
Insight: In-situ Online Service Failure Path Inference in Production
Computing Infrastructures

Hiep Nguyen, Daniel J. Dean, Kamal Kc, Xiaohui Gu
Department of Computer Science
North Carolina State University

{hcnguye3,djdean2,kkc}@ncsu.edu, gu@csc.ncsu.edu

Abstract

Online service failures in production computing envi-
ronments are notoriously difficult to debug. When those
failures occur, the software developer often has little
information for debugging. In this paper, we present
Insight, a system that reproduces the execution path of
a failed service request onsite immediately after a failure
is detected. Upon a request failure is detected, Insight
dynamically creates a shadow copy of the production
server and performsguided binary execution exploration
in the shadow node to gain useful knowledge on how the
failure occurs. Insight leverages both environment data
(e.g., input logs, configuration files, states of interacting
components) and runtime outputs (e.g., console logs,
system calls) to guide the failure path finding. Insight
does not require source code access or any special
system recording during normal production run. We have
implemented Insight and evaluated it using 13 failures
from a production cloud management system and 8 open
source software systems. The experimental results show
that Insight can successfully find high fidelity failure
paths within a few minutes. Insight is light-weight and
unobtrusive, making it practical for online service failure
inference in the production computing environment.

1 Introduction

Although online services1 are expected to be operational
24x7, recent production service outages [2, 1] show great
challenge to meet such an expectation. Unfortunately,
when those online services experience failures in a pro-
duction computing environment, the software developer
is often given little information for debugging.

Particularly, we focus onnon-crashing failureswhere
the server does not crash but fails to process some

1The online services considered in this paper refer to those request
and response services such as a web server or a virtual machine (VM)
reservation service in an infrastructure-as-a-service cloud.

requests. Different from crash failures that often receive
immediate attention, those non-crashing failures often go
unnoticed. We observe that those failures are common
in online services based on our experience with the
virtual computing lab (VCL) [3] which is a production
cloud computing infrastructure. Users who experience
frequent service failures will be seriously discouraged
to use the service again. Most production servers are
well engineered to avoid fatal crash failures and strive
to capture all the request failures with error messages.
However, those error messages do not tell uswhy a
service request has failed and can be misleading some-
times [7, 36].

To debug a production-run failure, software devel-
opers generally need to reproduce the failure at the
developer-site to understand what happened during the
production run in order to infer the root cause. Much
effort has been devoted to explore the right balance be-
tween recording overhead and debugging effectiveness,
ranging from deterministic record-replay techniques [19,
17, 18, 13] to partial record-replay [6, 14]. However,
production infrastructures are often reluctant to adopt
any intrusive system recording approaches due to de-
ployment and privacy concerns.

In this paper, we presentInsight, a system that can
infer the execution path of a failed service requestin-
side the production environmentwithout any intrusive
system recording. We view Insight as a first-step failure
inference tool for the developer to gain useful knowledge
abouthowa service request fails in the production com-
puting environment. Insight can significantly expedite
the debugging process by narrowing down the scope of
diagnosis from thousands of functions to a few of them.
Moreover, the failure paths reproduced by Insight can be
fed into a debugger (e.g., GDB) or a symbolic execution
engine [10, 8] for further analysis.

The key idea of Insight is to performin-situ failure
path inferenceinside the production environment. The
rationale behind our approach is that the production com-



puting environment provides many useful clues for us
to perform failure inference more efficiently than offline
approaches. Those clues include bothenvironment data
(e.g., input logs2, configuration files, state of the faulty
component, interaction with other production servers
such as database query results) andruntime outputs(e.g.,
console logs, system call traces). Our experiments show
that using environment data and runtime outputs can
greatlyreduce the failure path search scopeand provide
important guidancefor us to find the correct failure path.

When a request failure is detected, Insight dynami-
cally creates a shadow component of the faulty produc-
tion server which produced the error message or was
identified by an online server component pinpointing
tool [11, 20, 27]. We detect a request failure by inter-
cepting error messages or employing system anomaly
detection tools [32, 15]. Since the production server
is still alive during non-crashing failures, the shadow
component can inherit the failure states of the faulty
production server. Moreover, the shadow component
allows us to decouple failure inference from the pro-
duction operation. The production server can continue
to process new requests without worrying about losing
important diagnostic information. Our current proto-
type implements dynamic shadow component creation
by augmenting the live virtual machine (VM) cloning
technique [9, 22, 26]. Our scheme allows the shadow
component to acquire environment data and runtime
outputs from the production environment while imposing
minimum disturbance to the production operation.

Insight proposes a novelguidedbinary execution ex-
ploration scheme that can efficiently leverage the produc-
tion environment data and runtime outputs as guidance to
search the failure paths. We make careful design choices
in our failure inference algorithm in order to meet the
following requirements: 1)binary-only since we can-
not assume source code is available in the production
environment; 2)fast path search in order to leverage
the “fresh” environment data at the failure moment (i.e.,
the environment does not change much and the failure-
triggering inputs or similar inputs are still in the buffer
of the recent input log.); 3) nointrusive recording; and
4) supportboth interpreted and compiledprograms.

Our guided binary execution exploration starts by
replaying the last input in the input log when a failure
is detected. However, Insight does not require the exact
failure-triggering input to find the failure path since
our binary execution exploration scheme can inherently
handle incorrect environment data (e.g., different inputs,
outdated or missing query results). During replay, we

2We observe that most production servers buffer a set of recent
inputs. Although it might be impractical to assume the inputlog access
for offlinediagnosis (e.g., the privacy concern), it is easy to acquirethe
input log within the production computing environment.

use the runtime outputs as guidance to stop searching
along wrong paths, that is, if the replay produces a
mismatched output, we roll back the execution to the
previous branch point and flip the branch condition value
(e.g., fromtrue to false) to search a different path.
If no matched path is found using the current input, we
replay the next input in the input log and repeat the above
process. We also support concurrent multi-path search
to further shorten the failure path search time. Multi-
path search also allows Insight to find multiple candidate
failure paths that match the output of the production run.

We consider bothconsole log messagesand system
call traces in the output matching. Most production
servers already record console logs. If the production
program produces many console log messages, our ex-
periments show that Insight can rely on console log mes-
sages to produce high fidelity failure paths. However,
if the production program includes very few console
log messages, we propose to use system calls as hints
to search paths between console logs. We chose to
match system calls because they often represent key
operations and can be collected using kernel-level tracing
tools [5, 16] with low overhead (< 1%).

We intentionally skip the constraint checking during
the binary path search in order to achievefast failure
path inference in the production computing environment.
With the help of environment data, we observe that
Insight only needs to flip a small number of branches
and the chance of finding an infeasible path is small.
To filter out infeasible paths in our final result, we can
apply constraint solver [12, 29, 24] to the candidate
failure paths found by Insight, which is much faster than
applying constraint solver during the path search.

We make the following contributions in this paper:

• We propose to performin-situ failure path inference
using a dynamically created shadow serverinside
the production computing environment.

• We present aguidedbinary execution exploration
algorithm that can use availableenvironment data
(e.g., inputs, configuration files, states of interacting
components) andruntime outputs(e.g., console
logs, system calls) as guidance to quickly find the
failure path over binary code directly.

• We evaluate Insight using real system failures. Ex-
periments show that in-situ failure path inference is
feasible. Insight can efficiently use the environment
data and runtime outputs when they are present to
find high fidelity failure paths within minutes.

The rest of the paper is organized as follows. Section 2
compares our work with related work. Section 3 presents
the design and implementation of Insight. Section 4



presents the experimental results. Finally, the paper
concludes in Section 5.

2 Related Work

Production-run failure debugging is a well known chal-
lenging task. In this section, we focus on reviewing the
work that is most related to Insight and describing the
difference between Insight and previous approaches.

Triage [33] first proposed an onsite production run
failure diagnosis framework. It uses checkpoint-replay
with input/environment modification to perform just-in-
time problem diagnosis by comparing good runs and bad
runs. Although Insight shares the same idea of onsite
failure analysis with Triage, Insight differs from Triage
in the following major ways. First, Triage performs on-
site debugging on the production server directly, which
can cause significant downtime to the online service.
In contrast, Insight creates a shadow server to decou-
ple the failure inference from the production operation.
Second, Insight does not rely on repeated replays with
input/environment modifications, which can incur a long
failure analysis time and sometimes difficult to achieve
in production systems. In comparison, Insight provides
a fast binary execution exploration approach that uses
the environment data and runtime outputs as guidance to
search the failure paths on a dynamically created shadow
component.

Alternatively, previous work (e.g., [19, 17, 18, 13, 30,
6, 28, 25, 39]) has proposed to introduce application-
level or system-level instrumentation and infer the failure
path based on instrumentation data. However, large-scale
production computing environments are reluctant to
adopt continuous intrusive system recording approaches
due to overhead and deployment concerns. For example,
Aftersight[13] proposed to decouple complex program
analysis from normal executions using VM record and
replay techniques. However, VM recording can impose
high overhead to the normal production execution (e.g.,
worst case overhead reached 31% and 2.6x for some
workloads [13]). Crameri et al. [14] proposed to use
static and dynamic analysis to identify those branches
that depend on input and only record those branches for
failure reproduction. In comparison, Insight does not
record any branch during the production run but instead
exploits production environment data and runtime out-
puts to find the correct failure path onsite immediately
after the failure occurs.

Another alternative is to performoffline failure infer-
ence using static source code analysis [37, 38]. For
example,Sherlog[37] uses static source code analysis
to infer the possible failure paths from console logs.
ESD[38] uses program source code and bug reports (i.e.,
core dump information) to reproduce a failure execution.

ESD first statically analyzes the source code to infer
the control path capable of reaching the bug location,
and then symbolically executes the program along the
inferred control path to reproduce the failure execution.
Because reproducing a production run failure outside
the production environment is challenging [33], offline
analysis cannot leverage the production environment
data (e.g., inputs, configuration files, interaction results)
or some runtime outputs that are difficult to obtain offline
(e.g., system calls). Moreover, it is difficult for the offline
approach to localize environment issues (e.g., network
failure, wrong database query results).S2E [12] provides
an in-vivo multi-path analysis framework using selective
symbolic execution over binaries for finding all potential
bugs. In contrast, Insight aims at quickly finding the
execution path for a specific occurring production-run
failure.S2E also does not consider runtime outputs when
finding the failure path.

We view Insight as a first-step light-weight failure
inference tool that can be used inside the production
environment. We can apply the static/dynamic program
analysis or symbolic execution to the candidate failure
paths found by Insight to further validate the feasibil-
ity of the failure paths and localize root cause related
branches.

3 System Design and Implementation

In this section, we describe the design and implementa-
tion details of the Insight system. We first present the dy-
namic shadow server creation scheme. We then describe
our guided binary execution exploration algorithms.

3.1 Dynamic Shadow Server Creation

When a service request failure is detected, Insight dy-
namically creates a shadow component of the produc-
tion server on a separate physical host using live VM
cloning [9, 22]. Since Insight targets non-crashing
failures and performs immediate cloning, we assume that
the state of the shadow component is similar to the state
of the production server when the failure occurs. We
found this assumption holds for all the server failures we
tested in our experiments.

The current prototype of Insight uses a pre-copy live
KVM VM cloning system [26]. However, we can in-
tegrate Insight with other VM cloning techniques easily.
Insight only requires a brief stop-and-copy phase (e.g.,<

100 milliseconds [26]) where the production component
is paused temporarily for transferring any remaining
dirty pages. During the stop-and-copy phase, the pro-
duction server just pauses its processing but can continue
to receive the user requests in its input buffer. For all
the server systems we tested, Insight can complete the



3.poll

physical
reservation

imagerequest

8. use

2.request

Cloud

4. check

6. load

1. request

web

user 7. copy

5. check

CloudFrontend

Debugged

reservation

image command

node

hosts

Resource Pool

storagedatabase

Management Tier

frontend

image

servers

image

program

Figure 1: Our field study production server: VM reservation
servers in the VCL cloud computing infrastructure [3]. The
user makes a VM reservation request via a web interface. The
request is stored in a database which is continuously polled
by the reservation server. The reservation server forks a new
process for handling each VM reservation request. First, the
reservation server allocates a set of physical hosts for theuser.
If these hosts do not have the VM images required by the
user, the reservation server then loads requested images from
an image database. The reservation server then starts thessh
service and creates a user account for the user.

whole shadow component creation process within tens of
seconds. Additionally, Insight performs transparent fast
disk cloning to make the shadow component completely
independent of the production server [26].

After the cloning is done, we need to reconfigure the
shadow server to prepare it for the failure reproduction.
Note that all the reconfigurations do not require any
modification to the server software. Because live VM
cloning makes the shadow server inherit all the state from
the production server, which includes the IP address,
the shadow server may immediately send out network
packets using the same IP address as the production
server, causing duplicate network packets and applica-
tion errors. To avoid this, we first disconnect the network
interface of the shadow server, clear the network buffer,
and then reconnect the network interface of the shadow
server with a new IP address.

To leverage the production environment for failure
reproduction, we need to allow the shadow server to
interact with other servers in the production environment
for retrieving needed information. Figure 1 shows our
field study production server which is a VM reservation
server in an infrastructure-as-a-service cloud. The reser-
vation server needs to interact with a MySQL database
server to search for available physical hosts, look up the
VM image name, and update the reservation state. In-
sight registers the shadow server with the database server
using event-driven application auto-configuration [26].
Other interactions can be enabled in a similar way.

If the interaction requires the shadow server to read

information from the environment (e.g., query from
a database), the interaction is allowed. However, if
the interaction requires the shadow server to update
some information in the environment (e.g., write to
a database), the interaction will be filtered to avoid
undesired disturbance to the production server. We use
an interaction filtering proxy to intercept outputs from
the shadow server and drop selected outputs based on the
query type. The proxy runs outside the shadow server
software but on the same physical host with the shadow
server. For example, our field study production server is
written in Perl. We implemented the interaction filtering
proxy within the Perl interpreter. We can also perform in-
teraction recording on theshadow serverto log important
environment data which will be helpful for developers to
diagnose a failure caused by an environment issue.

Insight is resilient to false alarms by providing
light-weight runtime failure path inference and flexible
cloning. If a false alarm is confirmed by the online
anomaly detection tool before the shadow server is
started, we simply cancel the live VM cloning operation.
If a false alarm is confirmed after the shadow server is
already started, we issue a delete command to the shadow
server and release all resources allocated to the shadow
server. In our field study server system, we use the
critical error messages for detecting failures, which has
few false positives [21]. We can also combine the error
message detection with other failure prediction tools [31]
to further reduce the false alarms.

3.2 Guided Binary Execution Exploration

Insight performs guided binary execution exploration in
the shadow component to find the failure path. The
execution exploration engine intercepts conditional jump
statements (e.g., JZ, JNE, JE) in the binary code and
explores different execution paths by manipulating the
jump conditions (true or false). We assume all
the conditional statements including theswitch state-
ments are translated into one or multiple conditional
jump statements in the binary code. For example, in
C/C++ program, we can compile the code using the
fno-jump-tables option ingcc.

To start the execution exploration, we first replay the
last input in the input log when the failure is detected.
We employ an input replay proxy to retrieve the input
log from the production server when the failure is de-
tected. As mentioned in the Introduction, most pro-
duction servers buffer recent inputs in an input log file.
For example, a web server stores its input (i.e., HTTP
requests) in theaccess log file. For VCL reservation
server, the inputs (i.e., VM reservation requests) are
stored on a database server. Although our experiments
show that inputs play a crucial role in the failure path



inference, Insight does not require the exact failure-
triggering input to find the failure path.

During the replay, we check whether the shadow
component produces the same outputs (i.e., console log
messages, system call sequences) as the failed service
request. We will describe the output matching scheme
details in the next section. A replayed path can produce
mismatched outputs either because we did not replay the
exact failure-triggering input or because some environ-
ment data (e.g., database content) was changed during
the shadow component creation. We use anunmatched
output as a hintto stop searching along a wrong path.
Under those circumstances, the execution is rolled back
to the previous branch point and we flip the branch
condition to search a different path. If rolling back to the
previous branch point still cannot produce any matched
failure path, we rollback to the branch point before the
previous branch point and so on. To avoid redundant
search, we stop the rollback process when we see the
previous console log message again. If no matched
path is found using the current input, we replay the next
input in the input log and repeat the above process. To
support the above mechanism, Insight performs process
checkpointing at each branch point and each console log
output. We implement the process/thread checkpointing
using f ork.

Insight supports concurrent multi-path search to
achieve fast failure reproduction. We implement the
concurrent multi-path search by using a set of probing
processes/threads called probes to explore different exe-
cution paths simultaneously. When the probe encounters
a conditional jump statement, it forks a new child probe
for exploring both thetrue and thefalse branches
concurrently. To avoid overloading the system with a
large number of concurrent searches, we set a concur-
rency quotaCQ to limit the number of probes that can
simultaneously run. When the number of probes exceeds
CQ, we make the parent probe wait and allow the child
probe to explore either thetrue or false branch. If
the child probe produces an unmatched output, we kill
the child probe to discontinue the search along the wrong
path and release one concurrency quota. If the parent
probe of the terminated child probe is waiting for the
quota, the parent probe will be signaled to continue its
exploration. When a probe produces the next matched
output (i.e., console log message or system call), we stop
the exploration and switch back to concrete execution
mode (i.e., continue the execution without forking).

If an explored path contains a loop, Insight forks a new
child probe at the beginning of each iteration by default.
The parent probe will then exit the loop (i.e., thefalse
branch) and allow the child probe to continue to execute
the next iteration of the loop (i.e., thetrue branch).
However, if the program does not produce any console

log messages or system calls within the loop, Insight will
never get any hint on when to stop exploring the loop. To
avoid unnecessary loop explorations, Insight performs
loop detection by checking for repeated program coun-
ters within one function. If no console log message
or system call is produced within the loop, we disable
exploration for that loop branch statement (i.e., do not
fork new child probe) and let the loop exit naturally as
its normal execution.

When a probe produces the same complete console
log and system call sequences as the failed request,
Insight marks the execution path explored by the probe
as onematched failure path. Our approach can also
find multiple matched failure paths simultaneously. The
failure path inference will be terminated after the target
number of matched failure paths are found or the search
process times out. We also annotate each reproduced
path with useful diagnostic information such as which
branch points were manipulated by our exploration pro-
cess and what the environment values were when the
branch points were flipped by our system. Developers
can use this information to decide the fidelity of the
reproduced paths and perform informed value inferences.

Since Insight works on binaries directly, most In-
sight components can be applied to compiled or inter-
preted programs written in different languages without
any modification. The only program-specific parts are
how to intercept branch statements and change branch
conditions. Insight currently supports Perl and C/C++
programs. For Perl programs, we modified the Perl
interpreter to intercept the conditional jump statement.
The jump condition value is stored in the interpreter’s
execution stack. We modify the jump condition value
by changing the execution stack value. For C/C++
programs, Insight uses the Pin tool [23] to intercept
the conditional jump statements and modify the jump
conditions by changing the appropriate flags (i.e., jump
flag, carry flag, overflow flag, and parity flag) in the
EFLAGS register. Note that the above system modifica-
tion and instrumentation are only applied to the shadow
server during the execution exploration time. Insight
does not perform any modification or instrumentation to
the production server.

3.3 Runtime Output Matching

Insight uses runtime outputs as hints to check whether
it explores a correct or incorrect path. We chose to
match two different types of runtime outputs: console
log messages [35, 37] and system calls for the following
reasons. Production systems often produce console
log messages for debugging production-run failures [35,
37]. In today’s practice, console logs often provide the
sole information source for diagnosing production run



failures. Since console log messages are inserted by
software developers for recording operations considered
to be important, they are often able to provide useful
clues about key program execution states. However, we
also observe some systems (e.g., open source software)
contain a limited number of log messages. Under those
circumstances, we propose to match system call traces
because system calls can be easily collected using kernel-
level tracing tools with negligible overhead (< 1% CPU
load) and system calls often denote the key operations
in the program. Different from user-level tracing tools
such as ptrace [4], kernel-level tracing tools impose
little overhead by avoiding context switches. We use
SystemTap [5] in our current prototype.

During binary execution exploration, we continuously
match the console log messages and system call se-
quences produced by the explored execution path with
those from the failed production-run request. For console
log matching, we adopt the same strategy as previous
work [35, 37] by only considering the static text parts
called message templatessince the variable parts (e.g.,
timestamp, variable values) typically differs over dif-
ferent runs. Those message templates can be easily
extracted from the source code and provided to Insight
by software developers. Alternatively, we can extract the
message templates directly from log files [34], which is
however orthogonal to our work. We can also leverage
parameter run-time values in the console log messages
to extract more hints about the failure. We might be
able to increase the failure path accuracy using those
parameter values by incorporating Insight with taint
analysis techniques. However, doing so will probably
increase the runtime overhead. Our current results show
that Insight can still successfully infer the failure paths
without using those parameter values.

If the console log is too sparse, Insight still faces
the challenge of large exploration scope. Thus, we use
system calls as hints to guide our path search between
any two consecutive console log messagesL1 andL2. We
observe that each console log message is written into the
console log file using a sequence ofsys write system
calls. The system call sequenceS in-between those two
groups ofsys write calls are marked as the system
call sequence betweenL1 andL2. We usereadlink
and file descriptor contained in eachsys write to
identify whether it writes into the console log file. When
we perform failure path search betweenL1 andL2, we
match the system call sequenceS. We currently only
consider system call types when we perform matching.
We could also consider system call arguments or return
values, which, however, might increase the system call
tracing and matching overhead significantly.

When a mismatched system call is encountered, we
roll back the exploration to the previous branch point

and flip the branch condition to execute a different path.
During our experiments, we observe that requiring an
exact match sometimes prevents us from finding any
matched path. The reason is that the same function call
such asmallocmight invoke slightly different numbers
of system calls (e.g.,mmap) depending on the appli-
cation’s heap usage. During those circumstances, we
allow k mismatches (measured by string edit distance)
to occur during system call sequence matching. We start
from k = 0 and gradually increasek until we either find
a matched path or our search times out. During our
experiments, we findk needs to be no more than 2.

4 System Evaluation

In this section, we present the experimental evaluation
for the Insight system. We first present our evaluation
methodology followed by our experimental results.

4.1 Evaluation Methodology

Case study systems. We first test Insight using the
virtual computing lab (VCL) [3] which is a production
cloud computing infrastructure. VCL has been in pro-
duction use for 9 years and has over 8000 daily users.
Figure 1 shows the architecture of VCL. The key control
part in VCL is the cluster of reservation servers which are
written in about 145K lines of Perl code. The database
server is configured to allow access from hosts in the
same subnet, thus allowing the access from the shadow
component. In our experiments, we deploy the Insight
system on all the reservation servers and perform the in-
situ failure path inference over the reservation servers
which produce the reservation failure messages.

We also test Insight with several real software bugs in
a set of open source softwares (Apache, Squid, Lighttpd,
PBZIP2, aget, and GNU Coreutils).

Case study failures. We evaluated Insight using a
set of real failures listed in Table 1. We also report the
number of function calls and branch points contained in
each failure execution path along with the root cause
function of each failure. Each failure contains one
error message. In our experiments, we detect failures
by intercepting error messages: console log messages
containingcritical or fatal keyword or are written into
stderr.

Evaluation metrics. We first evaluate whether the
reproduced failure execution path is useful for debugging
by checking whether the reproduced execution shows the
same failure symptom (i.e., throwing out the same error
messages), covers the root cause functions and branch
statements. We then evaluate the precision and efficiency
of Insight using the following metrics:



System
name

System
description

LOC
Failure path length Num. of

console
log msgs

Failure description Root cause
functionNum. of

functions
Num. of

branches

VCL
(v2.2.1)

VM reservation
server

145K 112 378 132 Overlapping reservation failure: User tries to re-
quest the same VM reservation twice.

computernot
being used

VCL
(v2.2.1)

VM reservation
server

145K 299 1331 290 Network failure: The management node fails to
create the VM reservation on a physical host due to
the network failure on the host.

sshstatus

VCL
(v2.2.1)

VM reservation
server

145K 298 1328 409 Authentication failure. The management node is
unable to login into the reservation host due to a
missing public key.

run ssh
command

VCL
(v2.2.1)

VM reservation
server

145K 147 601 178 Image corruption failure. The VM image file corre-
sponding to the user request is corrupted and cannot
be copied.

load

Apache
(httpd-
2.0.55)

Web server 176K 176 21212 1 Authentication failure. Apache rejects a valid re-
quest due to incorrect file name setting for Auth-
GroupFile option (#37566).

groupsfor
user

Apache
(httpd-
2.2.0)

Web server 209K 164 4983 1 CGI failure. Apache does not handle a malformed
header generated by CGI script correctly (#36090).

ap scan script
headererr
core

Squid
(v2.6)

Web cache and
proxy server

110K 588 19679 195 Non-crashing stop failure. Squid is not able to
handle a long value of “ACL name” option (#1702).

aclParseAcl
List

Lighttpd
(v1.4.15)

Web server 38K 730 4308 3 Proxy failure. Lighttpd could not find the back-end
server when configured as a reverse proxy for 1 back-
end server with round-robin policy (#516).

modproxy
check
extension

PBZIP2
(v1.4.15)

Multithreaded
data
compression

3.9K 41 58 14 Decompression failure. The program fails to decom-
press files with trailing garbage (#886625).

decompress Er-
rCheck Single

aget
(v0.4.1)

Multithreaded
download
accelerator

1.5K 2 8 1 Download failure. The program fails to download a
file when setting the number of threads bigger than
the maximum concurrent connection allowed in the
server holding the file.

http get

rmdir
(v4.5.1)

GNU coreutils 0.2K 2 24 2 Option failure. The program does not handle trailing
slashes with the “-p”.

remove parents

ln
(v4.5.1)

GNU coreutils 0.6K 1 47 1 Option failure. The program does not handle “target-
directory” correctly.

do link

touch
(v7.6)

GNU coreutils 0.5K 1 7 1 Time failure. The program rejects a valid input with
the leap second.

main

Table 1: Real system failures used in our experiments. All the failures have one error log message produced during the failure run.

1) Call path differencedenotes the deviation of the call
path discovered by Insight from the original call path
of the failed production run. The call path consists of
a sequence of invoked functions during the execution.
We used thestring edit distanceto measure the deviation
between two compared call paths. We instrumented all
the tested programs to record the original call path of the
failed production run. Generally, the call path difference
reflects how close the reproduced execution is to the
original execution.

2) Normalized branch difference. We use the branch
difference to denote the deviation at the branch level
between the path reproduced by Insight and the original
failure path. We also use thestring edit distanceto
measure the branch difference between two execution
paths. To perform comparison between different
application failures, we normalize the branch difference
of each failure using its maximum string edit distance
between the reproduced path and the original path (i.e.,
no overlapping at all).

Generally, the call path difference and the branch
difference reflect how close the reproduced execution is
to the original execution. The branch difference is a more
fine-grained comparison than the call path difference.

3) Percentages of flipped branchesdenotes the
percentage of the branches whose conditions are
manipulated by Insight due to incomplete environment
information or different input.

4)Exploration timedefines the time taken by Insight to
discover the target number of the matched failure paths.

5) Performance impact and overhead.We evaluate the
runtime performance impact of Insight to the production
system by comparing the per-request processing time
between with and without the Insight system. We also
report the overhead of the Insight system in terms of
additional resource consumptions.

Impact of environment data. To understand the
impact of the environment information on the accuracy
of our in-situ failure path inference, we compare the
failure inference accuracy results under three different



Failure name Environment setting Call path
difference

Branch
difference

Cover root
cause functions

Cover root
cause branches

VCL overlapping
reservation failure

Complete environment data 0 0 Yes Yes
Partial environment data 0 0 Yes Yes
No environment data 0 0 Yes Yes

VCL network
failure

Complete environment data 0 0 Yes Yes
Partial environment data 0 3.4% Yes Yes
No environment data Failed Failed N/A N/A

VCL
Authentication
failure

Complete environment data 0 0 Yes Yes
Partial environment data 0 2.7% Yes Yes
No environment data Failed Failed N/A N/A

VCL Image
corruption failure

Complete environment data 0 0 Yes Yes
Partial environment data 0 3.1% Yes Yes
No environment data Failed Failed N/A N/A

Apache
authentication
failure

Original input 0 0 Yes Yes
Same input type+ console log 17 66% Yes Yes
Same input type+ console log+ system call 11 61.5% Yes Yes

Apache CGI failure
Original input 0 0 Yes Yes
Same input type+ console log 140 41.8% Yes Yes
Same input type+ console log+ system call 9 14.8% Yes Yes

Squid failure
Original input 0 0 Yes Yes
Same input type+ console log 0 0.0001% Yes Yes
Same input type+ console log+ system call 0 0.0001% Yes Yes

Lighttpd failure
Original input 0 0 Yes Yes
Same input type+ console log 0 0.8% Yes Yes
Same input type+ console log+ system call 0 0.8% Yes Yes

PBZIP2 failure
Original input 0 0 Yes Yes
Same input type+ console log 1 4.4% Yes Yes
Same input type+ console log+ system call 0 1.3% Yes Yes

aget failure
Original input 0 0 Yes Yes
Same input type+ console log 0 0 Yes Yes
Same input type+ console log+ system call 0 0 Yes Yes

rmdir failure
Original input 0 0 Yes Yes
Same input type+ console log 0 17.5% Yes Yes
Same input type+ console log+ system call 0 5.3% Yes Yes

ln failure
Original input 0 0 Yes Yes
Same input type+ console log 0 25.3% Yes Yes
Same input type+ console log+ system call 0 9.1% Yes Yes

touch failure
Original input 0 0 Yes Yes
Same input type+ console log 0 53.5% Yes Yes
Same input type+ console log+ system call 0 0 Yes Yes

Table 2: Summary of Insight failure path inference accuracyresults.

environment contexts in the VCL system: 1)complete
environment datawhere all the query results from the
database are assumed to be the same during the whole
failure path inference process; 2)partial environment
data where all the database entries that are related to
the failed reservation request are deleted to emulate the
case when the failure inference is triggered after the
reservation server clears up the failed requests. However,
the shadow server can still access some general database
information such as “computer load state” and “OS type”
needed by the failure path finding; and 3)no environment
data where all the query results from the database are
unavailable. This emulates the case of offline failure
reproduction.

Since all the C/C++ server failures are produced under
stand-alone mode, we could not evaluate the impact of
the environment data on the open source systems.

Impact of input. We evaluate the impact of the input

by performing failure reproduction using the original
failure triggering input or using a different input that
does not trigger the failure but is of the same type as the
original input.

We define thesame type of inputfor different open
source systems as follows: 1)Apache authentication
failure: the same type of input is a http request to
access a webpage with a correct AuthGroupFile setting;
2) Apache CGI failure: the same type of input is a
http request to execute a normal CGI script; 3)Squid
failure: we use a default configuration file with a normal
“ACL name”; 4) Lighttpd failure: we use a http request
using a reverse proxy with two back-end servers instead
of one back-end server that makes the system fail; 5)
PBZIP2 failure: we use a compressed file with no trailing
garbage; 6)aget failure: we use a request that does not
have restriction on the maximum concurrent connection;
7) rmdir failure: we use a command without the “-p”



option; 8) ln failure: we use a command without the
“target-directory” option; and 9)touch failure: we use
an input that does not have a leap second.

Since the inputs (i.e., reservation requests) in the VCL
system are stored in the database, they are considered as
part of the environment data.

We conducted all the experiments on a computer
cluster in our lab. Each cluster node is equipped with
a quad-core Xeon 2.53GHz CPU, 8GB memory, and is
connected to Gigabit network. Each host runs CentOS
6.2 64-bit with KVM 0.1.2. The guest VMs run CentOS
6.2 32-bit and are configured with one virtual CPU and
2GB memory. We repeated each experiment five times
and report the mean and standard deviation values. In all
experiments, we set the concurrency quotaCQ=20.

4.2 Results and Analysis

Failure path accuracy result summary. Table 2
summarizes the accuracy of the failure paths reproduced
by Insight for different failures. We observe that the
environment data in VCL allows Insight to find the
exact failure paths for all the VCL failures. With
partial environment data, Insight can still achieve high
accuracy with 0 call path difference and small (<

5%) branch difference. However, when we remove
all the environment data, emulating the offline failure
reproduction situation, we cannot find any matched path
for three out of four VCL failures after searching for
several hours. This indicates that environment data plays
a crucial role in timely failure path finding because
they can greatly reduce the search scope for the binary
execution exploration.

For the open source software systems, we observe
that with the original failure-triggering inputs, Insight
can always reproduce the exact failure path for each
failure. When given the same type of input (see Section
4.1 for the definition of the same input type), Insight
can still reproduce high fidelity failure paths with 0 call
path difference and small (< 10%) branch difference
for most failure cases. The only exceptions are those
failures that include only 1 error message without any
other console log messages. This is expected as Insight
has too few runtime outputs to guide the exploration.
However, we observe that system call sequences can
greatly help improve the failure path inference accuracy
for the failure cases where sparse console logs are
present. The branch difference reduction can be up to
100% (i.e., the branch difference of the touch time failure
is reduced from 53.5% to 0).

We then validate whether the failure paths reproduced
by Insight cover the root cause functions and branches
by manually analyzing the source code. We observe
that the failure paths found by Insight always cover the

Overlapping 
reservation failure

Network
failure

Authentication
failure

Image 
corruption failure

0

5

10

15

Failed FailedFailed.006

 

Pe
rc

en
ta

ge
 o

f f
lip

pe
d 

br
an

ch
es

 (%
)

 Compelete enviroment information
 Partial environment information
 No environment information

00000

Figure 2: Percentage of flipped branches for VCL failures.

Overlapping 
reservation failure

Network
failure

Authentication
failure

Image 
corruption failure

0

50

100

150

200

250

FailedFailedFailedFa
ilu

re
 re

pr
od

uc
tio

n 
tim

e 
(s

)
 

 Compelete enviroment information
 Partial environment information
 No environment information

Figure 3: Total failure reproduction time (i.e., the shadow
component creation time+ failure path search time) for
reproducing VCL failures.

root cause functions and branches. Another interesting
observation we observe is that the root cause branch
points often do not appear right before the error message
is produced, but reside in the middle of the execution
path. For example, in the VCL overlapping reservation
failure case, the error message “Reservation failed on
vmsk1: process failed because computer is not available”
does not provide the correct clue that the reservation
failure is caused by an overlapping reservation not by the
machine is not available. However, the failure path found
by Insight covers the root cause branch wherepgrep
returns a process matching the request ID, indicating
the same reservation has been made on the machine.
For the Lighttpd failure, the reproduced path shows
that the failure is caused by the back-end server lookup
operation returningemptywhen the round-robin policy
is employed and there is only one back-end server. The
buggy code segment does not appear right before the
error message.

We also examined how VM cloning helps Insight
to find the failure paths. For example, the shadow
component of the VCL reservation server inherits the
configuration files that specify the supporting VM types
(e.g., xCat, KVM), VM image locations, and public
keys. Without those configuration parameters, it is
extremely difficult to perform any replay. Similarly,
the configuration file of Squid defines the permissions



Apache - Authentication failure 

Apache - CGI failure

Squid Lighttpd
PBZIP2

aget rmdir ln touch

0

20

40

60

80

100
Fa

ilu
re

 re
pr

od
uc

tio
n 

tim
e 

(s
)

 

 Original input
 Same input type + Console log
 Same input type + Console log + System call

Figure 4: Failure reproduction time results for open source
software bugs.

associated with the “ACL” name which are needed by
the failure reproduction. In Lighttpd, code modules such
asmod proxy and back-end servers are specified in the
configuration file. Additionally, VM cloning also ensures
the same third-party libraries are installed on the shadow
component.

Detailed VCL failure reproduction results. We now
present the detailed failure reproduction results for all the
VCL failures. Table 2 shows the branch difference for
different VCL failures. As mentioned in the accuracy
result summary, Insight can find a failure path with little
branch difference compared to the original failure path
when in-situ failure reproduction is performed.

Figure 2 shows the percentage of branch points that
are flipped by our binary execution exploration engine
during path finding. We observe that Insight only flips a
small number of branches when part of the environment
data is not available.

Figure 3 shows the failure reproduction time for the
VCL failures. The reproduction time includes the time
for Insight to create the shadow component and the time
taken to search the failure path. We observe that Insight
can reproduce the failure path within a few minutes.
It took Insight about 30 seconds to create the shadow
component using live VM cloning. We also observe
that the environment data has an impact on the failure
reproduction time. When complete environment data is
available, Insight can quickly reproduce the failure path
within tens of seconds. When part of the environment
data is missing, the reproduction time is longer, taking up
to 250 seconds to complete. As mentioned before, when
no environment data is available, Insight cannot find any
matched failure paths after searching for several hours.

Detailed open source software failure reproduction
results. We now present the results for the open source
software bugs. Table 2 shows the normalized branch
difference for the open source system failures. Figure 4
shows the failure reproduction time. We observe that

with the original inputs, Insight can always reproduce
the exact failure paths within tens of seconds including
the shadow component creation time.

Given the same types of inputs, Insight can
still reproduce the failure paths for Squid, PBZIP2,
aget, and all the Coreutils failures within several
minutes. However, Insight cannot reproduce the Apache
authentication failure, the Apache CGI failure, and
Lighttpd failure within a short period of time (< 1
hour) which is a requirement for our in-situ failure
reproduction. The reason is that those open source
systems produce zero or very few (i.e., 3) console
log messages except the error message during their
failure executions. With such little guidance, Insight
is faced with a large path search scope. Under those
circumstances, Insight uses a code selector in a similar
way asS2E [12] to limit the path exploration within
a specified target code module. For the Apache
authentication failure, the target code module is the
authentication module. For the Apache CGI failure, the
target code module is the CGI component that handles
CGI scripts. For Lighttpd,mod proxy is the target
code module. After limiting the path exploration scope,
Insight is able to find the failure paths within tens of
seconds.

We observe that system call sequences can greatly
reduce the branch difference for those failures with few
console logs. We also notice that the branch difference in
the Apache authentication failure is significantly larger
than the other failure cases when the original input
is absent. The reason is that the program includes a
large loop that includes many branch points but does
not generate any console log message or system call.
Because of the input difference, Insight executes the
loop with a different number of iterations from the
original failure execution, which causes the high branch
difference.

Generally, we observe a higher branch differences in
the open source failures than those in the VCL failures.
This is expected as the open source software systems
have less environment data to leverage under the stand
alone mode and contain fewer console logs than the VCL
system. Insight can definitely benefit from a rich set of
environment data and a system with a good number of
console logs. Based on our observation and feedback
from our industry partners, we believe most production
systems do contain abundant console logs as they are
the sole information source for the software developer
to diagnose production failures.

We also wish to compare Insight with existing
static analysis and symbolic execution approaches.
Unfortunately, none of them can support the Perl
program that forms the main part of the VCL production
cloud management service. For open source software



System
Production runtime overhead Logging overhead (1 day) Shadow

creation
time

Stop-and-copy
timeWith system call

tracing
With shadow

component
Console log Input log Interaction log System call log

VCL N/A < 0.3% 0.49± 0.01 GB 0.13± 0.01 GB 0.86± 0.01 GB N/A 26.7± 2.3 s 49.6± 15.9 ms
Apache < 1% < 0.2% 0.3± 0.01 MB 19.6± 0.1 MB N/A 11.9± 0.01 MB 23± 1.3 s 38.6± 6.5 ms

Table 3: Performance and resource overhead of the Insight system. Request rate in VCL: 120 VM reservation requests per minute.
Request rate in Apache: 50 HTTP requests per second.

systems, we found that Insight can achieve much faster
failure reproduction. For example, static analysis
techniques need up to 28 minutes to analyze an Apache
failure [37]. Symbolic execution requires up to 6 hours
to explore a program with 1.3 KLOC [12]. This is
expected as Insight can leverage many environment data
and runtime outputs to greatly reduce the path search
scope.

Insight system overhead. Table 3 shows the
performance and resource overhead of the Insight system
for the VCL reservation server and the Apache server.
The results for other open source servers are omitted
as they are similar to the Apache results. Insight
does not require any system instrumentation during
the production run except the system call tracing.
We observe that the system call tracing imposes<

1% performance impact and<1.5% CPU load to the
production server. The performance impact is measured
by comparing the per-request processing time when
running systems without system call tracing and with
system call tracing. We also measure the performance
impact for the production operation when the production
server runs concurrently with the shadow server. Again,
we observe very little performance impact. We also
study the logging overhead incurred by Insight. We
can see the logging overhead is small compared to
the capacity of modern storage systems. Finally, we
measured the shadow component creation time and stop-
and-copy time for different servers. The results show that
we can finish the live VM cloning and shadow server
configuration within 30 seconds. During the shadow
server creation, we only need to pause the production
server for less than 100 milliseconds.

5 Conclusion

We have presented Insight, an in-situ failure path infer-
ence system for online services running inside the pro-
duction computing environment. Insight uses a shadow
component to achieve efficient onsite failure inference
while imposing minimum interference to the production
service. Insight employs a guided binary execution
exploration process to achieve accurate failure path infer-
ence by exploiting the production-site environment data
and two different types of runtime outputs (i.e., console
logs, system calls).

Our initial prototype implementation shows that In-
sight is both feasible and efficient. We tested Insight
using real request failures collected on a production
cloud computing infrastructure and a set of real software
bugs in open source software systems. Our experiments
show that Insight can efficiently use the environment data
and runtime outputs to find the failure paths with high
fidelity (i.e., little difference from the original failure
path) within a few minutes. Insight is lightweight
and unobtrusive, imposing negligible overhead to the
production service.

Acknowledgment

We thank the anonymous reviewers and our shepherd
Erik Riedel for their valuable comments. We also
thank VCL system administrators Aaron Peeler and
Andy Kurth for providing us with the log data and
their generous help on validation. We thank An-
wesha Das for helping with the experiments. This
work was sponsored in part by NSF CNS0915567
grant, NSF CNS0915861 grant, NSF CAREER Award
CNS1149445, U.S. Army Research Office (ARO) under
grant W911NF-10-1-0273, IBM Faculty Awards and
Google Research Awards. Any opinions expressed in
this paper are those of the authors and do not necessarily
reflect the views of NSF, ARO, or U.S. Government.

References

[1] The 10 biggest cloud outages of 2012.
http://www.crn.com/slide-shows/cloud/240144284/the-
10- biggest-cloud-outages-of-2012.htm/.

[2] Amazon EC2 Service Disruption Summary.
http://aws.amazon.com/message/65648/.

[3] Apache VCL. https://vcl.ncsu.edu.

[4] Process trace. http://linux.die.net/man/2/ptrace/.

[5] Systemtap. https://sourceware.org/systemtap/.

[6] G. Altekar and I. Stoica. ODR: output-deterministic
replay for multicore debugging. InSOSP, 2009.

[7] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating
root-cause diagnosis of performance anomalies in pro-
duction software. InOSDI, 2012.

[8] G. Brat, K. Havelund, S. Park, and W. Visser. Java
pathfinder-second generation of a java model checker. In
Workshop on Advances in Verification, 2000.



[9] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi,
M. Hiltunen, A. Lagar-Cavilla, and E. de Lara. Kaleido-
scope: cloud micro-elasticity via VM state coloring. In
EuroSys, 2011.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. InOSDI, 2008.

[11] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Pat-
terson, A. Fox, and E. Brewer. Path-based failure and
evolution management. InNSDI, 2004.

[12] V. Chipounov, V. Kuznetsov, and G. Candea. S2E:
a platform for in-vivo multi-path analysis of software
systems. InASPLOS, 2011.

[13] J. Chow, T. Garnkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual en-
vironments. InUSENIX ATC, 2008.

[14] O. Crameri, R. Bianchini, and W. Zwaenepoel. Striking
a new balance between program instrumentation and
debugging time. InEurosys, 2011.

[15] D. Dean, H. Nguyen, and X. Gu. UBL: Unsupervised
behavior learning for predicting performance anomalies
in virtualized cloud systems. InICAC, 2012.

[16] M. Desnoyers and M. R. Dagenais. The lttng tracer:
A low impact performance and behavior monitor for
gnu/linux. InLinux Symposium, 2006.

[17] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica.
Friday: global comprehension for distributed replay. In
NSDI, 2007.

[18] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. InUSENIX ATC,
2006.

[19] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: an application-level kernel
for record and replay. InOSDI, 2008.

[20] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Pad-
hye, and P. Bahl. Detailed diagnosis in enterprise net-
works. InSIGCOMM, 2009.

[21] K. Kc and X. Gu. ELT: efficient log-based troubleshoot-
ing system for cloud computing infrastructures. InSRDS,
2011.

[22] H. A. Lagar Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. InEuroSys, 2009.

[23] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. InPLDI, 2005.

[24] R. Majumdar and K. Sen. Hybrid concolic testing. In
ICSE, 2007.

[25] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and reproducing heisenbugs in
concurrent programs. InOSDI, 2008.

[26] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and
J. Wilkes. AGILE: elastic distributed resource scaling for
infrastructure-as-a-service. InICAC, 2013.

[27] H. Nguyen, Z. Shen, Y. Tan, and X. Gu. Fchain: Toward
black-box online fault localization for cloud systems. In
ICDCS, 2013.

[28] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu. PRES: probabilistic replay with execution
sketching on multiprocessors. InSOSP, 2009.

[29] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for c. InFSE, 2005.

[30] D. Subhraveti and J. Nieh. Record and transplay: partial
checkpointing for replay debugging across heterogeneous
systems. InSIGMETRICS, 2011.

[31] Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly
prediction for large-scale hosting infrastructures. In
PODC, 2010.

[32] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani,
and D. Rajan. Prepare: Predictive performance anomaly
prevention for virtualized cloud systems. InICDCS,
2012.

[33] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou.
Triage: diagnosing production run failures at the user’s
site. InSOSP, 2007.

[34] R. Vaarandi. Mining event logs with slct and loghound.
In NOMS, 2008.

[35] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console
logs. InSOSP, 2009.

[36] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,
and S. Pasupathy. An empirical study on configuration
errors in commercial and open source systems. InSOSP,
2011.

[37] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and
S. Pasupathy. Sherlog: error diagnosis by connecting
clues from run-time logs. InASPLOS, 2010.

[38] C. Zamfir and G. Candea. Execution synthesis: a
technique for automated software debugging. InEurosys,
2010.

[39] J. Zhou, X. Xiao, and C. Zhang. Stride: search-based
deterministic replay in polynomial time via bounded
linkage. InICSE, 2012.


