
Automatic Security Patching for Containerized Java Applications
Olufogorehan Tunde-Onadele

oatundeo@ncsu.edu
North Carolina State University

Raleigh, North Carolina

Xiaohui Gu
xgu@ncsu.edu

North Carolina State University
Raleigh, North Carolina

ABSTRACT
Containers have become increasingly popular in distributed com-
puting environments. However, recent studies have shown that con-
tainerized applications are susceptible to various security attacks.
We need to address underlying software vulnerabilities in these
applications. Existing research has attempted to analyze the under-
lying software bugs with various static and dynamic approaches to
extract vulnerability patterns in the application. However, these pat-
terns can vary among applications and libraries. In addition, many
solutions do not address the operational constraints and objectives
of distributed infrastructures. In this work, we explore static pro-
gram analysis to find and understand unique code patterns in the
core Java libraries that are vulnerable to security attacks. Thereafter,
we study how to deliver appropriate patches to Java applications
in distributed container clusters.

CCS CONCEPTS
• Security and privacy → Virtualization and security.
KEYWORDS
Container Security, Program Analysis, Security Patching

1 INTRODUCTION
Containers have become increasingly popular in distributed com-
puting environments because they provide an efficient and light-
weight deployment method for various applications. These advan-
tages have made containers the subject of recent research. However,
studies [3][5] have shown that containers are prone to various se-
curity attacks, which has become one of the top concerns for users
to fully adopt container technology [1].

Containerized applications also pose a set of new security chal-
lenges to distributed computing environments such as conventional
computing clouds and data centers that use virtual machines. First,
container image repositories are prone to vulnerabilities. A previ-
ous study [5] reveals an alarming degree of vulnerability exposure
and spread in the official Docker Hub container repository. It is
complex to maintain a public or private container repository which
often consists of a large number of container images and many
inheritance layers. If a container is created from a base image, any
vulnerability detected in the base image needs to be patched in
the containers that are built on top of the base image. Second, con-
tainers are often allocated with limited resources because a large
number of containers often share the resources of a single physical
host. Security patching causes significant resource increase (e.g.,
memory bloating) in a patched container, which could make the
container unable to run after patching.

In addition, existing software repair fixes underlying software
bugs using various static and dynamic approaches to extract vul-
nerability patterns in the application [2, 4, 6–8]. However, if these

patterns are based on application code external to the core libraries
of the programming language, the system may not detect similar
issues in other applications and libraries because of differences
among their code structures.

In this work, we explore static program analysis to find and
understand unique code patterns in the core Java libraries that are
vulnerable to security attacks. Since applications that build on these
key libraries will eventually call the underlying library functions,
such analysis can apply to diverse applications. After we extract
such patterns, we study how to deliver suitable patches to Java
applications in distributed container clusters. We conduct this study
on real world security bugs in popular Java server applications.

REFERENCES
[1] Anthony Bettini. 2015. Vulnerability Exploitation in Docker Container Environ-

ments. https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-
Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf.

[2] Ting Dai, Jingzhu He, Xiaohui Gu, Shan Lu, and PeipeiWang. 2018. Dscope: Detect-
ing real-world data corruption hang bugs in cloud server systems. In Proceedings
of the ACM Symposium on Cloud Computing. 313–325.

[3] Docker Image Vulnerability Research. 2017. https://www.federacy.com/docker_
image_vulnerabilities.

[4] Jingzhu He, Ting Dai, Xiaohui Gu, and Guoliang Jin. 2020. HangFix: automatically
fixing software hang bugs for production cloud systems. In Proceedings of the 11th
ACM Symposium on Cloud Computing. 344–357.

[5] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities
on Docker Hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy. ACM, 269–280.

[6] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel Briand. 2017.
Search-driven string constraint solving for vulnerability detection. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
198–208.

[7] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
2017. SPAIN: security patch analysis for binaries towards understanding the pain
and pills. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 462–472.

[8] Yunhui Zheng and Xiangyu Zhang. 2013. Path sensitive static analysis of web
applications for remote code execution vulnerability detection. In 2013 35th Inter-
national Conference on Software Engineering (ICSE). IEEE, 652–661.

https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-
Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf
https://www.federacy.com/docker_image_vulnerabilities
https://www.federacy.com/docker_image_vulnerabilities

	Abstract
	1 Introduction
	References

