
Understanding Real-World Timeout Problems

in Cloud Server Systems

Ting Dai, Jingzhu He, Xiaohui Gu, Shan Lu†

North Carolina State University, {tdai, jhe16, xgu}@ncsu.edu
†University of Chicago, shanlu@cs.uchicago.edu

Abstract—Timeouts are commonly used to handle unexpected
failures in distributed systems. In this paper, we conduct a
comprehensive study to characterize real-world timeout problems
in 11 commonly used cloud server systems (e.g., Hadoop, HDSF,
Spark, Cassandra, etc.). Our study reveals timeout problems are
widespread among cloud server systems. We categorize those
timeout problems in three aspects: 1) what are the root causes of
those timeout problems? 2) what impact can timeout problems
impose to cloud systems? 3) how are timeout problems currently
diagnosed or misdiagnosed?

Our results show that root causes of timeout problems include
misused timeout, missing timeout, improper timeout handling,
unnecessary timeout, and clock drifting. We further find timeout
bugs impose serious impact (e.g., system hang or crash, job
failure, performance degradation, data loss) to both applications
and systems. Our study also shows that 60% of the bugs do not
produce any error messages and 12% bugs produce misleading
error messages, which makes it difficult to diagnose those timeout
bugs.

I. INTRODUCTION

Cloud server systems (e.g., Hadoop, Cassandra, HDFS,

Spark) have become increasingly complex, which often consist

of many inter-dependent components. It is challenging to

achieve reliability in cloud server applications because 1) dif-

ferent components need to communicate frequently with each

other via unreliable networks and 2) individual component

may fail at any time. Timeout is one of the commonly used

mechanisms to handle unexpected failures in distributed com-

puting environments [1], [2], [3], [4], [5]. Timeout mechanism

can be used in both intra-node and inter-node communication

failover. For example, when a component C1 sends a request

to another component C2, C1 sets a timer timeout value and

waits for the response from C2 until the timer expires. In case

C2 fails or a message loss occurs, C1 can break out of the

waiting state triggered by the timeout event and take proper

actions (e.g., retrying or skipping) accordingly.

However, many real-world cloud server applications lack

proper configuration and handling of those timeout events. As

the scale of server applications grow, the likelihood of timeout

bugs also increases. In 2015, Amazon DynamoDB service was

down for five hours [6]. The service outage is caused by a

timeout bug in the metadata server. When the metadata server

was already overloaded, the new requests from storage servers

to the metadata server failed due to timeout. Storage servers

kept retrying, causing further failures and retries, creating a

cascading failure.

¸ÕèÕÂãØÙ ¥�¶ÕàÕâ×Ùæ� ¸ÕèÕÂãØÙ ¦

æ�ø�³ÈÍ³çû�øô÷³����ô³ø�öøø÷ø÷³ø����

æ�ø�³ÆÍ³çü�ø���

ê
ô
ü�
³ù
�
�³
�ø
��
�
�
�ø

Figure 1. The HDFS-6166 timeout bug. The DataNode 1 reports “thread
quota exceeded” exception after the bug is triggered. The root cause of this
bug is the misconfigured timeout value for socket connection between the
Balancer and the DataNode 1.

//HdfsServerConstants class

129 public static int READ_TIMEOUT = 60 * 1000;

//Balancer class

183 public class Balancer{

... //configure the socket connection

+ public static final int BLOCK_MOVE_READ_TIMEOUT =

+ 20*60*1000;

...

348- sock.setSoTimeout(HdfsServerConstants.READ_TIMEOUT);

...

+ sock.setSoTimeout(BLOCK_MOVE_READ_TIMEOUT);

...

394 }

Figure 2. The patch of the HDFS-6166 bug. The represents how the
Balancer makes the configurable timeout changed from 1 min to 20 mins.

A. A Motivating Example

To better understand how real-world timeout bugs happen,

and how they can affect cloud servers and applications, we

use the HDFS-6166 1 bug as one example shown by Figure 1

and 2. This bug is caused by misconfiguring a timeout value

for the socket connection between the Balancer node and

the DataNode. In Hadoop Distributed File Systems (HDFS),

DataNodes store the data in a distributed manner and the Bal-

ancer schedules data block movement among the DataNodes.

In this bug example, the Balancer sends a data moving request

to DataNode 1. Then DataNode 1 performs data moving to

DataNode 2. After completing the data movement, DataNode

1 sends a reply message to the Balancer. As shown in Figure 2,

the developer configured a timeout checking (line 348 of

Balancer class) for the connection between the Balancer

and DataNode 1. In the buggy version, the timeout value was

set to HdfsServerConstants.READ_TIMEOUTwhich is

1We use “system name-bug #” to denote different bugs.

Table I
THE STATISTICS OF TIMEOUT BUGS IN EACH SYSTEM WE STUDIED.

System Description Num of bugs

Cassandra Distributed database management system 17

Flume Distributed streaming service 13

Hadoop Common Hadoop utilities and libraries 15

Hadoop Mapreduce Hadoop big data processing framework 15

Hadoop Yarn Hadoop resource management platform 4

HDFS Hadoop distributed file system 26

HBase Non-relational, distributed database 28

Phoenix Distributed database engine 6

Qpid Messaging service 20

Spark Big data computation framework 4

Zookeeper Synchronization service 8

Total 156

one minute. If the data migration between the Balancer and

DataNode 1 needs more than one minute, the connection keeps

timeout and the Balancer node resends the same data migration

request again and again.

When this bug occurs, cloud applications using HDFS expe-

rience continuous execution failures. Since the system reports

many misleading errors such as “threads quota exceeded”

errors, it is hard for developers to find the root cause of the job

failures is actually related to timeout value misconfiguration.

After figuring out the root cause, the developer further needs

to set a proper timeout value for the data movement operations

to fix the bug, which is another challenging problem. If the

timeout value is set to be too small, the system still experiences

many data migration failures as in this buggy version; If the

timeout value is set to be too large, it causes unnecessary sys-

tem idle time, which can further cause application performance

degradation. In the patch, the timeout value is increased to 20

minutes in order to tolerant bad network condition, which may

not be ideal for other network conditions.

B. Our Contribution

In this paper, we perform a comprehensive characteristic

study about 156 real-world timeout bugs in 11 popular cloud

server applications listed in Table I. We characterize those

bugs in three key aspects: 1) what are the root causes of

those timeout bugs? 2) what impact can timeout bugs impose

to cloud servers and applications? 3) how are timeout bugs

currently diagnosed or misdiagnosed?

Our study has made the following findings:

• Timeout bug root causes: Our study shows that real-

world timeout problems are caused by a variety of reasons

including 1) misused timeout value where a timeout

variable is misconfigured, ignored or incorrectly reused;

2) missing timeout checking where inter-component com-

munication lacks timeout protection; 3) improper timeout

handling where a timeout event is handled by inappro-

priate retries or aborts; 4) unnecessary timeout where a

timeout is used for a function call which does not need

timeout protection; and 5) clock drifting where timeout

problems are caused by asynchronous clocks between

distributed hosts. The misused timeout value is the top

root cause which is attributed to 47% bugs followed by

the missing timeout root cause attributing to 31% bugs

we studied.

• Timeout bug impact: Timeout bugs impose serious

impact to both cloud servers and cloud applications.

Among 156 timeout bugs we studied, 40% timeout bugs

cause the whole or part of servers to become unavailable

due to software hang or crash, 33% timeout bugs cause

application job execution failures, 26% timeout bugs

cause significant performance degradations for cloud

applications, and 2% timeout bugs cause serious data loss.

• Timeout bug diagnosis: Our study shows that real-world

timeout bugs are difficult to diagnose: 60% timeout bugs

do not produce any error message and 12% timeout bugs

produce misleading error messages.

The rest of the paper is organized as follows. Section II

describes our bug study methodology. Section III provides root

cause analysis over all the identified timeout bugs. Section IV

describes the impact of timeout bugs to both systems and

applications. Section V evaluates the diagnosability of all

studied timeout bugs. Section VI discusses related work.

Finally, the paper concludes in Section VII.

II. METHODOLOGY

In this section, we present our bug collection and analysis

methodology. First, we introduce our target cloud server

systems. Second, we describe how we collect real-world

timeout bugs from those studied systems. Third, we present

the key characteristics we consider for classifying different

timeout bugs.

A. Target Cloud Server Systems

Our study covers a range of popular open source cloud

server systems listed in Table I: Cassandra and HBase are

distributed key-value stores; Flume is a distributed streaming

system; Hadoop MapReduce and Spark are big data processing

platforms; Hadoop Yarn is a distributed resource management

service; HDFS is a distributed file system; Phoenix is a

distributed database engine; Qpid is a distributed messag-

ing service; and Zookeeper is a distributed synchronization

service. We try to cover as many cloud server systems as

possible to show that timeout bugs are widespread among

them. Moreover, those systems are implemented in different

programming languages including Java, C/C++, Python, and

Scala.

B. Timeout Bug Collection

Our benchmark includes 156 distinct real-world timeout

bugs, shown in Table I. They are collected from com-

monly used bug repositories (e.g., Apache JIRA [7]), using

the following criteria: 1) issue type: Bug, Improvement,

New Feature; 2) status: RESOLVED, CLOSED, PATCH

AVAILABLE; and 3) keyword: timeout. We then manually

examined each bug, eliminating about 5000 “will not fix”,

“duplicated” and “not a problem” cases.

2

C. Characteristic Categories

We classified all timeout bugs in regard to three character-

istics: root causes, impact to systems and/or applications, and

diagnosability. Some characteristics are subdivided into several

types and the percentage of the corresponding samples in each

type is also reported.

Our study found that timeout bugs have a large variety of

root causes. A clear understanding of how timeout bugs occur

helps developers to avoid them. Specifically, we classify all

kinds of timeout bug root causes into the following categories:

1) misused timeout value represents those issues where

timeout values are configured improperly. We further

divide this category into six subcategories: 1.a) mis-

configured timeout value where the timeout value is

set to a wrong one; 1.b) ignored timeout value where

the configured timeout value in the configuration file

is not passed into the program; 1.c) incorrectly reused

timeout value where a timeout variable is reused by more

than one timeout checking function; 1.d) inconsistent

timeout value where two different values are assigned

to one timeout variable; 1.e) stale timeout value where

timeout value is not updated during the execution; and

1.f) improper timeout scope where a timeout variable is

set at the wrong location of the program.

2) missing timeout checking represents those issues caused

by lacking necessary timeout detection and handling. We

further divide this category into two subcategories: 2.a)

missing timeout for network communication, and 2.b)

missing timeout for synchronization.

3) unnecessary timeout protection represents those issues

that are caused by unneeded timeout checking.

4) improper timeout handling represents those issues which

are caused by wrong handling operations for timeouts.

We further divide this category into five subcategories:

4.a) insufficient retries, 4.b) excessive retries, 4.c) in-

correct retry, 4.d) incomplete abort, and 4.e) incorrect

abort.

5) clock drifting represents those issues where a timeout

occurs too soon or too late due to asynchronous clock

in distributed systems.

Our study found that timeout bugs can impose serious

impact to both server systems and applications. We classify

the impact of timeout bugs into the following categories:

1) system unavailability impact where timeout bugs make

the whole or part of the server system unavailable to

clients;

2) job failure impact where timeout bugs cause application

request failures;

3) performance degradation impact where timeout bugs

cause prolonged delay in application job execution;

4) data loss impact where data loss occurs due to timeout

bugs.

Because developers still heavily rely on log messages to

debug, diagnosability of timeout bugs depends on whether

correct and relevant log messages are produced when those

�����

�����

������
������

	
�	��

��
�������
�����������

��
��
����
�����

���������������
��

����������� ��
�����

�!���"���
#�
��

Figure 3. The statistics of root causes of timeout problems.

//HConstants class

283 public static final int DEFAULT_HBASE_CLIENT_TIMEOUT

284 - = Integer.MAX_VALUE;

+ = 1200000;

Figure 4. The patch for the HBase-13647 bug. An example of misconfigured
timeout value.

timeout bugs are triggered. So our evaluation on the diagnos-

ability of timeout bugs is based on the types of log messages

produced by the buggy code:

1) correct error message represents the case where the

server system reports a correct and relevant error mes-

sage when a timeout problem occurs;

2) no error message represents the case where the system

does not produce any error message when a timeout

problem occurs;

3) wrong error message represents the case where the

server system produces a misleading or irrelevant error

message when a timeout problem occurs.

III. ROOT CAUSE ANALYSIS

In this section, we present a detailed analysis of the root

causes of the 156 real-world timeout problems we studied. We

characterize them into five categories. As shown in Figure 3,

we found 47% timeout bugs are caused by misused timeout

value, 31% timeout problems are caused by missing timeout

checking, 12% are caused by the improper timeout handling,

5% are caused by unnecessary timeout, and 5% are caused by

clock drifting. We now discuss each category in detail along

with examples.

A. Misused timeout value

In our study, we found 65 out of 156 timeout bugs are

caused by misused timeout values. To better understand how

those timeout values are misused, we further characterize

them into six subcategories: misconfigured timeout value,

ignored timeout value, incorrectly reused timeout value, using

inconsistent timeout value, using stale timeout value, and

improper timeout scope.

Misconfigured timeout values: We found 38 bugs are

caused by misconfigured timeout values, that is, timeout

variables are assigned with wrong values. Timeout value

misconfigurations are often caused by software developers’

3

//CommonConfigurationKeys class

51 public static final int IPC_PING_INTERVAL_DEFAULT

52 = 60000;

//ipc.Client class

159 final public static int getTimeout(...) {

160 return conf.getInt(IPC_PING_INTERVAL_KEY,

161 IPC_PING_INTERVAL_DEFAULT);

162 }

//NameNodeProxies class

246 private ... createNNProxyWithClientProtocol(...) {

...

261 ClientNamenodeProtocolPB proxy = RPC.

262 getProtocolProxy(...,

263 - 0,

+ org.apache.hadoop.ipc.Client.getTimeout(conf),

264 defaultPolicy).getProxy();

...

296 }

Figure 5. The patch for the HDFS-4646 bug. An example of ignored
timeout value. The represents how the configurable timeout variable
flows into createNNProxyWithClientProtocol function, and the

represents the function call flows.

lack of understanding about the timeout mechanism. Some

mature systems, such as Hadoop and Spark, provide manuals

to users with commonly used timeout values [8], [9], [10],

[11], [12]. However, misconfigured timeout values are still the

top root cause of those timeout bugs in cloud server systems.

Let us use the HBase-13647 bug as an example to illustrate

the misconfigured timeout value root cause. As shown in

Figure 4, Integer.MAX_VALUE is the default value of the

timeout variable hbase.client.operation.timeout

used on the connection between a HBase client and a HBase

server. When the HBase server (e.g., HMaster, RegionServer)

fails, HBase client hangs for about 24 days. In the patch, the

timeout value is changed to 20 minutes, because HDFS takes

about 10 minutes to recover from a failure. We found several

cases which set the timeout value to Integer.MAX_VALUE

or Long.MAX_VALUE, including the HBase-6684 and the

HBase-13647 bugs.

The HBase-3273 bug is another example of misconfiguring

a timeout value for zookeeper.session.timeout. The

timeout value is originally set to one minute. When the

Zookeeper server experiences a big garbage collection pause,

which lasts for more than one minute, all the sessions expire

during the process. It leads to a system failure, which further

causes application failures. To allow the big garbage collection

pause, the timeout value is increased to three minutes.

Ignored timeout value: We found ten timeout bugs where

a correctly configured timeout value is always ignored. Nor-

mally, the timeout variables are configured with default or

user-specified values read from the configuration files (e.g.,

Constants class, conf.xml file). Systems often provide

APIs to utilize the pre-configured timeout variables. Without

understanding how and when to invoke those APIs correctly,

software developers use a hard-coded timeout value by mis-

take.

For example, in the HDFS-4646 bug, shown by Figure 5,

when HDFS creates a NameNode proxy by the RPC call, i.e.,

//HTable class

450 public Result[] get(List<Get> gets) ... {

...

456 - batch(...); /* override rpcTimeout */

+ batch(..., readRpcTimeout);

...

468 }

474 public void batch(...) ... {

475 ...

476 AsyncRequestFuture ar = multiAp.submitAll(..);

...

481 }

482

+ public void batch(..., int timeout) ... {

+ AsyncRequestFuture ar = multiAp.submitAll(

+ ..., timeout);

+ ...

+ }

//AsyncProcess class

326 this.timeout = rpcTimeout;/*default value*/

...

576 public AsyncRequestFuture submitAll(...){

577 return submitAll(..., timeout);

578 }

...

590 public AsyncRequestFuture submitAll(

..., int curTimeout) {

...

615 }

Figure 6. The call graph and partial patch for the HBase-16556 bug. To save
space, we emit the patched lines for delete, existsAll functions. This
is an example of incorrectly reused timeout value. The represents how
rpcTimeout flows into the second submitAll function, while the
represents the function call flows.

createNNProxyWithClientProtocol, the configured

timeout value (IPC_PING_INTERVAL_DEFAULT) for the

RPC call is ignored and a wrong timeout value (0) is passed

in (line 263 in RPC.getProtocolProxy function). As a

result, timeout does not work as expected because the value

is set to be 0.

Incorrectly reused timeout value: Different operations in

one system can have various triggering time and execution

time. Thus, they often need different timeout variables to

enforce their occurrences, executions, and terminations. Incor-

rectly reused timeout value bugs refer to those cases where one

timeout variable is reused for different operations by mistake.

We found eight bugs in this category.

For example, the HBase-16556 bug shows how reusing

the rpcTimeout in three different cases cause system

performance degradation. The patch for the HBase-16556

bug is shown in Figure 6. In HBase, the get, delete

and existsAll functions in HTable class call batch

function to submit corresponding requests on line 456. The

batch function in turn calls submitAll function on line

590 in AsyncProcess class. Without passing the timeout

argument in the batch function, submitAll reuses the

default timeout variable, rpcTimeout, for all requests. In

fact, rpcTimeout is too large for get and exitsAll but

too small for delete. Too long timeout degrades the appli-

cation’s performance. Too short timeout causes the delete

operation to fail, which leads to the application failure.

Inconsistent timeout value: This category of timeout

4

//DFSClient class

2725 public Peer newConnectedPeer(...) ... {

2726 Peer peer = null; Socket sock = null;

...

2733 sock = socketFactory.createSocket();

...

2736 peer = DFSUtilClient.peerFromSocketAndKey(

2737 - saslClient, sock, ...);

+ saslClient, sock, ..., socketTimeout);

2738 - peer.setReadTimeout(socketTimeout);

2739 - peer.setWriteTimeout(socketTimeout);

...

2748 } /* wrong setting position. */

//DFSUtilClient class

587 public static Peer peerFromSocketAndKey(

...

591 - throws IOException {

+ int socketTimeoutMs) throws IOException {

592 Peer peer = null;

...

595 peer = peerFromSocket(s);

+ peer.setReadTimeout(socketTimeoutMs);

+ peer.setWriteTimeout(socketTimeoutMs);

596 peer = saslClient.peerSend(peer, ...);

...

597 return peer; /* correct setting position. */

...

604 }

Figure 7. The patch for the HDFS-10223 bug. An example of improper
timeout scope. The represents the function call flows.

bugs are caused by inconsistent settings to the same time-

out variable. We found four bugs in this category. The

Hadoop-11488 bug gives an example of setting two differ-

ent values for fs.s3a.connection.timeout variable.

The default value of fs.s3a.connection.timeout in

core-default.xml is 5000, while the default value in the

Constants class is 50000.

Stale timeout value: At different stages of an application

execution, the timeout value needs to be updated to meet

different execution requirements. A commonly seen mistake is

to use a stale value. It leads to job failure or undesirable delay

during the application’s execution. We found three bugs in this

category. The Zookeeper-593 bug gives an example of how not

updating timeout value leads to a system failure. A client does

not have access to the latest sessionTimeout value when it

is updated by the server. Because of the staleness, the timeout

value at the client side is different from the timeout value at the

server side. The side that holds a smaller timeout value might

terminate the session earlier, which leads to session failures.

Improper timeout scope: In this category, timeout bugs

are caused by being set at wrong locations. We found two

bugs in this category. For example, Figure 7 shows the

patch for the HDFS-10223 bug. The timeout mechanism is

originally configured after peer is instantiated, that is on

line 2738 and 2739. However, the saslClient.peersend

method already sets a default system-wide TCP timeout

for the connections, which makes all subsequent time-

out settings invalid. The default system-wide TCP timeout

is usually several hours long, causing undesirable delay

for the application. In the patch, developers configure the

timeout before saslClient.peersend operation in the

//FourLetterWordMain class

+ private static final int SOCKET_TIMEOUT = 5000;

...

46 public static String send4LetterWord(...)

47 throws ... {

48 - return send4LetterWord(...);

+ return send4LetterWord(..., SOCKET_TIMEOUT);

49 }

...

+ public static String send4LetterWord(...,

+ int timeout) throws ... {

64 Socket sock;

...

74 - sock = new Socket(host, port);

+ sock = new Socket();

+ sock.connect(hostaddress, timeout);

... /* add timeout in patch */

104 }

//Socket class

205 public Socket(String host, int port) ... {

206 this(host != null ?

207 new InetSocketAddress(host, port) :

208 new InetSocketAddress(... null, port),

209 (SocketAddress) null, true);

210 }

...

412 private Socket(SocketAddress address,

413 SocketAddress localAddr, boolean stream) ... {

...

425 connect(address); /* missing timeout */

...

430 }

Figure 8. The call graph and patch for the Zookeeper-2224 bug. An example
of missing timeout for network communication. The represent how
SOCKET_TIMEOUT flows and be used for Socket connection, and the
represents the function call flows.

peerFromSocketAndKey class.

Observations: Misused timeout value bug often occur when

software developers do not perform extensive testing (e.g.,

unit testing, regression testing, and stress testing) on timeout

configurations before releasing; or the software developers do

not have a clear understanding about the system’s timeout

mechanisms [13]. Moreover, setting proper timeout value is

challenging. Too small timeout values can cause system or

application to fail while too large timeout values can cause

performance degradation.

B. Missing timeout checking

We found 42 timeout bugs are caused by missing timeout

checking. In distributed systems, different nodes interact with

each other using either network communications or shared

variables. Thus, we group missing timeout bugs into two

groups: 1) missing timeout checking for network commu-

nications; and 2) missing timeout checking for intra-node

synchronizations. Missing timeout checking can cause system

hang or crash, which often does not produce any timeout

related error messages.

Missing timeout for network communication: We found

26 bugs are caused by missing timeout checking for network

communications, such as socket connections (including read

and write), RPC calls, and HTTP requests. Figure 8 shows the

Zookeeper-2224 bug, which gives an example of how missing

timeout checking for socket connections software hang in

Zookeeper. An application sends a request to the Zookeeper

5

//HRegion class

1823 public FlushResult flush(boolean force) ... {

...

2077 long flushOpSeqId = getNextSequenceId(wal);

...

2098 }

...

2416 protected long getNextSequenceId(final WAL wal) {

2417 WALKey key = this.appendEmptyEdit(wal, null);

2418 - return key.getSequenceId();

+ return key.getSequenceId(maxWaitForSeqId);

2419 }

//WALKey class

136 private CountDownLatch seqNumAssignedLatch

137 = new CountDownLatch(1);

...

304 - public long getSequenceId() ... {

305 - seqNumAssignedLatch.await();/*Missing timeout*/

...

+ public long getSequenceId(int maxWaitForSeqId)

throws IOException {

...

+ if (!seqNumAssignedLatch.await(

+ maxWaitForSeqId, TimeUnit.MILLISECONDS)) {

+ throw new IOException("Timed out waiting for"

+ + " seq number to be assigned");

+ } /* add timeout in the patch */

...

312 return this.logSeqNum;

313 }

Figure 9. The call graph and patch for the HBase-13971 bug. An ex-
ample of missing timeout for synchronization. The represent how
maxWaitForSeqId flows and be used for Condition.await, and the

represents the function call flows.

server by calling send4LetterWord function on line 46.

send4LetterWord creates a Socket instance on line 74

and connects to the Zookeeper’s address on line 425. Without

passing the timeout argument to the send4LetterWord

function, the Socket connection misses timeout. When the

network is congested, the required connection packets from

this application to Zookeeper is dropped. Therefore, the

application hangs, endlessly waiting for Zookeeper’s response.

Missing timeout for Synchronization: We found 16 bugs

that are caused by missing timeout for synchronization, includ-

ing file system synchronization and process/thread synchro-

nization. In Figure 9, the HBase-13971 bug shows how miss-

ing a timeout for Condition.await method causes system

failure. In HBase, when the write cache in MemStore accu-

mulates enough data, RegionServer needs to flush those write

cache into a new HFile to disk with the largest sequence

ID (line 2077). Before RegionServer gets the sequence ID on

line 312, it is blocked by calling CountDownLatch.await

on line 305. When a new write cache comes, it releases

the CountDownLatch, and assigns the largest sequence ID

to the RegionServer. However, if no more new write cache

comes, and the current MemStore just hits the limit, the

flushing is ongoing but the largest sequence ID is never

assigned. Missing timeout on CountDownLatch.await on

line 305 blocks the RegionServer. The consequence is that

RegionServer becomes unavailable.

Observations: We observe that missing timeout bugs often

occur when software developers do not consider the system

failover mechanism carefully in advance. This group of bugs

//HBaseAdmin class

79 public HBaseAdmin(Configuration conf) ... {

...

+ retryLongerMultiplier = conf.getInt(

+ "hbase.client.retries.longer.multiplier", 10);

...

86 }

...

360 public void deleteTable(...) throws IOException {

...

374 - for (int tries = 0; tries < numRetries; tries++) {

+ for (int tries = 0; tries < (numRetries

+ * retryLongerMultiplier); tries++) {

... //delete limited number of columns

426 }

...

476 }

Figure 10. The patch for the HBase-3295 bug. An example of insufficient
retry.

are difficult to diagnose because the affected systems often

produce no relevant error message. Moreover, missing time-

out often imposes serious impact to the affected system or

application, which causes the system/application to hang or

crash.

C. Improper timeout handling

When a timeout occurs, the system typically performs

handling actions including dropping or retrying tasks. We

observed that 16 out of 156 bugs are caused by improper

timeout handling. We classify the identified improper handling

cases into five groups.

Insufficient/missing retries: When a timeout occurs, sys-

tems often retry the operations. Sometimes, the retried oper-

ation needs to be repeated several times. Without a sufficient

number of retries, jobs experience failures eventually. We

found eight cases in this category.

For example, Figure 10 shows the patch for the HBase-3295

bug. When deleting a large table, the number of retries should

be multiplied (e.g., 10 times of the retry number for deleting a

normal-sized table), because HBase can only delete a limited

number of columns in each retry. Without a sufficient number

of retries, some columns of this large table cannot be deleted

successfully.

The HDFS-4404 bug gives another example of how insuffi-

cient retries during timeout causes application failure. During

failover, the HDFS client tries to connect to the NameNode

and create a file. When a timeout occurs due to network

congestion, the buggy code fails to perform any retry on file

creation, which makes the client believe the HDFS system is

unavailable. In this case, the application experiences a failure

when creating a file.

Excessive retries: In contrast to insufficient retries, exces-

sive retries waste resources. Retrying the same task many times

prolongs the execution time and slows down the performance

of the whole system. For excessive retries, we consider the

following problem: when a timeout happens, fewer retries

should have been taken than what is currently allowed by the

program. We found three cases in this category.

6

For example, the Mapreduce-5616 bug shows how excessive

retries cause failover mechanism slowing down. The default

retry number for RPC client is 45. When a timeout occurs, the

client has to retry 45 times with a 20 seconds timeout interval

on each retry. So, the total 45 tries will cause the client to wait

900 seconds before the client is notified of the job failure. In

the patch, the retry number is adjusted to 3. So the client can

detect the job failure in a more timely fashion.

Incorrect retry: Sometimes, retrying the operation during

timeout causes unexpected results. Instead, we should just

abort the operation. For example, in the Cassandra-6427 bug,

the correct semantic for the update operation requires at-most-

once execution, which means when a timeout happens, the

system should not retry the operation. Resubmitting the same

task leads to undesired results.

Incomplete abort: Aborting those timeout tasks should

be complete. Otherwise, the server system or the application

will be affected by incomplete aborting. For example, in the

Cassandra-7392 bug, when Cassandra server is overloaded, a

large group of queries for reading operations timeout. The

correct handling should be dropping the whole group of

queries. However, Cassandra only drops the to-be-processed

queries but still tries to finish all in-process queries. This re-

duces the throughput of the whole system, causing significant

performance degradation.

Incorrect abort: Aborting timeout tasks incorrectly can

also cause problems. For example, in the Spark-18529

bug, when the get operation fails due to timeout, an

AssertionError is thrown out, which terminates the

whole Spark system. The correct handling should be just

throwing out a timeout exception.

Observations: We observe that improper timeout handling

bugs occur because the software developers do not fully

understand the timeout mechanisms. However, it is challenging

to implement the proper timeout handling mechanisms, which

require the developers to have a deep understanding about

the tradeoffs between different timeout handling schemes

(e.g., aborting v.s. retry) and their impact to the systems and

applications.

D. Unnecessary timeout protection

Software developers should not use timeout mechanisms

as the failover mechanism sometimes. Under those circum-

stances, adding an unnecessary timeout causes system slow-

down. We found seven bugs in this category.

For example, Figure 11 shows the patch for the Flume-

2307 bug. After checkpoint successfully grabs the write lock,

rollback starts and tries to grab the read lock on line 617

by calling tryLockShared function which in turn calls

tryLock function on line 770. The tryLock operation

is configured with a timeout variable, logWriteTimeout

on line 771. However, if the checkpoint does not fin-

ish in logWriteTimeout interval, tryLockShared

returns false, making rollback failure by throwing the

ChannelException on line 620. The failure of the rollback

causes the corresponding transactions stuck in a limbo. Those

//FileChannel class

614 protected void doRollback(Event event) ... {

...

617 - boolean lockAcquired = log.tryLockShared();

+ log.lockShared();

...

619 - if(!lockAcquired) { /* doRollback failed */

620 - throw new ChannelException(...);

621 - }

...

651 }

//Log class

768 - boolean tryLockShared() {

- ... /* acquiring read lock w/ timeout */

770 - return checkpointReadLock.tryLock(

771 - logWriteTimeout, TimeUnit.SECONDS);

- ...

+ void lockShared() {

+ checkpointReadLock.lock();

776 }

Figure 11. The partial patch for the Flume-2307 bug. An example of
unnecessary timeout. The tryLockShared was also called in doPut,
doTake, doCommit functions. To save space, we only use doRollback

as representative. The represents the function call flows.

unfinished transactions prevent Flume from clearing their log

data. Finally, the log data fills up all the disk space. The

patch simply replaces the tryLock function with the lock

function, which removes the unnecessary timeout protection

for acquiring a lock. This makes the rollback always a success,

even though it happens after a long checkpoint.

The Hadoop-491 bug gives another example of how adding

an unnecessary timeout causes the system slowdown. In this

bug, Hadoop uses timeout mechanisms for all the steaming

jobs. When there are streaming jobs that have long idle

time, Hadoop arbitrarily kills their connections due to the

expired timer. Hadoop then recreates new streaming jobs to

replace the killed ones. The re-initialization overhead is heavy,

which degrades the whole system’s performance. In the patch,

Hadoop classified the streaming jobs, revoking the timeout

protection for those streaming jobs which have long idle time.

Observations: We observe that unnecessary timeout bugs

often occur when software developers mistakenly use timeout

retry mechanisms over operations which requires continuous

or at-most-once-execution semantics.

E. Clock drifting

The timeout value is often computed by subtracting the

start clock-time from the current clock-time. However, when

the clocks are out-of-synchronization, the elapsed time is

miscalculated, which generates a wrong timer value. We found

seven bugs are related to clock drifting.

The HDFS-4307 bug gives an example of how clock

drifting can cause either job/system failure or performance

degradation, depending on whether the clock drifting causes

a shortened or enlarged timer value. For example, when the

clock is adjusted by ntpd or a system administrator, using

the System.currentTimeMillis causes time jumping

forward or backward unexpectedly. If time jumps forward, the

elapsed time gets much longer. All the sockets abruptly expire,

which leads to system failure; Otherwise, the elapsed time gets

7

2.13%

25.53%32.62%

39.72%

 System unavailability
 Job failure
 Performance degradation
 Data loss

Figure 12. The statistics of the impact of timeout bugs.

// DatanodeProtocolClientSideTranslatorPB class

99 private static DatanodeProtocolPB createNamenode(...) {

...

102- return RPC.getProxy(DatanodeProtocolPB.class,

+ return RPC.getProtocolProxy(DatanodeProtocolPB.class,

...,

+ org.apache.hadoop.ipc.Client.getPingInterval(conf),

104 ...); /* add timeout in RPC call, the default */

105 } /* timeout value is configured to be 1 min */

//ipc Client class

170- static int getPingInterval(Configuration conf){

+ public static int getPingInterval(Configuration conf){

171 return conf.getInt(

172 CommonConfigurationKeys.IPC_PING_INTERVAL_KEY,

173 CommonConfigurationKeys.IPC_PING_INTERVAL_DEFAULT);

}

//CommonConfigurationKeys class

50 public static int IPC_PING_INTERVAL_DEFAULT = 60000;

Figure 13. The patch for the HDFS-4858 bug. When the bug occurs, the
whole system is unavailable. The represents the function call flows.

much smaller, even possibly be negative. All the sockets are

left in the cache for a longer period of time, which slows down

the whole system.

Observations: Clock drifting in distributed systems is

an important factor to consider in timeout calculation and

handling, which further makes the timeout bugs prevalent and

challenging in cloud computing environments.

IV. TIMEOUT BUG IMPACT

In this section, we examine the impact of timeout bugs

on both systems and applications. As shown in Figure 12,

timeout bugs affect systems and/or applications in four major

aspects: 40% timeout bugs cause system unavailability, 33%

cause application job failures, 26% cause system/application

performance degradation and 2% bugs cause application data

loss.

A. Unavailability impact

We found 56 out of 156 bugs cause system/application

unavailability. We illustrate how timeout bugs can cause

the whole system unavailable using the HDFS-4858 bug as

another example. As shown in Figure 13, this bug is caused

by missing timeout checking for the connection between the

DataNode and the secondary NameNode. In HDFS system,

the DataNodes should register with both the NameNode

and the secondary NameNode. If the NameNode does not

work, the secondary NameNode takes its place. The bug

occurs when the NameNode is down and the secondary

NameNode happens to be rebooting for some reason, such

as a power outage. Because the TCP reset packet does not

go out due to the abrupt shutdown of network interface,

the DataNode never knows the secondary NameNode is

rebooted. When the secondary NameNode comes back again,

the DataNode never reconnects and re-registers with the

secondary NameNode. In this case, the DataNode hangs

on sending heartbeats to the secondary NameNode, which

causes the whole HDFS system to become unavailable. In

the patch, timeout is configured for the socket connection

between the DataNode and the secondary NameNode in

the DatanodeProtocolClientSideTranslatorPB

class. The timeout value is set to one minute on line 171-173

of IPC client class. If TCP reset packet is not sent, the

connection is shut down when the timer expires. Then the

DataNode reconnects and re-registers with the secondary

NameNode.

The HDFS-3180 bug gives an example of how timeout bugs

cause part of the system to become unavailable. The bug is

caused by missing a timeout on the connection between the

WebHDFS API and HDFS. WebHDFS is a RESTful API for

remote applications to access HDFS cluster services. When the

network is congested, the HDFS hangs waiting for a response

from the WebHDFS connection, which causes WebHDFS

service to become unavailable for all remote applications.

The Mapreduce-3186 bug is an example of how timeout

bugs cause the application to become unavailable. This bug

is caused by missing timeout on the connection between

the ApplicationMaster and the ResourceManager. The Ap-

plicationMaster is responsible for the execution of a single

application. If the ResourceManager is restarted, the Applica-

tionMaster loses the contact with the ResourceManager. The

ApplicationMaster hangs waiting for the response from the

ResourceManager, which causes the application to become

unavailable.

B. Application failure impact

We found 46 out of 156 bugs cause application failures.

They are often caused by misused timeout or improper timeout

handling. Let us use the Mapreduce-6263 bug as an example.

This bug is caused by a misconfigured timeout value. Develop-

ers set ten seconds as the maximum job execution time. Specif-

ically, YarnRunner connects to the ApplicationMaster, sends

the “kill job” command, and waits ten seconds for the job

to complete. However, when the job contains a large amount

of data, ten seconds is too short for the ApplicationMaster to

terminate it. YarnRunner then kills the ApplicationMaster by

force, which causes the application failure.

C. Performance degradation impact

We found 36 out of 156 bugs cause performance degra-

dation. Generally speaking, a too large timeout value can

cause performance degradation. Misused timeout, unneces-

sary timeout, and clock drifting can also cause performance

8

// MRJobConfig class

+ public static final String

+ MR_CLIENT_TO_AM_IPC_MAX_RETRIES_ON_TIMEOUTS =

+ MR_PREFIX + "yarn.app.mapreduce.client-am.ipc.max-

retries-on-timeouts";

+ public static final int

+ DEFAULT_MR_CLIENT_TO_AM_IPC_MAX_RETRIES_ON_TIMEOUTS

= 3;

// ClientServiceDelegate class

+ this.conf.setInt(

+ CommonConfigurationKeysPublic.

+ IPC_CLIENT_CONNECT_MAX_RETRIES_ON_SOCKET_TIMEOUTS_KEY,

+ this.conf.getInt(MRJobConfig.

+ MR_CLIENT_TO_AM_IPC_MAX_RETRIES_ON_TIMEOUTS,

+ MRJobConfig.

+ DEFAULT_MR_CLIENT_TO_AM_IPC_MAX_RETRIES_ON_TIMEOUTS));

// CommonConfigurationKeysPublic class

379 public static final int IPC_CLIENT_CONNECT_MAX_

RETRIES_ON_SOCKET_TIMEOUTS_DEFAULT = 45;

// mapred-default.xml

+ <property>

+ <name>yarn.app.mapreduce.client-am.ipc.

+ max-retries-on-timeouts</name>

+ <value>3</value>

+ </property>

Figure 14. The patch for the Mapreduce-5616 bug. An example of perfor-
mance degradation impact.

degradation, including job execution slow down and system

recovery delay.

The Mapreduce-5616 bug, shown by Figure 14, gives an

example of how timeout bugs cause the job execution slow-

down. This bug is caused by excessive retries. The developer

introduces an RPC connection timeout on the connection from

the client to the ApplicationMaster. In the buggy version, the

retry number is set to be 45 by mistake (line 379). Each retry

takes 20 seconds. As a result, the client has to wait for 15

minutes for the socket to be closed. To fix the problem, the

developer configures the maximum retry number to be 3 in

mapred-default.xml and MRJobConfig class.

The Yarn-3238 bug gives an example of how timeout

bugs cause a slow system failover. This bug is caused by

excessive reties in an improper timeout handling. When the

client builds a connection with the NodeManager, it specifies

a retry number for the connection when a timeout occurs. This

connection, in turn, invokes ipc.Client class, where the

retry policy is already configured (45 by default). The two-

level retry mechanism causes the client have to wait a very

long time for the connection to finally fail, making failover

starts much later.

D. Data loss impact

Timeout bugs can also cause other severe problems. We

found 3 out of 156 bugs can even cause data loss. For example,

the Spark-8958 bug is caused by an unnecessary timeout. In

Spark, the ExecutorAllocationManager class allocates

and removes executors, which are agents responsible for

executing tasks, dynamically based on the current workload.

The executors store the corresponding tasks’ data in the

cache. An executor is removed when the executor has been

11.51%

28.78%

59.71%

 No error message
 Correct error message
 Wrong error message

Figure 15. The statistics of diagnosability of timeout bugs.

//StorageProxy class

135 public static void mutate(...) {

...

143 try{

...

162 }

+ catch (TimeoutException ex) {

+ if (logger.isDebugEnabled()) {

+ ...

+ logger.debug("Write timeout {} for one

+ (or more) of: ", ex.toString(), mstring);

+ }

+ throw ex;

+ }

163 catch(IOException e)

...

606 }

Figure 16. The patch for the Cassandra-2532 bug. An example of no error
message.

//CassandraServer class

1116 public void truncate(...) throws

1117 - UnavailableException ... {

+ UnavailableException, TimedOutException ... {

...

1134 catch (TimeoutException e) {

...

1137 - throw (UnavailableException) new

1138 - UnavailableException().initCause(e);

+ throw new TimedOutException();

1139 }

...

1143 }

Figure 17. The patch for the Cassandra-3651 bug. An example of wrong
error message.

idle for cachedExecutorIdleTimeout period of time.

Removing the executor causes its cached data block to get

lost. In the patch, the cachedExecutorIdleTimeout is

set as infinity, making the executor never times out.

V. TIMEOUT BUG DIAGNOSABILITY

In this section, we examine the diagnosability of timeout

bugs. As shown in Figure 15, we found only 40 out of 156

timeout bugs report the correct error message, which makes it

difficult to diagnose the timeout bugs.

No error message: This type of bugs are often caused by

missing timeout or clock drifting. We found 83 out of 156 bugs

report no error message. For example, the Cassandra-2532 bug

is shown in Figure 16. When a timeout occurs while writing

data to storage, there is no error message. The Cassandra client

is unaware of the write request failure. The patch is to add the

9

corresponding code block for timeout error handling—catch

the TimeoutException and record the error message.

The HDFS-8311 bug is another example, which is caused

by missing timeout for the socket read operation. When the

network congestion occurs, the HDFS client endlessly waits

for a response from the DataNode. Under this circumstance,

the HDFS client reports no error message.

Wrong error message: Sometimes applications report

misleading error messages when a timeout occurs. Or timeout

bugs cause other errors which report confusing messages. We

found 16 out of 156 bugs in this category.

The Cassandra-3651 bug gives an example of how ap-

plication reports misleading error messages shown by Fig-

ure 17. When truncate operations failed due to timeout,

it throws an UnavailableException rather than the

TimeOutException.

The Mapreduce-709 bug gives another example. Mapreduce

is configured with node health check function, which is run

to check each node’s status periodically. The timeout vari-

able mapred.healthChecker.script.timeout adds

a time limit on the health checking process. If the health

checking process exceeds the timeout value, the system throws

an IOException instead of a TimeoutException.

VI. RELATED WORK

Several recent empirical studies have looked at general

bugs in distributed systems [14], [15], [16], [17]. Gunawi et

al. studied 3000 issues in different distributed systems [14].

Huang et al. studied 4000 issues in Hadoop systems [15].

They both found that timeout bugs widely exist in distributed

systems. However, their studies do not focus on studying the

root cause, impact, and diagnosability of timeout bugs, which

is the focus of our work.

There have also been empirical studies that focus on specific

types of bugs in distributed systems, such as misconfigurations

that cause failures in distributed systems [18], data corruptions

in file systems and distributed systems [19], [20], general

performance degradation and resource-waste issues in real-

world distributed systems [21], [22], concurrency bugs caused

by unexpected distributed timing [23]. Our work is comple-

mentary to above studies, providing the first comprehensive

study about timeout bugs that occurred in real-world cloud

server systems.

Previous work has also explored various performance di-

agnosis schemes. X-ray [24] applies program dependency

analysis techniques to automatically identify configuration

entries that are responsible for performance problems. Fournier

et al. [25] proposed to analyze the blocking behavior using

kernel-level system events to diagnose performance problems.

PerfCompass [26] leveraged machine learning techniques to

differentiate external faults from internal faults. PerfScope [27]

identified buggy functions for system performance anomalies.

However, our recent study [22] shows that existing solutions

cannot effectively detect or diagnose performance anomalies

caused by timeout bugs.

We believe that this paper could provide insights for the

future development of timeout bug detection and diagnosis

tools.

Work has also been done to detect or fix concurrency

bugs [28], [29], [30], [31], [32], [33], [34], [35]. Existing work

focuses on timing problems caused by missing synchronization

operations or mis-using synchronization APIs/variables, such

as data races [28], [29], atomicity violations [30], [31], order

violations [32], and deadlocks [33], [34], [35]. Our study

reveals an under-studied type of root causes for concurrency

bugs: missing timeout, misused timeout, and unnecessary

timeout. Our study provides insights for future development

of detecting and fixing those bugs.

VII. CONCLUSION

We have presented a comprehensive characteristic study

about 156 real-world timeout bugs which are discovered in

11 popular open source cloud server systems. Our study

reveals a set of interesting findings: 1) 81% timeout problems

are caused by either misused timeout values or missing

timeout checking; 2) timeout problems have serious impact to

both cloud server systems and applications, which can make

system unavailable, cause application execution failures, bring

significant performance degradation, and even data loss; and 3)

existing timeout issues are difficult to diagnose with 71% bugs

producing no error message or misleading error messages. As

part of our on-going work, we plan to develop efficient timeout

bug detection and diagnosis schemes to enhance the resilience

of cloud server systems against timeout bugs.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-

ments. This work was sponsored in part by NSF CNS1513942

grant and NSF CNS1149445 grant. Any opinions expressed

in this paper are those of the authors and do not necessarily

reflect the views of NSF.

REFERENCES

[1] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:

Three Easy Pieces, May 2015.
[2] U. A. Khan and B. Rinner, “Online learning of timeout policies for

dynamic power management,” TECS, vol. 13, no. 4, p. 96, 2014.
[3] S. O. Luiz, A. Perkusich, B. M. Cruz, B. H. Neves, and G. M. d. S.

Araujo, “Optimization of timeout-based power management policies for
network interfaces,” CE, vol. 59, no. 1, pp. 101–106, 2013.

[4] H. Zhu, H. Fan, X. Luo, and Y. Jin, “Intelligent timeout master: Dynamic
timeout for sdn-based data centers,” in IM, 2015.

[5] N.-N. Dao, J. Park, M. Park, and S. Cho, “A feasible method to combat
against ddos attack in sdn network,” in ICOIN, 2015.

[6] “Irreversible Failures: Lessons from the DynamoDB Outage,”
http://blog.scalyr.com/2015/09/irreversible- failures- lessons-from-the-
dynamodb-outage/.

[7] “Apache JIRA,” https://issues.apache.org/jira.
[8] “Hadoop core configuration,” https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-common/core-default.xml.
[9] “Hadoop HDFS configuration,” https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/hdfs-default.xml.
[10] “Hadoop Mapreduce configuration,” https://hadoop.apache.org/docs/

current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
mapred-default.xml.

[11] “Hadoop Yarn configuration,” https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-common/yarn-default.xml.

10

http://blog.scalyr.com/2015/09/irreversible-failures-lessons-from-the-dynamodb-outage/
http://blog.scalyr.com/2015/09/irreversible-failures-lessons-from-the-dynamodb-outage/
https://issues.apache.org/jira
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/core-default.xml
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-common/yarn-default.xml

[12] “Apache Spark configuration,” https://spark.apache.org/docs/latest/
configuration.html.

[13] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure damage,” in
OSDI, 2016.

[14] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin
et al., “What bugs live in the cloud?: A study of 3000+ issues in cloud
systems,” in SOCC, 2014.

[15] J. Huang, X. Zhang, and K. Schwan, “Understanding issue correlations:
a case study of the hadoop system,” in SOCC, 2015.

[16] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in SOSP, 2001.

[17] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A
study of linux file system evolution,” in FAST, 2013.

[18] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in SOSP, 2011.

[19] P. Wang, D. J. Dean, and X. Gu, “Understanding real world data
corruptions in cloud systems,” in IC2E, 2015.

[20] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “End-to-end data integrity for file systems: A zfs case study,”
in FAST, 2010.

[21] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in PLDI, 2012.

[22] D. J. Dean, P. Wang, X. Gu, W. Enck, and G. Jin, “Automatic server
hang bug diagnosis: Feasible reality or pipe dream?” in ICAC, 2015.

[23] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “Taxdc:
A taxonomy of non-deterministic concurrency bugs in datacenter dis-
tributed systems,” in ASPLOS, 2016.

[24] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software,” in OSDI,
2012.

[25] P. Fournier and M. R. Dagenais, “Analyzing blocking to debug perfor-
mance problems on multi-core systems,” in SIGOPS, 2010.

[26] D. J. Dean, H. Nguyen, P. Wang, and X. Gu, “Perfcompass: Toward
runtime performance anomaly fault localization for infrastructure-as-a-
service clouds.”

[27] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora, and
G. Jiang, “PerfScope: Practical online server performance bug inference
in production cloud computing infrastructures,” in SOCC, 2014.

[28] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multi-threaded programs,” in
SOSP, 1997.

[29] P. Liu, O. Tripp, and C. Zhang, “Grail: Context-aware fixing of
concurrency bugs,” in FSE, 2014.

[30] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” in PLDI, 2011.

[31] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization constraints
with data in an object-oriented language,” in POPL, 2006.

[32] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated
concurrency-bug fixing,” in OSDI, 2012.

[33] Y. Lin and S. Kulkarni, “Automatic repair for multi-threaded program
with deadlock/livelock using maximum satisfiability,” in ISSTA, 2014.

[34] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke, “Gadara:
Dynamic deadlock avoidance for multithreaded programs,” in OSDI,
2008.

[35] D. Weeratunge, X. Zhang, and S. Jaganathan, “Accentuating the positive:
atomicity inference and enforcement using correct executions,” in
OOPSLA, 2011.

11

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html

