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Abstract—Cloud systems have been widely adopted by many
real world production applications. Thus, security vulnerabilities
in those cloud systems can cause serious widespread impact.
Although previous intrusion detection systems can detect security
attacks, understanding the underlying software defects that cause
those security vulnerabilities is little studied. In this paper, we
conduct a systematic study over 110 software security vulnera-
bilities in 13 popular cloud server systems. To understand the
underlying vulnerabilities, we answer the following questions:
1) what are the root causes of those security vulnerabilities?
2) what threat impact do those vulnerable code have? 3) how
do developers patch those vulnerable code? Our results show
that the vulnerable code of the studied security vulnerabilities
comprise five common categories: 1) improper execution restric-
tions, 2) improper permission checks, 3) improper resource path-
name checks, 4) improper sensitive data handling, and 5) improper
synchronization handling. We further extract principal vulnerable
code patterns from those common vulnerability categories.

Index Terms—Cloud Security, Vulnerability Detection, Bug
Study

I. INTRODUCTION

Cloud servers provide a cost-effective platform for de-
ploying software applications in a pay-as-you-go fashion.
However, due to its multi-tenant sharing nature, the cloud
environment is especially vulnerable to security attacks. Due
to its widespread deployment, any security vulnerability in
cloud server systems can cause extensive impact on the end
users [1]. For instance, vendors of the popular Java logging
library, Apache Log4j, reported a serious vulnerability on
December 9, 2021, affecting industries worldwide [2], [3]. The
vulnerability, named Log4Shell, allowed attackers to execute
any commands in cloud systems that contained the library,
resulting in about 200,000 global attacks within one day of
the disclosure [4]. The open source insights team from Google
Cloud estimates that Log4Shell affected 8% of all artifacts in
the Maven Central repository, which is four times the average
vulnerability impact [2].

Cloud security has become increasingly important for many
real world critical applications. In response to security risks,
previous work proposes various intrusion detection systems
to meet the resource constraints and dynamic workload chal-
lenges in cloud environments [5], [6], [7]. These approaches
inspect system telemetry data such as system metrics or
system calls to identify abnormal attack behavior. However,
those approaches are reactive in nature, which cannot prevent
those security vulnerabilities from affecting many cloud users.
Moreover, previous intrusion detection schemes do not provide

// JndiManager.java Log4j CVE-2021-44228
/* An exploit example:

GET .../${jndi:ldap://attackhostname.com:23457/
AttackClass} HTTP/1.1 */

171 public <T> T lookup(final String name)... {
/* lookup is missing validation checks for the

‘name’ input. */
// the patch validates each component of the input
// JNDI uri, namely the protocol, hostname and class

172 return (T) this.context.lookup(name);
/* In eight hops, lookup calls Java’s
‘getObjectFactoryFromReference’ function to load the
AttackClass */

173 }

// NamingManager.java (package: javax.naming.spi)
137 static ObjectFactory getObjectFactoryFromReference(
138 String factoryName)
139 ... {
146 clas = helper.loadClass(factoryName);
163 return (clas != null) ? (ObjectFactory)

clas.newInstance() : null;
/* Java’s newInstance instantiates the AttackClass,
invoking the attack commands within the class. */

164 }

Fig. 1 The Apache Log4j CVE-2021-44228 bug (CVSSv3: 10.0,
CVSSv2: 9.3). The vulnerable function lookup does not restrict the
lookup of JNDI URIs before instantiating the requested class with
the security-sensitive getObjectFactoryFromReference function. This
‘improper execution restrictions’ bug has the ‘execute arbitrary
code’ impact.

information about the underlying software defects for the
developer to fix the security vulnerabilities. To mitigate those
vulnerabilities, developers have to manually analyze massive
code bases to figure out the underlying root causes. In this
paper, we make the first step to understand the software
vulnerabilities called security bugs in 13 commonly used cloud
server systems, which provides foundations for proactively
detecting software vulnerabilities before they get released to
production cloud systems.

A. Motivating Example

We illustrate security bugs affecting cloud server systems
using the Apache Log4j CVE-2021-44228 vulnerability. The
bug occurs because Log4j retrieves data from any external Java
Naming Directory Interface (JNDI) server without restriction.
Accordingly, attackers can submit a request to lookup a class
from the attacker’s JNDI server. The exploit example in
Figure 1 is an HTTP request with a path that contains a JNDI
request enclosed in the ’${’ and ’}’ substitution characters.
The JNDI request contains the vulnerable LDAP protocol, the
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attack server attackhostname.com, and the attack class Attack-
Class. Log4j resolves the request with the lookup function on
line 171. The vulnerable version of the function only contains
line 172, which starts a series of invocations to retrieve the
requested class using the LDAP context. However, lookup
does not validate name before this line. Eight hops along
the call path, the getObjectFactoryFromReference method of
the javax.naming.spi library loads the AttackClass from the
external attackhostname.com and creates an instance using the
java.lang.Class newInstance method. Finally, the application
invokes the new AttackClass instance, executing its malicious
commands.

The developers patch this bug by using allowlists to restrict
each component of the JNDI lookup requests, namely the
protocol, the hostname, and the class. Developers have to
spend a long time analyzing applications in detail to identify
vulnerabilities and provide appropriate fixes. Furthermore, the
analysis can be challenging because the vulnerable functions
often reside at a different location from where the symptoms,
such as the results of the executed commands, occur. Under-
standing the security bug root cause informs the automatic
detection and patching tools to efficiently locate the vulnerable
function before the production system is affected.

B. Contribution
In this paper, we investigate 110 recent security bugs

selected from over 300 CVEs in the past five years in 13
popular cloud server systems. We categorize the vulnerabilities
by answering the following questions: 1) what are the causes
of the security bugs? 2) what threat impact does the vulnerable
code have? 3) how do developers patch the vulnerable code?

Specifically, this paper makes the following contributions:

• We identify five common vulnerable code patterns by
systematically analyzing 110 security bugs: 1) improper
execution restrictions, 2) improper permission checks, 3)
improper resource path-name checks, 4) improper sensi-
tive data handling, 5) improper synchronization handling,

• Our study shows that the leading causes of the security
bugs are improper execution restrictions (37%), improper
permission checks (25%), and improper resource path-
name checks (24%). The remaining bugs are due to
improper sensitive data handling (7%) and improper
synchronization handling (7%).

• We describe a set of vulnerable code patterns in order
to catch vulnerable code before security bugs impact
production cloud systems.

The rest of the paper is organized as follows. Section II
describes our methodology for security bug collection and
categorization. Section III presents the details of our security
bug categorization. Section IV compares our work with related
work. Section V concludes the paper.

II. METHODOLOGY

In this section, we present our methodology. We provide
details about the examined security bugs, our bug discovery
process, and our vulnerable code categorization.

Fig. 2 Distribution of security bugs by threat impact.

A. Real-world security bug discovery

We examine 110 real-world security vulnerabilities in 13
popular Java cloud server applications: Apache ActiveMQ,
Apache Log4j, Apache Solr, Apache Struts 2, Apache Tomcat,
Apache Unomi, Elasticsearch, GlassFish, JBoss, Jenkins, Jetty,
Undertow, and WildFly (previously JBoss). The vulnerabilities
reside in the core application or in Java libraries used by
these programs. To comprehensively study the current state
of security vulnerabilities in server systems, we primarily
study security-focused bugs over the past 5 years (2017 to
2021) with available open-source code. After inspecting the
source code of the bugs, we exclude those that are in tiny
vulnerable function and threat impact categories. Accordingly,
we examine over 300 security bugs to arrive at 110 studied
bugs.

We primarily search for recent CVEs listed for each ap-
plication in the national vulnerability database (NVD) [8].
The database provides bug descriptions, vulnerable and fixed
versions, and other references. We also explore vulnerability
databases such as Red Hat Bugzilla [9], Veracode [10], and
CVEDetails [11] that often include relevant references to
vulnerability details. We manually examine the appropriate
application versions hosted on repositories like GitHub and
Apache Subversion (SVN). We compare differences in appli-
cation versions, and search through developer correspondence
like commits.It is challenging and extremely time-consuming
to track and analyze vulnerable code and attack steps as many
vulnerability reports do not give detailed exploit descriptions.

Vulnerability databases often record the impact of vulner-
ability exploits to the system. Figure 2 presents the threat
impact distribution of the bugs, which is composed of bugs
that: 1) disclose credential information, 2) execute arbitrary
code, 3) escalate privilege level, and 4) return a shell and
execute arbitrary code. We observe that the leading security
threats to the cloud server systems are attacks that disclose
credential information and execute arbitrary code, which
account for 45% and 41% of the studied bugs, respectively. In
contrast, the escalate privilege level and return a shell and
execute arbitrary code represent 9% and 5% of the bugs,
respectively.
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Fig. 3 Distribution of security bugs by vulnerable code category.

B. Vulnerable Code Categories

Prior security system work often detects attacks to server
software through system events like system call activity, in-
stead of finding the underlying vulnerability patterns in the
code. Such an approach learns a model of normal system
behavior to identify significant deviations as attack activity.
However, in previous work, we see that security attacks do not
always differ from the expected system behavior, which leads
to missed detection. In addition, unexpected activity can occur
under normal operation, which results in false alarms [12],
[7]. Security personnel need not only the detection alarms
that the prior systems provide but also an explanation of the
attack cause to confidently defend against attacks. Thus, we
study vulnerable code to understand how to locate the cause
of software defects.

We start by investigating the vulnerabilities in similar threat
impact groups because we notice that the security attacks use
similar commands to exploit them. For instance, many attacks
call the exec method of the Java Runtime class to execute
arbitrary commands. Nevertheless, attackers can modify their
requests to use ProcessBuilder objects instead so we pay
attention to the code features of the vulnerable application.
Specifically, we identify the vulnerable function and variables
that explain why the bug occurs at the vulnerable code
location. We examine how the attack exploitation commands
move through the application code until they succeed at a
vulnerable code location, using debugging tools when possible.
Finally, we repeat our analysis for all the vulnerabilities and
group similar causes to extract common patterns.

Figure 3 outlines the distribution of the studied security bug
categories, defined below1.

1) Improper execution restrictions characterize inadequate
or missing restrictions to functions that can execute
malicious commands.

2) Improper permission checks characterize insufficient or
missing checks for security-sensitive parameters used in
privileged functions.

3) Improper resource path-name checks characterize in-
complete or missing checks to filter requested resource

1We publish a dataset repository of our studied bugs resources at
www.github.com/NCSU-DANCE-Research-Group/understanding-sec-vuln.

// DefaultActionMapper.java Struts2 CVE-2018-11776
120 + protected Pattern allowedNamespaceNames = Pattern.

compile("[a-zA-Z0-9._/\\-]*"); // pattern filters
OGNL characters, % and $, from the namespace

415 + protected String cleanupNamespaceName(final String
rawNamespace)

416 + if (allowedNamespaceNames.matcher(rawNamespace).
matches()) {

417 + return rawNamespace;
425 + }

// OgnlRuntime.java
/* An exploit example:

GET /struts2/${...#p= new
java.lang.ProcessBuilder({’/bin/bash’,’-c’, ’ls’})
... p.start()}/help.action HTTP/1.1 */

1215 public static Object callAppropriateMethod(
OgnlContext context, Object source,
Object target, String methodName,

1216 String propertyName, List methods, Object[] args)
1218 {
1223 Method method =getAppropriateMethod(methods,

target, args, ...);
// The method that aligns with the context (e.g.,

arguments, return value, etc) is chosen
1293 return invokeMethod(target, method, convertedArgs);
1306 }

815 public static Object invokeMethod(Object target,
Method method, Object[] argsArray)
...

891 result = method.invoke(target, argsArray);
/* OGNL invokes the ’start’ method with an empty

argsArray on the ’p’ ProcessBuilder object
target.

This executes the command in the ProcessBuilder
object. */

894 return result;

Fig. 4 The Apache Struts 2 CVE-2018-11776 bug (CVSSv3:
8.1, CVSSv2: 9.3). The vulnerable function invokeMethod calls
the security-sensitive Java invoke method to execute commands
inserted into the namespace section of a URI without restriction.
This ‘improper execution restrictions’ bug has the ‘execute
arbitrary code’ impact.

paths and filenames.
4) Improper sensitive data handling characterize improper

protection of sensitive data that become exposed in pro-
gram output.

5) Improper synchronization handling characterize issues
in code that handles many concurrent requests.

We find that three prominent categories, improper execution
restrictions, improper permission checks, and improper re-
source path-name checks span 37%, 25%, and 24% of the
bugs, respectively. The remaining categories, improper sen-
sitive data handling and improper synchronization handling,
each includes 7% of the bugs.

III. SECURITY BUG CHARACTERISTICS

In this section, we explain the characteristics of our studied
security bugs with representative examples. For each category,
we describe its vulnerable function patterns, patching strate-
gies, and analysis summary.

A. Improper execution restrictions

Vulnerable function patterns: Web server applications
provide features that attackers target for code execution. Many
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servers offer scripting capabilities to help users automate
tasks. Moreover, applications accept structured input such as
extensible markup language (XML) files via a stream of bytes
and then deserialize the bytes into objects and data structures.
However, malicious users can manipulate the application to
run unsafe classes during deserialization. Thus, developers
need to restrict these powerful features so that malicious users
do not compromise the server. The vulnerabilities in this cate-
gory are due to inadequate or missing restrictions to functions
that can execute commands. For instance, code that maintains
a blocklist of unsafe classes may be incomplete. Therefore,
attackers can use unanticipated classes to call functions like
java.lang.Runtime#exec or java.lang.ProcessBuilder#start that
create processes to execute commands.

We illustrate this category with the Apache Struts 2 vul-
nerability, CVE-2018-11776. The vulnerability allows exe-
cution of expressions included in a user-requested uniform
resource identifier (URI). If the namespace section of the
URI contains an object-graph navigation language (OGNL)
expression marked by ‘%{}’ or ‘${},’ Struts 2 prepares it
for evaluation. The vulnerability resides in the OgnlRuntime
class of the OGNL package. Figure 4 shows an example
exploit request above the OgnlRuntime class (line 1215).
The GET request includes an OGNL expression within ‘${’
and ‘}’. First, the expression defines a p variable, which
refers to a Java ProcessBuilder object constructed to execute
the bash command, ls. Next, the expression calls the start
method against the p object to create the bash process. To
invoke the start method in the expression, execution eventually
reaches the vulnerable function, invokeMethod on line 815.
Specifically, on line 891, the Java invoke function is called to
invoke the start method against the p ProcessBuilder object
given by the method and target variables, respectively. We
highlight how these vulnerable variables connect to the exploit
request with data dependency flow arrows. Accordingly, a new
process starts to run the ls command. However, the application
can execute any malicious code injected in the crafted URI.

Patching strategies: We notice four main patching ap-
proaches. First, developers implement input checks to avoid
improper use of an execution function. For example, the
manual patch of CVE-2018-11776 is applied in the Default-
ActionMapper class, where the namespace section of the URI
is parsed. Specifically, ActiveMQ uses the regex pattern on
line 120 in a cleanupNamespaceName method to prevent the
use of OGNL characters by excluding them from the set of
allowed characters. As another example, JBoss (CVE-2020-
5245) includes checks to exclude commands within scripting
characters, ‘${}.’ Second, developers eliminate unsafe classes
using a blocklist, or define allowed ones in an allowlist.
For instance, the jackson-databind library of Apache Struts
2 (CVE-2019-14379) prevents the invocation of an ehcache
class that is used to load other unsafe classes. Third, developers
introduce security variables to control the callers of execution
functions. For example, the patch for Elasticsearch (CVE-
2014-3120) only allows registered plugins to call its execution
function. Finally, developers may disable a feature that allows

//NIOSSLTransport.java ActiveMQ CVE-2018-11775
65 protected void initializeStreams() throws ... {
95 + sslParams.setEndpointIdentificationAlgorithm("

HTTPS"); // the patch sets endpoint identification
118 sslEngine.beginHandshake(); // starts the

handshake that eventually invokes checkTrusted()
131 }

// X509TrustManagerImpl.java (package: sun.security.ssl)
237 private void checkTrusted(X509Certificate[] chain,

String authType, SSLEngine engine, boolean isClient)
throws ... {

248 // check endpoint identity
249 String identityAlg = engine.getSSLParameters()
250 .getEndpointIdentificationAlgorithm();

/* ActiveMQ does not set SSLParameters where the
SSLEngine is created */

/* Since identityAlg is null, checkIdentity will not
execute */

251 if (identityAlg != null && identityAlg.length() !=
0) {

252 checkIdentity(session, chain[0], identityAlg,
isClient,

253 getRequestedServerNames(engine));
254 }

// SSLParameters.java
249 // @return the endpoint identification algorithm, or

null if none
257 public String getEndpointIdentificationAlgorithm() {
258 return identificationAlgorithm;

// identificationAlgorithm is null by default
259 }

Fig. 5 The ActiveMQ CVE-2018-11775 bug (CVSSv3: 7.4,
CVSSv2: 5.8). The function initializeStreams never sets an
identification algorithm so the variable identityAlg does not meet
the condition to call the security-sensitive checkIdentity function to
better secure TLS connections. This ‘improper permission checks’
bug has the ‘disclose credential information’ impact.

command execution by default or altogether if it is not a
core application function. For example, the Apache Solr CVE-
2017-12629 patch stops parsing external entities of XML files.

Observations: Improper execution restrictions frequently
occur because no restrictions are present. In 22 out of 41 bugs
(54%), the applications do not have checks to filter unsafe
inputs or prevent unsafe classes from evaluating inputs. We
also find that 16 out of 41 bugs (39%) are due to improper
restrictions during deserialization. Developers often address
deserialization with blocklists. However, applications that filter
classes with blocklists (22% of cases) tend to be vulnerable
because the lists need to be comprehensive. Attackers only
need to find a new unsafe class to defeat this measure. For
instance, applications that use XStream for XML processing
encounter at least five recent CVEs related to deserialization.
Thus, the fix for the most recent of them, CVE-2021-39139,
modifies the application to use an allowlist by default.

B. Improper permission checks

Vulnerable function patterns: Web server applications
use permissions to control different levels of access to its
resources. Applications use permissions for privileged server
functions such as actions related to connections, file access,
and security policies. In addition, the libraries they leverage
offer parameters to control specific security-relevant func-
tions. Furthermore, the application considers internet protocol
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properties such as hypertext transfer protocol (HTTP) header
attributes that impact security. Accordingly, managing multi-
faceted permissions becomes complex and error-prone. The
vulnerabilities in this category do not have sufficient checks
for security-sensitive parameters. Such parameters may be
variables related to configuration, security context, or keys
used in sensitive functions.

For example, Apache ActiveMQ versions before 5.15.6
establish socket connections without the use of transport layer
security (TLS)/secure socket layer (SSL) parameters to verify
server hostname identity. This CVE-2018-11775 vulnerability
exposes the application to man-in-the-middle (MITM) attacks.
During a TLS handshake, a server confirms its authenticity
with a certificate, which the client verifies against that from
an official certificate authority (CA). If endpoint identification
is not configured for the communication, the client does
not confirm that the entity presenting the certificate is the
intended hostname. Consider the code excerpt in Figure 5.
As the server certificate is processed, execution reaches the
Java checkTrusted function to confirm server identity. On line
249, checkTrusted gets the endpoint identification algorithm
set by SSL parameters and saves the result to identityAlg.
However, since the identification algorithm is not set by
ActiveMQ, identityAlg is null because getEndpointIdentifica-
tionAlgorithm returns null by default (line 258). Thus, the
checkIdentity function, which performs the hostname check, is
not called on line 252. Consequently, an attacker can intercept
connections between the client and the expected server.

Patching strategies: Improper permission checks happen
when applications 1) miss security-sensitive parameters in
libraries, 2) miss checks for privileged application func-
tions, or 3) have logical errors in the implementation of
permissions. Accordingly, the patches generally take three
approaches. First, developers set missing configuration pa-
rameters often provided by libraries. For example, the patch
of CVE-2018-11775 introduces Java SSLParameters on lines
93-97 to configure the HTTPS endpoint identification when
initializing TLS connections. Apache Tomcat (CVE-2018-
8034) also adds the TLS parameters needed to verify the
identity of a client hostname against the certificate it presents.
Next, the patch introduces checks for permissions of core
application classes. The change typically modifies supporting
classes and function arguments to include the permission
variable. Apache ActiveMQ patches CVE-2020-13920 with a
class that checks user access permissions before modifying
its remote method invocation (RMI) server. Finally, the patch
may adjust inaccurate logic of existing permission checks. For
instance, Apache Tomcat (CVE-2018-1305) moves permission
instructions outside a check for a specific authentication level
so that the instruction applies for all levels.

Observations: We observe that 8 out of the 27 bugs (30%)
occur when security configurations are missing. Developers
need specific knowledge of numerous properties to address
these vulnerabilities, which is challenging. We also find that
33% of the bugs are due to logical errors in the implementation
of permissions. Vulnerabilities occur when developers apply

// FileDirContext.java Tomcat CVE-2017-12615
/* An exploit example:

PUT /aaa.jsp/ HTTP/1.1
...Process p = Runtime.getRuntime().exec
(request.getParameter(cmd))... */

780 - protected File file(String name) {
+ protected File file(String name, boolean mustExist)

782 File file = new File(base, name);
// indirectly invokes the normalize function

+ if (name.endsWith("/") && file.isFile()) {
+ return null;
+ }

826 }

// WinNTFileSystem.java
102 private String normalize(String path, int len, int

off){
107 StringBuffer sb = new StringBuffer(len);
115 sb.append(path.substring(0, off)); /* off is one

less than the actual path length so the path is
returned without the last character
(e.g., ‘aaa.jsp/’ becomes ‘aaa.jsp’) */
...

159 String rv = sb.toString();
160 return rv; /* rv == ‘aaa.jsp’ is the filename to be

created (with malicious content) */
161 }

Fig. 6 The Apache Tomcat CVE-2017-12615 bug (CVSSv3: 8.1,
CVSSv2: 6.8). The vulnerable function file does not verify safe file
extensions after calling the security-sensitive normalize function
that can modify the file extension. This ‘improper resource path-
name checks’ bug has the ‘execute arbitrary code’ impact.

security instructions at the wrong time or create conflicting
permission variables. For example, Apache Tomcat (CVE-
2018-1305) wrongly applies security parameters at the start of
the application before the target servlet loads. Finally, we note
that developers sometimes neglect to consider error messages
as privileged actions since the message can allow a user to
infer the existence of a resource.

C. Improper resource path-name checks

Vulnerable function patterns: The vulnerabilities in this
category are due to incomplete or missing checks for proper
resource path-names. For instance, the code may miss a check
for a specific slash characters to ensure that a user-provided
path does not go outside the web directory.

We highlight this bug category with the Apache Tomcat
CVE-2017-12615 vulnerability. The exposure allows a user to
upload and execute jakarta server pages (jsp) by bypassing
jsp restrictions. Tomcat typically processes and restricts files
ending with “.jsp” using its JSPServlet class. However, when
an attacker appends an extra “/” character to the file extension,
the application does not recognize it as jsp and processes
it with the DefaultServlet class instead. Figure 6 shows an
example exploit request. The PUT request specifies the crafted
file name, ‘aaa.jsp/’, to be created, followed by some malicious
content. The content includes the java.lang.Runtime#exec
function so that the jsp file can execute commands. Before
creating files, Tomcat filters out trailing slashes not allowed in
Windows filenames using the Java normalize function from
the WinNTFileSystem class. In our example, at line 102,
normalize will be called with the path variable as ‘aaa.jsp/’
and off as len − 1, the index of ‘/’. On line 159, the path
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is truncated by removing the trailing slash. Thus, ‘aaa.jsp’ is
saved to sb, which is passed to rv and returned. Thus, the
attacker is able to successfully create a file with the intended
jsp filename extension. After ‘aaa.jsp’ is created, it is converted
to a java file ‘aaa jsp.java’ to service additional command
requests. The attacker can now send an additional GET request
with a command as an HTTP parameter. The request reaches
the jspService function of the ‘aaa jsp.java’ file, which calls
the inserted exec method to execute the requested command.
Thus, the Tomcat server can be used to execute arbitrary code
input by the attacker.

Patching strategies: Developers patch improper path-name
checks with four main methods. First, developers add checks
to filter characters such as directory traversal characters like
‘../’ that attackers use to access unintended parent directories
or other characters that are disallowed from filenames. These
patches add new character cases to check for or use regular
expressions to allow or disallow certain characters like the
Apache Struts 2 (CVE-2018-11776) fix. Second, developers
check for special characters that follow filenames and exten-
sions. Attackers insert special characters after unsafe paths,
knowing that the checks would resolve the path-name silently,
as in Apache Tomcat (CVE-2017-12615) shown in Figure 6.
The developer patch adds filename checks primarily in the file
function of FileDirContext where files are created. After line
782, if the path-name has a trailing slash, null is returned so
that the file is not created. Third, developers use consistent
path-names to identify resources. Applications such as Jetty
(CVE-2021-28163) have checks for accepting resources into
sensitive directories that expect absolute paths instead of other
aliases. These patches often extract absolute paths before
applying checks to avoid errors. Finally, developers fix logical
errors that prevent path-names from reaching expected checks.
For example, Apache Tomcat (CVE-2017-7675) corrects the
object type of a path variable to satisfy the branch conditions
for performing path-name checks as intended.

Developers usually implement the above checks against
malicious path-names with a specialized function named
as normalize. These normalization functions include checks
that filter directory traversal characters, remove other spe-
cial disallowed characters, or extract absolute paths. Normal-
ization functions resemble the normalize and resolve func-
tions of java.nio.file.Path but include more comprehensive or
application-specific checks.

Observations: Developers need to protect applications
against unsafe input paths and filenames. In 12 out of 26 (46%)
cases, necessary checks are missing in the appropriate classes.
In complex application codebases, it is challenging to know
where to place checks. We observe that 17 (65%) out of the
26 vulnerabilities are in existing normalization functions.

D. Improper sensitive data handling

Vulnerable function patterns: These vulnerabilities occur
when applications do not properly handle sensitive data such as
credentials or full document paths, so that the data is exposed
to users in some program output. Applications can reveal

// WildFly CVE-2020-25640
// JmsConnectionFailedException.java
40 private static String extractMessage(IOException

cause) {
41 String m = cause.getMessage();
42 if (m == null || m.length() == 0) {
43 m = cause.toString();
44 }
45 return m;

// JmsManagedConnection.java
1009 public String toString() {
1010 return "JmsManagedConnection{"
1011 + "mcf=" + mcf
1012 + ", info=" + info
1013 + ", user=" + user
1014 - + ", pwd=" + pwd

/* pwd is the password printed in plain text */
1014 + + ", pwd=****"

// the patch excludes the password
1025 + ’}’;
1026 }

Fig. 7 The WildFly CVE-2020-25640 bug (CVSSv3: 5.3, CVSSv2:
3.5). The vulnerable function toString outputs the security-sensitive
pwd password variable. This ‘improper sensitive data handling’ bug
has the ‘disclose credential information’ impact.

plaintext passwords and full file base names in error messages
and web pages (CVE-2020-25640 and CVE-2019-10247).
Otherwise, the applications may display the information upon
requests for certain expected files. For instance, passwords can
be found in a JVM report (CVE-2017-1000030), keys in a
configuration file (CVE-2018-1000176) or full filenames on a
directory listing web page (CVE-2019-10246).

In Figure 7, Wildly CVE-2020-25640 prints all field vari-
ables including password in plain-text in exception messages.
Thus, an attacker can induce an error to access exposed
credentials. WildFly has exception classes to extract and output
specific exception messages. For Java Message Service (JMS)
connections, the extractMessage function of the JmsConnec-
tionFailedException class is invoked. If a message is not found
for the exception via getMessage, the toString method is called
on line 43. This invokes the vulnerable toString function of
JmsManagedConnection, which prints the password pwd on
line 1014.

Patching strategies: The patches often remove sensitive
objects or parameters from print and log statements. For
instance, in Figure 7, the patch uses ‘***’ on line 1014 to
protect the password. Jetty (CVE-2019-10247) removes header
objects that contain credentials from the toString function of
its HttpServerExchange class. In addition, the patches trim
variables that expose full paths. Finally, developers introduce
permissions for getters used to retrieve sensitive objects.
Jenkins (CVE-2018-1000176) encapsulates relevant functions
in a new class that checks user accounts.

Observations: We observe that improper sensitive data
handling occurs when developers do not filter sensitive object
variables and full file paths from being displayed in messages
and publicly accessible files. Four of eight bugs (50%) are
exposed by the toString function of sensitive objects. The re-
maining bugs call log statements (25%) or getters of sensitive
objects (25%) (such as getSmtpAuthPassword, or getFileName)
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// AsyncIOProcessor.java Elasticsearch CVE-2019-7614
/* Example user request stored in ./translog_user1.tlog:

PUT index1/_doc/doc1
{

"tags": ["sensitive"],
"ssn": "***-**-1234"

}
The translog is synced to disk with thread1 by:
put(location: ./translog_user1.tlog, syncListener:

thread1)

*/
52 public final void put(Item item, Consumer<Exception>

listener)) {
59 // we first try make a promise that we are

responsible for the processing
60 final boolean promised = promiseSemaphore.tryAcquire

();
61 - final Tuple<Item, Consumer<Exception>> itemTuple =

new Tuple<>(item, listener);
// tryAcquire also returns false if a semaphore

permit is not acquired.
// Thus, the itemTuple variable is updated with a

new value for each thread.
...

74 if (promised || promiseSemaphore.tryAcquire()) {
75 final List<Tuple<Item, Consumer<Exception>>>

candidates = new ArrayList<>();
77 if (promised) {
79 - candidates.add(itemTuple);

/* A race condition can cause an itemTuple item to
connect with another listener of a different
thread context.
e.g., A thread2, instead of thread1, can receive
sensitive error/warning responses after syncing
/translog_user1.tlog. */

82 + candidates.add(new Tuple<>(item, listener));
84 promiseSemaphore.release();
95 }

Fig. 8 The Elasticsearch CVE-2019-7614 bug (CVSSv3: 5.9,
CVSSv2: 4.3). The vulnerable function put modifies the itemTuple
variable outside its critical section, which leads to a race condition
that can mix user data. This ‘improper synchronization handling’
bug has the ‘disclose credential information’ impact.

before the objects are output.

E. Improper synchronization handling

Vulnerable function patterns: These security vulnerabili-
ties are caused by issues in code that handles many concurrent
requests. Improper synchronization can allow threads to access
the content of variables from other thread contexts.

The Elasticsearch CVE-2019-7614 exposure, shown in Fig-
ure 8, can allow sensitive responses to be delivered to the
wrong user. An example PUT request is made to include
sensitive data in document doc1. Elasticsearch temporarily
stores request data and statistics in its transaction log (translog)
before writing to the underlying disk. To sync the translog,
Elasticsearch invokes the put function of the AsyncIOProces-
sor class with the translog location as the item and a listener
thread as the listener. The vulnerable function is the put
function due to the itemTuple variable. The AsyncIOProcessor
class uses semaphores to process multiple IO operations in
batches. On line 60, the semaphore tryAcquire function returns
false if a semaphore permit is not acquired. The next statement
then initializes the itemTuple variable. However, on line 79,
itemTuple is also used within the critical section from line 77
to 84. Thus, a race condition can result when itemTuple is
updated by a thread on line 61 as it is added to the candidates

list by another thread on line 79. When the write operation is
complete, the listener is notified of errors or warnings such as
deprecation warnings, which can contain sensitive details from
the translog. Consequently, such messages can be returned to
the wrong listener for the request.

Patching strategies: In four (50%) out of eight cases,
the patches provide threads with variables and classes to
preserve their context. Elasticsearch (CVE-2018-17244) adds
a metadata field to its AuthenticationResult class to hold
security token data. Context may be added in combination with
other changes. Jetty (CVE-2018-12538) employs the thread-
safe ConcurrentHashMap to track user sessions. In Figure 8,
the patch of Elasticsearch (CVE-2019-7614) removes line 61
from the function and replaces line 79 with line 82. It not
only updates shared variables inside the critical section to
avoid race conditions but also adds context to threads before
placing them in a waitlist. In two cases, developers fix how
buffers that contain user data are managed. The Jetty CVE-
2019-17638 patch adds checks to appropriately clear the buffer
before an exception occurs to prevent double release, while
the Apache Tomcat CVE-2021-25122 patch clears buffer for
HTTP header content before handling an upgrade request.
Otherwise, the patch fixes improper data types and structures
used for synchronization.

Observations: Improper synchronization handling results in
mix-up of user data. To overcome the problems, developers
can implement thread-safe variables and data structures, check
that structures only contain single user information, and ensure
that variables are not updated outside their critical sections. In
addition, developers may provide thread classes with context
about request data to resolve the vulnerabilities.

IV. RELATED WORK

Zhou et al. study malware samples in Android applications
and reveal shortcomings of antivirus tools against major cate-
gories of malware [13]. In contrast, we focus on the underlying
vulnerabilities at the code level. Tsipenyuk et al. focus on
classifying coding problems called phylla into seven plus one
kingdoms to help developers avoid such error themes [14].
For example, specific missing buffer checks under the buffer
overflow phyllum is classified under the input validation
kingdom. In addition, Xu et al. find five security vulnerability
patterns in C code patches [15]. Chen et al. study security
bugs in the Linux kernel, written in C [16]. Compared to
these papers, we focus on vulnerabilities in Java-based cloud
systems. We also present code patterns for each category.
Meng et al. investigate posts from the popular StackOverflow
forum platform to understand coding issues with Java security
libraries [17]. This work focuses on the proper use of security
APIs, which may address some improper permission check
bugs but does not cover the other vulnerability categories we
consider.

The common weakness enumeration (CWE) list is an ex-
tensive manual community-based effort to document software
and hardware errors [18]. It provides a taxonomy of errors,
sometimes with broad code examples, potential mitigation
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options, and detection approaches. The CWE system presents
a database of the weaknesses but does not give the precise
root causes for specific CVE-identified vulnerabilities. In
contrast, our work characterizes software security bugs with
vulnerable code patterns to efficiently detect the vulnerabilities
that fall under each category. The code patterns emphasize core
functions to help locate the vulnerable functions. For example,
according to the NVD [8], the Log4j vulnerability (CVE-2021-
44228) has three weaknesses: deserialization of untrusted data
(CWE-502), uncontrolled resource consumption (CWE-400),
and improper input validation (CWE-20). We can focus on
the vulnerable function pattern of the improper execution
restrictions category to detect this command execution bug.

Furthermore, systems research investigates the causes of
other bug types. Wang et al. study error-prone early exit (EE)
paths in detecting memory leaks [19]. Wan et al. analyze
how machine learning (ML) API misuse to build static check-
ers [20]. Hangfix finds root cause patterns for hang bugs in
cloud systems [21]. Dai et al. present five root cause categories
of timeout bugs in cloud systems [22]. Jin et al. extract rules
for detecting performance bugs [23]. In comparison, our study
focuses on understanding the causes of security bugs.

V. CONCLUSION

In this paper, we have presented a comprehensive study over
110 recent real world security bugs in 13 popular cloud server
systems. Our study first identifies five common vulnerability
categories among those 110 studied security bugs: 1) im-
proper execution restrictions, 2) improper permission checks,
3) improper resource path-name checks, 4) improper sensitive
data handling, and 5) improper synchronization handling.
Furthermore, we extract key software code patterns in each
category. We believe that our work makes the first step toward
proactively protecting cloud server systems from security bugs.
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