediction and correction. The prediction
of xt is made by following Equation 6 and then corrected by the
weighted difference of the true measurement and the prediction if
a true measurement is available. The correction weight is obtained
by applying the least squares method to minimize error covariance
[8]. The process noise covarianceQ controls the smoothing power
of the Kalman filter.

The Kalman filter works in the following way in our information
tracking system. At the beginning, for each monitored attributeai,
the Kalman filter is initialized using the sameA,H ,Q,andR on
both the monitoring site and the management node, and the true
attribute value is pushed from the monitoring sensor to the man-
agement node to start the Kalman filter on both sides. Then, when
the Kalman filter makes a prediction̄ai,t at timet, the monitoring
sensor checks whetherāi,t is within a certain error bound. If̄ai,t

is close enough to the true valueai,t, the sensor does not report
ai,t to the management site. The Kalman filter installed on the
management node predicts the sameāi,t, and the management node
uses this predicted value as the observation value at timet. Both
Kalman filters make steps of predictions without correctionfrom
true observations until̄ai,t exceeds the predefined error bound, in
which case the sensor pushes the observation ofai to the man-
agement node, and both Kalman filters correct their predictions
accordingly.

From Equation 5 and 2, we can see that we need to have a
tradeoff between the predictor update cost (i.e.,Cto in Equation
5) and the prediction accuracy, which determines the percentage of
nodes that need to send attribute values to the management node
(i.e., pi,1 in Equation 2). In InfoTrack, both the last value based
method and Kalman filter method only require the observed value
of ai for updating the predictors on the management node. Hence,
there is no extra predictor update cost (i.e.,Cto = 0 in Equation 5)
for both approaches, and Equation 5 can be simplified as follows:

CR = 1 −

P

ai∈A

(1 − pi,1) · Si

P

ai∈A

Si

, (8)

whereSi is the message size for reporting the attributeai.

3.2 Exploring Spatial Correlation
To explore spatial correlations for a monitored attributeai, we

cluster all monitored nodes into different groups based on the val-
ues ofai. The nodes within one group possess similar values for
ai. To reduce information tracking overhead, we elect one nodein
the group (e.g., cluster head) to report its measurement values for
ai. The management node can infer the attribute values of the other
cluster members based on the spatial correlation function.Thus, we
can reduce the tracking cost when the management node can infer
the attribute values of the cluster members within a certainerror
bound using the spatial correlation function and the attribute value
of the cluster head.

To form closely corelated clusters, we use thePearson correla-
tion coefficientas the similarity measure for clustering algorithms.
Given a window sizew, we can form a vector[ai,t, .., ai,t+w] for
each monitored node. The similarity between two such vectors
V = [v1, ..., vn] andU = [u1, ..., un] is defined as follows:



sim(V, U) =

Pn

i=1
(vi − v̄)(ui − ū)

p

Pn

i=1
(vi − v̄)2

p

Pn

i=1
(ui − ū)2

, (9)

wherev̄ andū are the mean of the values of theV andU vectors,
respectively. Note that we need to push all these values to the
management node to initiate clustering process, we prefer asmaller
value ofw that can also lead to reasonable clustering results.

We employ two widely used clustering algorithms for our pur-
pose: a typical partitional clustering algorithmk-means [22], and a
typical agglomerative algorithmUPGMA [15].

Thek-means [22] algorithm computes ak-way clustering of a set
of objects as follows. Initially, a set ofk objects is selected from
the datasets to act as theseedsof thek clusters and each object is
assigned to the cluster corresponding to its most similar seed. Then,
the centroid of each cluster is computed and objects are moved cor-
responding to their most similar centroids. This process isrepeated
until it converges to produce the finalk clusters. The UPGMA (i.e,
Unweighted Pair Group Method with Arithmetic mean) algorithm
[15] finds the clusters by initially assigning each object toits own
cluster and then repeatedly merging pairs of clusters untila certain
stopping criteria is met. The UPGMA scheme measures the sim-
ilarity of two clusters as the average of the pairwise similarity of
the objects from each cluster. The agglomerative clustering algo-
rithms produce a hierarchical tree at the end, and ak-way clustering
soluction can be obtained by cutting the tree using various criteria.

Comparing these two algorithms,k-means has lower computa-
tional complexity, but may suffer from bad initial seed choices. In
addition,k-means requires the number of clusters as an explicite
input parameter, whereas UPGMA produces a hierarchical tree and
we can cut the tree to form natural clusters.

After clustering different monitored nodes into groups, weselect
the one with the median value of attributeai as the cluster head.
There are several ways for the management node to infer the at-
tribute values of cluster members from the values reported by their
cluster heads. For simplicity, we record the difference between the
last reported values of the monitored node and its cluster head, and
add this difference to the newly reported value as the inferred value.

During runtime, we need to dynamically update the cluster to
maintain efficiency. We consider two types of changes in clusters.
First, a monitored node may not exhibit the similar measurement
value for attributeai as its cluster head after a certain period of
time. In this case, we want to regroup the monitored site to its most
similar cluster. We maintain a credit value for each monitored node
on the management node. If the monitored node can be represented
by the cluster head, the credit value is incremented. Otherwise, the
credit value is decremented. The monitored node is re-assigned to
another cluster when its credit value is below a certain threshold
(denoted asθ2). Second, a cluster head may not be the best repre-
sentative of the cluster after a period of time, in which casewe need
to select a new cluster head. A new cluster head is selected when
the fraction of nodes that need to updates their attribute values is
above a certain threshold (denoted asθ1) for a cluster. The manage-
ment node needs to send control messages to monitoring sensors
when changing cluster membership of a node or changing a cluster
head, which forms the spatial correlation discovery overhead (i.e.,
Cso in Equation 5). This cluster adaptation cost is closely related
to the number of re-assignments per tracking interval. As wewill
show in Section 4, the cluster adaptation cost is very small.

Note that since the re-assignment of cluster head requires send-
ing cluster information to the newly selected cluster head,we need
to avoid frequent cluster head re-assignment by setting a high θ1

value. Similarly, re-assigning a monitored site back and forth can

Input:
ai,t: the observation value ofai at timet
āi,t: the predicted value ofai by Kalman filter at timet
âi,t: theai value recieved from the cluster head at timet
ei: error bound forai

SensorReport(ai,t, āi,t, âi,t, ei)
1. if the node is a cluster head
2. if (|ai,t − āi,t|/ai,t) > ei )
3. reportai,t to the management node
4. pushai,t to its cluster members
5. else
6. push̄ai,t to its cluster members
7. else
8. if (|ai,t − āi,t|/ai,t) > ei )
9. if (|ai,t − âi,t|/ai,t) > ei )
10. reportai,t to the management node
16.return

Figure 2: Integrated information update algorithm on the
worker node.

be eliminated by setting a lowθ2 value.

3.3 Integrated Approach
We now present the integrated approach exploring both temporal

and spatial correlations, which is shown in Figure 2. To achieve
compressed information tracking, each monitoring sensor performs
selective information report. The sensor reports the true obser-
vation value for an attributeai only when the management node
cannot infer the value ofai based on either temporal or spatial
correlation functions within a certain error bound. If the monitored
node is a cluster head, its monitoring sensor decides whether to
report its observation value based on the accuracy of the predicted
value given by the metric value predictor. Note that both themon-
itored node and the management node run the same predictor to
predict the value ofai. The monitoring sensor only reports the
observation value ofai to the management node if the prediction
error exceeds a certain error bound.

For non-cluster-head monitored site, its monitoring sensor per-
forms selective information report based on both temporal and spa-
tial correlations. First, the monitoring sensor checks thepredicted
value of an attributeai given by its own metric value predictor. If
the predicted value is within the error bound, the monitoring sensor
will not report the observation value ofai to the management node.
Otherwise, the monitoring sensor checks theai value received from
the cluster head, denoted bŷai, which is either the observation
value ofai reported to the management node by the cluster head
or the predicted value. If the cluster head valueâi can be used by
the management node to infer the attribute value of the monitored
site within the error bound, the monitoring sensor will not report its
observation value to the management node. The monitoring sensor
needs to report the observation value ofai to the management
node only when both the predicted value given by the metric value
predictor and the attribute value of the cluster head cannotachieve
desired accuracy. One complication is that the management node
needs to know which value (e.g., metric value predictor or cluster
head) to use if only one of the two values is usable. Under those
cases, either the cluster head or the monitoring sensor needs to send
a flag to the management node to indicate which correlation (i.e.,
temporal or spatial) should be used to infer the remote attribute
value.



Monitored Attributes
LOAD1 LOAD5 AVAILCPU
UPTIME FREEMEM FREEDISK
DISKUSAGE DISKSIZE MYFREEDISK
NUMSLICE LIVESLICE VMSTAT1-17
CPUUSE RWFS LOAD11
LOAD12 LOAD13 SERVTEST1
SERVTEST2 MEMINFO1 MEMINFO2
MEMINFO3 BURP CPUHOG
MEMHOG TXHOG RXHOG
PROCHOG TXRATE RXRATE
PURKS1-10 PUKPUKS1-10

Table 2: Monitored metrics on Planetlab.

When a new node arrives in the system, the management node
assigns the node to a cluster based upon the attribute similarity
between the node and cluster heads, and predictors are installed
on both the worker node and management node. Worker nodes
send signals to the management node periodically if they do not
need to report their metric values for a long period. In this way the
management node knows that a node leaves or becomes unreach-
able if it does not receive any metric report or life signal over a
certain period. When a non-cluster-head node leaves, the manage-
ment node simply removes the node from its cluster. Whereas,the
management node needs to select a new cluster head if a cluster-
head node leaves.

The analysis of the cost model for the integrated approach issim-
ilar to the separated ones. The information tracking compression
ratio (CR) can be determined by Equation 5 and 4. As discussed
above, our light-weight temporal and spatial approaches ensure a
zeroCto and very smallCso. Hence, Equation 5 can be simplified
as follows:

CR = 1−

P

ai∈A
li(1 − pi,1)Si + (1 − pi,1 − p′

i,2) · (N − li) · Si

N ·
P

ai∈A

Si

,

(10)
whereSi is the message size for reporting the attributeai, li is
the number of clusters for attributeai, pi,1 is the percent of nodes
whose values can be inferred by temporal metric value predictors,
andp′

i,2 is the percent of cluster members whose attribute values
cannot be inferred by the temporal correlations but can be inferred
based on the reported or predicted values of the cluster heads.

4. SYSTEM EVALUATION

4.1 Prototype Implementation
We have implemented a prototype of the InfoTrack system and

deployed the system on the Planetlab [25] and VCL [4]. The track-
ing results of InfoTrack can be accessed live via the web inter-
face mentioned in the Introduction. The monitoring sensor collects
about 66 attributes (e.g., available CPU, free memory, diskusage,
load1, load5, load10, number of live slices, uptime, etc.) on the
PlanetLab, shown by Table 2. Each complete information report
has about 2000 bytes.

We perform temporal correlation inference by using the simple
last value approach or by running Kalman filters on both monitor-
ing sites and the management node. The management node dis-
covers spatial correlations using k-means orUPGMA algorithms.
The management node initializes the tracking process, pushes the
error bound to each sensor, and invokes temporal correlation pre-
dictors on both sides. Each sensor executes the attribute report

Trace Data Mean Avg. Std. Avg. SV
CPU-10 80.2 5.65 1.34
CPU-30 80.2 5.65 2.58
MEM-10 78.2 11.29 2.29
MEM-30 78.2 11.29 3.11

Load5 8.85 2.71 -

Table 3: Statistics of Data Sets

algorithm shown by Figure 2, which periodically collects resource
attribute values and only reports the collected attribute values to
the management when the correlation-based inference erroris out
of bound.

4.2 Traces and Their Characteristics
Our experiments used about 300 PlanetLab nodes and collected

several months real system attribute data on the PlanetLab without
interrupting normal workload on each node. We track about 66
system attributes and set the report interval to be 10 or 30 seconds.
Our system can easily achieve high compression ratio for tracking
relatively stable attributes such as uptime, disk usage, load5, load10
within 0.01 error bound. Thus, our experiments focus on evaluating
our algorithms on tracking most challenging attributes such as CPU
load and free memory. To this end, we extracted four sets of trace
data starting from March 20, 2008 for more than a week: CPU load
observed every 10 seconds (CPU-10), CPU load observed every
30 seconds (CPU-30), memory usage observed every 10 seconds
(MEM-10), and memory usage observed every 30 seconds (MEM-
30).

We use these trace data sets to evaluate our various temporal
correlation, spatial correlation, and integrated models on different
system state attributes, as well as different tracking intervals. Some
statistics of the data sets are shown in Table 3. We include the
average and average standard deviation of Load5 (i.e., the load av-
erage for the past 5 minutes in terms of how many active processes
are competing for the CPU) in Table 3 as well to demonstrate the
workload and conditions when the traces were acquired. In addition
to the mean CPU load (in percentage) and mean memory usage
(in percentage), we also calculated average standard deviation (la-
belled as “Avg. Std”) along time intervals averaged over allnodes
and average step variance (labelled as “Avg. SV”). The average
step variance is the absolute difference between two consecutive
measurements averaged over all time intervals and all nodes. The
average standard deviation indicates the range of the measurements
varying along time intervals, whereas the average step variance
indicates how rapidly each measurement changes. As shown in
Table 3, memory usage exhibits larger variance than CPU load.
Hence, we expect that the two memory usage data sets are harder
for compression. Varying report intervals from 10 seconds to 30
seconds increases the average step variance. Since our models com-
press data based on past measurements, we expect that our models
perform better on trace data with smaller average step variances.

4.3 Evaluation Methodology
We evaluate our correlation-aware information tracking models

using randomized test on the four trace data sets. For a giventrace,
we randomly select a starting point in the trace and start to evalute
our models for the next 9000 samples (for CPU-10 and MEM-10)
and 3000 samples (for CPU-30 and MEM-30), respectively. The
number of tested samples is chosen to be 9000 and 300 so that the
evaluation period covers one day.

For our temporal correlation aware tracking model with the Kal-
man filter, we set the process noise covarianceQ equal to10 and
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Figure 3: Mean tracking cost reduction based on the temporal
correlation.
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Figure 4: Mean CPU metric tracking cost reduction based on
the spatial correlation.

measurement noise covarianceR equal to 1, as discussed in Sec-
tion 3.1. For our spatial correlation-aware tracking model, we test
both k-means andUPGMA clustering algorithms. We empiri-
cally chose to use a window size of 12 for calculating correla-
tion coefficient (Equation 9). The number of clusters produced
by UPGMA is controlled to be between 10 to 20, as the values
in this range tend to perform well. This is done by varying the
inconsistency coefficient cutoff value. We use the same number of
clusters as the input to thek-means clustering algorithm.

The temporal correlation-aware, spatial correlation-aware, and
integrated information tracking models are evaluted with an error
bound value ranging from 0.01 to 0.1. The performance of various
models are assessed usingCompression Ratio(Equation 5). Each
experiment is repeated 200 times, and the average compression
ratio is reported.

4.4 Results and Analysis
We first present the results for our temporal correlation-aware

model, which uses the last value based approach or Kalman filter
to infer dynamic attribute values. Figure 3 shows the compression
ratio achieved by the last value model and Kalman filter modelwith
various error bound values for CPU-10, CPU-30, MEM-10, and
MEM-30. From the figure, we can clearly see that the benefit of
employing the temporal correlation-aware model to achievecom-
pressed information tracking. The larger the error bound isallowed,
the higher the compression ratio can be achieved by our system.
The two temporal correlation-aware models perform similarly and
can achieve compression ratio over 90%, with error bound around
0.1. As we expected, our model performs better on CPU load
data than on memory usage data since the former data set shows
bigger step variances than the latter data set. The compression
ratios achieved on CPU-10 and MEM-10 is better than those on
CPU-30 and MEM-30.

We conduct the second set of experiments to study the effective-
ness of our spatial correlation aware information trackingmodel.
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Figure 5: Mean memory metric tracking cost reduction based
on the spatial correlation.
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Figure 6: Average overhead of adaptive clustering algorithms.

Figure 4 and Figure 5 show the compression ratio achieved by
different clustering algorithms on CPU-10, CPU-30, MEM-10, and
MEM-30. We run our experiments using four clustering algorithms
in total, namelyUPGMA, k-means, and their adaptive versions
with dynamic cluster adjustments.

There are a number of observations we can make from those
figures. First, we observe that our spatial correlation aware tracking
model can reduce the tracking cost significantly. The two adap-
tive clustering algorithms can achieve a compression ratioof more
than 50% with tight error bounds of less than 0.05 for all traces.
Second, similar to the results of our temporal correlation aware
tracking model, the results here also show the trace data with longer
report intervals are harder to compress than the trace data with
shorter report intervals. Third, the adaptive clustering techniques
improve the compression ratio in most cases. On average the adap-
tive UPGMA clustering algorithm outperforms theUPGMA al-
gorithm by more than 10% on CPU-10 and CPU-30, and around
20% on MEM-10 and MEM-30. The adaptivek-means clustering
algorithm also outperforms thek-means clustering algorithm by
5% to 7% on average on four trace data sets. Finally, the two
adaptive clustering algorithms perform similarly for all data sets.

Figure 6 shows the cluster adaptation cost introduced by the
adaptive techniques on CPU-10 and MEM-10. The average over-
head shown in Figure 6 is defined as the number of re-assignments
of either cluster heads or cluster members per report interval. We
observe that the number of re-assignments quickly reaches to a
small number as the error bound increases. Hence, the adaptive
techniques improve our tracking compression ratios with little ad-
ditional cost.

We now present the results of the integrated self-suppressing
information tracking approaches. The two temporal approaches
and two spatial approaches can have four combinations. We show
the results of combining Kalman filter with adaptiveUPGMA,
and other combinations show similiar trends as well. Figure7 and
Figure 8 show the compression ratio achieved by the integrated



0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Error Bound

C
o

m
p

re
ss

io
n

 R
a

tio

 

 

InfoTrack
Change−based

0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Error Bound

C
o

m
p

re
ss

io
n

 R
a

tio

 

 

InfoTrack
Change−based

(a) CPU-10 (b) CPU-30

Figure 7: Mean CPU metric tracking cost reduction of the
integrated approach.
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Figure 8: Mean memory metric tracking cost reduction of the
integrated approach.

model (labelled as InfoTrack in all figures) on CPU-10, CPU-30,
MEM-10, and MEM-30, and the results of a simple change based
model as a baseline. The change based model performs information
update when the attribute value change exceeds the error bound.
We observe that the tracking models exploring both temporaland
spatial correlations can consistently improve the compression ratio
further than the tracking models exploring only temporal orspatial
correlations. The integrated approach can achieve more than 60%
compression ratio on CPU-10 with a tight error bound of 0.01,and
90% compression ratio with an error bound of 0.05. On MEM-10,
the integrated approach can achieve 48% to 85% of compression
ratio. The improvement achieved by InfoTrack over the change-
based approach can be as high as 40% for CPU-10 and 25% for
MEM-10, especially under a tight error bound. Note that the per-
formance of our intergrated approach can be further improved by
plugging in more advanced or application tailored temporaland
spatial correlation models. However, the focus of this paper is
not to find the best single temporal or spatial correlation models,
but to present a generic framework which allows the integration of
exploring both spatial and temporal correlations.

To evaluate InfoTrack with more dynamic systems, i.e., when
system metric values have bigger average standard deviations and
and bigger average step variances, we selected the PlanetLab traces
of two days (denoted asTrace1andTrace2) with the highest av-
erage standard deviations of CPU load during the entire period

Trace Data CPULoad CPULoad Load5 Load5
Mean Avg. Std. Mean Avg. Std.

Trace1 77.1 6.92 6.72 2.23
Trace2 72.5 7.03 6.49 1.96

Table 4: Statistics of Trace1 and Trace2
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Figure 9: Mean CPU metric tracking cost reduction of the
integrated approach.

that we collected real system attribute data on the PlanetLab. Both
traces contain CPU load values with the report interval of 10sec-
onds for 24 hours. Some statistics of the two traces are shownin
Table 4. We show the mean CPU metric tracking cost reduction
of the integrated approach in Figure 9. We can observe that with
higher variations on metric values, InfoTrack can still achieve si-
miliar improvements over the change-based approach as the ones
shown in Figure 7, and achieve more than 50% compression ratio
with an error bound of 0.01, and more than 80% with an error
bound of 0.05. Other system metrics show similar trends onTrace1
andTrace2, and the results are omitted due to space limitation.
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Figure 10: Continuous CPU metric tracking cost reduction
with error bound = 0.01.
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Figure 11: Average CPU load and standard deviation of CPU-
10.

In the experiment results we have shown so far, the compres-
sion ratio is calculated by averaging over the entire tracking period
(which is about 24 hours). We also want to see how the compres-
sion ratio changes over time. To do so, we evalute the performance
of a tracking model by calculating the compression ratio value for
each hour. Figure 10 shows such compression ratios achievedby
Info-Track and a simple change-based model on CPU-10 with an
error bound of 0.01. We observe that there is a clear “day and
night” pattern in the results. To explain this performance pattern,
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Figure 12: Continuous total tracking cost reduction on all 66
metrics with error bound = 0.01.

Node type memory computation
Management node (cluster creation)100 MB 5 min
Management node (cluster update) 10 MB 2 ms

Management node (prediction) 50 MB 50 ms
Worker node 10 KB 0.01ms

Table 5: Total InfoTrack overhead for tracking 100 metrics on
5000 nodes.

we also plot the average CPU load and standard deviation of CPU
load for each hour averaged over days in Figure 11. The perfor-
mance pattern can be well explained by the same pattern in the
average CPU load and average standard deviation. The correlation-
aware tracking models can achieve higher compression ratios when
average CPU load is high and average standard deviation is low.

4.5 Micro-benchmark Experiments
Now we show the results of micro-benchmark experiments of

our InfoTrack system on PlanetLab. This set of experiments in-
volves 276 PlanetLab nodes and we use InfoTrack to track the
whole set of 66 features in every 10 seconds over 24 hours starting
from August 26, 2008, and the average CPU load and average
Load5 are 79.5% and 6.87, respectively, during that period.In
Figure 12, we show the total tracking cost in terms of total updates
per second of InfoTrack with an error bound value of 0.01 and
the original tracking cost without any compression dividedby 10
over 24 hours1. Note that in this set of experiments the Kalman
Filter and adaptive UPGMA are used as the temporal and spatial
correlation approach, respectively. As shown in Figure 12,our
system significantly reduces the tracking cost by more than one
order of magnitude with a tight error bound of0.01. By suppressing
remote information update, our approach can reduce both monitor-
ing network traffic and end-system resource consumption. Inpar-
ticular, InfoTrack reduced monitoring network traffic to beunder 5
Kbps. More importantly, fewer updates also reduce databasewrite
on the management node and save system resource consumption
(e.g., CPU, memory, database capacity, disk storage, power) for
processing or storing monitoring data.

In many real-world large-scale networked systems such as en-
terprise data centers, the number of nodes can easily grow over
thousands or even tens of thousands, in which case the original
monitoring network traffic can exceed tens of Mbps. InfoTrack can
significantly reduce the tracking cost and is well suited fortracking
dynamic information in large-scale networked systems.

We now evaluate the resource overhead of the InfoTrack system
to verify that our approach is light-weight. Table 5 summarizes
the overhead measurement results. We run the management node

91Showing 1/10 of original tracking cost allows us to see the
varying compression performance achieved by InfoTrack.

software on a desktop machine with 1.2GHz CPU and 1G memory
to trackM attributes onN nodes, whereM varies from 20 to 100
and N varies from 500 to 5000. For 5000 nodes, the k-means
algorithm creates clusters for one feature under one minute, and the
UPGAM algorithm under five minutes. The memory consumption
for creating clusters is under 2MB fork-means, and 100MB for
UPGMA. Note that the cluster creation is rarely invoked. Once
the clusters are created, maintaining and updating clusters is light-
weight. With 5000 nodes and 100 attributes, the cluster update time
is under 2ms, and the memory consumption of the management
node is under 10MB. For metric value prediction, the last value
approach consumes 2MB memory to store last values. With 5000
nodes and 100 attributes, the prediction time using Kalman filter is
under 50ms, and the memory consumption is under 50MB.

The InfoTrack software running on each monitored worker node
is very light-weight. We run the software on the same desktop
machine. With 100 attributes, the prediction time using Kalman
filter is under 0.01ms, and the memory consumption is under 10KB.

5. RELATED WORK
Distributed information management is critical for managing

large-scale networked systems. For example, both the CoMonPlan-
etLab monitoring service [1] and the Grid Monitoring/Discovery
Service (MDS [10]) have proven extremely useful for their user
communities. However, for practical purposes, both systems are
statically configured with long update interval (e.g., five minutes
for the CoMon infrastructure). Previous work (e.g., Astrolabe [27],
SDIMS [30], Mercury [7], SWORD [23],NodeWiz [6] and PIER
[14]) has proposed to leverage decentralized structures toachieve
scalable information management. Other research work (e.g., Info-
Eye [21], STAR [17]) has proposed to trade off information cover-
age or information precision for lower monitoring cost. Different
from the above work, the focus of our research is on exploring
correlation patterns to achieve self-compressing continuous infor-
mation tracking, which can be used to not only answer various
information queries but also extract important system patterns to
guide system management decisions.

Distributed information monitoring has been recognized byre-
cent work as an important component for system management. Sin-
gh et al. developed a declarative query system for distributed sys-
tem monitoring and problem diagnosis [26]. AjaxScope [19] is a
distributed Web application monitoring platform using online in-
strumentation of JavaScript code. FDR [28] is an online system
call tracing tool used for misconfiguration troubleshooting. FDR
focuses on system call compression while our work focuses on
compressing numerical value metric tracking traffic by exploring
spatial and temporal correlations.

Exploring correlation patterns among distributed data sources
have been studied under different context such as sensor network
monitoring [29, 20, 11], distributed event tracking [16], and re-
source discovery [9]. Although the general idea of exploring tem-
poral and spatial correlations is not new, we shall emphasize ap-
plying the idea to distributed information tracking over large-scale
networked systems requires non-trivial system analysis and design.
In our case, it means discovering dynamic spatial and temporal cor-
relation patterns among distributed information sources using light-
weight methods instead of assuming a specific probabilisticmodel
(e.g., Gaussians) as in wireless sensor networks. To the best of our
knowledge, our work makes the first step to combine temporal and
spatial correlation discovery for reducing distributed information
tracking cost in large-scale distributed production systems.
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7. CONCLUSION
In this paper, we have presented InfoTrack, a new self-correlating

predictive information tracking system for managing large-scale
distributed production systems. InfoTrack explores both tempo-
ral and spatial correlations in the distributed system to suppress
remote information update while preserving information coverage
and precision. InfoTrack integrates both metric value predictions
and adaptive clustering algorithms to reduce information tracking
cost. We have implemented the InfoTrack system and tested iton
the PlanetLab tracking 66 dynamic attributes on more than 300 dis-
tributed hosts. We learned the following lessons from our prototype
implementation and experiments: 1) spatial and temporal corre-
lation patterns exist in real-world production systems andcan be
efficiently discovered using light-weight schemes; 2) correlation-
aware information tracking can easily achieve more than 95%com-
pression ratio (e.g., percentage of reduced remote information up-
dates) for tracking relatively stable attribute values within 0.01 er-
ror bound; 3) for highly dynamic metrics, our system can achieve
more than 50% compression ratio within a tight error bound of
0.01, and more than 90% compression ratio within an error bound
of 0.05. As part of our on-going work, we are deploying and testing
the InfoTrack system on more complicated commercial monitor-
ing system such as IBM Tivoli running on large-scale distributed
production systems such as VCL [4] at NCSU and enterprise data
centers, and explore more advanced data modeling techniques, for
example, the Minimum Description Length data modeling tech-
nique [12], to achieve better prediction of data variations.
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