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Abstract—On a Blockchain network, transaction data are
exposed to all participants. To preserve privacy and confiden-
tiality in transactions, while still maintaining data immutability,
we design and implement FabZK. FabZK conceals transac-
tion details on a shared ledger by storing only encrypted
data from each transaction (e.g., payment amount), and by
anonymizing the transactional relationship (e.g., payer and
payee) between members in a Blockchain network. It achieves
both privacy and auditability by supporting verifiable Pedersen
commitments and constructing zero-knowledge proofs. FabZK
is implemented as an extension to the open source Hyperledger
Fabric. It provides APIs to easily enable data privacy in
both client code and chaincode. It also supports on-demand,
automated auditing based on encrypted data. Our evaluation
shows that FabZK offers strong privacy-preserving capabilities,
while delivering reasonable performance for the applications
developed based on its framework.

Keywords-Blockchain; privacy; auditability; zero-knowledge
proofs

I. INTRODUCTION

As distributed and immutable digital ledger, Blockchain

offers significant business benefits, such as greater trans-

parency, enhanced security, improved traceability and ef-

ficiency in business settlement. While these benefits have

motivated a myriad of Blockchain applications, a significant

subset of these application scenarios require Blockchain

systems to provide additional guarantees on data privacy and

confidentiality. Several recent data breach incidents [1], [2],

[3], [4], [5], [6], exemplified the importance of meeting such

requirements. In addition, many applications also demand

auditability of transactions in the underlying Blockchain

systems, so that transactions on a Blockchain network can

be audited without infringing data privacy. For example, in

a stock exchange market, sellers and buyers may not want

to reveal trading details to others, yet auditors need to be

able to independently verify all transactions.

Blockchain networks can be permissioned or permission-

less. Both types of systems can preserve data privacy to some

extent. Some permissionless systems, such as Bitcoin [7],

Ripple [8], Digital Asset [9], and Stellar [10], preserve

privacy by keeping the hashes of transaction data on chain,
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while storing plain transaction data off chain. Lacking sup-

port of auditing on-chain data, these systems have to allow

external auditor to access their private off-chain data and

risk exposing sensitive information. Other permissionless

systems, such as Zcash [11], [12], Ethereum [13], and Confi-

dential Transactions and Assets [14], [15] use cryptographic

commitment schemes to obscure transaction information.

However, these systems either require a trusted setup or

reveal the transaction graph (sending and receiving parties

in a transaction) to all network members. In general, none

of the existing permissionless blockchain systems preserves

full data privacy and support auditability at the same time.

Permissioned blockchains, such as Hyperledger Fab-

ric [16] and Quorum [17], preserve data confidentiality and

privacy via private channels (or peer networks) by enforcing

access control, so that only admitted channel participants

can access its resources (e.g., chaincodes, transactions, and

ledger states). Such private channels do not support privacy-

preserving audit by default.

Auditable privacy-preserving transaction, also known as

zero-knowledge asset transfer [18], is a model designed for

the aforementioned application scenarios. It allows members

to exchange assets and to record transactions in the shared

ledger, without revealing the fact that they are transacting,

with whom they are transacting, or the transaction amount.

With zero-knowledge asset transfer, each user can assign

auditors to access all of their transactions. An auditor can

validate the legitimacy of the user’s transactions, without

violating the user’s privacy.

Existing solutions to this problem, such as Solidus [19]

and zkLedger [20], support auditability by using either

publicly-verifiable oblivious RAM machines (PVORM) or

audit tokens. Solidus only works in bank-intermediated

systems where a modest number of banks maintain a large

number of user accounts. It exposes the transaction graph

between users and their affiliated banks, as well as the trans-

action graph among the banks. Moreover, Solidus enables

public auditing by revealing all keys used in the system to

an auditor, therefore it does not fully protect user privacy.

zkLedger supports private auditing, but in an inefficient

manner: it requires auditors and all participants to actively

validate and commit each transaction sequentially, which



significantly reduces the overall throughput of transaction.

In this paper, we present FabZK, an extension to the

Hyperledger Fabric that enables complete protection of

data integrity, privacy, and confidentiality. FabZK realizes

efficient, privately auditable, and privacy-preserving peer-to-

peer transactions by designing a set of Non-Interactive Zero-

Knowledge (NIZK) proofs on Pedersen commitments [21].

To improve throughput, we introduce a two-step validation

approach to support concurrent transactions. In FabZK, each

participant conducts active and lightweight auto-validation,

when a transaction is appended to the public ledger. An

auditor periodically monitors ledger activities and validates

transactions based only on the encrypted data and proofs.

Our work makes the following contributions:

• We develop a theoretical model via Pedersen com-

mitments and refined NIZK proofs (Section III). The

augmented NIZK proofs provide strong transaction

privacy, public verifiability, and provable auditing.

• We design an application development framework, in-

cluding APIs, on top of Fabric (Section IV). This allows

application developers to easily create auditable and

privacy-preserving blockchain applications.

• We implement the proposed model into a real-world so-

lution, i.e., FabZK, and introduce various optimizations

to achieve reasonable performance (Section V).

• We compare FabZK with state-of-the-art approaches

such as zk-SNARKs, native Fabric, and zkLedger

(Section VI). Our evaluation shows that FabZK of-

fers superior performance trade-offs. FabZK is more

efficient than zk-SNARKs in generating and verifying

proofs. Compared to the native Fabric system, it enables

auditable privacy-preserving transactions at the cost of

3% to 32% throughput loss and less than 10% latency

increase. Compared to zkLedger, FabZK’s throughput

is up to 180× higher.

We discuss background in Section II, present related work

in Section VII, and finally conclude in Section VIII.

II. BACKGROUND

In this section, we provide some background of the Hyper-

ledger Fabric, and discuss the key concepts in FabZK design,

i.e., confidential transactions and anonymity schemes.

A. Hyperledger Fabric

Hyperledger Fabric is a permissioned blockchain system

for recording transactions between organizations. In Fabric,

organizations form consortia and transact with each other on

private channels. Fabric provides access control mechanism,

so that the data and resources on a private channel can only

be accessed by admitted organizations.

Business logic shared by a consortium of organizations

is programed as chaincode, also known as smart contract.

Chaincode enables different parties to automate tasks that
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Figure 1: Components and data flow in Hyperledger Fabric.

are traditionally performed through an external intermedi-

ary [22]. Organizations in the same consortium execute

identical chaincode to process transactions, produce and

store data on an immutable shared ledger.

Unlike the traditional order-execute architecture adopted

in systems such as Tendermint [23] and Chain [24], Fabric

introduces the execute-order-validate blockchain architec-

ture. This architecture supports concurrent execution and

post-ordering determinism through pluggable consensus al-

gorithms [25], [26]. Specifically, transaction data are com-

puted by peers concurrently, forwarded to the ordering

service, disseminated to all other peers and appended to their

immutable ledgers. Figure 1 illustrates the above data flow,

along with following key components in a Fabric network:

• Client invokes chaincode execution by submitting a

transaction proposal to the endorser nodes. It then

collects the signed endorsements in the proposal, as-

sembles a transaction, and broadcasts it to the orderer.

A client can subscribe to a channel to receive updates

from the ledger (e.g., a new transaction block being

committed).

• Endorser runs chaincode and creates transaction en-

dorsement, which includes a write set with state updates

produced by simulating the transaction proposal, a read

set capturing the version dependencies of the proposal

simulation, and the endorser’s signature.

• Orderer establishes the total order of transactions in

a channel, batches transactions into blocks, and dis-

tributes them to all committers in the channel.

• Committer validates each transaction in a block by

checking its compliance to endorsement policy and any

read-write conflicts. Then it appends the transaction to

the ledger.

Since the endorser, orderer, and committer are deployed

on the Fabric platform, they are considered on-chain com-

ponents. In contrast, the client is not part of the deployment

and is thus running off chain. Client code interacts with the

Fabric platform through its SDK [27], [28], [29]. The shared

ledger is replicated on each peer node which can contain an

endorser, a committer, or both.

Although the consortium-based Fabric contains a certain

degree of knowledge about each user, member organizations

may still want to keep the actual transactions private, due to

business or privacy concerns. This underlies the necessity to

enable confidential transactions in Fabric with anonymity.



B. Confidential Transaction and Anonymity Schemes

On a private channel, transaction details are visible to

all members, regardless of their involvement in the transac-

tion. We aim to develop schemes to prevent non-involving

organizations (which we call hereafter non-transactional

organizations) from accessing transaction details, such as

transaction amount and transactional organizations (i.e.,

sender and receiver), from the ledger. Meanwhile, we also

need these schemes to be auditable. To achieve this goal,

we adopt and extend three existing techniques in FabZK:

tabular structured ledger [20], Pedersen commitments [21],

and NIZK proofs [30].

A tabular structured ledger is an anonymity scheme pro-

posed in zkLedger [20] to conceal the transaction graph

and to prevent an organization from hiding assets on the

ledger. It maintains a two-dimensional table, where each row

represents a single transaction and each column represents

the transaction history of an organization. For example, a

tabular structured ledger for an N -organization channel has

N columns, and has M rows if M transactions in total have

occurred on this channel.

To hide the transaction amount u, a Pedersen commit-

ment [21] is computed for u with a random number r by

Com = com(u, r) = guhr, (1)

where g and h are two random generators of a cyclic

group G with s = |G| elements and prime order p,

Zp = {0, 1, . . . , s− 1}, u ∈ Zp, and r ∈ Zp.

An outsider cannot tell the transaction amount from a Ped-

ersen commitment, or whether it is positive, negative, or 0.

In addition, as long as Pedersen commitments are computed

for both transactional and non-transactional organizations,

it is impossible to identify the sender and receiver of a

transaction, so that the transaction graph is also concealed.

To support audit, an audit token is assigned to a Pedersen

commitment com(u, r):

Token = pkr, (2)

where pk is the public key of an organization, pk = hsk, sk

is the private key of the organization, r and h are the same

as in Equation (1).

With transactions encrypted as Pedersen commitments,

our system need to allow validation and auditing over the

encrypted data. This is achieved by a set of NIZK proofs.

We describe these proofs in detail in Section III.

III. PRELIMINARIES

In this section, we design NIZK proofs required for au-

diting encrypted transaction data, and introduce their usage

in private and public ledgers, in our FabZK system.

A. NIZK Proofs

In FabZK, the spending organization (i.e., sender) is

responsible for creating commitments, tokens, and NIZK

proofs for other organizations or an auditor to verify. With-

out loss of generality, we assume that each transaction has

one spending and one receiving organization throughout the

paper.1

Proof of Balance is a known method for verifying the

overall balance in a single transaction row, i.e.,
∑N

i=1
ui = 0

(N is the number of columns). It validates the commitments

in a row by leveraging the homomorphism of Pedersen

commitment, i.e.,
∏N

i=1
Comi = (g

∑
N

i=1
ui)·(h

∑
N

i=1
ri). The

prover chooses ri that satisfies
∑N

i=1
ri = 0 to generate the

commitments in Equation (1). The verifier checks whether
∏N

i=1
Comi = 1 in that row. If this condition holds, then the

ledger is proved to be balanced.

Proof of Correctness prevents an organization from making

an incorrect or fraudulent transaction to steal assets from

others.

To verify the correctness of the amount of a transfer txm

(m is the index of current transaction), each organization

uses the audit token to check if

Tokenm · gsk·um = (Comm)sk, (3)

where sk is the organization’s private key and um is its trans-

action amount. For non-transactional organizations, they are

aware of the existence of txm, but are not involved in txm,

thus their transaction amount is 0. If any organization fails

to verify Equation (3), it indicates incorrect txm.

Equation (3) shows that verifying the Proof of Correctness

can be achieved with only the data in the current transaction

txm; so does Proof of Balance. This is an important feature

that we will leverage in the two-step validation in Section

IV.

Proof of Assets ensures that a spending organization has

enough assets to execute the transaction. In a tabular struc-

tured ledger, a column represents all assets an organization

has received or spent [20]. Proof of Assets verifies that the

sum of all committed values in a column, including that of

the current transaction, is non-negative.

We let the prover generate a range proof for the spending

organization’s remaining balance:

RP = ZK(uRP, rRP : ComRP ∧ l0 6 u 6 lp), (4)

where ZK(uRP, rRP : ComRP) is a zero-knowledge proof of

uRP such that ComRP = guRPhrRP , g and h are known to the

verifier, uRP =
∑m

i=0
ui, rRP is a random number different

from the r in Equation (1), l0 and lp are two bound values.

We use the inner-product range proof from BulletProofs

[31] to prove that an account’s remaining assets
∑m

i=0
ui >

0, in encrypted form. The details are described in appendix.

1Our approach can be adapted to more complex scenario, such as multiple
senders, which will be addressed in our future work.



Proof of Amount guarantees that the transaction amount is

within a certain range. In a scenario with a single spending

and a single receiving organization, the prover generates an

inner-product range proof to the transaction amount of the

receiving organization urecv ∈ [0, 2t), with a random number

rrecv.
In each transaction, the prover also needs to gener-

ate indistinguishable cryptographic primitives for all non-

transactional organizations, in order to conceal the transac-

tion graph. These primitives are a Pedersen commitment of

0 with a random number ri, an audit token, a range proof to

0 with another random number rRPi
, and a disjunctive proof

(discussed later in this section).

Besides the four aforementioned NIZK proofs, each or-

ganization needs to further check whether these proofs are

consistent with each other, i.e., the same parameters are used

in different proofs for the same organization. To achieve this

goal, we introduce Proof of Consistency.

Proof of Consistency ensures that 1) for a spending or-

ganization, the generated range proof is consistent with

its remaining assets
∑m

i=0
ui, instead of some arbitrary

uarb ∈ [0, 2t), 2) for other organizations, the generated range

proofs are consistent with their current transaction amounts.

We also need to make sure that the verifier can validate the

Proof of Consistency without knowing the identity of the

spending organization.

To provide such a Proof of Consistency, we use a non-

interactive variant of the Chaum-Pedersen zero-knowledge

proofs [32] to construct a disjunctive zero-knowledge proof

(DZKP) for a transaction txm. A DZKP takes the spending

organization’s private key sk, or random numbers r and rRP

(for other organizations), as input and generates two non-

interactive Σ-protocols [33].
In addition, we generate two tokens Token′ and Token′′

paired with the DZKP:

Token′ =

{

pkrRP , for the spending org.,

t · (ComRP/s)
sk, otherwise.

(5)

Token′′ =

{

Token · (ComRP/s)
sk, for the spending org.,

pkrRP , otherwise.

(6)

where rRP is the random number used in Equation (4),

s =
∏m

i=0
Comi = g

∑
m

i=0
uih

∑
ri is the product of an

organization’s commitments from row 0 to row m, and

t =
∏m

i=0
Tokeni = hsk

∑
m

i=0
ri is the product of the

organization’s audit tokens from row 0 to row m. Detailed

cryptographic primitives about DZKP and how it works are

described in appendix.

B. Private and Public Ledgers

In a blockchain network, each organization maintains

two ledgers: a private, off-chain ledger and a public, on-

chain ledger. Public ledger is for recording and auditing

Figure 2: Private ledgers and the public ledger. The public

ledger has many identical replicas on the Fabric peer nodes,

owned by participating organizations.

transactions on the Fabric channel, while private ledger is an

organization’s private datastore. Both ledgers have a tabular

structure, as shown in Figure 2.

Private Ledger stores transaction data in plaintext. It is

only accessible to and maintained by the possessing orga-

nization. As shown in Figure 2, a private ledger table has

four columns: (1) a transaction identifier, i.e., tid; (2) the

transaction amount, i.e., value; (3) a validation bit vr that

indicates whether a transaction is valid, verified by Proof of

Balance and Proof of Correctness; and (4) a validation bit

vc that indicates whether a transaction is valid, verified by

Proof of Assets, Proof of Amount and Proof of Consistency.

We discuss the rationale behind separating the validations

of the five NIZK proofs in Section IV.

Public Ledger is maintained by all peer nodes, owned

by participating organizations. As shown in Figure 2, the

public ledger for an N -organization channel is a table with

N +3 columns, corresponding to a transaction identifier, N
〈Com,Token,RP,DZKP,Token′,Token′′〉 sextets, and two

validation bitmaps. Like private ledgers, rows in the public

ledger represent transactions. The bitmaps (i.e., v′r, v′c) are

composed of N bits representing the validation results from

N organizations.

The public ledger is bootstrapped by computing the Ped-

ersen commitments and audit tokens of the initial values for

all organizations in the first row with transaction identifier

tid0, denoted by the 〈Com,Token〉 tuples. We require the

client of each organization to validate Proof of Correctness

for itself. The system assumes that all organizations’ initial

assets are already validated at the bootstrap time.

In Figure 2, the rows with transaction identifier tid1 exem-

plifies a transfer of 100 units of assets from Org1 to Org2.

In their private ledgers, Org1 and Org2 set the transaction

value in row tid1 as −100 and +100, respectively. The

transaction amount for other organizations in tid1 is set to

0. We store N commitments (i.e., 〈com(valuei, ri)〉, i =
1, . . . , N ) at row tid1 in public ledgers. Each commitment

is associated with a 〈Tokeni,RPi,DZKPi,Tokeni
′,Tokeni

′′〉



quintet, which is used to validate transaction tid1 with the

five NIZK proofs.

Hyperledger Fabric constructs transactions via chaincode

installed on the channel as an agreement of the consortium,

so only the transactions made by approved chaincode will

be accepted. FabZK follows a similar design principle: the

cryptographic primitives are computed by the extended Fab-

ric system, not externally by upper level applications. This

guarantees that no malicious user can manipulate the outputs

generated by FabZK, hence the validations are trustable.

FabZK writes 〈Com,Token,RP,DZKP,Token′,Token′′〉
sextets in the public ledger for both transactional and

non-transactional organizations. Although the extra padding

incurs some overhead in storage size, this design allows

FabZK to hide the transaction graph and achieve one-to-

one mapping between private and public ledgers. Moreover,

the one-to-one mapping makes it easier for an organization

or auditor to track and validate the transactions.

IV. FABZK DESIGN

In this section, we provide an overview of FabZK’s

architecture and its enhanced program execution flow. Then,

we introduce FabZK’s programming interfaces for writing

auditable, privacy-preserving blockchain applications.

A. Overview

Figure 3 shows the FabZK architecture. It augments

the current Fabric system to allow channel participants to

make privacy-preserving transactions with each other, and to

allow non-transactional organizations and trusted third-party

auditors to audit the results. To do so, a FabZK program

runs in four phases: preparation, execution, notification, and

two-step validation. Preparation and notification phases run

on the client nodes, while execution and validation phases

run in the chaincode on endorsers. Among the four phases,

execution and two-step validation are specifically designed

to support privacy and audit.

B. Program Execution Flow

On a Fabric channel, we suppose that a deal is made pri-

vately between a spending and a receiving organization. The

transaction is then reflected in both their private ledgers and

the public ledger. With FabZK, we formulate the problem

as a program execution flow, illustrated in Figure 3.

Preparation: At the beginning of an execution, FabZK

requires the spending and receiving organizations to first

determine the transfer amount (u), outside of the blockchain

network. Then, the spending organization’s client code con-

structs the transaction, which consists of N tuples cor-

responding to the N columns of the public ledger. Each

tuple contains the transaction amount (±u for transactional

organizations and 0 for non-transactional organizations), a

random number, and the organization’s public key. These

tuples reflect the involvement of individual organizations

Figure 3: System architecture and program execution flow.

The grey boxes denote FabZK’s four major stages: prepara-

tion, execution, notification and two-step validation. Dashed

boxes represent isolated organizations.

in this transaction. After this preparation, the transaction

specification is sent by the spending organization’s client

code to its endorsers to invoke the transfer execution, in the

Fabric network.

Execution: On receiving the transaction specification, the

transfer chaincode written with FabZK’s API is executed

to convert the plaintext specification to N 〈Com,Token〉
tuples. The tuples represent the transfer amount of individual

organizations and form a new row on the public ledger.

The execution results are returned to the client code as an

endorsement. The client code assembles the endorsement,

and broadcasts it to the ordering service. As shown in

Figure 3, the transfer chaincode is executed only by the

spending organization.

Notification: Once executed, all organizations on the

channel are informed of the transaction output (i.e., N
〈Com,Token〉 tuples) through the standard Fabric notifica-

tion mechanism. Specifically, the orderers order transactions

from different organizations, batch them into blocks, and

deliver the blocks to the committers. The committers validate

endorser signatures inside each transaction, check the read-

write set conflicts, and append the transaction to the public

ledger. Meanwhile, a notification is sent to each organiza-

tion’s client code. With the FabZK API, each client code

retrieves information from its private ledger and invokes

the two-step validation process to verify the change on the

public ledger.

Two-step Validation: Provided a transaction’s N tuples con-

structed by the spending organization, all other organizations

need to verify whether these tuples embody a valid transac-

tion using the five NIZK proofs described in Section III-A.

To improve performance, we design the validation process

as two steps to enable parallel execution (Section V-B).

Step one ensures that no asset is created or destroyed



Table I: FabZK’s client code and chaincode APIs.

Client code APIs

Name Description
PvlGet Retrieve transaction content from private ledger
PvlPut Append transaction content to private ledger

Validate Invoke the validation chaincode to validate a transaction
GetR Return a list of random numbers which sum to 0

Chaincode APIs

Name Description
ZkPutState Compute commitments and audit tokens

ZkAudit Compute range proofs and disjunctive proofs
ZkVerify Verify the proofs against the input from client code

during the transaction and no organization steals assets from

others. Each organization checks whether a row on the

public ledger satisfies Proof of Balance and whether its

corresponding cell in the row satisfies Proof of Correctness.

Step two ensures that the spending organization owns

enough assets to execute the transaction, and the transaction

amount is within the predefined upper and lower bounds.

This step is usually activated by a trusted third-party auditor.

To start this step, auditor asks the spending organization to

generate range proofs and disjunctive proofs. For the m-

th row, the spending organization’s client code constructs

an audit specification, which includes its remaining balance

(i.e.,
∑m

i=0
ui), a set of the transaction amounts for the rest

of the organizations, three sets of random numbers (i.e., rRP

in Equation (4) and w1, w2 in Equation (7)), the commitment

product set (the product of an organization’s commitments

from row 0 to row m), the token product set (the product

of an organization’s audit tokens from row 0 to row m), all

organizations’ public keys, and the spending organization’s

private key.

It is safe for the spending organization to provide its

private key to the chaincode, because chaincode runs on the

organization’s own endorsers. The audit specification is sent

to the organization’s endorsers to invoke the audit chaincode

execution. The chaincode then converts the plaintext audit

data to 〈RP,DZKP,Token′,Token′′〉 quadruples for each

organization. The auditor checks Proof of Assets, Proof of

Amount and Proof of Consistency for all organizations. A

transaction is considered valid only when all checks are

positive. Finally, the validation result is updated on the

public ledger, which results in another notification to all

organizations, who will then update their private ledgers.

C. Programming Interfaces

FabZK provides two sets of programming interfaces to

enable an application’s interaction with the Fabric system.

The client code APIs support the interactions during prepa-

ration and notification stages. The chain code APIs support

the interactions during execution and two-step validation.

Table I shows the specifications of these APIs.

Client Code APIs support read from and write to an orga-

nization’s private ledger. Via these APIs, an application can

construct and maintain the private ledger, as well as submit

transactions to the blockchain network via the Fabric SDK.

The PvlGet API is used to retrieve rows by transaction

identifier. When a new transaction arrives or a submitted

transaction is validated, the PvlPut API is called to update

the private ledger. Client code uses the Validate API to

invoke the validation chaincode to verify a new transaction.

As discussed in Section III-A, in order to generate a valid

and publicly verifiable Proof of Balance, the random num-

bers in a transaction specification must satisfy
∑N

i=1
ri = 0.

These random numbers can either be generated in the chain-

code or provided as arguments by the client code. In Fabric,

each organization can own multiple peer nodes for fault

tolerance. A transaction request can be sent to multiple peers

of the initiating organization to get endorsements. To ensure

that consistent random numbers are used by independent

peers for the same transaction, we provide the GetR API

to the client code, so that the same random numbers can be

distributed to all the endorsing peers.

Chaincode APIs are used to read/write data from/to the

public ledger. The ZkPutState API is called during the

execution stage, when the spending organization initializes

a transfer. It converts a transaction specification to the

commitments and audit tokens, serializes them into a byte

stream, and invokes the native Fabric API, PutState, to

generate a write set, which is stored in a transient data

store on the endorsing peer and returned to the spending

organization.

The ZkVerify and ZkAudit APIs are called collabora-

tively during the two-step validation phase to verify transac-

tions in the public ledger. In step one, ZkVerify is invoked

by individual organizations to check Proof of Balance and

Proof of Correctness for a given row of transaction. In step

two, all organizations invoke ZkAudit in the chaincode to

create range proofs, disjunctive proofs, and the two tokens

in Equation (5) and (6), i.e., 〈RP,DZKP,Token′,Token′′〉
quadruples for each transaction. Finally, ZkVerify is

called again to check Proof of Assets, Proof of Amount, and

Proof of Consistency. A transaction is considered valid if

ZkVerify has successfully validated all five proofs.

V. SYSTEM IMPLEMENTATION

In this section, we present the implementation details

of FabZK. We specifically focus on two practical design

aspects: data structure on the public ledger and parallelizing

the computation. We also explain how to write FabZK

applications.

A. Data Structure of Public Ledger

Recall that, in a tabular structured public ledger (Fig-

ure 2), each row represents a single transaction, containing

three types of transaction data: a 〈Com,Token〉 tuple, a

〈RP,DZKP,Token′,Token′′〉 quadruple, and validation state.

We implement the schema of a FabZK row with the zkrow



/ / zkrow r e p r e s e n t s a row i n t h e p u b l i c l e d g e r
message zkrow {

map<s t r i n g , OrgColumn> columns = 1 ;
boo l i s V a l i d B a l C o r = 2 ;
boo l i s V a l i d A s s e t = 3 ;

}
/ / OrgColumn r e p r e s e n t s one o r g a n i z a t i o n
message OrgColumn {

/ / t r a n s a c t i o n c o n t e n t
b y t e s commitment = 1 ;
b y t e s a u d i t T o k e n = 2 ;
/ / two s t e p v a l i d a t i o n s t a t e
boo l i s V a l i d B a l C o r = 3 ;
boo l i s V a l i d A s s e t = 4 ;
/ / a u x i l i a r y d a t a f o r p r o o f s
b y t e s TokenPrime = 5 ;
b y t e s TokenDoublePr ime = 6 ;
RangeProof rp = 7 ;
D i s j u n c t i v e P r o o f dzkp = 8 ;

}

Figure 4: Data structure for a row in FabZK’s public ledger
in protobuf language [34]. Due to space limitations, details of
RangeProof and DisjunctiveProof are omitted.

data structure, shown in Figure 4. A zkrow constructs all

organizations’ data as multiple columns and holds the

validation state of that row. Each column is a key/value pair,

where the key is an organization’s name (or ID) and the

value is typed as an OrgColumn, storing the three types of

transaction data.

The contents of the ledger data structures are filled

by the chaincode APIs. The 〈Com,Token〉 tuple and

〈RP,DZKP,Token′,Token′′〉 quadruple are created by the

ZkPutState and ZkAudit APIs, respectively. The two

validation states, i.e., OrgColumn.isValidBalCor

and OrgColumn.isValidAsset are set by the

ZkVerify API during the two-step validation. After

all OrgColumns’ validation states are set, the result of

the logical AND operation of these states are assigned to

zkrow.isValidBalCor and zkrow.isValidAsset,

respectively.

B. Parallelizing Computation

Because of the computation overhead of the cryptographic

algorithms, we need to further optimize program execution

to improve FabZK’s performance. We focus on parallelizing

the computation during the execution and two-step validation

phases, since these two phases account for most of the

computation overhead.

In the execution phase, we observe that the computa-

tions of 〈Com,Token〉 tuples for different organizations

are independent of each other. These computations also

do not require accessing historical data. Therefore in our

implementation, a spending organization creates multiple

threads to compute 〈Com,Token〉 tuples for all organizations

concurrently.

In the two-step validation phase, we realize that the

computations of Proof of Balance and Proof of Correctness

have no dependency upon historical data or dependency

across different organizations. However, the other three

proofs have to be computed sequentially, due to the two

constraints of Equation (4). First, computing a range proof

for the m-th row requires data from row 0 to row m, e.g.,

uRPm
=

∑m

i=0
ui. Thus, ZkAudit cannot be invoked until

all previous results are computed. Second, range proofs and

disjunctive proofs can only be computed by the spending

organization, because other organizations are not aware of

the sender’s available assets or the transaction detail. These

two constraints, together with the fact that the spending orga-

nization varies by transaction, dictate that the computations

of range proofs and disjunctive proofs have to be performed

sequentially.

In our implementation, the first step of validation is

fully parallelized, i.e., the computations of Proof of Balance

and Proof of Correctness are distributed to all peer nodes.

The second step of validation is partially parallelized: the

spending organization can launch multiple threads to verify

the range proofs and disjunctive proofs for all organizations,

but these two proofs are computed sequentially.

C. Writing FabZK Applications

Writing applications in FabZK is similar to that in the

Hyperledger Fabric. A FabZK application is comprised of

application chaincode and client code: the former is installed

on the endorser nodes, and the latter on off-chain nodes.

When an application chaincode is instantiated on a chan-

nel, its init function initializes the tabular structure of the

public ledger for each organization. Values such as orga-

nization name (or ID), public key and initial asset amount

can be loaded from the channel’s genesis block. The init

function calls the ZKPutState API to create the first row

on the public ledger.

The application chaincode needs to support three chain-

code methods: transfer, audit and validation. All of them

accept input parameters from the client code. The transfer

method calls the ZkPutState API to create a row with

columns of 〈Com,Token〉 tuples on the public ledger. The

validation and audit methods invoke the two-step valida-

tion through their underlying FabZK APIs. The validation

method runs twice to call the ZkVerify API, validating

two sets of NIZK proofs respectively. The audit method calls

the ZkAudit API to compute 〈RP,DZKP,Token′,Token′′〉
quadruples. Note that the audit chaincode method can be in-

voked periodically (e.g., once a week) to provide automated

auditing.

Developers write client code to access the private ledger.

To prepare the input transaction specification for the transfer

chaincode method, the client code retrieves the current

assets on the private ledger via the PvlGet API, and calls

the GetR API to obtain a set of random numbers. After

being notified of a new arrived transaction tid, the client

code retrieves information from its private ledger to check



whether its organization is involved. If involved, it appends

a new transaction row in the private ledger with tid and

the transfer amount via the PvlPut API. The client code

can also invoke the validation chaincode method with the

transfer amount, the organization’s secret key, and remaining

assets as input. Based on the returned result, the client code

updates the valid fields for that row of its private ledger.

A Sample Application: We build an over-the-counter stock

trade application to demonstrate the methodology above.

This application allows organizations to exchange assets

between each other on a Fabric channel [35]. Client code of

this application contains about 1200 lines of code in NodeJS,

while chaincode contains about 1000 lines of code in Go.

A single asset exchange transaction requires two chain-

code invocations. First, the sender informs the receiver of

the upcoming transaction’s unique identifier out of band

and uses the client code to invoke the transfer chaincode

method on its endorsing peer. Next, all organizations invoke

the validation chaincode method to verify Proof of Balance

and Proof of Correctness of the incoming transaction.

While the transactions are being submitted to Fabric, they

are being audited with the other three NIZK proofs: Each

organization scans the rows in its private ledger. If a row is

verified during the asset exchange phase and the organization

is the spending transaction, it invokes the audit chaincode

method to create range proofs and disjunctive proofs for

the transaction. Then, the auditor and other organizations

can verify Proof of Assets (or Proof of Amount) and Proof

of Consistency for the transaction. The auditing process is

triggered at every 500 transactions.

Note that while auditing can identify invalid transactions,

this process often lags behind the transactions. So invalid

transactions can still occur until they are rejected. In practice,

the consortium of participating organizations should agree

on certain business rules to penalize the violations of the

range proof and disjunctive proof. This logic, however, is

out of scope for this paper, so it is not implemented in our

sample application.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the FabZK

system. We aim to address the following aspects: (1) the

efficiency of FabZK’s cryptographic algorithms, compared

to other alternatives, and (2) the overhead introduced to an

application when using the privacy and audit functionalities

provided by FabZK.

We implement FabZK on top of the Hyperledger Fabric

version 1.3.0. The chaincode APIs are written in Go and the

client APIs written in NodeJS. FabZK uses the elliptic curve

secp256k1 of the btcec library to compute commitments.

Our range proofs are based on the protocol from Bullet-

Proofs [31]. The disjunctive proofs use a modified version

of Chaum-Pedersen proofs [32] with two non-interactive Σ-

protocols [33]. Since these are proven cryptographic primi-

Table II: Time (in ms) in running cryptographic algorithms

by libsnark and FabZK for various numbers of organizations.

# of
orgs

Data

encryption

Proof

generation

Proof

verification

libsnark FabZK libsnark FabZK libsnark FabZK

1 185.6 0.2 193.3 150.1 5.1 2.0
4 186.4 0.6 195.5 158.8 5.7 2.6
8 188.4 0.8 196.4 169.0 6.6 3.9

12 195.2 1.4 195.6 224.9 5.7 4.3
16 194.9 1.8 199.1 313.1 7.2 7.7
20 195.5 2.0 196.4 448.7 9.8 9.2

tives, we focus only on the evaluation of their performance,

while referring to the references above if the readers are

interested in knowing their effectiveness in terms of privacy

protection. All evaluations are run on Ubuntu 16.04 VMs

provisioned on IBM Cloud.

A. Algorithm Performance

We built a micro-benchmark to evaluate the performance

of our privacy-preserving and auditing algorithms and com-

pare them with a state-of-the-art approach, zk-SNARKs.

For FabZK, we measure the run time for data encryption,

i.e., computing 〈Com,Token〉 tuples, for generating NIZK

proofs (i.e., 〈RP,DZKP,Token′,Token′′〉 quartets), and for

verifying the five proofs. These are the three key functions

implemented in FabZK’s chaincode APIs and are the major

contributors to FabZK’s overhead. As comparison, we also

evaluate zk-SNARKs using libsnark [36], a library that im-

plements a zero-knowledge verification scheme and has been

used by other blockchain systems such as Zerocash [12].

Libsnark follows a similar design pattern of data encryp-

tion (through key generation), proof generation, and proof

verification. Libsnark is implemented in C++.

We run the micro-benchmark on a VM with eight

2.10GHz cores. We vary the number of organizations from

1 to 20. For each setting, we collect data for 100 runs. In

each run, the system processes 128 bytes of data (including

transfer amount, private key, asset, etc.) for every organiza-

tion.

As shown in Table II, FabZK outperforms libsnark in

both data encryption and proof verification. Its proof gen-

eration has increasingly more overhead, as the number of

organizations increases. libsnark has almost constant proof

generation time (∼196ms), because it only needs to generate

one set of NIZK proofs for each transaction. In contrast, in

FabZK’s public ledger, each row consists of encrypted data

for all organizations. Hence, as the number of organizations

increases, it takes longer for FabZK to generate the proofs.

From Table II, one can also see that the multithreaded

implementation of proof generation is effective. The latency

increase is moderate until the system supports more than

8 organizations, as the node used in our experiment only

has 8 cores. In our future work, we will further improve

FabZK’s performance by exploring cross-node job schedul-

ing schemes.
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Figure 5: Throughput of asset exchange transactions for the

prototype using native Fabric APIs (baseline), zkLedger, and

FabZK’s APIs with and without auditing (higher is better).

B. Application Performance

Next, we evaluate the overhead introduced by FabZK’s

privacy and audit functionalities. We use the sample appli-

cation described in Section V-C for this evaluation.

Testbed: We deploy the sample application in a Hyper-

ledger Fabric network, where each organization owns one

peer node acting as its endorser and committer, and one

certificate authority (CA) node. We setup a Kafka-based

ordering service with 3 ZooKeeper nodes, 4 Kafka brokers,

and one Fabric orderer. The orderer node creates blocks

using the default configuration: 2 second batch timeout and

≤10 transactions per block. We group 5 octa-core VMs

into a docker swarm cluster and then provision all Fabric

components as containers in the cluster. Peer nodes and CA

nodes of all organizations are evenly distributed to 4 VMs

and the ordering service nodes are on the other VM.

Throughput Evaluation: We compare the throughput of

the sample application running on three systems: FabZK,

zkLedger,2 and the native Fabric (i.e., the baseline). In

this experiment, all organizations generate transactions con-

currently, and each organization submits 500 transactions

sequentially. A round of auditing is triggered when the

ledger accumulates 500 new transactions. The results are

shown in Figure 5.

We observe that FabZK’s throughput scales similarly to

the baseline. Without turning on audit, FabZK introduces

only 3% to 10% throughput degradation, compared to the

baseline. With audit turned on for every 500 transactions,

FabZK’s throughput overhead becomes 3% to 32%, com-

pared to the baseline. Apparently, the additional overhead of

computing and verifying the range and disjunctive proofs is

quite significant. In practice, however, this can be mitigated

by carefully selecting the audit frequency, especially during

2We implement a prototype of zkLedger on top of the Fabric architec-
ture, too. Our prototype uses the BulletProofs instead of Borromean ring
signatures to generate/validate range proofs for zkLedger. This change can
only improve the throughput.
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Figure 6: Timeline of an asset transfer transaction of

the sample application with 8 organizations. The transac-

tion involves two chaincode invocations: transfer (T1) and

validation (T4). The duration of ZkPutState (T2) and

ZkVerify (T5) are highlighted on the endorser’s axis. The

orderer spends about 70ms (T3 and T6) in creating the block

committed to the public ledger.

peak hours of operation.

Compared to zkLedger, the efficiency of FabZK is ob-

vious. Its throughput with (without) auditing is 5 (5) to

189 (235) times that of zkLedger. This is expected, be-

cause transactions in zkLedger are validated and committed

sequentially, while FabZK benefits from the parallelized

execution described earlier.

Latency Evaluation: Figure 6 illustrates the timing of

each step during an asset exchange transaction, without

auditing being triggered. From the application’s perspective,

it takes about 45.3ms and 32.4ms to run a transfer chaincode

method and a validation method, respectively. The run time

of ZkPutState (2.8ms) includes 0.8ms of computing

〈Com,Token〉 tuples and 2ms of serializing the tuples to

byte stream and writing it to the peer’s transient data store.

The run time of ZkVerify (1.9ms) includes 0.5ms of

verifying Proof of Balance and Proof of Correctness, and

1.4ms of serializing and writing them to the peer’s data store.

In addition, the orderer node often waits to batch-process

several transactions in a single block. Compared to the end-

to-end transaction latency in Fabric, the absolute overhead

of the FabZK APIs is relatively small: ZkPutState and

ZkVerify contribute to less than 10% of the overall

latency, while more than 90% of latency is caused by node-

to-node communications, serialization/deserialization, block

validation, I/O to the ledger, etc.

Next, we evaluate the audit latency, i.e., computing and

verifying the range proofs and disjunctive proofs for a

transfer row on the public ledger. In particular, we study

the effect of the number of CPU cores in a peer node on

the performance of FabZK’s chaincode APIs: ZkAudit and

ZkVerify. Figure 7 plots the latency of ZkAudit and

ZkVerify for a 4-organization network, as the number of

CPU cores increases from two to eight. For ZkAudit, using

peer nodes with 4 and 8 CPU cores improves its performance

by 50% and 90%, respectively, compared to using 2 cores.

This performance gain is due to the parallelized computation

of range proofs and disjunctive proofs (Section V-B). How-



Figure 7: Latency of running ZkAudit and ZkVerify on

VMs with different number of CPU cores.

ever, the improvement diminishes from 4 cores to 8 cores,

since the chaincode only needs to spawn 4 threads for the 4

organizations. We also observe that parallelized processing

has minimal impact on the performance of ZkVerify, as

the computation is less intensive for this verification.

VII. RELATED WORK

Confidential Transactions: Mechanisms for supporting

confidential transactions have been studied extensively previ-

ously. To conceal balances and transaction values, publicly-

verifiable cryptographic commitment schemes have been

used to allow pseudonymous transfer of assets [14], [15],

[19], [20], [37], [38].

To prevent double spending, work has also been done

to show proof of assets using range proofs. For example,

the Borromean ring signature [39] is widely used for range

proofs in [14], [15], [19], [20], [40]. However, such range

proof’s overhead is significant: a transaction with two out-

puts and 32 bits of precision requires 5 KiB of range proof

[31]. To reduce the size of range proofs, zero-knowledge

Succinct Non-interactive ARgument of Knowledge proofs

(zk-SNARKs) are used [12], [41], [42], [43], [44], [45], [46],

[47], [48]. Even though these approaches can provide short-

sized range proofs, they require an expensive trusted setup.

Recently, an inner-product range proof has been proposed in

Bulletproofs [31] with short proof size, and linear proving

and verification time.

FabZK uses Pedersen commitments [14] and the inner-

product range proofs [31] to achieve efficient confidential

transactions.

Anonymized Transactions: Previous work has anonymized

the transaction participants to conceal the transaction graph

using identity mixes, oblivious RAM, or tabular structured

ledgers. Examples of using the identity-mix approach in

current cryptocurrency and blockchain systems are [49],

[50], [51], [52], [53], [54], [55], [56]. Although mixes can

protect participating users, it provides partial anonymity.

Mix-type approaches are vulnerable to adversary tools, such

as Coinjoin Sudoku [57], that can identify users within

a transaction by correlating transaction outputs and inputs

[58].

Solidus [19] obscures the transaction graph via publicly

verifiable oblivious RAM machines (PVORM). A PVORM

provides users a map from logical memory addresses to

remote physical addresses. It provides the confidentiality of

transaction graph and transaction details by obscuring mem-

ory access patterns. However, Solidus only works on bank-

intermediated networks, which means it can only hide the

information of bank’s users but still exposes the transaction

graph among banks (or organizations).

Most related to this work, zkLedger [20] uses a tabular

structured ledger to conceal the transaction graph. In each

transaction, zkLedger computes the commitments for all the

organizations. By adding extra indistinguishable commit-

ments in each transaction, zkLedger hides the identities of

senders and receivers, thus concealing the transaction graph.

However, zkLedger requires auditors and every participant

to actively validate each transaction before this transaction is

accepted to the ledger, which inevitably increases the latency

and reduces the throughput.

In FabZK design, We adopt the tabular structured ledger

from zkLedger, but develop additional proofs and validation

mechanisms to boost audit performance.

VIII. CONCLUSION

Data privacy and confidentiality are critical for peer-to-

peer transactions in blockchain systems. Although Hyper-

ledger Fabric prohibits unidentified peers from accessing

channel resources, transaction data are exposed to all chan-

nel participants. To overcome this limitation, we present

FabZK, an extension to Fabric that supports auditable

privacy-preserving smart contracts via well-constructed and

verifiable cryptographic primitives, including Pedersen com-

mitments and non-interactive zero-knowledge proofs. FabZK

provides a set of APIs for both client code and chaincode to

achieve on-demand, automated validation. We have imple-

mented FabZK on Fabric v1.3.0, evaluated its performance

against other, state-of-the-art approaches (i.e., zk-SNARKs,

zkLedger). Our micro-benchmarking results show that the

cryptographic primitives used by FabZK outperform those

by zk-SNARKs in generating and verifying non-interactive

zero-knowledge proofs. We have also demonstrated a sam-

ple application using FabZK APIs. Evaluations on its

performance show that FabZK enables auditable privacy-

preserving transactions at the cost of 3% to 32% throughput

degradation and less than 10% latency increase, compared

to the native Fabric system. FabZK achieves throughput up

to 180 times higher than zkLedger.
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APPENDIX

Range Proof: An inner-product range proof in BulletProofs

[31] takes a user specified uRP and rRP as input, and gener-

ates a proof RP = rp, including 1) a Pedersen commitment

ComRP = rp.Com = com(uRP, rRP), 2) two Pedersen vector

commitments rp. ~A, rp.~S with a binding value rp.µ, 3) an

inner-product of two linear vector polynomials denoted by

rp.t̂ with a binding value rp.τ and an inner-product proof

rp.IPP, 4) two Pedersen commitments to the two coefficients

of rp.t̂ denoted by rp.T1, rp.T2, and 5) three challenges

rp.Cx, rp.Cy , rp.Cz . To prevent modular wraparound, i.e.,

com(u, r) = com(u+p, r), p is the prime order of the cyclic

group G, we specifically prove that
∑m

i=1
ui ∈ [0, 2t) for

some small integer t. In our implementation, we set t = 64.
Disjunctive Zero-knowledge Proof: A non-interactive vari-

ant of the Chaum-Pedersen zero-knowledge proofs for the

transaction txm is represented as:

DZKP = ZK1(g
x1

1
, yx1

1
∧ gw1

1
, yw1

1
, chall1, resp1)

∧ZK2(g
x2

2
, yx2

2
∧ gw2

2
, yw2

2
, chall2, resp2),

(7)

where ZK(gx, yx ∧ gw, yw, chall, resp) represents a non-

interactive Σ-protocol [33] to prove the knowledge of the

secret key sk (i.e., x1 = sk) or the knowledge of random

numbers (i.e., x2 = r − rRP), gx1

1
and gx2

2
are two gen-

eralized Schnorr proofs [59], w1 and w2 are two random

numbers, chall1 = Hash(Token′), chall2 = Hash(Token′′),
resp1 = w1 + x1chall1, resp2 = w2 + x2chall2, g1 =
(
∏m

i=0
Comi)/ComRP, y1 = (

∏m

i=0
Tokeni)/Token′, g2 =

pk, y2 = Token/Token′′.
To verify whether such a DZKP in Equation (7) is valid,

the verifier first checks whether gresp = (gx)challgw and

then yresp = (yx)challyw for the two non-interactive Σ-

protocols ZK1 and ZK2 [59].
Note that, Token′ for the spending organization and

Token′′ for other organizations must be pkrRP . This is be-

cause (s/ComRP)
skspend = t/Token′ holds for the spending

organization while (Com/ComRP)
skother = t/Token′′ holds

for other organizations. Moreover, Token′ and Token′′ guar-

antee that g1
sk = y1 and g2

r−rRP = y2.
Proof: For the spending organization,

g1
sk = (

m
∏

i=0

Comi)
sk/(ComRP)

sk

= (g
∑

m

i=0
uih

∑
m

i=0
ri)sk/(g

∑
m

i=0
uihrRP)sk

= (h
∑

m

i=0
ri)sk/(hrRP)sk = t/pkrRP = y1,

g2
r−rRP = pkr−rRP = (

m
∏

i=0

Comi)
sk/(ComRP)

sk

= (s/ComRP)
sk = Token/Token′′ = y2.

As for other organizations,

g1
sk = (s/ComRP)

sk = t/Token′ = y1,

g2
r−rRP = pkr−rRP = Token/Token′′ = y2.

A DZKP allows the prover to create a real proof using

real values (e.g., sk) and a fake proof using fake values

(e.g., an arbitrary number), and the verifier to validate DZKP

by itself without distinguishing between real proof and fake

proof. When a prover knows the secret key of the spending

organization skspend but not others’ skother, sk in Equation (5)

is an arbitrary random number but not skother. To conceal

the transaction graph, the sk in Equation (6) is an arbitrary

random number other than skspend.

Proof: Suppose sk is the spending organization’s secret

key skspend. Substitute sk with skspend in Equation (6), we

have:

Token′′ = Token · (s/ComRP)
skspend = Token · g1

skspend

= Token · y1 = Token · t/Token′. (8)

Equation (8) shows a linear relationship among Token,

Token′, Token′′, and t. A linear relationship reveals the iden-

tity of the spending organization through trivial computation

by an observer. Therefore, sk 6= skspend in Equation (6).
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