
Toward Just-in-Time Patching for Containerized Applications
Olufogorehan Tunde-Onadele

oatundeo@ncsu.edu
North Carolina State University

Raleigh, North Carolina

Yuhang Lin
ylin34@ncsu.edu

North Carolina State University
Raleigh, North Carolina

Jingzhu He
jhe16@ncsu.edu

North Carolina State University
Raleigh, North Carolina

Xiaohui Gu
xgu@ncsu.edu

North Carolina State University
Raleigh, North Carolina

ABSTRACT
Containers have become increasingly popular in distributed com-
puting environments. However, recent studies have shown that
containerized applications are susceptible to various security at-
tacks. Traditional pre-scheduled software update approaches not
only become ineffective under dynamic container environments
but also impose high overhead to containers. In this paper, we
propose a new on-demand targeted patching framework for con-
tainerized applications. OPatch combines dynamic vulnerability
exploit identification and targeted vulnerability patching to achieve
more efficient security attack containment. We have implemented a
prototype of OPatch and evaluated our schemes over 31 real world
security vulnerability exploits in 23 commonly used server applica-
tions. Results show that OPatch can accurately detect and classify
81% vulnerability exploits and reduce security patching overhead
by up to 84% for memory and 40% for disk.

CCS CONCEPTS
• Security and privacy → Virtualization and security.
KEYWORDS
Container Security, Anomaly Detection, Security Patching
ACM Reference Format:
Olufogorehan Tunde-Onadele, Yuhang Lin, Jingzhu He, and Xiaohui Gu.
2020. Toward Just-in-Time Patching for Containerized Applications. In Hot
Topics in the Science of Security Symposium (HotSoS ’20), April 7–8, 2020,
Lawrence, KS, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3384217.3384225

1 INTRODUCTION
Containers have become increasingly popular in distributed com-
puting environments by providing an efficient and lightweight
deployment method for various applications. However, recent stud-
ies [2][4] have shown that containers are prone to various security
attacks, which has become one of the top concerns for users to fully
adopt container technology [1].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7561-0/20/04.
https://doi.org/10.1145/3384217.3384225

Containerized applications pose a set of new security challenges
to distributed computing environments such as computing clouds
and data centers. First, container image repositories are prone to
vulnerabilities. Indeed, previous study [4] reveals an alarming de-
gree of vulnerability exposure and spread in the official Docker
Hub container repository. It is complex to maintain a public or
private container repository which often consists of a large number
of container images and many inheritance layers. If a container is
created from a base image, any vulnerability detected in the base
image needs to be patched in the containers that are built on top of
the base image. Second, containers are often allocated with limited
resources because a large number of containers often share the
resources of a single physical host. Security patching might cause
significant resource increase (e.g., memory bloating) in a patched
container, which makes the container unable to run after patching.

Existing security patching schemes in distributed computing
environments often follow a scheduled whole upgrade approach,
that is, updating all applications on a certain day (e.g., every Tues-
day). The approach works well in stable distributed computing
environments consisting of long running hosts or virtual machines.
However, containers are often short-lived, which makes periodical
patching schemes ineffective if the vulnerable containers miss the
pre-scheduled patching day. Moreover, general software upgrade
often significantly increases the memory footprint of the patched
containers. As a result, those containers quickly become too heavy
to fit in constrained resource allocations.

In this work, we propose OPatch, an on-demand targeted patch-
ing framework to achieve effective and low-cost security attack
protection for containerized applications. Our framework consists
of three key components: 1) an online anomaly detection module
which can catch vulnerability exploit behavior using low-cost, non-
intrusive system call tracing and unsupervised machine learning
algorithm: autoencoder neural network [3]; 2) a signature extrac-
tion module which extracts the most frequently appeared system
calls during the exploit period to identify the specific vulnerability
exploit; and 3) a targeted patch execution module which is responsi-
ble for triggering proper software library update to fix the identi-
fied vulnerability. We adopt a hybrid approach to achieve targeted
patching by combining package manager tools such as Advanced
Package Tool (APT) for Linux distributions and manual package
installations.

Specifically, this work makes the following contributions.

https://doi.org/10.1145/3384217.3384225
https://doi.org/10.1145/3384217.3384225
https://doi.org/10.1145/3384217.3384225


HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Olufogorehan Tunde-Onadele, Yuhang Lin, Jingzhu He, and Xiaohui Gu

• We propose a new on-demand targeted patching framework
to achieve practical and effective security protection for con-
tainerized applications.

• We present a light-weight vulnerability exploit detection
and signature extraction scheme using out-of-box system
call tracing and unsupervised autoencoder neural networks.

• We have implemented a prototype of OPatch and evaluated
it over 31 real world security vulnerability exploits in 23
commonly used server applications.

Our experimental results show that OPatch’s dynamic exploit
detection scheme can successfully detect and classify 81% vulnera-
bility exploits with 16.38 seconds lead time on average, that is, we
can detect the exploits 16 seconds before the exploits succeed. In
comparison, other commonly used anomaly detection schemes such
as k-nearest neighbor (𝑘-NN) and 𝑘-means clustering algorithm
can only detect 6% and 68% exploits, respectively. 𝑘-means also
produce 7% false alarms while OPatch only incurs 0.7% false alarms.
Among those successfully detected exploits that attack different
applications, OPatch can achieve 100% classification accuracy by
extracting a unique signature for each vulnerability. For attacks tar-
geting different vulnerabilities within the same application, OPatch

accurately classify different vulnerabilities for 22 out of 23 tested
applications with only one exception (i.e., Ghostscript). We further
found that those Ghostscript vulnerabilities that share common
a signature can be in fact corrected by the same code patch. To
quantify the benefit of OPatch, we compare the memory and disk
footprint change before and after patching between OPatch and
the existing version-based software upgrade approach. Our results
show that our patching scheme can reduce the memory footprint
increase (caused by the applied patches) by up to 84% and disk size
increase by up to 40%.

REFERENCES
[1] Anthony Bettini. 2015. Vulnerability Exploitation in Docker Container Environ-

ments. https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-
Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf.

[2] Docker Image Vulnerability Research. 2017. https://www.federacy.com/docker_
image_vulnerabilities.

[3] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural
networks 61 (2015), 85–117.

[4] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities
on Docker Hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy. ACM, 269–280.

https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-
Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf
https://www.federacy.com/docker_image_vulnerabilities
https://www.federacy.com/docker_image_vulnerabilities

	Abstract
	1 Introduction
	References

