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Abstract—Containers have become increasingly popular for

deploying applications in cloud computing infrastructures. How-

ever, recent studies have shown that containers are prone to

various security attacks. In this paper, we conduct a study

on the effectiveness of various vulnerability detection schemes

for containers. Specifically, we implement and evaluate a set

of static and dynamic vulnerability attack detection schemes

using 28 real world vulnerability exploits that widely exist in

docker images. Our results show that the static vulnerability

scanning scheme only detects 3 out of 28 tested vulnerabilities

and dynamic anomaly detection schemes detect 22 vulnerability

exploits. Combining static and dynamic schemes can further

improve the detection rate to 86% (i.e., 24 out of 28 exploits).

We also observe that the dynamic anomaly detection scheme can

achieve more than 20 seconds lead time (i.e., a time window

before attacks succeed) for a group of commonly seen attacks in

containers that try to gain a shell and execute arbitrary code.
Index Terms—Container Security, Anomaly Detection, Ma-

chine Learning.

I. INTRODUCTION

Containers have recently become a popular application

deployment platform that can package an application and its

dependencies (e.g., source code, system libraries) with lower

overhead than virtual machines. However, due to its easy de-

ployment nature, containers are prone to various security vul-

nerabilities. Previous work has shown security vulnerabilities

widely exist in both official and community images [1]–[3].

Vulnerabilities in outdated packages can be exposed to various

types of attacks (e.g., denial of service, gain privilege, execute

code) and vulnerabilities can propagate due to dependency

relationships between images [2]. Hence, security has become

one of the top concerns for the user to use containers in

production environments [4].

Existing container vulnerability detection schemes can be

broadly classified into two groups: 1) static container image

analysis and 2) dynamic runtime detection. The static schemes

mainly focus on static vulnerability detection using container

image scanning [5]–[8]. Static image scanners can detect

known vulnerabilities by matching the packages and their

versions with remote Common Vulnerabilities and Exposures

(CVE) databases. However, the identified package list might

not always accurately include all the packages installed, and

customized code or scripts are not analyzed through static

analysis. Moreover, vulnerabilities that are not included in

existing CVE databases will not be detected (e.g., vulnerabili-

ties not publicly disclosed, zero-day vulnerabilities). Dynamic

runtime detection tools monitor container behaviors and de-

tect anomalous activities during runtime [9]–[11]. However,

most of these tools are policy-based, which cannot adapt to

changing behaviors. For example, Sysdig Falco [11] employs

pre-defined policies that describe the allowed or disallowed

behaviors for a process, in terms of system calls, their argu-

ments, and host resources accessed.

In this paper, we conduct a study over different vulner-

ability detection techniques and evaluate their effectiveness

on detecting security vulnerabilities of the applications run-

ning inside containers. Particularly, we focus on out-of-box

detection techniques which do not require any modifications

to monitored applications and are more resilient to attacks

than inside-box schemes. We consider both static and dynamic

detection techniques and perform comparisons among them in

terms of detection accuracy and overhead.

Compared to traditional host environments, containers

present a set of new challenges to vulnerability exploit de-

tection: 1) containers are often short-lived, which implies that

the detection scheme needs to produce real time alerts without

requiring a large amount of training data; 2) containers are

often dynamic, which requires that the detection should not

make any assumption about the container such as available

resources or application workloads; and 3) containers are

often light-weight, which requires that the detection algorithm

should not impose high overhead to the container.

We first study the open source static analysis engine

Clair [5] as an example for static analysis tools. Clair inspects

containers layer-by-layer for known vulnerabilities, which

continuously imports vulnerability data from a set of resources

(e.g., Debian Security Bug Tracker, Ubuntu CVE Tracker, Red

Hat Security Data). Container images are indexed into a list of

features (e.g., installed packages, package versions), and Clair

queries the vulnerability data to correlate the indexed features

with vulnerability database to generate a list of vulnerabilities

that threaten the images. We then study a set of dynamic detec-

tion schemes using unsupervised anomaly detection algorithms

(e.g., clustering [12], k nearest neighbor [13], self-organizing

map [14]). Compared to supervised machine learning, unsu-

pervised anomaly detection approaches do not require labeled

training data and can capture previously unseen attacks. We

evaluate these different detection schemes using real-world

vulnerabilities that are triggered in commonly used server

applications such as Tomcat, Apache, and ElasticSearch.



Specifically, this paper makes the following contributions:

• We reproduce 28 commonly seen real world security

vulnerabilities discovered in Docker Hub images and

conduct a comparative study over both static and dynamic

vulnerability detection schemes using those security vul-

nerabilities.

• We collect the detection accuracy of CoreOS Clair, an

open source static Docker image vulnerability detection

tool. Our results show that Clair can only detect 3 out of

the 28 vulnerabilities.

• We implement a system call collection and feature extrac-

tion system and apply a set of widely used unsupervised

anomaly detection schemes (i.e., k nearest neighbors,

k-means clustering, k-nearest neighbors combined with

principal component analysis for dimension reduction,

self-organizing map) to catch triggered attacks online.

Our results show that it is promising to use dynamic

anomaly detection schemes to catch vulnerability exploits in

containers: self-organizing map based anomaly detection can

catch 22 out of 28 tested vulnerability exploits while incurring

a low false positive rate (1.7% on average). Moreover, the

dynamic anomaly detection scheme can achieve more than 20

seconds lead time (e.g., a time window before attacks succeed)

for a group of attacks that try to gain a shell and execute

arbitrary code. We also find that it is beneficial to combine

static and dynamic vulnerability detection schemes, which can

further improve the detection coverage to catch 24 exploits.

The rest of the paper is organized as follows. §II presents our

empirical study methodology. §III describes the experimental

results. §IV compares our work with related work. Finally, the

paper concludes in §V.

II. METHODOLOGY

In this section, we describe our study methodology. We

first introduce the real-world vulnerabilities studied. We then

describe the set of static and dynamic vulnerability detection

schemes considered.

A. Real-World Vulnerabilities

Table I shows the 28 real-world vulnerabilities collected

in 24 different applications from the commonly used vulner-

ability repository, i.e., Exploit Database [15]. We categorize

all the 28 vulnerabilities into six groups based on their

threat impact: 1) return a shell and execute arbitrary code, 2)

execute arbitrary code, 3) disclose credential information, 4)

consume excessive CPU, 5) make applications crash, and 6)

perform escalation of privilege. These categories are among

the top vulnerability types discovered in Docker Hub [2].

Most of these vulnerabilities are reported within the past three

years and marked with “High” or “Critical” severity rankings,

denoted by CVSS scores 1. Our application set also exhibits

a wide coverage, ranging from back-end database systems to

1Common Vulnerability Scoring System (CVSS) scores are provided by
National Vulnerability Database. The higher the score, the higher the severity
(i.e., “None”: 0.0; “Low”: 0.1-3.9; “Medium”: 4.0-6.9; “High”: 7.0-8.9;
“Critical”: 9.0-10.0).

TABLE I: List of Explored Real-world Vulnerabilities.

Threat

Impact
CVE ID

CVSS

Score
Application

Exploitation

Tool

Return a shell

and execute

arbitrary code

CVE-2015-8103 7.5 JBoss JexBoss

CVE-2017-7494 10.0 Samba Metasploit

CVE-2016-10033 7.5 PhpMailer Metasploit

CVE-2015-2208 7.5 phpMoAdmin Metasploit

CVE-2016-9920 6.0 Webmail PoC

CVE-2015-1427 7.5 Elasticsearch Metasploit

CVE-2014-3120 6.8 Elasticsearch Metasploit

CVE-2012-1823 7.5 PHP Metasploit

CVE-2017-11610 9.0 Supervisor Metasploit

CVE-2017-8291 6.8 Ghostscript PoC

CVE-2015-3306 10.0 ProFTPd Metasploit

CVE-2017-12615 6.8
Apache

Tomcat
PoC

CVE-2016-3088 7.5 Activemq Metasploit

CVE-2017-12149 7.5 JBoss PoC

CVE-2015-8562 7.5 Joomla Metasploit

Execute

arbitrary

code

CVE-2014-6271 10.0 Bash Metasploit

CVE-2017-5638 10.0 Struts PoC

CVE-2017-12794 4.3 Django PoC

CVE-2016-3714 10.0 ImageMagick Metasploit

Disclose

credential

information

CVE-2017-7529 5.0 Nginx PoC

CVE-2015-5531 5.0 Elasticsearch Metasploit

CVE-2014-0160 5.0 OpenSSL Metasploit

CVE-2017-8917 7.5 Joomla sqlmap

Consume

excessive

CPU

CVE-2016-6515 7.8 OpenSSH PoC

CVE-2014-0050 7.5
Apache

Tomcat
PoC

Crash the

application

CVE-2016-7434 5.0 NTP PoC

CVE-2015-5477 7.8 BIND Metasploit

Escalation

of privilege
CVE-2017-12635 10.0 Couchdb Burp Suite

PoC: Proof of Concept code.

front-end web servers to represent different server applications

running inside containers.

We exploit the vulnerabilities by either executing the Proof

of Concept (PoC) code or using penetration tools (i.e., Metas-

ploit [16], JexBoss [17], sqlmap [18], and Burp Suite [19]). To

emulate dynamic applications in real world, we employ com-

monly used workload generator tools (e.g., Burp Suite [19],

JMeter [20]) to send requests to victim containers.

For web server applications such as Apache Tomcat, Django

and Nginx, we request pages from web servers with JMeter’s

HTTP sampler. This sampler enables the selection of the

appropriate HTTP traffic type (e.g., GET, POST, etc.) for an

application. Web requests are also sent to Joomla and Couchdb

front ends to induce database operations (e.g., create, update

and delete documents). For FTP servers such as ProFTPd, files

are downloaded from and uploaded to the FTP server using

the FTP sampler. The date requests are sent to the OpenSSH

application via the JMeter plugin (i.e., SSH command). The

Domain Name Server (DNS) and Network Time Protocol

(NTP) requests are sent to the BIND and NTP applications via

the JMeter plugin (i.e., UDP request). The smbclient is used

with JMeter’s OS process sampler to produce Server Message

Block (SMB) network traffic for the Samba application. As

for the Elasticsearch, we send search requests via Burp Suite.



B. Static Vulnerability Detection Scheme

We use Clair, a widely used open source tool for static

analysis of vulnerabilities in docker containers as an example

of static vulnerability detection schemes. Clair works by scan-

ning docker images and matching detected packages and their

versions with a remote CVE database. Vulhub [21] provides

Dockerfiles for users to build vulnerable images. A Dockerfile

is a script that contains all the commands that execute in

succession to build container images. Dockerfiles in Vulhub

use two different ways to install vulnerable applications,

i.e., through the source code and by a package manager

such as apt-get install or dpkg install to install

a deb file. Vulnerable container images created from local

Dockerfiles can be tagged and pushed to the Quay.io registry.

Vulnerability scanning is automatically performed by Quay.io,

and it takes about several minutes to produce the results. For

each image pushed to the Quay.io registry, Clair scans the

images and reports the total number of detected CVEs along

with the distribution of the CVEs according to the severity

rankings. For each reported CVE entry, Clair also lists a set

of related information, e.g, the available CVSS score, package

name, package version, and the suggestion of fixed versions

of the vulnerable package. In addition, Clair also gives a hint

of the specific layer where CVEs are introduced into images.

C. Dynamic Exploit Detection Approaches

Dynamic runtime detection schemes need to address two

key issues: 1) what monitoring data to collect and how to

extract proper features from the monitoring data? and 2) what

algorithms to use for detecting vulnerability exploits?

Data Collection and Feature Extraction. The behaviors

of running containers can manifest in different system metrics

(e.g., CPU utilization, memory usage, and network traffic) or

system calls. Although system metrics can be collected with

low cost, they are heavily affected by dynamic application

workloads, which makes them too noisy to be used as reliable

data sources for container exploit detection. System calls are

the interfaces though which applications access the services of

the operating system. We observe that changes in the behaviors

of containers from attempted attacks often manifest as varia-

tion in system call frequencies. For example, attempted attacks

targeted at containers may introduce system calls which rarely

appear during the applications’ normal executions.

Our container system call logs are collected with a

lightweight open source tracing tool called Sysdig [22]. Sysdig

supports container monitoring with transparent instrumenta-

tion, without the agent inside each container, which enables

real-time analysis of container activities.

We extract proper features from the raw system call trace

within equal sampling intervals. We explored both system

call frequency and system call execution time features, which

are called system call frequency vectors and system call

time vectors, respectively. We formulate a frequency/time

vector as V (t) = [x1, x2, ..., xn], where xi represents the

frequency or the execution time of each type of system

call in a given sample interval. Table II gives an example

TABLE II: An example of frequency vectors from a processed

system call list.

Timestamp

System call
write read futex epoll wait

1516544689186 2 4 50 4

1516544689286 9 8 74 8

1516544689386 0 0 9 1

of the extracted frequency vectors from a processed sys-

tem call list. The first line represents the number of ap-

pearances that sys_write, sys_read, sys_futex and

sys_epoll_wait calls make in the time interval [t, t+100)
milliseconds where t = 1516544689186.

After extracting proper features, we need to decide what

algorithms we should use to detect vulnerability exploits. As

mentioned in the introduction, container vulnerability detec-

tion needs to meet a set of new challenges. First, the detection

algorithm cannot assume a large amount of training data

because containers are often short-lived. Second, the detection

algorithm cannot assume prior knowledge about either the

application behavior or the attack behavior since containers

are highly dynamic. Third, the detection algorithm needs to

be able to provide real time detection with low overhead.

To address these unique challenges of container vulnerability

detection, we chose a set of light-weight unsupervised anomaly

detection schemes to evaluate.

K Nearest Neighbors (k-NN): The k-nearest neighbors

algorithm (k-NN) is used to perform outlier detection. Anoma-

lies are those samples whose average distance to its nearest

neighbors fall into the top p percentile. There is a trade-off

between true positive rate and false positive rate when we

adjust the k and p values. If we lower p, more samples will

be identified as anomalous, which might increase both true

positive rate and false positive rate. The value of optimal k

requires more sophisticated tuning algorithms. For container

vulnerability exploit detection, it is impractical to tune the

parameters on-the-fly so they can be empirically decided

beforehand. In our experiments, we set k to be five and p

to be 10%.

PCA + k-NN: One of the key challenges to achieve high

accuracy in the k-NN algorithm lies in the presence of noise

in the feature data (hundreds of different types of system

calls). We choose Principal Component Analysis (PCA) as our

dimension reduction strategy because PCA is fast and incurs

low computation cost. In our experiments, we found that the

magnitude of the top dimension is larger than that of the fifth

dimension by four orders of magnitudes so we set the number

of target dimensions to be five.

K-means: K-means is a traditional clustering method and

easy to implement. K denotes the number of clusters of feature

vectors. We consider clusters with a small number of samples,

based on a cluster size threshold, as anomalous. Similar to k-

NN, we can only empirically set the value of k to perform

container vulnerability exploit detection.

Self-Organizing Map: Self-organizing map (SOM) [14]

is a special kind of artificial neural network (ANN) which



is able to reduce data dimensions and highlight similarities

among data without imposing excessive learning overhead.

The SOM algorithm preserves the relative distance between

high dimensional data points so that points that are nearby in

the input data are mapped to nearby neurons in the SOM.

We conduct training of the SOM network using the al-

gorithm outlined by UBL [23]. A mapped neuron with a

large neighborhood area value is far away from others and

considered abnormal. The threshold is determined by a certain

percentile value p of neighborhood area size. Intuitively, a low

p value will make the detection more sensitive and raise more

alerts.

III. EXPERIMENTAL EVALUATION

In this section, we first describe our evaluation setup and

then present our evaluation results in detail.

A. Experiment Setup

We set up victim containers in a virtual machine using

Docker v17.05.0 in order to eliminate the interference brought

by other activities in the host. The virtual machine is equipped

with 2 GB memory and 40 GB disk, running 64 bit Ubuntu

v16.04. Each victim container runs a vulnerable application

associated with a specific CVE. The static vulnerability scan-

ning is achieved by Clair v2.0.0. The syscall trace is collected

using Sysdig v0.19.1.

To evaluate the effectiveness of each detection approach

(e.g., real-time) and to restore the container practical usage

scenarios (i.e. short-liveness), we collect system calls produced

by the victim containers in a short period of time. Specifically,

for each vulnerability, we first launch the victim container

and start the vulnerable application. We then send workloads

from the VM and start the Sysdig tracing module. Sysdig

collects the system call traces for about six minutes, including

the system calls produced by the application under normal

workload and during the attack (i.e, from when the attack

is triggered to when the attack succeeds). We then extract

the time vectors and frequency vectors from the raw system

call traces in samples of 100 milliseconds. We run different

dynamic detection algorithms over those feature vectors.

B. Detection Results

We compare different vulnerability detection schemes using

four metrics: 1) detection coverage: whether each approach can

detect the vulnerabilities? 2) false positive rate: how accurate

each approach can achieve for the detection? and 3) lead time:

how quickly each approach can detect the attacks and thus

prevent compromise in time?

1) Detection Coverage: Table III shows the detection cov-

erage of different anomaly detection approaches. Overall,

dynamic approaches achieve better detection coverage than

the static approach. Specifically, SOM approaches achieve the

highest detection coverage on average, followed by the K-

means clustering approach. The k-NN and k-NN combined

with PCA approaches achieve the lowest detection coverage

among all dynamic approaches. The static approach (i.e.,

Clair) can only detect three out of 28 CVEs with the average

detection coverage of 10.71%. The static approach can be uti-

lized with a dynamic method to achieve the strengths of both

techniques. Accordingly, the highest detection coverage results

from combining the static and SOM frequency approaches.

This pair can detect 24 out of 28 vulnerability cases, giving a

detection coverage of 85.71%.

Clair achieves low detection coverage due to the lack of

container image features (e.g., installed packages, package ver-

sions), or the incomplete remote vulnerability database. For ex-

ample, Clair fails to detect the CVE-2017-7494 in the vulner-

able docker image because vulnerable packages are installed

using source code. Without using package managers to install

vulnerable packages, e.g., apt-get install, Clair cannot

extract the image features, thus it fails to detect the vulnerabil-

ities by correlating the indexed features with remote vulnera-

bility database. Another example is the CVE-2016-6515. Clair

fails to detect this vulnerability due to the incomplete remote

vulnerability database. In fact, Clair has extracted the container

image feature (i.e. OpenSSH v1:7.2p2-4ubuntu2.1), but reports

an incomplete list of vulnerabilities that threaten this image,

e.g., CVE-2016-10009, CVE-2016-10012, CVE-2016-10010,

CVE-2016-10011, CVE-2017-15906, and CVE-2016-8858.

The k-NN approach can only detect 32.14% vulnerabilities.

It detects 7 out of 15 vulnerabilities that return a shell and ex-

ecute arbitrary code and both the vulnerabilities that crash the

applications, but fails to detect other types of vulnerabilities.

The k-NN combined with PCA approach achieves a slightly

better detection coverage than the pure k-NN approach. It

detects six out of 15 vulnerabilities that return a shell and

execute arbitrary code, and another four vulnerabilities in

different categories.

The K-means approach achieves 67.86% detection coverage

by detecting 11 out of 15 vulnerabilities that return a shell

and execute arbitrary code, 3 out of 4 vulnerabilities that

execute arbitrary code, 3 out of 4 credential information

disclosure vulnerabilities, two excessive CPU consumption

vulnerabilities but it fails to detect any vulnerabilities which

could crash the application or cause escalation of privilege.

The SOM approach over system call time vectors (SOM

time) achieves the average detection coverage of 75% while

the SOM approach over system call frequency vectors (SOM

frequency) achieves the average detection coverage of 79%. In

particular, they both can detect most or all of the vulnerabilities

which would return an interactive shell and enable attackers

to execute arbitrary code inside containers. One insight be-

hind this is that system calls generated during the process

of exploitation and the arbitrary code execution are distinct

from those generated during applications’ normal running

process. For example, CVE-2014-3120 allows attackers to

exploit a remote command execution (RCE) vulnerability in a

vulnerable version of ElasticSearch (e.g., v1.1.1). We observed

that certain system calls appear more frequently when the vul-

nerability is exploited (e.g., sys_lseek, sys_mprotect).

We also found that specific system calls only appear after the

attack is triggered (e.g., sys_getuid).



TABLE III: Detection Result of Clair and Anomaly Detection Approaches.

Threat

Impact
CVE ID

CVSS

Score

Clair k-NN PCA + k-NN K-means SOM time SOM freq

Detected Detected FPR Detected FPR Detected FPR Detected FPR Detected FPR

Return a shell

and execute

arbitrary code

CVE-2015-8103 7.5 ✗ ✓ 9.97% ✓ 9.97% ✓ 2.98% ✓ 2.47% ✓ 0.84%

CVE-2017-7494 10.0 ✗ ✓ 9.93% ✓ 9.96% ✓ 4.27% ✓ 7.48% ✓ 1.10%

CVE-2016-10033 7.5 ✗ ✓ 9.92% ✗ 9.95% ✓ 8.78% ✓ 0.17% ✓ 0.17%

CVE-2015-2208 7.5 ✗ ✓ 9.91% ✓ 9.94% ✗ 0.00% ✓ 5.26% ✓ 3.18%

CVE-2016-9920 6.0 ✗ ✗ 9.97% ✗ 9.97% ✗ 0.00% ✓ 2.67% ✓ 0.48%

CVE-2015-1427 7.5 ✗ ✓ 9.93% ✓ 9.93% ✓ 9.14% ✓ 0.45% ✓ 1.54%

CVE-2014-3120 6.8 ✗ ✗ 9.92% ✓ 9.72% ✓ 10.08% ✓ 1.46% ✓ 1.72%

CVE-2012-1823 7.5 ✗ ✗ 9.92% ✗ 9.92% ✓ 2.76% ✓ 1.71% ✓ 6.50%

CVE-2017-11610 9.0 ✗ ✓ 9.96% ✗ 9.96% ✓ 1.13% ✓ 0.06% ✓ 1.58%

CVE-2017-8291 6.8 ✗ ✗ 9.94% ✗ 9.94% ✓ 4.90% ✗ 0.14% ✓ 1.41%

CVE-2015-3306 10.0 ✗ ✗ 9.96% ✗ 9.96% ✓ 2.56% ✓ 8.32% ✓ 0.95%

CVE-2017-12615 6.8 ✗ ✓ 9.92% ✗ 9.95% ✗ 0.00% ✓ 1.93% ✓ 1.96%

CVE-2016-3088 7.5 ✗ ✗ 9.92% ✓ 9.72% ✓ 4.30% ✓ 0.63% ✓ 3.04%

CVE-2017-12149 7.5 ✗ ✗ 9.96% ✗ 9.96% ✓ 3.36% ✓ 0.83% ✓ 1.72%

CVE-2015-8562 7.5 ✗ ✗ 9.82% ✗ 9.82% ✗ 35.27% ✗ 0.27% ✓ 5.28%

Execute

arbitrary

code

CVE-2014-6271 10.0 ✓ ✗ 9.97% ✗ 9.97% ✗ 1.60% ✗ 4.64% ✓ 0.42%

CVE-2017-5638 10.0 ✗ ✗ 9.95% ✓ 9.65% ✓ 4.09% ✓ 0.84% ✓ 3.17%

CVE-2017-12794 4.3 ✗ ✗ 9.95% ✗ 9.95% ✓ 8.90% ✗ 0.55% ✗ 3.10%

CVE-2016-3714 10.0 ✗ ✗ 9.97% ✗ 9.97% ✓ 1.06% ✓ 0.36% ✓ 0.26%

Disclose

credential

information

CVE-2017-7529 5.0 ✗ ✗ 9.78% ✗ 9.78% ✓ 10.40% ✗ 1.25% ✗ 0.08%

CVE-2015-5531 5.0 ✗ ✗ 9.95% ✗ 9.95% ✓ 5.78% ✓ 0.72% ✓ 1.22%

CVE-2014-0160 5.0 ✓ ✗ 9.95% ✗ 9.95% ✓ 5.21% ✓ 0.38% ✗ 0.96%

CVE-2017-8917 7.5 ✗ ✗ 9.92% ✓ 9.50% ✗ 0.25% ✗ 0.08% ✗ 0.13%

Consume

excessive CPU

CVE-2016-6515 7.8 ✗ ✗ 9.97% ✗ 9.97% ✓ 1.02% ✓ 6.73% ✓ 3.65%

CVE-2014-0050 7.5 ✗ ✗ 9.92% ✓ 9.72% ✓ 6.30% ✓ 2.01% ✓ 1.97%

Crash the

application

CVE-2016-7434 5.0 ✗ ✓ 9.72% ✓ 9.72% ✗ 36.57% ✗ 0.49% ✗ 0.00%

CVE-2015-5477 7.8 ✓ ✓ 9.91% ✗ 9.94% ✗ 10.22% ✓ 0.74% ✗ 0.31%

Escalation

of privilege
CVE-2017-12635 10.0 ✗ ✗ 9.79% ✗ 9.79% ✗ 33.88% ✓ 3.66% ✓ 1.26%

Average Results 10.71% 32.14% 9.92% 35.71% 9.88% 67.86% 7.67% 75.00% 1.88% 78.57% 1.71%

The K-means, SOM time and SOM frequency approaches

achieve 100% detection coverage for the vulnerabilities

which can cause performance issues (e.g., consume ex-

cessive CPU usage). For example, in CVE-2016-6515, the

auth_password() function in OpenSSH before version

7.3 does not limit password lengths for password authentica-

tion, which allows remote attackers to launch a DoS attack via

a long string, causing infinite loops. Another example is CVE-

2014-0050, where attackers send a crafted content-type header

to a vulnerable version of Apache Tomcat (e.g., v7.0-v7.0.50

and v8.0-v8.0.1), causing the loop index to be always less than

or equal to the upper bound, hanging Tomcat endlessly.

2) False Positive Rate: Table III also shows the false pos-

itive rate of different anomaly detection approaches. Overall,

the SOM approaches achieve the lowest false positive rate

(1.7% for SOM frequency and 1.9% for SOM time). followed

by the K-means clustering approach (7.67%). However, K-

means approach has the largest FPR range from 0% to 36.57%.

The k-NN and k-NN combined with PCA approaches incur

the highest false positive rate (9.92% FPR and 9.88% FPR,

respectively). However, these two approaches have the smallest

FPR range from 9.5% to 9.97%.

We omit the false positive rate result of Clair in our

evaluation because Clair can report hundreds or thousands

of CVEs for each victim container. It is extremely time-

consuming to validate all of its detection results manually.

It is also wrong to label all the CVEs identified by Clair but

not included in our benchmark in Table I as false positives.

3) Lead Time: Table IV shows the lead time achieved by

different dynamic approaches for the CVEs with the thread

impact of returning a shell to the attackers for executing

arbitrary code. In those type of CVEs, the attackers require

time-consuming operations to exploit the vulnerability such as

traversing the vulnerable container to find the path of a specific

writable folder (CVE-2017-7494), or creating a backdoor file

in the root folder of container-side (CVE-2016-10033).

Overall, the SOM approaches achieve the largest detection

lead time (28.7 seconds for SOM frequency and 25.8 seconds

for SOM time). However, the other approaches’ detection lead

time is very low. Specifically, the k-NN combined with PCA

approach achieves the average lead time of 1 second. The k-

NN approach achieves the average lead time of 0.57 second.

The worst case is the K-means approach which achieves a lead

time of 0.36 second.

The results show that the SOM approaches are more prac-

tical than the other machine learning methods for real-time

vulnerability detection. This time window is helpful because

effective emergency measures can be taken by administrators

to prevent the containers from being totally compromised.

We do not conduct lead time analysis for other CVE impact

types such as crash of the application, because these attacks

can finish immediately after the exploitation.

IV. RELATED WORK

Intrusion Detection using Machine Learning. Previous work

has utilized supervised machine learning methods in intrusion

detection [24]–[27]. Others avoid the need for ”labeled” train-

ing data with unsupervised learning [23], [28]–[32]. UBL [23]

introduces an unsupervised anomaly prediction system for

computing clouds using metrics such as CPU usage. Moreover,



TABLE IV: The Lead Time of Anomaly Detection Approaches for CVEs that Return a Shell and Execute Arbitrary Code.

“-”: the approach does not detect the vulnerability.

Threat Impact CVE ID
CVSS

Score

k-NN PCA + k-NN K-means SOM time SOM freq

(seconds) (seconds) (seconds) (seconds) (seconds)

Return a shell

and execute

arbitrary code

CVE-2015-8103 7.5 0 0 1 1 28

CVE-2017-7494 10.0 0 1 1 28 35

CVE-2016-10033 7.5 0 - 0 67 124

CVE-2015-2208 7 0 1 - 1 1

CVE-2016-9920 6.0 - - - 121 118

CVE-2015-1427 7.5 4 4 0 2 7

CVE-2014-3120 6.8 - 0 1 7 8

CVE-2012-1823 7.5 - - 0 44 45

CVE-2017-11610 9.0 0 - 0 1 1

CVE-2017-8291 9.0 - - 0 - 1

CVE-2015-3306 10.0 - - 1 1 1

CVE-2017-12615 6.8 0 - - 12 5

CVE-2016-3088 7.5 - 0 0 42 48

CVE-2017-12149 7.5 - - 0 8 8

CVE-2015-8562 7.5 - - - - 1

Average Lead Time 0.57 1.00 0.36 25.77 28.73

deep learning techniques have been applied in intrusion detec-

tion in recent years [33], [34]. In comparison, our work focuses

on studying real time container exploit detection schemes

using light-weight unsupervised anomaly detection schemes.

Intrusion Detection using Static and Dynamic Analysis.

Work has been done to statically analyze the application source

code and identify malicious code blocks and unwanted infor-

mation flows [35]–[38]. Previous work also dynamically mon-

itor application runtime behavior to detect exploitation [39]–

[42]. Sysdig Falco [11] is a rule-based checking tool. It detects

vulnerabilities by a set of (27 in current release) pre-defined

heuristics for each process. However, rule-based systems,

specific to certain types of vulnerabilities, face challenges in

detecting previously unknown vulnerabilities.

Intrusion Detection using System Calls. Numerous intru-

sion detection systems rely on system call information to

understand malicious behaviors [24], [43]–[45]. The above

approaches often require a large amount of training data

and may incur high resource cost. In contrast, our study

focuses on exploring practical unsupervised machine learning

algorithms for detecting vulnerabilities in dynamic and short-

lived containers.

V. CONCLUSION

Emerging container techniques speed up deployments of

applications and ease the distribution and delivery of software,

but securing containers still has a long way to go toward

maturity. In this paper, we conduct a study to evaluate the

effectiveness of different static and dynamic vulnerability

exploit detection schemes for container hosted applications.

Our initial experiments using 28 real world vulnerabilities

discovered in 24 commonly used server applications show

that static vulnerability scanning of container images alone

is insufficient, which only detects 3 out of 28 vulnerabilities.

Dynamic anomaly detection schemes using unsupervised ma-

chine learning methods can effectively detect 22 vulnerability

exploits with low false positive rates. Combining static and

dynamic schemes can further increase the detection coverage

to 86% (i.e., 24 out of 28 vulnerabilities). Our experiments are

still preliminary. In our future work, we plan to extend our vul-

nerability cases and further improve the detection accuracy by

combining and augmenting our vulerability detection schemes.
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