
SHIL: Self-Supervised Hybrid Learning for Security Attack Detection in
Containerized Applications

Yuhang Lin
North Carolina State University

ylin34@ncsu.edu

Olufogorehan Tunde-Onadele
North Carolina State University

oatundeo@ncsu.edu

Xiaohui Gu
North Carolina State University

xgu@ncsu.edu

Jingzhu He
ShanghaiTech University

hejzh1@shanghaitech.edu.cn

Hugo Latapie
Cisco

hlatapie@cisco.com

Abstract—Container security has received much research at-
tention recently. Previous work has proposed to apply vari-
ous machine learning techniques to detect security attacks in
containerized applications. On one hand, supervised machine
learning schemes require sufficient labelled training data to
achieve good attack detection accuracy. On the other hand,
unsupervised machine learning methods are more practical by
avoiding training data labelling requirements, but they often
suffer from high false alarm rates. In this paper, we present
SHIL, a self-supervised hybrid learning solution, which combines
unsupervised and supervised learning methods to achieve high
accuracy without requiring any manual data labelling. We have
implemented a prototype of SHIL and conducted experiments
over 41 real world security attacks in 28 commonly used server
applications. Our experimental results show that SHIL can
reduce false alarms by 39-91% compared to existing supervised
or unsupervised machine learning schemes while achieving a
higher or similar detection rate.

Index Terms—Container Security, Security Attack Detection,
Hybrid Machine Learning

I. INTRODUCTION

Container-based distributed system platforms have gained
tremendous popularity in many real world applications because
of their cost-effectiveness and accessibility. However, con-
tainers also open new attack surfaces to malicious attackers.
Recent studies [1], [2], [3] have shown that containers are
vulnerable to various security attacks. For example, Tesla
suffered a cryptojacking attack in February 2018 [4]. The
hackers infiltrated Tesla’s Kubernetes console to steal sensitive
data such as telemetry. Besides data exposure, the hackers
performed crypto mining with low resource intensity to evade
detection. Furthermore, Apache Log4j recently disclosed a
vulnerability in December 2021 that seriously affected dis-
tributed systems worldwide, including container clusters [5].
Java software systems extensively use the open-source Log4j
logging framework, exposing them to remote code execu-
tion attacks. The Google Cloud open source insights team
estimated that over 35,000 artifacts in the Maven Central
repository are vulnerable, four times that of the average
vulnerability [6]. In just four days after the disclosure, Check
Point Research reported over 800,000 global attacks to the
vulnerability [7].

Traditional intrusion detection systems [8] typically employ
rule-based approaches, which however cannot adapt to highly
dynamic container environments and often miss detecting
emergent attack behaviors that have not been captured by
existing detection rules. Previous work [9], [10], [11], [12]
has proposed to apply different machine learning methods in-
cluding supervised learning, unsupervised learning, and semi-
supervised learning, to achieve effective security attack detec-
tion. Supervised learning typically achieves higher detection
accuracy than unsupervised learning. However, it is difficult
to collect sufficient high quality labelled training data in
highly ephemeral container-based computing environments.
Anomaly detection methods based on unsupervised learn-
ing are much easier to be deployed in real world dynamic
computing environments, which do not require any labelled
training data. However, due to the lack of labelled training
data, anomaly detection methods often suffer from high false
alarms. Previous work also proposed semi-supervised learning
methods [12] for security attack detection, which start with
a trained supervised learning model and use unsupervised
methods to augment the supervised model by providing labels
to unlabelled data. However, the semi-supervised approach
still requires labelled training data in order to train the initial
supervised model.

In this paper, we present a new self-supervised hybrid
learning (SHIL) system for performing adaptive online se-
curity attack detection in dynamic containerized applications.
SHIL aims at improving security detection accuracy without
requiring any labelled training data which are particularly
difficult to obtain in ephemeral container-based systems. In
contrast to semi-supervised learning, which starts from su-
pervised models, SHIL starts with unsupervised models and
employs supervised learning methods for cross validation
purposes only. The rationale behind our approach is based
on the observation that most false alarms occur when the
measurement sample is within close vicinity of the anomaly
detection threshold, which is called a boundary case. Cross-
validations using multiple different learning methods over
boundary cases can effectively filter out false alarms without
missing true attack anomalies.

SHIL leverages non-intrusive, light-weight system call mon-



Fig. 1: System overview of SHIL.

itoring tools [13] to achieve practical security attack detection
for containers. SHIL consists of three key modules: 1) un-
supervised anomaly detection, which leverages autoencoder
neural networks [14] to achieve fast attack detection without
requiring any labelled training data; 2) hybrid alert validation,
which identifies boundary case anomalies and performs false
alarm filtering by cross validating the anomalies using the su-
pervised learning method random forest tree [15]; and 3) self-
supervised model creation, which performs outlier detection
using isolation forest [16] over a window of recent system
call data upon an attack alert raised by either SHIL or a
third party attack detection tool. The outlier detection allows
SHIL to generate training labels automatically to achieve self-
supervised learning.

Specifically, this paper makes the following contributions:
• We propose a new self-supervised hybrid machine learn-

ing approach to achieving effective security attack detec-
tion with few false alarms.

• We describe a self-supervised model creation method
which leverages both the anomalies produced by SHIL
and an outlier detection method to produce training labels
automatically for the supervised learning method.

• We implement and evaluate a prototype of SHIL over 41
recent real critical vulnerabilities with high CVSS scores
including the high impact Apache Log4j vulnerability, in
28 commonly used server applications.

Our experimental results show that SHIL can reduce false
alarms by 39% to 91% compared to existing unsupervised or
supervised learning methods while achieving higher or similar
detection rates. SHIL is light-weight, which makes it practical
for large-scale container based computing environments.

The rest of the paper is structured as follows. Section II
presents the system design in detail. Section III describes our
experimental evaluation methodology and our experimental
results. Section IV compares our work with related work.
Section V concludes this paper.

II. SYSTEM DESIGN

In this section, we present the design of the SHIL system.
We first provide a system overview. Next, we describe each
component in detail.

SHIL takes a self-supervised hybrid machine learning ap-
proach to security attack detection. As highlighted in Figure 1,
the system consists of four key integrated components: 1) sys-
tem call pre-processing, 2) unsupervised anomaly detection, 3)
hybrid alert validation, and 4) self-supervised model creation.

SHIL leverages light-weight system call monitoring
tool [13] to detect security attacks. Previous intrusion detection
work have revealed that the program executes a locally con-
sistent set of system call sequences during normal operations
and attacks often exhibit significant changes in system call
invocations [17], [18]. The system call pre-processing module
extracts a system call frequency vector feature from raw system
call traces. Each system call frequency vector denotes the num-
ber of invocations for all system call types (e.g., sys_read)
within the sampling interval (e.g., 100 milliseconds). Table I
shows examples of frequency vectors from an OpenSSH 7.2p2
container during an exploit of the CVE-2016-6515 vulnerabil-
ity. The attack starts at timestamp 1586496672891 and ends at
timestamp 1586496674291. During the attack, we observe the
frequency of the execve and lstat system calls increase when
the attack starts being detected until the attack completes.
Meanwhile, the frequencies of both access and mmap calls
sharply increase during the same period. Notice that our
self-supervised hybrid learning approach can be applied to
any system call features (e.g., n-grams [17]) adopted by the
intrusion detection system. In this paper, we choose to use
the system call frequency vector features for both low cost
training and real-time attack detection.

The unsupervised anomaly detection component detects
anomalies in the system call frequency vector data using
an autoencoder neural network. The trained model computes
the difference between an input vector and its reconstruction
of the vector into a value called reconstruction error. The
model compares the reconstruction error against a pre-defined
percentile value (e.g., 99 percentile value of all reconstruction
errors) to detect anomalies. Section II-A will provide details
about this module.

The hybrid alert validation component checks whether the
detected anomaly is a boundary case (e.g., within a small
deviation from the normal value) and invokes the supervised
model to perform cross validation if it is considered to be
a boundary case. The goal is to filter out most false alarms
produced by the boundary cases and only raise attack alerts
when both unsupervised and supervised models confirm the
alert. Section II-B will provide details about this module.

To achieve supervised learning without requiring manual
data labelling, SHIL adopts a self-supervised learning ap-
proach using the self-supervised model creation method. Upon
an attack alert, SHIL creates a supervised attack detection
model such as random forest using a window of system
call frequency vector data before and after the attack is
detected. Instead of relying on manual data labelling, SHIL
automatically creates training data labels by performing outlier
detection using isolation forest models [16]. Section II-C will
provide details about this module.



TABLE I: A frequency vector sample for the OpenSSH
application (CVE-2016-6515). An attack is triggered at t
= 1586496672891. Anomaly detection raises alarms from t
= 1586496673091 to t = 1586496673191. The entries with
asterisks (*) are detected outliers.

Timestamp System Call Frequency
access execve lstat mmap

1586496672491 0 0 0 0
1586496672591 0 0 0 0
1586496672691 0 0 0 0
1586496672791 0 0 0 0
1586496672891 (attack starts) 0 0 0 0
1586496672991 79 7 0 155
1586496673091 (attack detected) 136 41 12 420
1586496673191* 268 51 16 702
1586496673291* 209 46 24 637
1586496673391 164 23 8 422
1586496673491 70 32 24 290
1586496673591 190 21 12 454
1586496673691 76 12 12 297
1586496673791* 129 55 28 386
1586496673891 130 5 0 353
1586496673991 82 20 4 249
1586496674091* 159 42 20 439
1586496674191 79 3 8 260
1586496674291 (attack succeeds) 91 53 16 250
1586496674391 192 12 0 468
1586496674491 50 1 0 142
1586496674591 0 0 0 0
1586496674691 0 0 0 0

A. Unsupervised Anomaly Detection

In contrast to previous semi-supervised learning methods
which start from supervised models, SHIL starts from unsuper-
vised anomaly detection models. We choose our design based
on two key rationales: 1) unsupervised anomaly detection does
not require labelled training data as it relies on recognizing de-
viations from normal behaviors; and 2) unsupervised anomaly
detection has the ability to detect unknown attacks. So SHIL
can inherit all the advantages of the unsupervised learning
methods by only involving supervised models for performing
cross validations on boundary cases.

Our unsupervised anomaly detection leverages autoencoder
neural networks. The autoencoder neural network is an artifi-
cial neural network model with a symmetric structure, capable
of reconstructing its input as the output. The network consists
of two major sections: the encoder and the decoder. The
encoder reduces the frequency vectors into increasingly lower
dimensions from the input layer to the narrowest hidden layer
at the autoencoder center. Conversely, the decoder reconstructs
the low dimension vector representation from the hidden layer
to the output layer. We train each autoencoder repeatedly with
certain number of iterations (e.g., 10 iterations) to allow it to
rapidly adjust its weights under various system call activity.

During detection, the difference between the input and
output of the autoencoder model is referred to as the re-
construction error. Anomalous frequency vector samples that
deviate from the model of normal samples are likely to be re-
constructed poorly, resulting in more substantial error degrees
than others. Therefore, we implement the anomaly detection

by comparing the reconstruction error of the current sample
with a pre-defined reconstruction error threshold. Specifically,
we select a certain percentile value (e.g. 99 percentile) of the
reconstruction errors during the training phase as the threshold
of our anomaly detection model. The rationale is that the
majority of the training data are normal data which have small
reconstruction errors.

We use a model ensemble approach that trains a separate
model for each group of containers that run the same ap-
plication with the same version. For example, we create an
anomaly detection model to monitor a group of containers
running JBoss 6.1.0. The application specific models provide
higher accuracy over monolithic models trained over different
applications because of fewer conflicting training data [10].

B. Hybrid Alert Validation

The anomaly detection percentile threshold typically con-
trols the trade-off between the detection rate and false pos-
itive rate. If we want the anomaly detection model detects
more attacks, we need to configure relatively lower percentile
threshold in order to capture more anomalous behaviors.
However, lower percentile threshold inevitably produces more
false alarms since the anomaly detection model is more likely
to detect rogue anomalies caused by dynamic container-based
computing environments and transient workload fluctuations.
During our experiments, we observe that majority of those
false alarms occur in boundary cases where the reconstruction
error is above the anomaly detection threshold within a small
range. For example, the error range between 100% and 110%
of the threshold contains over 50% of the false alarms. Thus,
we propose to identify those boundary cases and perform
cross-validations over those boundary cases using a self-
supervised model trained by a supervised learning method.

Recall that the unsupervised anomaly detection calculates
the reconstruction error of each frequency vector that is
continuously compared against an error threshold to make
an anomaly decision. We define the error range above the
threshold that contains the majority of false alarms as the
boundary case. SHIL then feeds the boundary case anomaly
into a pre-trained supervised model for cross validation. If the
supervised model does not classify the measurement sample
as anomalous, SHIL deems it to be a false alarm from the
unsupervised anomaly detection model and drops the alert.
Notice that SHIL only applies the cross validation over the
boundary cases so that SHIL can avoid dropping alerts about
unknown attacks that are often missed by supervised models.

C. Self-supervised Model Creation

Supervised models can typically achieve high detection
accuracy when sufficient high quality labelled training data
are available. However, it is often difficult to obtain labelled
training data in production environments, especially in highly
dynamic container-based computing environments. Moreover,
for dynamic advanced attacks, it is extremely challenging if
not totally impossible to accurately label each measurement
sample as normal or abnormal at a fine-grained time scale



Fig. 2: Self-supervised model creation.

Fig. 3: An example of outlier detection with the isolation forest
model. The leaf nodes with the shortest heights from their root
nodes tend to be outliers.

(e.g., every 10 milliseconds) required by supervised learning
models. When an attack is first started, it may not manifest
in the system call frequency vector changes immediately.
For example, in Table I, the attack is triggered at times-
tamp 1586496672891, however there is not much change
until timestamp 1586496672991. After that we can see the
increase of access, execve, lstat and mmap system
call frequencies. In addition, the attack may have a lasting
impact resulting in non-deterministic behaviors (i.e., normal,
abnormal, or mixed activities) after the attack succeeds.

To address the challenges of lacking high-quality labelled
training data, we propose a self-supervised model training
approach to achieving automatic data labelling, as shown in
Figure 2. Intuitively, measurement samples outside the attack
period represent normal fluctuating behaviors in a dynamic

application and measurement samples collected during the
attack period represent abnormal behaviors incurred by the
attack. However, advanced attacks might not exhibit abnormal
behaviors constantly throughout the attack period as shown in
our experiments. If we label all measurement samples during
the attack period as anomaly data, it is highly possible to create
a model that tends to raise many false alarms. To address
the challenge, we introduce an outlier detection process to
preprocess the training data.

Specifically, our self-supervised model training consists of
the following major steps. First, we perform outlier detection
over all measurement data during the attack period identi-
fied by our unsupervised learning methods or other third-
party attack detection tools. Second, we perform a similarity
check between each outlier detected during the attack period
with all the normal measurement samples collected during
a small window preceding the attack detection time. In our
experiments, we employed Manhattan distance between two
frequency vectors to measure the similarity. We then further
filter those outliers which resemble the normal execution
behavior. The rationale behind our approach is to capture
the true attack behavior while minimizing the false positive
likelihood. Thus, We only label those true outliers as anoma-
lous in the supervised model training. Those filtered outliers
which resemble normal execution data will be relabelled into
“normal” to reinforce the normal behavior training.

During our experimental study, we observe that only a small
portion of samples during the attack period contain significant
changes in system call frequencies, which are often detected
as outliers. Thus, our approach provides fine-grained labelling
instead of assuming all measurement samples during the attack
period as abnormal. Our experiments show that such a fine-
grained data labeling approach can effectively induce high
quality supervised learning models.

We employ the isolation forest [16] outlier detection method
to generate fine-grained labels. The isolation forest consists of
an ensemble of decision trees. The goal of each decision tree
is to isolate each input vector from the others. Each tree is split
on a random value in the possible range of a randomly selected
system call type (e.g., read) until all vectors are separated.
Since outliers are uncommon and numerically different from
normal samples, it takes fewer decisions to distinguish them
from others. Thus, outliers are found closer to the root of the
isolation trees.

Figure 3 illustrates the outlier detection of a simple fre-
quency vector sample on a constructed isolation forest. The
input vector is isolated in each tree by following the decision
tree path consisting of the highlighted links. For instance, in
the left-most tree, the vector is separated with a single split
of the read > 1 node. Whereas, the tree in the center of the
forest separates the vector with two decision nodes: read > 3
and write < 3.

To determine whether the vector is an outlier, an anomaly
score is computed as follows.

s(x, n) = 2−
E(h(x))

c(n) (1)



Given a set of n instances, the anomaly score s(x, n) of an
instance x in the isolation forest is defined by Equation (1),
where h(x) is the path length of x from the root, E(h(x))
is the average of h(x) from the collection of isolation trees
and c(n) is the average path length of unsuccessful search in
an isolation tree. In a binary search tree, c(n) is estimated
by the average height from the root to its leaf nodes [16].
When s is close to 1, it is nearly certain that x is an outlier.
Whereas, when s is close to 0, x is highly likely to be a
normal sample. In Figure 3, the heights h(x) of the vector
sample in each tree from left to right are one, two, and one,
respectively, while the average height of the leaf nodes c(n)
is 2.25. The sample generates an anomaly score of 0.66. If we
set the outlier detection threshold as 0.5, this input vector is
labelled as an outlier.

For example, Table I shows the labelling results produced
by our outlier detection method. Those entries marked with
asterisk (*) indicate detected outliers which will be labelled
as anomaly in the supervised model’s training data. The
measurement samples before the attack detection time and all
non-outlier measurements are labelled as normal training data.
We can see that only those outliers within the attack period
show abnormal behavior while those non-outlier samples still
exhibit similar behaviors to those measurements during the
normal execution period.

After the outlier detection module produces labelled training
data, it feeds the labelled training data into a supervised
learning model. During our experiments, we choose the ran-
dom forest (RF) learning method as our supervised learning
method [15] for its simplicity and effectiveness. The RF
model is an ensemble of many decision trees, which makes
its final classification based on the majority classification of
its constituents. During training, each tree chooses a split
value from a random subset of its features to optimize its
anomaly classification decision. These characteristics make the
RF model resilient to noises. For a single tree, the fraction of
abnormal samples in the output leaf node yields a probability
value. The overall prediction probability is the the average
prediction probability over all the decision trees. When the
prediction probability is above a pre-defined threshold such as
60%, the frequency vector is classified as abnormal.

III. EXPERIMENTAL EVALUATION

In this section, we first describe our evaluation methodology.
Next, we compare SHIL with a set of alternative schemes. We
implement a prototype of SHIL and evaluate it on a desktop
with four 3.4 GHz cores and 8 GB memory running Ubuntu
18.04 64-bit.

A. Evaluation Methodology

Real-world vulnerabilities. We evaluate 41 vulnerabilities
from 28 applications listed in the common vulnerabilities and
exposures (CVE) database, which include many applications
commonly used in production environments [19], [20]. Table II
shows the complete list of the CVEs, including the common
vulnerability scoring system (CVSS) score v2.0, application

TABLE II: List of explored real-world vulnerabilities.

Threat
Impact

CVE ID CVSS
Score

Application Version

Return a shell
and execute

arbitrary code

CVE-2012-1823 7.5 PHP 5.4.1
CVE-2014-3120 6.8 Elasticsearch 1.1.1
CVE-2015-1427 7.5 Elasticsearch 1.4.2
CVE-2015-2208 7.5 phpMoAdmin 1.1.2
CVE-2015-3306 10.0 ProFTPd 1.3.5
CVE-2015-8103 7.5 JBoss 6.1.0
CVE-2016-3088 7.5 Apache

ActiveMQ
5.11.1

CVE-2016-9920 6.0 Roundcube 1.2.2
CVE-2016-10033 7.5 PHPMailer 5.2.16
CVE-2017-7494 10.0 Samba 4.5.9
CVE-2017-8291 6.8 Ghostscript 9.2.1
CVE-2017-11610 9.0 Supervisor 3.3.2
CVE-2017-12149 7.5 JBoss 6.1.0
CVE-2017-12615 6.8 Apache Tomcat 8.5.19

Execute
arbitrary

code

CVE-2014-6271 10.0 Bash 4.2.37
CVE-2015-8562 7.5 Joomla 3.4.2
CVE-2016-3714 10.0 ImageMagick 6.7.9
CVE-2017-5638 10.0 Apache Struts 2 2.5.0
CVE-2017-12794 4.3 Django 1.11.4
CVE-2018-11776 9.3 Apache Struts 2 2.3.34
CVE-2018-16509 9.3 Ghostscript 9.23
CVE-2018-19475 6.8 Ghostscript 9.25
CVE-2019-6116 6.8 Ghostscript 9.26
CVE-2019-5420 7.5 Rails 5.2.2
CVE-2020-17530 7.5 Apache Struts 2 2.5.25
CVE-2021-44228

(log4j) 9.3 Apache Solr 8.11.0

Disclose
credential

information

CVE-2014-0160 5.0 OpenSSL 1.0.1e
CVE-2015-5531 5.0 Elasticsearch 1.6.0
CVE-2017-7529 5.0 Nginx 1.13.2-1
CVE-2017-8917 7.5 Joomla 3.7.0
CVE-2018-15473 5.0 OpenSSH 7.7p1
CVE-2020-1938 7.5 Apache Tomcat 9.0.30
CVE-2021-28164 5.0 Jetty 9.4.37
CVE-2021-28169 5.0 Jetty 9.4.40
CVE-2021-34429 5.0 Jetty 9.4.40
CVE-2021-41773 4.3 Apache HTTP

Server
2.4.49

Consume
excessive CPU

CVE-2014-0050 7.5 Apache
Commons
FileUpload

1.3.1

CVE-2016-6515 7.8 OpenSSH 7.2p2
Crash the

application
CVE-2015-5477 7.8 BIND 9
CVE-2016-7434 5.0 NTP 1.4.2.8

Escalate
privilege level CVE-2017-12635 10.0 CouchDB 2.1.0

name, and version of each entry. We focus on CVEs in
recent years, including the recent high-impacting Log4j CVE
(CVE-2021-44228). We classify the vulnerabilities into six
categories according to the threat impact of the attack. The
threat impact categories comprise attacks that 1) return a
shell and execute arbitrary code, 2) execute arbitrary code, 3)
disclose credential information, 4) consume excessive CPU,
5) crash the application, and 6) escalate privilege level.

Experiment Setup. For each vulnerability, we set up four
Docker containers under Ubuntu 16.04 LTS. We use Apache
JMeter to deliver a different multiple of workload to each of
the four containers, i.e. 1x, 2x, 4x and 8x. We design suitable
workload for each vulnerability according to the kind of traffic
the main containerized application accepts. For example, we
simulate traffic using HTTP GET requests to the containers of
CVE-2020-1938 because the application, Apache Tomcat, is
a web server software. Once the container starts running, we
use Sysdig to collect seven minutes of its system call activity,
unless the container exits early due to an attack (such as the



attack to CVE-2015-5477 that crashes the BIND application).
The short duration gives enough samples for our models and
aligns with the ephemeral nature of containers.

Each experiment is conducted as follows. First, we let the
container run for four minutes under the appropriate normal
workload. Next, we trigger the attack using open source exploit
code around the start of the fifth minute and let the attack
continue running until it succeeds. Meanwhile, the exploit
program logs the attack triggering time and attack success time
due to our modification of the original program from exploit
databases. Lastly, we stop the attack where applicable. After
finishing the experiment, we process the collected system calls
into system call frequency vectors using a sampling rate of 100
milliseconds.

SHIL Prototype Implementation. We use TensorFlow to
build an autoencoder (AE) model using four hidden layers
with 278 neurons in the first and fourth hidden layers and
70 neurons in the second and third hidden layers. For our
autoencoder model, we measure the reconstruction error using
root mean square error (RMSE) as defined in Equation (2),
where N is the number of samples, yi is the value of input,
and ŷi is the value of the output.

RMSE =

√∑N
i=1(ŷi − yi)2

N
(2)

We adopt the scikit-learn implementation of isolation forest
and set the contamination threshold to be 0.5 after experi-
mentation. Each container has its own attack and workload
characteristics, thus each container has its own isolation forest
model that fits and predicts the outliers within its alerted attack
period.

The outliers detected may contain some data points similar
to the normal period. We then calculate the pairwise Manhattan
distances between outliers and normal data points. If the
smallest Manhattan distance between an outlier and a normal
data point is less than the similarity threshold, we remove
this outlier. After several experiments, we choose 5 as the
similarity threshold.

We apply the scikit-learn implementation of random forest
to build our supervised model. Specifically, we use 100
decision trees with no specified maximum depth. We observe
that adding more decision trees does not improve the precision
but consumes more CPU and memory resources.

Alternative approaches. To evaluate the efficacy of SHIL,
we compare SHIL with several alternative real-time, light-
weight security attack detection methods [10], [11] that have
been proposed for container systems. We also implement
pure-supervised or pure-unsupervised learning methods for
evaluating the efficacy of our hybrid learning approaches.

• Classified Distributed Learning (CDL) [10]: We run
CDL using 95 and 99 percentile anomaly detection
thresholds. CDL uses the same autoencoder model as
used in SHIL.

• Self-patch [11]: To make a fair comparison, we only
compare our work with the attack detection part of the

self-patch. Self-patch uses an autoencoder model with
four hidden layers to detect attacks to containers. There
are 256 neurons in the first and fourth hidden layers, and
128 neurons in the second and third hidden layers. Self-
patch applies 99 percentile anomaly detection threshold
only.

• Supervised (RF): We use a pure supervised random
forest model. The hyperparameters used in the random
forest model are the same as the random forest model
used in SHIL.

• Supervised (CNN): We use the convolution neural net-
work (CNN) learning method, which has been recently
applied to cybersecurity [21]. We use Keras, with Tensor-
flow as the backend, to implement this model. This model
consists of two 1-D convolution layers with the rectified
linear activation function (ReLU) and a kernel size of 5.
The reason for choosing 1-D convolution layer is that
the layer moves along one dimension, which makes it
applicable for time-series data. The kernel size represents
how many features are considered every time the kernel
moves across a vector sample. The first CNN layer has
eight filters while the second layer has four filters. The
CNN then includes a flatten layer to flatten the output
from the second convolution layer. Finally, the network
has a dense layer of sigmoid activation function neurons
to predict the probability of the input frequency being
abnormal. Our CNN model is trained for 35 iterations
using the Adam optimizer with a learning rate of 0.001.
To train a more robust model, we shuffle the training set
during training.

Evaluation metrics. We define DC to be the number of
containers that are under attack and correctly identified by the
detector, and MC to be the number of containers that are under
attack and incorrectly missed by the detector. We use false
positive (FP) to denote the number of measurement samples
the detector falsely identifies, and true negative (TN) to be
the number of samples the detector correctly rejects. Using
the above definitions, the detection rate and false positive rate
(FPR) are given by equations (3) and (4), respectively.

detection rate =
DC

DC +MC
(3)

FPR =
FP

FP + TN
(4)

We introduce lead time to denote the duration from the time
the first alert is raised by the detection system to the time the
attack is successful if no action is triggered before then.

B. Results Analysis

In this section, we present the analysis of the experiment
results. Table III compares the detection results among CDL
[10] using 95 percentile (CDL-95%) and 99 percentile (CDL-
99%) anomaly detection thresholds, Self-patch [11], the pure
supervised RF and CNN models, and our SHIL approach



(a) False positive rate comparison.

(b) Detection rate comparison.

(c) Lead time comparison.

Fig. 4: Model comparisons among unsupervised autoencoder using 95% and 99% thresholds, supervised RF, supervised CNN,
combined, and SHIL.

TABLE III: Comparison with alternative approaches.

Model Detection rate FPR Lead time
CDL-95% 92.07% 6.57% 10.29s
CDL-99% 81.10% 1.40% 9.17s
Self-patch 45.73% 1.41% 7.99s

Supervised (RF) 77.44% 9.55% 10.24s
Supervised (CNN) 70.73% 4.63% 7.22s

SHIL 120% Boundary 89.02% 2.04% 9.51s
SHIL 200% Boundary 84.15% 0.85% 8.48s

using 120% (SHIL-120%) and 200% boundary case threshold
(SHIL-200%).

For CDL, increasing the anomaly detection threshold from
95 percentile to 99 percentile reduces the false positive rate
from 6.57% to 1.40%. However, we also see a big drop

in detection rate from from 92.07% to 81.10%. Self-patch
has a similar FPR as CDL-99%, but its detection rate is
only 45.73%. In contrast, SHIL-120% model can reduce false
positive rate significantly by 69.0% while maintaining similar
detection rate and lead time compared to pure unsupervised
model CDL-95%. By increasing the boundary cases to a higher
threshold, SHIL-200% can achieve a higher detection rate
while reducing the false positive rate by 39.3%, compared
to the pure unsupervised model CDL-99%. By having a
self-supervised model to effectively filter the false positives,
SHIL can adopt an unsupervised model with lower anomaly
detection thresholds, thus achieving a higher detection rate and
lower false positve rate at the same time.

The pure supervised models perform poorly which suffers
from both low detection rate and high false alarms due to low



quality labelled training data [22]. When comparing with the
pure supervised RF and CNN models, SHIL-200% can reduce
the false positive rate by 91.1% and 81.6%, respectively with
higher detection rate and similar lead time.

Figure 4a shows the false positive rate of different models
under different attack impact categories. The false positive rate
of the pure supervised RF model is the highest in all categories
except the “Crash the application” and “Escalate privilege
level” categories. Furthermore, pure supervised models, and
our SHIL models all achieve zero false positive rate in the
“Crash the application” category. CDL-95% model has the
highest false positive rate in “Crash the application” and “Es-
calate privilege level” categories and the second highest false
positive rate in the remaining categories. The false positive
rate of CDL-99% and Self-patch model is generally low, but
its false positive rate in “Crash the application” category is
4.23% and 2.40% respectively. SHIL achieves consistently low
false positive rate in all categories. Among all threat impact
categories, the false positive rate of SHIL is below 1% in 31
attacks.

Figure 4b compares the detection rate of different schemes.
SHIL achieves over 87.5% detection rate, except in “Disclose
credential information” and “Crash the application” categories.
In the “Execute arbitrary code” category, SHIL achieves per-
fect detection rate. The pure supervised CNN model can only
detect 12.5% attack belonging to the “Crash the application”
vulnerabilities while pure supervised RF model is only able
to detect 25% of attacked containers. The reason is that the
attacks in this category happen in such a short time that the
pure supervised models cannot get enough training samples.
However, the pure unsupervised model can detect some of the
attacks in this category that show high reconstruction errors.
SHIL uses the detection from the unsupervised model and does
not always need to validate with the supervised model because
the reconstruction errors from the detected samples are usually
much higher than the boundary case. Thus, the detection rate
of SHIL is still higher than those of the supervised models.

Next, we compare the lead time of different models shown
in Figure 4c. Overall, the lead time is similar among all
different models except pure supervised CNN model having
a small lead time in the “Return a shell and execute arbitrary
code” category. All six models achieve a large lead time in
the “Return a shell and execute arbitrary code” category. CDL-
95% model achieves the largest lead time in the “Return a shell
and execute arbitrary code”, “Disclose credential information”,
and “Escalate privilege level” categories, while the supervised
random forest achieves the largest lead time in the remaining
categories. It is not surprising to see no lead time in the “Crash
the application” category by all the models as the attacks
suddenly terminate the applications.

System run time measurements. Table IV compares the
training and testing time of CDL, Self-patch, and SHIL. SHIL
takes slightly more time during training and testing due to
more components in the system. However, considering each
sample represents the frequency vector of all system calls
produced within 100 ms, SHIL is light-weight and practical

TABLE IV: System run time measurements of different learn-
ing methods. Each sample represents the frequency vector of
all system calls produced within 100 ms.

System Modules Execution Time (ms)
CDL training 7.75 ± 0.40 (5000 samples)
Self-patch training 8.20 ± 0.04 (5000 samples)
SHIL training 8.42 ± 0.42 (5000 samples)
CDL detection 7.30 ± 0.10 per sample
Self-patch detection 0.0001 ± 0.00 per sample
SHIL detection 7.65 ± 0.11 per sample

for real time security attack detection in large-scale container-
based environments.

C. Case Study

In this subsection, we analyze one representative attack from
the top three categories to understand how SHIL identifies
the attack with lower false positive rate compared with the
unsupervised model.

Return a shell and execute arbitrary code. CVE-2017-
12615 occurs when the attacker uploads a malicious JSP file
which contains the attack code to Apache Tomcat. Tomcat
prohibits users from uploading and executing files with the
suffix “.jsp” to prevent malicious operations. However, the
attacker can bypass the rule by uploading a JSP file with the
suffix “.jsp ” containing a trailing space. After that, Tomcat
re-formats the file name by removing any trailing spaces and
then executes it. Compared with the unsupervised model,
SHIL improves the false positive rate by 88.05% without
decreasing the detection rate. The 103 false positives removed
by SHIL across four containers exhibit similar patterns. The
false positive samples contain the stat call, which has a
higher frequency compared with other normal run samples.
The unsupervised model identifies them as anomalies. We
observe that stat calls occur periodically and are generated
by the workload as the normal period exhibits a similar
periodical pattern. SHIL’s self-supervised model can identify
the periodical pattern and filter out those false positives.

Execute arbitrary code. CVE-2021-44228 is an Apache
Log4j vulnerability that allows an attacker to execute arbitrary
expressions input via the Java naming and directory interface
(JNDI) service. The attacker can send a log message with
special syntax to perform a JNDI lookup of a malicious
lightweight directory access protocol (LDAP) server resource.
The vulnerable application using Log4j will parse the message,
connect to the attacker’s server, and execute the payload it
receives. Compared with the unsupervised model, SHIL re-
duces false positive rate by 87% with no reduction in detection
rate. We observe the false positive samples exhibit periodical
patterns, which are generated by the dynamic periodical work-
load and have similar patterns to the normal execution. SHIL
successfully filters out those false alarms. After the attack
is triggered, we observe increasing occurrences of several
system calls including clone, connect, execve, fcntl
and mmap.



Disclose credential information. CVE-2018-15473 is an
Open-SSH vulnerability that allows the attacker to steal cre-
dential information because of no limit on the maximum
attempts of inputting user names and passwords. The attacker
finds a valid username using a brute-force method and then
cracks the passwords in a similar way.

SHIL filters out 83 false positives, reducing FPR by 92.21%
without hurting the detection rate. Since the sampling interval
is small, we observe certain system calls (accept, stat,
close, fstat, read and mmap) do not have average
distributions across normal run samples, causing further false
positives.

IV. RELATED WORK

In this section, we compare our research with related work.
Container vulnerability detection. Previous work has been

done in detecting vulnerabilities within containerized environ-
ments. Lin et al. [8] studied 11 privilege escalation exploits and
proposed a defense mechanism to defeat privilege escalation
attacks. Self-Patch [11] combined light-weight dynamic attack
detection and targeted patching to achieve effective security
protection for containerized applications. CDL [10] was a
classified distributed learning framework for containerized
applications. Lindvärn [23] et al. proposed using isolation
forest for anomaly detection to achieve good detection rate
and a relatively low false positive rate for 22 attacks. DIVA
[2] performed vulnerability detection on Docker Hub images.
Similarly, DIVDS [3] diagnosed Docker images when they
are uploaded or downloaded from Docker image repositories.
SHIL complements the existing work by providing a new
efficient security attack detection mechanism by combining
supervised and unsupervised learning methods.

Semi-supervised learning based intrusion detection. Pre-
vious work has been done in adopting a semi-supervised
learning model to generate or label data for intrusion detec-
tion. Rathore et al. [24] proposed a decentralized fog-based
attack detection framework which uses the semi-supervised
fuzzy c-means (ESFCM) algorithm with an extreme learning
machine (ELM) to detect attacks that occurred on internet
of things (IoT) devices. Idhammad et al. [12] introduced a
semi-supervised learning approach for DDoS detection based
on network entropy estimation, co-clustering, information
gain ratio, and extra trees. Zimba et al. [25] proposed a
semi-supervised algorithm based on shared nearest neigh-
bour (SNN) clustering to detect advanced persistent threat
(APT) attacks. Khonde et al. [26] described an ensemble-
based semi-supervised learning approach for a distributed
intrusion detection system. Compared with the existing work
which started from supervised learning models, SHIL uses
unsupervised models as the main decision-making modules
and only employs supervised models on-demand for boundary
cases to filter out potential false alarms.

Supervised learning based intrusion detection. Previous
work has been done in applying supervised learning methods
to intrusion detection. Anthi et al. [9] described a three-
layered system using supervised learning for intrusion detec-

tion for smart home IoT devices. DTB-IDS [27] presented a
decision-tree-based anomaly detection method to detect APT
attacks. Aksu et al. [28] applied the Fisher Score algorithm
to selecting features and fed the features into support vector
machine (SVM), k-nearest neighbour (k-NN) and decision
tree (DT) algorithms for intrusion detection. Hosseini et al.
[29] performed incremental learning with supervised models to
detect distributed denial of service (DDoS) attacks. Compared
with the supervised learning methods, SHIL does not required
labelled training data and only uses supervised models for false
alarm filtering.

Unsupervised learning based anomaly detection. Previ-
ous work has been done in applying unsupervised learning
methods to intrusion detection. Unicorn [30] used K-medoids
and data provenance analysis to detect Advanced Persistent
Threats (APTs). Scholkopf et al. [31] proposed a one-class
support vector machine (SVM) and defined a frontier as
a threshold for outlier detection. The isolation forest [16]
isolated anomalies from normal data by randomly selecting
a feature and a value in the possible range to split data
points. Khan et al. [32] proposed a hybrid intrusion detection
system by combining multiple unsupervised learning methods.
In comparison, SHIL leverages unsupervised learning methods
to detect a set of candidate anomalies and uses supervised
learning to filter out likely false alarms produced by unsuper-
vised learning methods using boundary case thresholds.

Nevertheless, intrusion detection systems (IDS), including
SHIL, have limitations. Rosenberg et al. [33] show that
attackers can use a camouflage algorithm to mislead machine
learning classifiers such as decision trees and random forest. If
attackers gain partial information about the model training set
and features, they can modify their attacks to exhibit benign
patterns. We may alleviate such attacks with measures such
as training updates to the SHIL anomaly detection model.
Furthermore, Shu et al. [34] present a unified framework for
any program anomaly detection method and prove that there is
a theoretical accuracy limit. The authors note that system call
based anomaly detection is limited by a lack of knowledge of
program internal information such as call stack activity. We
can complement SHIL with security tools that leverage such
program internal context.

V. CONCLUSION

In this paper, we have presented SHIL, a new self-
supervised hybrid learning system for more efficiently de-
tecting security attacks in container-based computing envi-
ronments. SHIL identifies anomaly detection boundary cases
as most likely false alarms and combines unsupervised and
supervised machine learning methods to filter out majority
of the false alarms without missing most of the true attacks.
For practical deployment of supervised learning models, SHIL
adopts a self-supervised learning approach to labelling training
data automatically using outlier detection over a window of
recent measurement samples when attack alerts are first raised.
Our experimental results with real world security attacks
including the recent high-impacting Log4j attack show that



SHIL can significantly reduce false alarms by up to 91%
while maintaining similar detection rates compared to existing
pure-supervised or pure-unsupervised methods. SHIL is light-
weight and does not require manual data labelling, which
makes it practical for security attack detection in container-
based production environments.

VI. DATA AVAILABILITY

The data and the implementation of SHIL are publicly avail-
able at https://github.com/NCSU-DANCE-Research-Group/
SHIL.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable feedback. This work is supported by the
NSA Science of Security Lablet: Impact through Research,
Scientific Methods, and Community Development under the
contract number H98230-17-D-0080, and a Cisco grant. Any
opinions, conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] “Docker image vulnerability research,” Federacy, 2017. [Online].
Available: https://www.federacy.com/docker image vulnerabilities

[2] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
docker hub,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017, pp. 269–280.

[3] S. Kwon and J.-H. Lee, “Divds: Docker image vulnerability diagnostic
system,” IEEE Access, vol. 8, pp. 42 666–42 673, 2020.

[4] “Tesla’s cryptojacking attack,” 2018. [Online]. Available: https:
//redlock.io/blog/cryptojacking-tesla

[5] “Cve-2021-44228 detail,” Dec 2021. [Online]. Available: https:
//nvd.nist.gov/vuln/detail/CVE-2021-44228

[6] J. Wetter and N. Ringland, “Understanding the impact of apache
log4j vulnerability,” Dec 2021. [Online]. Available: https://security.
googleblog.com/2021/12/understanding-impact-of-apache-log4j.html

[7] Dec 2021. [Online]. Available: https://blog.checkpoint.com/2021/12/13/
the-numbers-behind-a-cyber-pandemic-detailed-dive/

[8] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on linux container security: Attacks and countermeasures,” in Pro-
ceedings of the 34th Annual Computer Security Applications Conference,
2018, pp. 418–429.

[9] E. Anthi, L. Williams, M. Słowińska, G. Theodorakopoulos, and P. Bur-
nap, “A supervised intrusion detection system for smart home iot
devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 9042–9053,
2019.

[10] Y. Lin, O. Tunde-Onadele, and X. Gu, “CDL: classified distributed
learning for detecting security attacks in containerized applications,” in
Annual Computer Security Applications Conference, ser. ACSAC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
179–188.

[11] O. Tunde-Onadele, Y. Lin, J. He, and X. Gu, “Self-patch: Beyond patch
tuesday for containerized applications,” in 2020 IEEE International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS).
IEEE, 2020, pp. 21–27.

[12] M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for ddos detection,” Applied Intelligence, vol. 48,
no. 10, pp. 3193–3208, 2018.

[13] “Secure devops for containers, kubernetes, and cloud — sysdig,”
Sysdig, 2021. [Online]. Available: https://www.sysdig.com

[14] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[15] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. IEEE, 1995,
pp. 278–282.

[16] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining. IEEE, 2008, pp. 413–
422.

[17] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Proceedings 1996 IEEE Symposium on
Security and Privacy. IEEE, 1996, pp. 120–128.

[18] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-based intrusion
detection system with system calls: Review and future trends,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–36, 2018.

[19] E. Carter, “Sysdig 2019 container usage report: New kubernetes
and security insights,” Sysdig, 2019. [Online]. Available: https:
//sysdig.com/blog/sysdig-2019-container-usage-report/

[20] A. Newcomb, “Sysdig 2021 container security and usage report:
Shifting left is not enough,” Sysdig, 2021. [Online]. Available:
https://sysdig.com/blog/sysdig-2021-container-security-usage-report/

[21] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying con-
volutional neural network for network intrusion detection,” in 2017
International Conference on Advances in Computing, Communications
and Informatics (ICACCI). IEEE, 2017, pp. 1222–1228.

[22] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with
class imbalance,” Journal of Big Data, vol. 6, no. 1, pp. 1–54, 2019.

[23] M. Lindvärn and Z. Lundqvist, “Refining security monitoring techniques
for container-based virtualisation environments,” 2021.

[24] S. Rathore and J. H. Park, “Semi-supervised learning based distributed
attack detection framework for iot,” Applied Soft Computing, vol. 72,
pp. 79–89, 2018.

[25] A. Zimba, H. Chen, Z. Wang, and M. Chishimba, “Modeling and
detection of the multi-stages of advanced persistent threats attacks based
on semi-supervised learning and complex networks characteristics,”
Future Generation Computer Systems, vol. 106, pp. 501–517, 2020.

[26] S. Khonde and V. Ulagamuthalvi, “Ensemble-based semi-supervised
learning approach for a distributed intrusion detection system,” Journal
of Cyber Security Technology, vol. 3, no. 3, pp. 163–188, 2019.

[27] D. Moon, H. Im, I. Kim, and J. H. Park, “Dtb-ids: an intrusion detection
system based on decision tree using behavior analysis for preventing apt
attacks,” The Journal of supercomputing, vol. 73, no. 7, pp. 2881–2895,
2017.

[28] D. Aksu, S. Üstebay, M. A. Aydin, and T. Atmaca, “Intrusion detec-
tion with comparative analysis of supervised learning techniques and
fisher score feature selection algorithm,” in International Symposium on
Computer and Information Sciences. Springer, 2018, pp. 141–149.

[29] S. Hosseini and M. Azizi, “The hybrid technique for ddos detection
with supervised learning algorithms,” Computer Networks, vol. 158, pp.
35–45, 2019.

[30] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,”
arXiv preprint arXiv:2001.01525, 2020.

[31] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection,” in Advances
in neural information processing systems, 2000, pp. 582–588.

[32] M. A. Khan, M. Karim, Y. Kim et al., “A scalable and hybrid intrusion
detection system based on the convolutional-lstm network,” Symmetry,
vol. 11, no. 4, p. 583, 2019.

[33] I. Rosenberg and E. Gudes, “Bypassing system calls–based intrusion
detection systems,” Concurrency and Computation: Practice and Expe-
rience, vol. 29, no. 16, p. e4023, 2017.

[34] X. Shu, D. D. Yao, and B. G. Ryder, “A formal framework for program
anomaly detection,” in International Symposium on Recent Advances in
Intrusion Detection. Springer, 2015, pp. 270–292.

https://github.com/NCSU-DANCE-Research-Group/SHIL
https://github.com/NCSU-DANCE-Research-Group/SHIL
https://www.federacy.com/docker_image_vulnerabilities
https://redlock.io/blog/cryptojacking-tesla
https://redlock.io/blog/cryptojacking-tesla
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://blog.checkpoint.com/2021/12/13/the-numbers-behind-a-cyber-pandemic-detailed-dive/
https://blog.checkpoint.com/2021/12/13/the-numbers-behind-a-cyber-pandemic-detailed-dive/
https://www.sysdig.com
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2021-container-security-usage-report/

	Introduction
	System Design
	Unsupervised Anomaly Detection
	Hybrid Alert Validation
	Self-supervised Model Creation

	Experimental Evaluation
	Evaluation Methodology
	Results Analysis
	Case Study

	Related Work
	Conclusion
	Data Availability
	References

