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Abstract requests. Different from crash failures that often receive
immediate attention, those non-crashing failures often go

Online service failures in production computing envi- . .
. e unnoticed. We observe that those failures are common
ronments are notoriously difficult to debug. When those.

failures occur, the software developer often has little'" online SEIVICces based on our experience Wlth the
information for debugging. In this paper, we presentV|rtual computing lab (VCL) [3] which is a production

Insight, a system that reproduces the execution path 0ﬁloud computing infrastructure. Users who experience

a failed service request onsite immediately after afa|lurerequent service fa|Iure_s will be senously discouraged

) . . . to use the service again. Most production servers are

is detected. Upon a request failure is detected, Insigh . : ) :
well engineered to avoid fatal crash failures and strive

dynamically creates a shadow copy of the productlor{ . .
. . . . o capture all the request failures with error messages.
server and performguided binary execution exploration
However, those error messages do not tellwis a

In the shadow node to gain useful knowledge on how theservice request has failed and can be misleading some-
failure occurs. Insight leverages both environment data%imes [7. 36]
(e.g., input logs, configuration files, states of interagtin P ) ,

components) and runtime outputs (e.g., console logs, 10 debug a production-run failure, software devel-
system calls) to guide the failure path finding. InsightoIoers gene_rally need to reproduce the failure _at the
does not require source code access or any Specigpveloper-sne to understand what happened during the

system recording during normal production run. We haveProduction run in order to infer the root cause. Much
implemented Insight and evaluated it using 13 failureseffort has been devoted to explore the right balance be-
from a production cloud management system and 8 ope[fVe€n recording overhead and debugging effectiveness,
source software systems. The experimental results shof@nging from deterministic record-replay techniques [19,

that Insight can successfully find high fidelity failure 17, 18, _13]_t° partial record-replay [6, 14]. However,
paths within a few minutes. Insight is light-weight and production infrastructures are often reluctant to adopt

unobtrusive, making it practical for online service fagur 21 intrusive system recording approaches due to de-
inference in the production computing environment. ~ Ploymentand privacy concerns.
In this paper, we preserihsight a system that can
infer the execution path of a failed service request
1 Introduction side the production environmentithout any intrusive
system recording. We view Insight as a first-step failure
Although online servicésare expected to be operational inference tool for the developer to gain useful knowledge
24x7, recent production service outages [2, 1] show greagbouthowa service request fails in the production com-
challenge to meet such an expectation. Unfortunatelyputing environment. Insight can significantly expedite
when those online services experience failures in a prothe debugging process by narrowing down the scope of
duction computing environment, the software developeiagnosis from thousands of functions to a few of them.
is often given little information for debugging. Moreover, the failure paths reproduced by Insight can be
Particularly, we focus onon-crashing failuresvhere  fed into a debugger (e.g., GDB) or a symbolic execution
the server does not crash but fails to process somengine [10, 8] for further analysis.

1The online services considered in this paper refer to thegeast Th.e key Ide:a (.)f InSIth IS to _perform_m—snu failure
and response services such as a web server or a virtual regsHit) path inferencenside the production environment. The

reservation service in an infrastructure-as-a-servioact| rationale behind our approach is that the production com-




puting environment provides many useful clues for ususe the runtime outputs as guidance to stop searching
to perform failure inference more efficiently than offline along wrong paths, that is, if the replay produces a
approaches. Those clues include betivironment data mismatched output, we roll back the execution to the
(e.g., input log$, configuration files, state of the faulty previous branch point and flip the branch condition value
component, interaction with other production servers(e.g., fromt r ue to f al se) to search a different path.
such as database query results) andime output¢e.g.,  If no matched path is found using the current input, we
console logs, system call traces). Our experiments showeplay the next inputin the input log and repeat the above
that using environment data and runtime outputs camprocess. We also support concurrent multi-path search
greatlyreduce the failure path search scoaed provide to further shorten the failure path search time. Multi-
important guidancéor us to find the correct failure path. path search also allows Insight to find multiple candidate
When a request failure is detected, Insight dynami-failure paths that match the output of the production run.
cally creates a shadow component of the faulty produc- We consider botltonsole log messagesd system
tion server which produced the error message or wasall tracesin the output matching. Most production
identified by an online server component pinpointingservers already record console logs. If the production
tool [11, 20, 27]. We detect a request failure by inter-program produces many console log messages, our ex-
cepting error messages or employing system anomalperiments show that Insight can rely on console log mes-
detection tools [32, 15]. Since the production serversages to produce high fidelity failure paths. However,
is still alive during non-crashing failures, the shadowif the production program includes very few console
component can inherit the failure states of the faultylog messages, we propose to use system calls as hints
production server. Moreover, the shadow componento search paths between console logs. We chose to
allows us to decouple failure inference from the pro-match system calls because they often represent key
duction operation. The production server can continuedperations and can be collected using kernel-level tracing
to process new requests without worrying about losingools [5, 16] with low overhead< 1%).
important diagnostic information. Our current proto- We intentionally skip the constraint checking during
type implements dynamic shadow component creatiorthe binary path search in order to achidast failure
by augmenting the live virtual machine (VM) cloning path inference in the production computing environment.
technique [9, 22, 26]. Our scheme allows the shadow/Nith the help of environment data, we observe that
component to acquire environment data and runtimensight only needs to flip a small number of branches
outputs from the production environment while imposingand the chance of finding an infeasible path is small.
minimum disturbance to the production operation. To filter out infeasible paths in our final result, we can
Insight proposes a novguidedbinary execution ex- apply constraint solver [12, 29, 24] to the candidate
ploration scheme that can efficiently leverage the producfailure paths found by Insight, which is much faster than
tion environment data and runtime outputs as guidance t@pplying constraint solver during the path search.
search the failure paths. We make careful design choices We make the following contributions in this paper:
in our failure inference algorithm in order to meet the

following requirements: 1pinary-onlysince we can-  ® \We propose to perform-situfailure path inference
not assume source code is available in the production ~ Using a dynamically created shadow serireside
environment; 2)fast path search in order to leverage the production computing environment.

the “fresh” environment data at the failure moment (i.e.,
the environment does not change much and the failure-
triggering inputs or similar inputs are still in the buffer
of the recent input log.); 3) nimtrusiverecording; and

4) supporboth interpreted and compilgarograms.

Our guided binary execution exploration starts by
replaying the last input in the input log when a failure
is detected. However, Insight does not require the exact o We evaluate Insight using real system failures. Ex-
failure-triggering input to find the failure path since periments show that in-situ failure path inference is
our binary execution exploration scheme can inherently  faasiple. Insight can efficiently use the environment
handle incorrect environment data (e.qg., different inputs data and runtime outputs when they are present to
outdated or missing query results). During replay, we  find high fidelity failure paths within minutes.

e We present gyuidedbinary execution exploration
algorithm that can use availab&vironment data
(e.g., inputs, configuration files, states of interacting
components) anduntime outputs(e.g., console
logs, system calls) as guidance to quickly find the
failure path over binary code directly.

2\We observe that most production servers buffer a set of tecen The rest of the paper is Organized as follows. Section 2
inputs. Although it might be impractical to assume the inpgtaccess )

for offline diagnosis (e.g., the privacy concern), it is easy to acqhge ~ COMPAres our quk with relate_d work. S_eCtion 3 pre_sents
input log within the production computing environment. the design and implementation of Insight. Section 4



presents the experimental results. Finally, the papeESD first statically analyzes the source code to infer

concludes in Section 5. the control path capable of reaching the bug location,
and then symbolically executes the program along the
2 Related Work inferred control path to reproduce the failure execution.

Because reproducing a production run failure outside

Production-run failure debugging is a well known chal- the production environment is challenging [33], offline
lenging task. In this section, we focus on reviewing the2@nalysis cannot leverage the production environment
work that is most related to Insight and describing thedata (e.g., inputs, configuration files, interaction resjult
difference between Insight and previous approaches or some runtime outputs that are difficult to obtain offline
Triage [33] first proposed an onsite production run (e.g., system calls). Morepver, itis o!ifficultforthe offlin
failure diagnosis framework. It uses checkpoint-replay""p,proaCh to localize environment issues (e.g., .network
with input/environment modification to perform just-in- ilure, wrong database query resultSE [12] provides
time problem diagnosis by comparing good runs and bad@" in-vivo multi-path analysis framework using selective
runs. Although Insight shares the same idea of onsitsYMmbolic execution over binaries for finding all potential

failure analysis with Triage, Insight differs from Triage bugs. _In contrast, Insightl gims at quickly findi_ng the
in the following major ways. First, Triage performs on- execution path for a specific occurring production-run

site debugging on the production server directly, Whichfailure. S’E also does not consider runtime outputs when

can cause significant downtime to the online serviceinding the failure path. _ , _
We view Insight as a first-step light-weight failure

In contrast, Insight creates a shadow server to decou- Y _
ple the failure inference from the production operation.'mce_renCe tool that can be used |n§|de the _producnon
Second, Insight does not rely on repeated replays Witﬁnvwonment. We can apply _the statlc/dynamlc program
input/environment modifications, which can incur a long 21@lysis or symbolic execution to the candidate failure
failure analysis time and sometimes difficult to achievePaths found by Insight to further validate the feasibil-

in production systems. In comparison, Insight provides'ty of the failure paths and localize root cause related

a fast binary execution exploration approach that usefranches.

the environment data and runtime outputs as guidance to

search the failure paths on a dynamically created shado@ System Design and | mplementation
component.

Alternatively, previous work (e.g., [19, 17, 18, 13, 30, In this section, we describe the design and implementa-
6, 28, 25, 39]) has proposed to introduce applicationtion details of the Insight system. We first present the dy-
level or system-level instrumentation and infer the falur namic shadow server creation scheme. We then describe
path based on instrumentation data. However, large-scaleur guided binary execution exploration algorithms.
production computing environments are reluctant to
adopt continuous intrusive system recording approacheg
due to overhead and deployment concerns. For example,
Aftersight[13] proposed to decouple complex program When a service request failure is detected, Insight dy-
analysis from normal executions using VM record andnamically creates a shadow component of the produc-
replay techniques. However, VM recording can imposetion server on a separate physical host using live VM
high overhead to the normal production execution (e.g.¢cloning [9, 22]. Since Insight targets non-crashing
worst case overhead reached 31% and 2.6x for somfilures and performs immediate cloning, we assume that
workloads [13]). Crameri et al. [14] proposed to usethe state of the shadow component is similar to the state
static and dynamic analysis to identify those branche®f the production server when the failure occurs. We
that depend on input and only record those branches fdiound this assumption holds for all the server failures we
failure reproduction. In comparison, Insight does nottested in our experiments.
record any branch during the production run but instead The current prototype of Insight uses a pre-copy live
exploits production environment data and runtime out-KVM VM cloning system [26]. However, we can in-
puts to find the correct failure path onsite immediatelytegrate Insight with other VM cloning techniques easily.
after the failure occurs. Insight only requires a brief stop-and-copy phase (e:g.,

Another alternative is to performfflinefailure infer- 100 milliseconds [26]) where the production component
ence using static source code analysis [37, 38]. Fois paused temporarily for transferring any remaining
example,Sherlog[37] uses static source code analysisdirty pages. During the stop-and-copy phase, the pro-
to infer the possible failure paths from console logs.duction server just pauses its processing but can continue
ESD[38] uses program source code and bug reports (i.eto receive the user requests in its input buffer. For all
core dump information) to reproduce a failure executionthe server systems we tested, Insight can complete the

1 Dynamic Shadow Server Creation



8. usereservation

information from the environment (e.g., query from

6.loadimage command l 7777777 a database), the interaction is allowed. However, if
| § %IEI the interaction requires the shadow server to update
r 14 checknode 7. copyfifiage : . . . . .
. ; Do some information in the environment (e.g., write to
TN e Detvgedpogen - @I a database), the interaction will be filtered to avoid
dz‘"eq”e?t 5 §phy§',ca[|;'sts§ undesired disturbance to the production server. We use
O o R — an interaction filtering proxy to intercept outputs from
the shadow server and drop selected outputs based on the

| | query type. The proxy runs outside the shadow server
{requestiatabase  imagestorage software but on the same physical host with the shadow
""" ClolidNtariagement Tier server. For example, our field study production server is
written in Perl. We implemented the interaction filtering
proxy within the Perl interpreter. We can also performin-
Figure 1. Our field study production server: VM reservation tera_ctlon recording on thihf':ldowserveuo log important
servers in the VCL cloud computing infrastructure [3]. The €nvironmentdata which will be helpful for developers to
user makes a VM reservation request via a web interface. Théliagnose a failure caused by an environment issue.
request is stored in a database which is continuously polled Insight is resilient to false alarms by providing
by the reservation server. The reservation server forksaa ne light-weight runtime failure path inference and flexible
process for handling each VM reservation request. First, th cloning. If a false alarm is confirmed by the online
reservation server allocates a set of physical hosts. fonske  anomaly detection tool before the shadow server is
If these hosts do not have the VM images required by thegiarted, we simply cancel the live VM cloning operation.
usef, the reservation server then _Ioads requested images fr If a false alarm is confirmed after the shadow server is
an image database. The reservation server then starssthe -
service and creates a USer account for the user. already started, we issue a delete command to the shadow
server and release all resources allocated to the shadow

whole shadow component creation process within tens oferver. In our field study server system, we use the
seconds. Additionally, Insight performs transparent fasgritical error messages for detecting failures, which has
disk cloning to make the shadow component completelyféW false positives [21]. We can also combine the error
independent of the production server [26]. message detection with other failure prediction tools [31]
After the cloning is done, we need to reconfigure thet0 further reduce the false alarms.
shadow server to prepare it for the failure reproduction.
Note_ _thaF all the reconfigurations do not requ_ire any3 2  Guided Binary Execution Exploration
modification to the server software. Because live VM
cloning makes the shadow server inherit all the state froninsight performs guided binary execution exploration in
the production server, which includes the IP addressthe shadow component to find the failure path. The
the shadow server may immediately send out networlexecution exploration engine intercepts conditional jump
packets using the same IP address as the productistatements (e.g., JZ, JNE, JE) in the binary code and
server, causing duplicate network packets and applicaexplores different execution paths by manipulating the
tion errors. To avoid this, we first disconnect the networkjump conditions {r ue or f al se). We assume all
interface of the shadow server, clear the network bufferthe conditional statements including thei t ch state-
and then reconnect the network interface of the shadownents are translated into one or multiple conditional
server with a new IP address. jump statements in the binary code. For example, in
To leverage the production environment for failure C/C++ program, we can compile the code using the
reproduction, we need to allow the shadow server td no-j unp-t abl es optioningcc.
interact with other servers in the production environment To start the execution exploration, we first replay the
for retrieving needed information. Figure 1 shows ourlast input in the input log when the failure is detected.
field study production server which is a VM reservation We employ an input replay proxy to retrieve the input
server in an infrastructure-as-a-service cloud. The reselog from the production server when the failure is de-
vation server needs to interact with a MySQL databaséected. As mentioned in the Introduction, most pro-
server to search for available physical hosts, look up theluction servers buffer recent inputs in an input log file.
VM image name, and update the reservation state. InFor example, a web server stores its input (i.e., HTTP
sight registers the shadow server with the database servezquests) in thaccess_| og file. For VCL reservation
using event-driven application auto-configuration [26]. server, the inputs (i.e., VM reservation requests) are
Other interactions can be enabled in a similar way. stored on a database server. Although our experiments
If the interaction requires the shadow server to readshow that inputs play a crucial role in the failure path



inference, Insight does not require the exact failuredog messages or system calls within the loop, Insight will
triggering input to find the failure path. never get any hint on when to stop exploring the loop. To
During the replay, we check whether the shadowavoid unnecessary loop explorations, Insight performs
component produces the same outputs (i.e., console Idgop detection by checking for repeated program coun-
messages, system call sequences) as the failed servitgfs within one function. If no console log message
request. We will describe the output matching schemer system call is produced within the loop, we disable
details in the next section. A replayed path can producéxploration for that loop branch statement (i.e., do not
mismatched outputs either because we did not replay thérk new child probe) and let the loop exit naturally as
exact failure-triggering input or because some environdts normal execution.
ment data (e.g., database content) was changed duringWhen a probe produces the same complete console
the shadow component creation. We usauamatched log and system call sequences as the failed request,
output as a hinto stop searching along a wrong path. Insight marks the execution path explored by the probe
Under those circumstances, the execution is rolled backs onematched failure path Our approach can also
to the previous branch point and we flip the branchfind multiple matched failure paths simultaneously. The
condition to search a different path. If rolling back to the failure path inference will be terminated after the target
previous branch point still cannot produce any matchediumber of matched failure paths are found or the search
failure path, we rollback to the branch point before theprocess times out. We also annotate each reproduced
previous branch point and so on. To avoid redundanpath with useful diagnostic information such as which
search, we stop the rollback process when we see thiegranch points were manipulated by our exploration pro-
previous console log message again. If no matche@ess and what the environment values were when the
path is found using the current input, we replay the nextranch points were flipped by our system. Developers
input in the input log and repeat the above process. T@an use this information to decide the fidelity of the
support the above mechanism, Insight performs procesgproduced paths and performinformed value inferences.
checkpointing at each branch point and each console log Since Insight works on binaries directly, most In-
output. We implement the process/thread checkpointingight components can be applied to compiled or inter-
using fork. preted programs written in different languages without
Insight supports concurrent multi-path search toany modification. The only program-specific parts are
achieve fast failure reproduction. We implement thehow to intercept branch statements and change branch
concurrent multi-path search by using a set of probingconditions. Insight currently supports Perl and C/C++
processes/threads called probes to explore different ex@rograms. For Perl programs, we modified the Perl
cution paths simultaneously. When the probe encounteriterpreter to intercept the conditional jump statement.
a conditional jump statement, it forks a new child probeThe jump condition value is stored in the interpreter’s
for exploring both thet r ue and thef al se branches execution stack. We modify the jump condition value
concurrently. To avoid overloading the system with aby changing the execution stack value. For C/C++
large number of concurrent searches, we set a concuPrograms, Insight uses the Pin tool [23] to intercept
rency quotaCQ to limit the number of probes that can the conditional jump statements and modify the jump
simultaneously run. When the number of probes exceedeonditions by changing the appropriate flags (i.e., jump
CQ, we make the parent probe wait and allow the childflag, carry flag, overflow flag, and parity flag) in the
probe to explore either theer ue or f al se branch. If EFLAGS register. Note that the above system modifica-
the child probe produces an unmatched output, we kiltion and instrumentation are only applied to the shadow
the child probe to discontinue the search along the wrongerver during the execution exploration time. Insight
path and release one concurrency quota. If the parerftoes not perform any modification or instrumentation to
probe of the terminated child probe is waiting for the the production server.
guota, the parent probe will be signaled to continue its
exploratllon. When a probe produces the next matche%_s Runtime Output Matching
output (i.e., console log message or system call), we stop
the exploration and switch back to concrete executionnsight uses runtime outputs as hints to check whether
mode (i.e., continue the execution without forking). it explores a correct or incorrect path. We chose to
If an explored path contains a loop, Insight forks a newmatch two different types of runtime outputs: console
child probe at the beginning of each iteration by default.log messages [35, 37] and system calls for the following
The parent probe will then exit the loop (i.e., thal se reasons. Production systems often produce console
branch) and allow the child probe to continue to executdog messages for debugging production-run failures [35,
the next iteration of the loop (i.e., ther ue branch). 37]. In today’s practice, console logs often provide the
However, if the program does not produce any consolesole information source for diagnosing production run



failures. Since console log messages are inserted bgnd flip the branch condition to execute a different path.
software developers for recording operations considere®uring our experiments, we observe that requiring an
to be important, they are often able to provide usefulexact match sometimes prevents us from finding any
clues about key program execution states. However, wenatched path. The reason is that the same function call
also observe some systems (e.g., open source softwarslich asral | oc might invoke slightly different numbers
contain a limited number of log messages. Under thosef system calls (e.g.nmap) depending on the appli-
circumstances, we propose to match system call tracesation’s heap usage. During those circumstances, we
because system calls can be easily collected using kernedllow k mismatches (measured by string edit distance)
level tracing tools with negligible overheag (1% CPU  to occur during system call sequence matching. We start
load) and system calls often denote the key operationfom k = 0 and gradually increadeuntil we either find

in the program. Different from user-level tracing tools a matched path or our search times out. During our
such as ptrace [4], kernel-level tracing tools imposeexperiments, we findl needs to be no more than 2.

little overhead by avoiding context switches. We use

SystemTap [5] in our current prototype. )

During binary execution exploration, we continuously 4 System Evaluation
match the console log messages and system call se- . ) ) )
quences produced by the explored execution path withn this sec_tlon, we present the experimental evalua'qon
those from the failed production-run request. For consold®' the Insight system. We first present our evaluation
log matching, we adopt the same strategy as preViou@ethodology followed by our experimental results.
work [35, 37] by only considering the static text parts
galled message.templatef'snce thg variab_le parts (e.g., 4.1 Evaluation Methodology
timestamp, variable values) typically differs over dif-
ferent runs. Those message templates can be easiyase study systems. We first test Insight using the
extracted from the source code and provided to Insightirtual computing lab (VCL) [3] which is a production
by software developers. Alternatively, we can extract thecloud computing infrastructure. VCL has been in pro-
message templates directly from log files [34], which isduction use for 9 years and has over 8000 daily users.
however orthogonal to our work. We can also leverageFigure 1 shows the architecture of VCL. The key control
parameter run-time values in the console log messaggsartin VCL is the cluster of reservation servers which are
to extract more hints about the failure. We might bewritten in about 145K lines of Perl code. The database
able to increase the failure path accuracy using thoseerver is configured to allow access from hosts in the
parameter values by incorporating Insight with taintsame subnet, thus allowing the access from the shadow
analysis techniques. However, doing so will probablycomponent. In our experiments, we deploy the Insight
increase the runtime overhead. Our current results showystem on all the reservation servers and perform the in-
that Insight can still successfully infer the failure pathssitu failure path inference over the reservation servers
without using those parameter values. which produce the reservation failure messages.

If the console log is too sparse, Insight still faces We also test Insight with several real software bugs in
the challenge of large exploration scope. Thus, we us@ set of open source softwares (Apache, Squid, Lighttpd,
system calls as hints to guide our path search betweeRBZIP2, aget, and GNU Coreutils).
any two consecutive console log messdgesndL,. We Case study failures. We evaluated Insight using a
observe that each console log message is written into theet of real failures listed in Table 1. We also report the
console log file using a sequencesgfs _wr i t e system  number of function calls and branch points contained in
calls. The system call sequen8én-between those two each failure execution path along with the root cause
groups ofsys_wri t e calls are marked as the system function of each failure. Each failure contains one
call sequence betwedn andL,. We usereadl i nk  error message. In our experiments, we detect failures
and file descriptor contained in easlys.write to by intercepting error messages: console log messages
identify whether it writes into the console log file. When containingcritical or fatal keyword or are written into
we perform failure path search betwelepandL,, we stderr,
match the system call sequenSe We currently only Evaluation metrics. We first evaluate whether the
consider system call types when we perform matchingreproduced failure execution path is useful for debugging
We could also consider system call arguments or returiby checking whether the reproduced execution shows the
values, which, however, might increase the system calkame failure symptom (i.e., throwing out the same error
tracing and matching overhead significantly. messages), covers the root cause functions and branch

When a mismatched system call is encountered, wetatements. We then evaluate the precision and efficiency
roll back the exploration to the previous branch pointof Insight using the following metrics:



stem | System Failure path length  [Num. of [ _ o Root cause
nsyame description Loc Num. of | Num. of | console Failure description function
functions| branches|log msgs
VCL VM reservation 145K 112 378 132| Overlapping reservation failure: User tries to rercomputernot
(v2.2.1) | server guest the same VM reservation twice. _being.used
VCL VM reservation 145K 299 1331 290| Network failure: The management node fails |t@shstatus
(v2.2.1) |server create the VM reservation on a physical host dug to
the network failure on the host.
VCL VM reservation 145K 298 1328] 409| Authentication failure. The management node|rsin_ssh
(v2.2.1) |server unable to login into the reservation host due thcammand
missing public key.
VCL VM reservation 145K 147 601 178|Image corruption failure. The VM image file correfload
(v2.2.1) |server sponding to the user request is corrupted and cannot
be copied.
Apache |Web server 176K 176 21212 1|Authentication failure. Apache rejects a valid regroupsfor
(httpd- quest due to incorrect file name setting for Adtluser
2.0.55) GroupFile option (#37566).
Apache |Web server 209K 164 4983 1|CGl failure. Apache does not handle a malformag_scan _script
(httpd- header generated by CGI script correctly (#36090)headererr
2.2.0) _core
Squid |Web cache and110K 588 19679 195 Non-crashing stop failure. Squid is not able tpaclParseAcl
(v2.6) |proxy server handle a long value of “ACL name” option (#1702)List
Lighttpd | Web server 38K 730 4308 3| Proxy failure. Lighttpd could not find the back-endhod proxy
(v1.4.15 server when configured as a reverse proxy for 1 backeck
end server with round-robin policy (#516). _extension
PBZIP2 | Multithreaded | 3.9K 41 58 14| Decompression failure. The program fails to decomedecompress Ef-
(v1.4.15)data press files with trailing garbage (#886625). rCheck Single
compression
aget Multithreaded | 1.5K 2 8 1|{Download failure. The program fails to download| http_get
(v0.4.1) |download file when setting the number of threads bigger than
accelerator the maximum concurrent connection allowed in [the
server holding the file.
rmdir GNU coreutils | 0.2K 2 24 2| Option failure. The program does not handle trailiirfgmove_parents
(v4.5.1) slashes with the “-p”.
In GNU coreutils | 0.6K 1 47 1| Option failure. The program does not handle “tardete_link
(v4.5.1) directory” correctly.
touch  |GNU coreutils | 0.5K 1 7 1|Timefailure. The program rejects a valid input witmain
(v7.6) the leap second.

Table 1: Real system failures used in our experiments. A&lf#ilures have one error log message produced during tlieefaun.

1) Call path difference&lenotes the deviation of the call ~ Generally, the call path difference and the branch
path discovered by Insight from the original call path difference reflect how close the reproduced execution is
of the failed production run. The call path consists ofto the original execution. The branch difference is a more
a sequence of invoked functions during the executionfine-grained comparison than the call path difference.
We used thetring edit distancéo measure the deviation  3) percentages of flipped branchegenotes the
between two compared call paths. We instrumented alpercentage of the branches whose conditions are

the tested programs to record the original call path of thenanipulated by Insight due to incomplete environment
failed production run. Generally, the call path differencejnformation or different input.

reflects how close the reproduced execution is to the

o . 4) Exploration timedefines the time taken by Insight to
original execution.

discover the target number of the matched failure paths.

2) Normalized branch differencéVe use the branch  5) Performance impact and overhealle evaluate the
difference to denote the deviation at the branch leveruntime performance impact of Insight to the production
between the path reproduced by Insight and the originapystem by comparing the per-request processing time
failure path. We also use thtring edit distanceto between with and without the Insight system. We also
measure the branch difference between two executiofePort the overhead of the Insight system in terms of
paths.  To perform comparison between differentadditional resource consumptions.
application failures, we normalize the branch difference Impact of environment data. To understand the
of each failure using its maximum string edit distanceimpact of the environment information on the accuracy
between the reproduced path and the original path (i.eqf our in-situ failure path inference, we compare the
no overlapping at all). failure inference accuracy results under three different



Failure name Environment setting Call path Branch Cover root Cover root
difference  difference causefunctions cause branches
.| Complete environment data 0 0 Yes Yed
VeL oyerlappmg Partial environment data 0 0 Yes Yed
reservation failure No environment data 0 0 Yes Yes
Complete environment data 0 0 Yes Yeq
V(.:L network Partial environment data 0 3.4% Yes Yes
failure No environment data Failed Failed N/A N/A
\VCL Complete environment data 0 0 Yes Yeq
Authentication Partial environment data 0 2.7% Yes Yes
failure No environment data Failed Failed N/A N/A
VCL Image Complete gnvironment data 0 0 Yes Yeq
corruption failure Partial _enwronment data _ 0 3.?.% Yes Yes
No environment data Failed Failed N/A N/A
Apache Original input 0 0 Yes Yeq
authentication Same input type+ console log 17 66% Yes Yes
failure Same input type+- console log+ system call 11 61.5% Yes Yep
Original input 0 0 Yes Yeq
Apache CGl failure Same input type- console log 140 41.8% Yes Yes
Same input type+- console log+ system call 9 14.8% Yes Yes
Original input 0 0 Yes Yeq
Squid failure Same input type+ console log 0 0.0001% Yes Yess
Same input type+- console log+ system call 0 0.0001% Yes Yes
Original input 0 0 Yes Yeq
Lighttpd failure Same input type+ console log 0 0.8% Yes Yes
Same input type+- console log+ system call 0 0.8% Yes Yes
Original input 0 0 Yes Yeq
PBZIP2 failure Same input typer console log 1 4.4% Yes Yes
Same input type+- console log+ system call 0 1.3% Yes Yes
Original input 0 0 Yes Yeq
aget failure Same input type+ console log 0 0 Yes Yeg
Same input type+- console log+ system call 0 0 Yes Yeq
Original input 0 0 Yes Yeq
rmdir failure Same input typer console log 0 17.5% Yes Yes
Same input type+- console logt+ system call 0 5.3% Yes Yes
Original input 0 0 Yes Yeq
In failure Same input type+ console log 0 25.3% Yes Yes
Same input type+- console log+ system call 0 9.1% Yes Yes
Original input 0 0 Yes Yeq
touch failure Same input typer console log 0 53.5% Yes Yes
Same input type+ console logt system call 0 0 Yes Yed

Table 2: Summary of Insight failure path inference accurasyilts.

environment contexts in the VCL system: ddmplete by performing failure reproduction using the original
environment datavhere all the query results from the failure triggering input or using a different input that
database are assumed to be the same during the whalees not trigger the failure but is of the same type as the
failure path inference process; Ppartial environment original input.

data where all the database entries that are related to

the failed reservation request are deleted to emulate the We define thesame type _Of inpufor dlfferent_op(_en
source systems as follows: Bpache authentication

case when the failure inference is triggered after the% L : :
. . ailure: the same type of input is a http request to
reservation server clears up the failed requests. However,

. ccess a webpage with a correct AuthGroupFile setting;
the shadow server can still access some general database . . :
Apache CGI failure the same type of input is a

information such_as compgterlloe.ld state anq OStype http request to execute a normal CGI script; R)uid

needed by the failure path finding; and) environment o ) T

datawhere all the query results from the database areI:allure. we use a (_jefault co_nﬁguratlon file with a normal
ACL name”; 4) Lighttpd failure we use a http request

unavailable. This emulates the case of offline failure . .
reproduction. using a reverse proxy with two back-end servers |n§tead
) ) of one back-end server that makes the system fail; 5)
Since all the C/C++ server failures are produced undeppz|p2 failure we use a compressed file with no trailing
stand-a}one mode, we could not evaluate the impact Oéarbage; 6Rget failure we use a request that does not
the environment data on the open source systems. have restriction on the maximum concurrent connection;
Impact of input. We evaluate the impact of the input 7) rmdir failure: we use a command without the “-p”
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option; 8)In failure: we use a command without the
“target-directory” option; and 9ouch failure we use
an input that does not have a leap second.

Since the inputs (i.e., reservation requests) in the VCL
system are stored in the database, they are considered as
part of the environment data.

We conducted all the experiments on a computer
cluster in our lab. Each cluster node is equipped with
a quad-core Xeon 2.53GHz CPU, 8GB memory, and is
connected to Gigabit network. Each host runs CentOS
6.2 64-bit with KVM 0.1.2. The guest VMs run CentOS
6.2 32-bit and are configured with one virtual CPU and Figure 2: Percentage of flipped branches for VCL failures.
2GB memory. We repeated each experiment five times
and report the mean and standard deviation values. In all
experiments, we set the concurrency quoge=20.

B Compelete enviroment information
V77Z7) Partial environment information 7

[ ] No environment information

0 0.006 0 %Faﬂcd 0 %Failed 0 Faile

Overlapping Network  Authentication  Image
reservation failure failure failure  corruption failure

(=1
n

w
!

(=1

Percentage of flipped branches (%)

R Compelete enviroment information
{727 Partial environment information 77
[ 1No environment information

Failure path accuracy result summary. Table 2
summarizes the accuracy of the failure paths reproduced . Fai]ed@ Faile
by Insight for different failures. We observe that the Overlapping ~ Network Authentication Imz;ge
environment data in VCL allows Insight to find the reservation failure  failure failure  corruption failure
exact failure paths for all the VCL failures. With ) o .
partial environment data, Insight can still achieve highFigure 3: Total failure reproduction time (i.e., the shadow
accuracy with 0 call path difference and smat ( compongnt creatlorl timer failure path search time) for
5%) branch difference. However, when we removereprOdUCIng VCL failures,
all the environment data, emulating the offline failure
reproduction situation, we cannot find any matched patiioot cause functions and branches. Another interesting
for three out of four VCL failures after Searching for observation we observe is that the root cause branch
several hours. This indicates that environment data playBoints often do not appear right before the error message
a crucial role in time|y failure path fmdmg because is produced, but reside in the middle of the execution
they can greatly reduce the search scope for the binarjath. For example, in the VCL overlapping reservation
execution exploration. failure case, the error message “Reservation failed on
For the open source software systems, we observéMskl: process failed because computeris not available”
that with the original failure-triggering inputs, Insight does not provide the correct clue that the reservation
can always reproduce the exact failure path for eacf@ilure is caused by an overlapping reservation not by the
failure. When given the same type of input (see Sectiorimachine is notavailable. However, the failure path found
4.1 for the definition of the same input type), Insight by Insight covers the root cause branch whegrep
can still reproduce high fidelity failure paths with 0 call féturns a process matching the request ID, indicating
path difference and smalk(10%) branch difference the same reservation has been made on the machine.
for most failure cases. The only exceptions are thoséor the Lighttpd failure, the reproduced path shows
failures that include only 1 error message without anythat the failure is caused by the back-end server lookup
other console log messages. This is expected as InsigRPeration returningmptywhen the round-robin policy
has too few runtime outputs to guide the exploration.iS €mployed and there is only one back-end server. The
However, we observe that system call sequences caPggy code segment does not appear right before the
greatly help improve the failure path inference accuracyefor message.
for the failure cases where sparse console logs are We also examined how VM cloning helps Insight
present. The branch difference reduction can be up téo find the failure paths. For example, the shadow
100% (i.e., the branch difference of the touch time failurecomponent of the VCL reservation server inherits the
is reduced from 53.5% to 0). configuration files that specify the supporting VM types
We then validate whether the failure paths reproducede.g., xCat, KVM), VM image locations, and public
by Insight cover the root cause functions and branchekeys. Without those configuration parameters, it is
by manually analyzing the source code. We observeextremely difficult to perform any replay. Similarly,
that the failure paths found by Insight always cover thethe configuration file of Squid defines the permissions
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— with the original inputs, Insight can always reproduce
[ 1Original input - o . .
1| == Same input type + Console log the exact failure paths within tens of seconds including
[ Same input type + Console log + System call the shadow component creation time.

Given the same types of inputs, Insight can
still reproduce the failure paths for Squid, PBZIP2,
aget, and all the Coreutils failures within several
minutes. However, Insight cannot reproduce the Apache
authentication failure, the Apache CGI failure, and
Lighttpd failure within a short period of time<{ 1
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pacbe_fictlgeﬁc"(fg Chigpy B2ipy e My T foucy hour) which is a requirement for our in-situ failure
entfcatlfg?r_e reproduction. The reason is that those open source
lure systems produce zero or very few (i.e., 3) console
Figure 4: Failure reproduction time results for open sourcel0d messages except the error message during their
software bugs. failure executions. With such little guidance, Insight
g

is faced with a large path search scope. Under those

circumstances, Insight uses a code selector in a similar
associated with the “ACL” name which are needed byway as S°’E [12] to limit the path exploration within
the failure reproduction. In Lighttpd, code modules sucha specified target code module. For the Apache
asnod_pr oxy and back-end servers are specified in theauthentication failure, the target code module is the
configuration file. Additionally, VM cloning also ensures authentication module. For the Apache CGI failure, the
the same third-party libraries are installed on the shadowarget code module is the CGl component that handles
component. CGl scripts. For Lighttpdnod_pr oxy is the target

Detailed VCL failurereproduction results. We now  code module. After limiting the path exploration scope,
present the detailed failure reproduction results forradl t  Insight is able to find the failure paths within tens of
VCL failures. Table 2 shows the branch difference forseconds.
different VCL failures. As mentioned in the accuracy We observe that system call sequences can greatly
result summary, Insight can find a failure path with little reduce the branch difference for those failures with few
branch difference compared to the original failure pathconsole logs. We also notice that the branch difference in
when in-situ failure reproduction is performed. the Apache authentication failure is significantly larger

Figure 2 shows the percentage of branch points thathan the other failure cases when the original input
are flipped by our binary execution exploration engineis absent. The reason is that the program includes a
during path finding. We observe that Insight only flips alarge loop that includes many branch points but does
small number of branches when part of the environmennot generate any console log message or system call.
data is not available. Because of the input difference, Insight executes the

Figure 3 shows the failure reproduction time for the loop with a different number of iterations from the
VCL failures. The reproduction time includes the time original failure execution, which causes the high branch
for Insight to create the shadow component and the timdlifference.
taken to search the failure path. We observe that Insight Generally, we observe a higher branch differences in
can reproduce the failure path within a few minutes.the open source failures than those in the VCL failures.
It took Insight about 30 seconds to create the shadowrhis is expected as the open source software systems
component using live VM cloning. We also observe have less environment data to leverage under the stand
that the environment data has an impact on the failure@lone mode and contain fewer console logs than the VCL
reproduction time. When complete environment data issystem. Insight can definitely benefit from a rich set of
available, Insight can quickly reproduce the failure pathenvironment data and a system with a good number of
within tens of seconds. When part of the environmentconsole logs. Based on our observation and feedback
data is missing, the reproduction time is longer, taking ugirom our industry partners, we believe most production
to 250 seconds to complete. As mentioned before, whesystems do contain abundant console logs as they are
no environment data is available, Insight cannot find anythe sole information source for the software developer
matched failure paths after searching for several hours. to diagnose production failures.

Detailed open sour ce softwar efailurereproduction We also wish to compare Insight with existing
results. We now present the results for the open sourcestatic analysis and symbolic execution approaches.
software bugs. Table 2 shows the normalized branciunfortunately, none of them can support the Perl
difference for the open source system failures. Figure $rogram that forms the main part of the VCL production
shows the failure reproduction time. We observe thatcloud management service. For open source software



System Production runtime over head Logging overhead (1 day) Shadow Stop-and-copy
With system cal|] With shadow Console lod Input log] Interaction lod System call logcreation time
tracing| componen time
VCL N/A < 0.3%]|0.49+ 0.01 GB|0.13+ 0.01 GB| 0.86+ 0.01 GB] N/A[26.7+ 2.3 5| 49.6+ 15.9 mg
Apache < 1% <0.2%| 0.3+ 0.01 MB| 19.6+ 0.1 MB N/A|11.940.01 MB| 23+1.35 38.6+6.5mg

Table 3: Performance and resource overhead of the Insigteray Request rate in VCL: 120 VM reservation requests peutai
Request rate in Apache: 50 HTTP requests per second.

systems, we found that Insight can achieve much faster Our initial prototype implementation shows that In-
failure reproduction. For example, static analysissight is both feasible and efficient. We tested Insight
techniques need up to 28 minutes to analyze an Apachesing real request failures collected on a production
failure [37]. Symbolic execution requires up to 6 hourscloud computing infrastructure and a set of real software
to explore a program with 1.3 KLOC [12]. This is bugs in open source software systems. Our experiments
expected as Insight can leverage many environment datshow that Insight can efficiently use the environment data
and runtime outputs to greatly reduce the path searchnd runtime outputs to find the failure paths with high
scope. fidelity (i.e., little difference from the original failure
Insight system overhead. Table 3 shows the path) within a few minutes. Insight is lightweight
performance and resource overhead of the Insight syste@nd unobtrusive, imposing negligible overhead to the
for the VCL reservation server and the Apache serverproduction service.
The results for other open source servers are omitted
as they are similar to the Apache results. Insight
does not require any system instrumentation duringfb‘CknOWIedgment
the production run except the system call tracing
We observe that the system call tracing imposes
1% performance impact ang1.5% CPU load to the

‘We thank the anonymous reviewers and our shepherd
Erik Riedel for their valuable comments. We also

roduction server. The performance impact is measureglank VCL system administrators Aaron Peeler and
b ’ P P ndy Kurth for providing us with the log data and

by clomparing the _per-request processin_g time Wher%heir generous help on validation. We thank An-
running systems without system call tracing and W|thWesha Das for helping with the experiments. This

system call tracing. We also measure the performanc\(,avork was sponsored in part by NSF CNS0915567

we observe very little performance impact We aIsoCNSll49445’ U.S. Army Research Office (ARO) under
Ty pertort pact. grant W911NF-10-1-0273, IBM Faculty Awards and
study the logging overhead incurred by Insight. We o .
can see the logging overhead is small compared tGoogle Research Awards. Any opinions expressed in
the capacity of modern storage svstems. Finall Wgt’his paper are those of the authors and do not necessarily
pacity ge systems. Y: WS eflect the views of NSF, ARO, or U.S. Government.
measured the shadow component creation time and stop-
and-copy time for different servers. The results show that
we can finish the live VM cloning and shadow server References
configuration within 30 seconds. During the shadow .
. . [1] The 10 biggest cloud outages of 2012.
server creation, we only n(_eed to pause the production http://www.crn.com/slide-shows/cloud/240144284/the-
server for less than 100 milliseconds. 10- biggest-cloud-outages-of-2012.htm/.

[2] Amazon EC2  Service Disruption  Summary.
http://aws.amazon.com/message/65648/.

[3] Apache VCL. https://vcl.ncsu.edu.
We have presented Insight, an in-situ failure path infer- [4] Process trace. http://linux.die.net/man/2/ptrace/.
gnC(? system for online services rum_’]irrl]g inside thf? gro' [5] Systemtap. https:/sourceware.org/systemtap/.
companant ta achieve aficent onste file. mferonce ) S, Aleker and | Staica. ODR: ouputdeteminsi
while imposing minimum interference to the production [7] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating

Serv'ce'_ Insight employg a guided blngry execgtlon root-cause diagnosis of performance anomalies in pro-
exploration process to achieve accurate failure path-infer duction software. If©OSDI, 2012.

ence by exploiting the production-site environment data [8] G. Brat, K. Havelund, S. Park, and W. Visser. Java

and two different types of runtime outputs (i.e., console * * pathfinder-second generation of a java model checker. In
logs, system calls). Workshop on Advances in Verificatid2000.

5 Conclusion



[9] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi, [28] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

M. Hiltunen, A. Lagar-Cavilla, and E. de Lara. Kaleido-
scope: cloud micro-elasticity via VM state coloring. In
EuroSys2011.

C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted

and automatic generation of high-coverage tests for C0m130]

plex systems programs. DSDI, 2008.

M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Pat-
terson, A. Fox, and E. Brewer.
evolution management. IKSDI, 2004.

V. Chipounov, V. Kuznetsov, and G. Candea. S2E:
a platform for in-vivo multi-path analysis of software
systems. IPASPLOS$2011.

J. Chow, T. Garnkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual en-
vironments. INUSENIX ATC2008.

O. Crameri, R. Bianchini, and W. Zwaenepoel. Striking
a new balance between program instrumentation and
debugging time. IfEurosys2011.

D. Dean, H. Nguyen, and X. Gu. UBL: Unsupervised
behavior learning for predicting performance anomalies
in virtualized cloud systems. IMCAC, 2012.

M. Desnoyers and M. R. Dagenais. The lttng tracer:
A low impact performance and behavior monitor for
gnu/linux. InLinux Symposiun006.

D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and |. &oi
Friday: global comprehension for distributed replay. In
NSDI, 2007.

D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. USENIX ATC
2006.

Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: an application-level kernel
for record and replay. 1©SDI, 2008.

S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Pad-
hye, and P. Bahl. Detailed diagnosis in enterprise net-
works. InSIGCOMM 2009.

K. Kc and X. Gu. ELT: efficient log-based troubleshoot-
ing system for cloud computing infrastructures SRDS
2011.

H. A. Lagar Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. lEuroSys2009.

C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. IRLDI, 2005.

R. Majumdar and K. Sen. Hybrid concolic testing. In

ICSE 2007.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Najnar

and I. Neamtiu. Finding and reproducing heisenbugs in
concurrent programs. I@SDI, 2008.

H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and

J. Wilkes. AGILE: elastic distributed resource scaling for

infrastructure-as-a-service. I6AC, 2013.

H. Nguyen, Z. Shen, Y. Tan, and X. Gu. Fchain: Toward

black-box online fault localization for cloud systems. In
ICDCS 2013.

(37

(38]

[29]

Path-based failure and[3l]

(32]

(35]

(36]

(39]

Lee, and S. Lu. PRES: probabilistic replay with execution
sketching on multiprocessors. 8OSP 2009.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for c. IFSE 2005.

D. Subhraveti and J. Nieh. Record and transplay: dartia
checkpointing for replay debugging across heterogeneous
systems. I'SIGMETRICS2011.

Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly
prediction for large-scale hosting infrastructures. In
PODC, 2010.

Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani,
and D. Rajan. Prepare: Predictive performance anomaly
prevention for virtualized cloud systems. IG@DCS
2012.

33] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou.

Triage: diagnosing production run failures at the user’s
site. INSOSPR 2007.

] R. Vaarandi. Mining event logs with slct and loghound.

In NOMS 2008.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console
logs. INSOSR 20009.

Z.Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,
and S. Pasupathy. An empirical study on configuration
errors in commercial and open source systemSQsR
2011.

D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and
S. Pasupathy. Sherlog: error diagnosis by connecting
clues from run-time logs. IASPLOS$2010.

C. Zamfir and G. Candea. Execution synthesis: a
technique for automated software debuggingElmosys
2010.

J. Zhou, X. Xiao, and C. Zhang. Stride: search-based
deterministic replay in polynomial time via bounded
linkage. InICSE 2012.



