
Self-Patch: Beyond Patch Tuesday for Containerized

Applications

Olufogorehan Tunde-Onadele, Yuhang Lin, Jingzhu He, Xiaohui Gu

Department of Computer Science

North Carolina State University

Email: {oatundeo, ylin34, jhe16, xgu}@ncsu.edu

Abstract—Containers have become increasingly popular in
distributed computing environments. However, recent studies
have shown that containerized applications are susceptible to var-
ious security attacks. Traditional periodically scheduled software
update approaches not only become ineffective under dynamic
container environments but also impose high overhead to con-
tainers. In this paper, we present Self-Patch, a new self-triggering
patching framework for applications running inside containers.
Self-Patch combines light-weight runtime attack detection and
dynamic targeted patching to achieve more efficient and effective
security protection for containerized applications. We evaluated
our schemes over 31 real world vulnerability attacks in 23
commonly used server applications. Results show that Self-Patch
can accurately detect and classify 81% of attacks and reduce
patching overhead by up to 84%.

Index Terms—Container Security, Anomaly Detection, Security
Patching.

I. INTRODUCTION

Containers have become increasingly popular in dis-

tributed computing environments by providing an efficient

and lightweight deployment method for various applications.

However, recent studies [1] [2] have shown that containers are

prone to various security attacks, which has become one of the

top concerns for users to fully adopt container technology [3].

Containerized applications pose a set of new security chal-

lenges to distributed computing environments. First, container

image repositories are prone to vulnerabilities. Indeed, pre-

vious study [2] reveals an alarming degree of vulnerability

exposure and spread in the official Docker Hub container

repository. It is complex to maintain a public or private

container repository which often consists of a large number of

container images and many inheritance layers. If a container

is created from a base image, any vulnerability included in

the base image needs to be patched in the containers that are

built on top of the base image. Second, containers are often

allocated with limited resources because a large number of

containers often share the resources of a single physical host.

Security patching might cause significant resource increase

(e.g., memory bloating) in a patched container, which makes

the container unable to run after patching.

Existing security patching schemes in distributed computing

environments often follow a periodically scheduled whole

upgrade approach, that is, updating all applications as a whole

on a certain day (e.g., every Tuesday). The approach works

well in stable systems consisting of long running applications.

However, containers are often short-lived, which makes pe-

riodical patching schemes ineffective if the vulnerable con-

tainers miss the pre-scheduled patching day. Moreover, whole

software upgrade often significantly increases the memory and

storage footprint of the patched containers. As a result, those

containers quickly become too heavy to fit in constrained

resource allocations.

In this paper, we present Self-Patch, an intelligent self-

triggering security patching framework for containerized ap-

plications. Our framework consists of three integrated com-

ponents: 1) online attack detection module which can detect

security attacks using low-cost, non-intrusive system call trac-

ing and unsupervised autoencoder neural network models [4];

2) attack classification module which classifies attack behav-

iors into specific vulnerability exploits by identifying most

frequently appeared system calls during the attack period and

3) targeted patch execution module which is responsible for

applying proper security patches based on the classification

results. Specifically, this paper makes the following contribu-

tions.

• We present a new self-triggering targeted patching frame-

work to achieve effective and efficient attack containment

for containerized applications.

• We describe an online attack detection and classification

scheme using out-of-box system call tracing and unsu-

pervised machine learning methods.

• We have implemented a prototype of Self-Patch and

evaluated it over 31 real world security attacks in 23

commonly used server applications.

Our experimental results show that Self-Patch’s attack de-

tection scheme can accurately detect and classify 81% security

attacks with 16 seconds lead time on average. In comparison,

other commonly used anomaly detection schemes such as k-

nearest neighbor (k-NN) and k-means clustering algorithm

can only detect 6% and 68% exploits, respectively. k-means

also produces 7% false alarms while Self-Patch only incurs

0.7% false alarms. We further compare the memory and disk

footprint change before and after patching between Self-Patch

and the existing whole upgrade approach. Our results show

that Self-Patch can reduce the memory footprint increase

(caused by the applied patches) by up to 84% and disk size

increase by up to 40%.

The rest of the paper is organized as follows. Section II de-

21

2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)

978-1-7281-7277-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ACSOS49614.2020.00022

Fig. 1: System overview of Self-Patch.

scribes the system design. Section III presents our experiment

setup and results. Section IV compares our work with related

work. Section V concludes the paper.

II. SYSTEM DESIGN

This section describes the system design of Self-Patch. We

first provide an overview about the system, followed by the

design details for each component.

A. System Overview

Self-Patch aims at providing a self-triggering targeted patch-

ing framework for containerized applications, which is illus-

trated by Figure 1. Self-Patch consists of three coordinating

components: 1) attack detection, 2) attack classification, and

3) targeted patch execution. The attack detection module

monitors container runtime behaviors by analyzing system call

traces via unsupervised autoencoder neural network learning

methods. We pick system call data for our attack detection

because many attacks manifest in system call invocations. We

decide to use an unsupervised machine learning method in

order to achieve online detection for both known and unknown

attacks.

Upon detecting anomalies in container runtime behavior, we

need to decide what type of vulnerability the detected attack

targets. To map to a specific vulnerability, we perform offline

profiling to extract the vulnerability signature by extracting

the top frequently used system calls after triggering the

corresponding attack. Note that we make an assumption here

that attacks targeting the same vulnerability exhibit the same

behavior in terms of top frequently used system calls. We find

our assumption holds in our experiments. We plan to further

validate this assumption using more attacks in our future work.

After the vulnerability is identified, the targeted patch exe-

cution module is dynamically triggered to contain the attack by

patching the victim container to fix the vulnerability targeted

by the attack. We first bring the victim container offline and

then apply the proper software updates to the container in a

quarantined environment. Once the patching is complete, an

updated container image is committed to the repository for

spawning future containers. We now present the design details

of each component in the following subsections.

TABLE I: A frequency vector sample for the ActiveMQ

application (CVE-2016-3088). An attack is triggered at t =
1528903079912.

Timestamp

System call
access sendto lseek fcntl

1528903079812 0 0 0 0

1528903079912 59 4 0 5

1528903080012 299 18 2 0

1528903080112 0 0 0 0

B. Attack Detection

Self-Patch performs attack detection by analyzing system

call traces invoked by the containerized application. For ro-

bustness, we leverage an existing container monitoring tool

Sysdig [5] to achieve out-of-box monitoring from the host

kernel. We can collect all the system calls invoked by an

application running inside the container from outside. Al-

though system call sequences (i.e., n-gram) have been used

to identify attacks in intrusion detection systems [6], they

require a database of recognized sequences for detecting

attacks, which cannot handle dynamic workload and mimicry

attacks. In this work, we propose to first extract system call

features to model runtime application behaviors and then

apply unsupervised machine learning methods to detect attack

behaviors. Specifically, we compute the frequencies of each

system call type per sampling period to form a frequency

vector. For example, Table I shows a frequency vector time

series where the access system call is invoked 299 times

within [1528903080012, 1528903080112) millisecond. Intu-

itively, when an attack is triggered to exploit a certain vul-

nerability in the application, certain types of system calls are

invoked more frequently than normal. For example, in Table

I, we can see an abnormal frequency increase for access

and sendto system calls after the attack is triggered at time

1528903079912.

To achieve online anomaly detection, we leverage unsu-

pervised multi-variate machine learning to detect abnormal

system call frequency changes. We choose autoencoder neural

network as our detection model because it does not require

labelled training data and can achieve good accuracy with a

relatively small number of neurons with low training cost.

The autoencoder neural network builds a model that learns

to reconstruct training samples with minimal error. This is

achieved by representing the input data in a lower dimensional

space with a small number of neurons, that is called the

encode step. Thereafter, in the decode step, the model attempts

to regenerate the data that was compressed by the encode

step. Thus, the autoencoder network typically has a symmet-

ric architecture. The figure shows the network configuration

of our autoencoder implementation with four hidden layers

between the input and output layers. The encode region is

fully linked to the identical but reversed decode region by

their innermost layers of neurons. The length of the input

vectors is the number of different system call types (e.g.,

read, write, futex) produced by the application as described

above. The number of neurons in the input layer and output

22

layers of the autoencoder is determined by the number of

different system call types that appear in the collected system

call data. Lastly, the model classifies the frequency vector test

samples with low reconstruction errors as normal and those

with high reconstruction errors as abnormal. We determine

the error threshold based on the reconstruction errors observed

in the training data. Specifically, a certain percentile rank of

reconstruction errors from the training set is selected as the

threshold. We found the 99 percentile value as the threshold

works well in our experiments.

C. Attack Classification

After detecting an attack, we want to classify the attack into

a specific type which is linked to a vulnerability identifier

(e.g. CVE ID). Once this is obtained, we can update the

application to the proper version. Similarly, signatures for new

attacks would also be generated, which can contribute to the

development of new security updates.

The attack classification in our system is guided by the

alarms raised by our detection models. Based on the detected

attack period, we extract the top ranked system calls with

the following algorithm. The rank is calculated by taking an

average of the frequency counts for each system call during

the interval. The list of system calls and their counts, sorted

in descending order, serves as the rank. To extract signature

patterns, we first identify the top k ranked system calls (e.g.,

k = 5) and then concatenate the names of those selected

system calls into a string. The attack signature is denoted

by the hash value from running a Secure Hash Algorithm

(SHA) on the string. For example, let us consider the denial

of service (DOS) attack to Network Time Protocol (NTP)

vulnerability (CVE-2016-7434). The top five frequent sys-

tem calls are: rt_sigprocmask, gettid, write, read

and clock_gettime. The rt_sigprocmask system call

checks or modifies the blocked signals of a thread, while

gettid gets the thread ID. Furthermore, the denial of service

attack is caused by sending an extremely long character to the

NTP service over a socket connection. Thus, the application

would need to make read and write calls to service this request.

The clock gettime call retrieves the time of a requested clock.

The signature is then mapped to a corresponding existing

CVE ID that is collected by an offline profiling process using

the same signature extraction algorithm. However, if we fail to

map the signature with any existing CVE, we mark this attack

as an unknown attack which requires further investigation.

D. Targeted Patch Execution

After a specific attack is detected and classified, Self-

Patch triggers the targeted patching module over the victim

container to contain the attack. The targeted patch execution

module focuses on installing only the specific libraries needed

to address the identified vulnerability. Our patching process

consists of three steps: downloading new software packages,

installing new software packages, and removing unnecessary

files.

#!/bin/bash

download files

apt-get update

apt-get -y install wget gcc make

wget https://github.com/.../ghostscript-x.xx.

tar.gz

tar xvf ghostscript-x.xx.tar.gz

install files

cd ghostscript-x.xx

./configure

make install

remove files

apt-get purge -y wget gcc make

apt-get autoremove -y

cd ..

rm -r ghostscript-x.xx.tar.gz ghostscript-x.xx

Fig. 2: A targeted patching example for Ghostscript.

First, obtaining source files involves using tools such as

wget or git or APT, depending on where the files are lo-

cated. Wget is useful for downloading files provided by a

URL (Uniform Resource Locator), git clone for GitHub

repositories and apt-get update for retrieving packages

provided by APT. Next, installation may require other tools

like make or pip to compile and install the application.

Applications downloaded from source with a Makefile are

typically installed with ./configure to prepare a Make-

file, followed by make to compile source code and finally

a make install to move the compiled files to proper

locations. Those applications configured with APT can lever-

age apt-get install --only-upgrade commands,

whereas those with pip can use pip install which handles

both the download and install steps. Finally, the installation

is cleaned up. Downloaded archive source files and folders

extracted from them as well as their outdated counterparts

can be removed with basic Linux commands. APT can

handle this process with apt-get purge and apt-get

autoremove commands. Figure 2 presents a basic targeted

patch example for three Ghostscript vulnerabilities (CVE-

2018-16509, CVE-2018-19475 and CVE-2019-6116). In the

download files section, dependent wget, gcc and make libraries

are retrieved with APT to execute the rest of the installation

procedure. Whereas, wget downloads the tar archive that

contains the new application version source files. Notice that

after the file is installed, these files and packages are removed.

The difficulty in the patch execution lies in the installation

differences among applications. Discovering these libraries

and installation steps involves extensive searches over security

databases, application sites and manuals.

Targeted patching is applied to the container in a quar-

antined environment isolated from other normal applications.

Meanwhile, various security countermeasures can be applied.

For instance, further requests from the compromised container

can be dropped while new trusted containers are spawned

23

TABLE II: List of explored real-world vulnerabilities.

Threat
Impact

CVE ID
CVSS
Score

Application

Attack
Duration
(seconds)

Return a shell
and execute

arbitrary code

CVE-2012-1823 7.5 PHP 1
CVE-2014-3120 6.8 Elasticsearch 9
CVE-2015-1427 7.5 Elasticsearch 60
CVE-2015-2208 7.5 phpMoAdmin 2
CVE-2015-3306 10 ProFTPd 4
CVE-2015-8103 7.5 JBoss 30
CVE-2016-10033 7.5 PHPMailer 125
CVE-2016-3088 7.5 Apache ActiveMQ 49
CVE-2016-9920 6 Roundcube 121
CVE-2017-11610 9 Supervisor 2

CVE-2017-12615 6.8 Apache Tomcat 13
CVE-2017-7494 10 Samba 36
CVE-2017-8291 6.8 Ghostscript 1

Execute
arbitrary

code

CVE-2014-6271 10 Bash 2
CVE-2015-8562 7.5 Joomla 1
CVE-2016-3714 10 ImageMagick 4
CVE-2017-12794 4.3 Django 1
CVE-2017-5638 10 Struts 29
CVE-2018-16509 9.3 Ghostscript 2
CVE-2018-19475 6.8 Ghostscript 2
CVE-2019-6116 6.8 Ghostscript 2

Disclose
credential

information

CVE-2014-0160 5 OpenSSL 14
CVE-2015-5531 5 Elasticsearch 2
CVE-2017-7529 5 Nginx 1
CVE-2017-8917 7.5 Joomla 1
CVE-2018-15473 5 OpenSSH 2

Consume
excessive CPU

CVE-2014-0050 7.5 Apache Tomcat 45
CVE-2016-6515 7.8 OpenSSH 20

Crash the
application

CVE-2015-5477 7.8 BIND 6
CVE-2016-7434 5 NTP 1

Escalate
privilege level

CVE-2017-12635 10 CouchDB 1

to replace compromised ones. After a successful update, an

image is saved from the container with a docker commit.

The resulting image is then used to deploy new containers.

III. EXPERIMENTAL EVALUATION

In this section, we present our evaluation methodology and

experimental results.

A. Evaluation Methodology

1) Real world vulnerabilities: We evaluate Self-Patch using

31 real world vulnerabilities discovered in 23 commonly used

server applications, highlighted in Table II. We especially

focus on vulnerabilities of medium to high severity reported

in the last five years. These applications include widespread

web services (e.g. Apache Tomcat, Nginx, Elasticsearch) and

database services (e.g. CouchDB), which are currently popu-

lar containerized applications [7], [8]. Attacks to application

vulnerabilities result in threat impacts that fall into six cate-

gories classified by a recent study [2]: 1) return a shell and

execute arbitrary code; 2) execute arbitrary code; 3) disclose

credential information; 4) consume excessive CPU; 5) crash

the application and 6) escalate privilege level. Such attacks

and vulnerable container images are obtained from exploit

databases and repositories (e.g. VulHub [9]).

2) Experiment setup: We run workload generated with

Apache JMeter [10] on the container of each target vulner-

ability, to approach real world system operation. Specifically,

JMeter quickly delivers appropriate requests to the applica-

tions. The supplied request rate increases to the maximum

value that the application can accommodate. After running

the container for a period of normal operation to train the

detection model, an attack is triggered to exploit the security

vulnerability. The attack then executes for a subsequent period

until no further attack activity is made. Meanwhile, we use

Sysdig [5] to record the system calls invoked by the running

containerized applications. We separate the entire system call

trace into two halves. We use the first half of the data to

train the detection model as it consists of enough samples of

normal operation. However, we use the whole trace to extract

detection and attack signature results. The whole trace consists

of seven minutes of activity except for the attacks that crash

the application. Given our sample interval of 0.1 milliseconds,

this contributes about 4200 samples.

To evaluate the results of targeted patching, we repeat the

above process. Immediately after the vulnerability is triggered,

we execute the targeted patching. At the same time, we

monitor the memory utilization and disk size. In particular, we

track the memory usage by leveraging the APIs exposed by

cAdvisor [11]. Meanwhile, the container disk size is collected

with native Docker commands. The sizes of the read-only im-

age layers and writable container layers are summed and given

by the docker ps -s command. After the completion of

each patching experiment, we determine whether patching is

successful. First, we save the image of the patched container.

We then start a new container using the image just created

and then execute the attack commands. If the commands

continue to work as before, we mark this patching experiment

as unsuccessful and successful otherwise.

3) Attack detection setup: We perform attack detection with

an autoencoder neural network consisting of just four hidden

layers. The encode region is made up of 256 neurons in

the first layer and 128 in the second layer while the decode

region is an exact reflection of the encode. The weights among

neurons are updated with the sigmoid activation function.

Furthermore, we attain our results with lightweight online

training of 10 iterations. We execute back-propagation with

the Tensorflow root mean square propagation (RMSProp)

optimizer to minimize the mean squared error (MSE).

4) Alternative Schemes: To evaluate Self-Patch’s perfor-

mance, we compare it with several baseline methods. Self-

Patch consists of three phases, i.e., attack detection, attack

classification, and targeted patch execution. For the attack

detection phase, we compare Self-Patch against k-nearest

neighbors (k-NN) [12] and k-means [13] techniques. For the

targeted patch execution phase, we evaluate our approach

against the whole upgrade method. We describe each alter-

native method in detail below.

k-NN for anomaly detection: We take the system call

frequency vectors as input and return the outliers at their

corresponding timestamps. The k-NN algorithm typically in-

volves assigning a label to a data point based on the majority

vote from its k closest neighbors. Abnormal samples are those

too far away from their neighbors. We calculate the average

distance of each point to its nearest neighbors and determine

the anomalous ones with larger distances. In our experiment,

we empirically select k as 5. In addition, we choose the

samples with the top 10% largest average neighbor distance

as the outliers.

24

k-means for anomaly detection: We customize the k-means

algorithm for the anomaly detection phase in a similar way

to the k-NN algorithm. To be specific, data samples are

distributed to one of the k randomly initialized cluster centers.

Thereafter, the cluster centers are recalculated based on the

average position of its members and then cluster memberships

are reassigned. This process is performed iteratively until no

more change occurs. Here, the algorithm identifies abnormal

samples as those that belong to isolated clusters with a

little membership. Similar to that of k-NN, we tune k-means

parameters to achieve a good tradeoff between true positive

rate and false positive rate in our experiments. The resulting

number of clusters is equal to ten (k = 10), while the cluster

threshold for determining anomalous clusters is set to 100.

Whole upgrade for patch execution: This approach refers

to the conventional manner in which security updates are

performed in Debian-based Linux systems that containers

run on. Old versions of all packages found by the package

manager are updated to their newest versions. In our study,

this is accomplished by an apt-get update followed by

an apt-get upgrade of the APT package manager. The

update command refreshes the package source lists to find the

latest available packages while the latter installs the newly

found software versions. We also employ the corresponding

commands for containers based on Alpine Linux (i.e. replacing

apt with apk).

B. Results and Analysis

In this subsection, we discuss our experimental results of

each component of Self-Patch.

1) Attack Detection Results: We present the detection re-

sults of Self-Patch over three evaluation metrics, i.e., true

positive rate, false positive rate (FPR) and lead time. For

detection coverage, we measure whether the attack is detected

by checking whether the alarm is raised after the attack is

triggered and before the attack is successful. The detection

coverage is also referred as true positive rate (TPR) in this

paper calculated by the following standard true positive rate

equation, where TP is number of attacks that are detected and

FN is the number of attacks that are undetected.

TPR =
TP

TP + FN
(1)

Next, we use the standard false positive rate FPR as the

second evaluation metric. FP represents the number of false

alarms and TN represents the number of normal data samples

that Self-Patch correctly does not generate alarms on.

FPR =
FP

FP + TN
(2)

Lastly, we assess detection performance using lead time as

the third metric. Lead time is defined to be the amount of

time between the first alert from the detector after the ma-

licious command is executed and completed. This represents

the amount of flexibility the system has to initiate security

countermeasures before the container is fully compromised.

TABLE III: Detection result of Self-Patch and alternative

approaches.

Threat

Impact
CVE ID

CVSS

Score
k-NN k-Means Self-Patch

Return a shell
and execute

arbitrary code

CVE-2012-1823 7.5 � � �

CVE-2014-3120 6.8 � � �

CVE-2015-1427 7.5 � � �

CVE-2015-2208 7.5 � � �

CVE-2015-3306 10 � � �

CVE-2015-8103 7.5 � � �

CVE-2016-10033 7.5 � � �

CVE-2016-3088 7.5 � � �

CVE-2016-9920 6 � � �

CVE-2017-11610 9 � � �

CVE-2017-12615 6.8 � � �

CVE-2017-7494 10 � � �

CVE-2017-8291 6.8 � � �

Execute
arbitrary

code

CVE-2014-6271 10 � � �

CVE-2015-8562 7.5 � � �

CVE-2016-3714 10 � � �

CVE-2017-12794 4.3 � � �

CVE-2017-5638 10 � � �

CVE-2018-16509 9.3 � � �

CVE-2018-19475 6.8 � � �

CVE-2019-6116 6.8 � � �

Disclose
credential

information

CVE-2014-0160 5 � � �

CVE-2015-5531 5 � � �

CVE-2017-7529 5 � � �

CVE-2017-8917 7.5 � � �

CVE-2018-15473 5 � � �

Consume
excessive CPU

CVE-2014-0050 7.5 � � �

CVE-2016-6515 7.8 � � �

Crash the
application

CVE-2015-5477 7.8 � � �

CVE-2016-7434 5 � � �

Escalate
privilege level

CVE-2017-12635 10 � � �

Average Results 6.45% 67.74% 80.65%

Table III shows the detection results for each detection

approach (i.e. k-NN, k-means and Self-Patch). The detection

coverage results show that k-NN performs much more poorly

than k-means and Self-Patch. k-NN detects 2 of 31 attacks

(6.45%), whereas, k-Means and Self-Patch detection recognize

21 (67.74%) and 25 (80.65%), respectively. Self-Patch also

demonstrates superior performance with a lower average FPR

of 0.72% than the 7.16% k-Means result. The average lead

time of Self-Patch is the longest (16.38 seconds), compared

with both k-means (13.53 seconds) and k-NN (0.15 seconds).

Although the attacks have varied attack periods, noted in Table

II, Self-Patch more consistently yields higher lead time.

We express the detection coverage, FPR and lead time

of each method over the attacks in each threat impact cat-

egory in Figure 3, 4 and 5, respectively. Figure 3 shows

that Self-Patch achieves the highest detection coverage in all

but two categories: disclose credential information and crash

the application. Although k-means outperforms Self-Patch

in these areas, it suffers from a much higher false positive

rate. Furthermore, Self-Patch as well as the other detection

approaches struggle with attacks that crash the application.

This is likely because the crash causes the container to end

abruptly and lose data before an alarm is confidently raised.

We plan to improve the accuracy of Self-Patch in future work

with strategies that leverage system call arguments.

2) Attack Classification Results: We examine the patterns

of top system calls, generated from attack classification,

that correspond to the attacks against each vulnerability. We

observe that Self-Patch produces unique patterns for 29 of

the 31 CVEs. In particular, the duplicates are only observed

among three of four containers of the GhostScript application

used for image processing. However, other applications with

25

Fig. 3: True positive rate result of anomaly detection ap-

proaches.

Fig. 4: False positive rate result of anomaly detection ap-

proaches.

Fig. 5: Lead time result of anomaly detection approaches.

multiple containers of distinct vulnerabilities do not yield

identical signatures. The GhostScripts attacks exploiting CVE-

2018-16509, CVE-2018-19475 and CVE-2019-6116 are of a

similar fashion. They involve uploading vulnerable image files

embedded with malicious content to bypass the GhostScript

security sandbox and execute commands. Thus, one can expect

similar behavior from these attacks. Indeed, the GhostScript

vulnerabilities can all be addressed by the same targeted patch.

3) Patching Results: We discuss the patching results, in-

cluding success status and patching costs, i.e., memory and

disk costs. Table IV summarizes the success rate of the patch-

ing approaches. Self-Patch achieves 80.65% success rate. Note

that this is a 100% of the cases where the attack was detected

by Self-Patch. However, only 6.45% of whole upgrade trials

TABLE IV: Overall comparison result of different patching

approaches.

Patching Approach
Success

Rate
Memory

Cost
Disk
Cost

Whole Upgrade 6.45% 10.13x 1.49x

Self-Patch 80.65% 4.79x 1.16x

Fig. 6: Container memory cost of patching.

Fig. 7: Container disk cost of patching.

are successful. This demonstrates the superiority of targeted

patching over periodic updates. The reason why whole upgrade

achieves such low success rate is because many applications

are not configured to work with package managers. There are

many programs whose developers have not prepared the files

that will be handled by the manager (e.g., debian files for APT)

or have provided other installation means that users prefer.

Therefore, for applications not managed by APT, the periodic

update process will upgrade libraries other than those needed

to address the vulnerability of the containerized application in

question.

In addition, the patching cost results show lower memory

and disk size footprint when performing targeted patching

rather than the whole upgrade approach. On average, the

memory size grew to 4.79 times its original size with targeted

patching versus 10.13 times with whole upgrade. Similarly,

targeted patching multiplied the disk size by a factor of 1.16,

whereas whole upgrade increased the size by a factor of 1.49.

Self-Patch attains lower memory and disk costs over the whole

upgrade approach across all the threat impact categories as

shown in Figure 6 and Figure 7.

26

IV. RELATED WORK

Previous work has been done in applying machine learning

techniques in intrusion detection systems. DeepLog [14] utilize

Long Short-Term Memory (LSTM) to learn log patterns during

normal run and detect anomalous system events in production

systems. Tiresias [15] leverage Recurrent Neural Networks

(RNNs) to predict future security events, in order to detect

malicious activities. Marinescu et al. [16] automatically learn

authorization rules and extract invariants in modern online

social networks. Banescu el al. [17] apply regression models

to predict the time period that software protection transfor-

mations are able to withstand various attacks. In comparison

to the existing work, Self-Patch proposes to perform feature

extraction over system call trace data and apply unsupervised

autoencoder neural network to achieve robust online attack

detection.

In addition, previous work has been done on modifying

the application binaries on-the-fly to quarantine the system

without experiencing down times. FIBER [18] analyzes open

source security patches and generates binary signatures that

are used to provide new patches for similar vulnerabilities.

KARMA [19] patches Android kernels at multiple levels to

filter malicious inputs with little runtime overhead. Piston [20]

takes control of software on an embedded device and modifies

the binary code on-the-fly to protect the system. Compared

with the existing work, Self-Patch leverages online anomaly

detection and attack classification to achieve self-triggering

targeted patching.

V. CONCLUSION

In this paper, we have presented Self-Patch, a new self-

triggering targeted patching framework for container-based

distributed computing environments. Self-Patch aims at pro-

viding effective and efficient solutions to protect containerized

applications from security attacks. To achieve this goal, the

Self-Patch framework consists of three coordinating compo-

nents: 1) an online attack detection module which can dynam-

ically detect abnormal attack activities by extracting feature

vectors from system call traces and applying unsupervised

machine learning methods over the extracted features; 2)

an attack classification scheme which classifies a detected

attack into a specific type linked to a certain CVE; and 3)

a targeted patch execution module which can install proper

software patches to fix the vulnerability. We have implemented

a prototype of Self-Patch and evaluated it over 31 real-world

vulnerabilities discovered in 23 common server applications.

Our initial experimental results are promising, which shows

we can increase detection rate to over 80% and reduce false

alarm rate to 0.7%. In contrast, traditional schemes can either

only detect 6% attacks or incur more than 20% false alarms.

Compared to the whole software upgrade approach, Self-Patch

can reduce the memory overhead by up to 84% and disk

overhead by up to 40%.

VI. ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers

for their valuable feedback. This work is supported by the

NSA Science of Security Lablet: Impact through Research,

Scientific Methods, and Community Development under the

contract number H98230-17-D-0080. Any opinions, conclu-

sions or recommendations expressed in this paper are those

of the authors and do not necessarily reflect the views of the

funding agencies.

REFERENCES

[1] “Docker image vulnerability research,” Federacy, 2017. [Online].
Available: https://www.federacy.com/docker image vulnerabilities

[2] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
docker hub,” in Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy. ACM, 2017, pp. 269–280.
[3] A. Bettini, “Vulnerability exploitation in docker container

environments,” FlawCheck, Black Hat Europe, 2015. [Online]. Avail-
able: https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-
Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf

[4] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[5] Sysdig, 2019. [Online]. Available: https://github.com/draios/sysdig
[6] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of

self for unix processes,” in Symposium on Security and Privacy. IEEE,
1996, pp. 120–128.

[7] E. Carter, “2018 docker usage report,” Sysdig, 2018. [Online].
Available: https://sysdig.com/blog/2018-docker-usage-report

[8] “8 surprising facts about real docker adoption,” Datadog, 2018.
[Online]. Available: https://datadoghq.com/docker-adoption

[9] VulHub: Pre-Built Vulnerable Environments Based on Docker-Compose,
2019. [Online]. Available: http://vulhub.org/

[10] Apache JMeter, 2018. [Online]. Available: https://jmeter.apache.org/
[11] Google cAdvisor, 2019. [Online]. Available: https://github.com/google/

cadvisor
[12] N. S. Altman, “An introduction to kernel and nearest-neighbor non-

parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[13] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis
and implementation,” Transactions on Pattern Analysis & Machine

Intelligence, no. 7, pp. 881–892, 2002.
[14] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection

and diagnosis from system logs through deep learning,” in Proceedings

of the ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2017, pp. 1285–1298.
[15] Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias:

Predicting security events through deep learning,” in Proceedings of the

ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018, pp. 592–605.

[16] P. Marinescu, C. Parry, M. Pomarole, Y. Tian, P. Tague, and I. Papagian-
nis, “Ivd: Automatic learning and enforcement of authorization rules in
online social networks,” in IEEE Symposium on Security and Privacy

(SP). IEEE, 2017, pp. 1094–1109.
[17] S. Banescu, C. Collberg, and A. Pretschner, “Predicting the resilience

of obfuscated code against symbolic execution attacks via machine
learning,” in 26th USENIX Security Symposium, 2017, pp. 661–678.

[18] H. Zhang and Z. Qian, “Precise and accurate patch presence test for
binaries,” in 27th USENIX Security Symposium, 2018, pp. 887–902.

[19] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
android kernel live patching,” in 26th USENIX Security Symposium

(USENIX Security 17), 2017, pp. 1253–1270.
[20] C. Salls, Y. Shoshitaishvili, N. Stephens, C. Kruegel, and G. Vigna,

“Piston: Uncooperative remote runtime patching,” in Proceedings of the

33rd Annual Computer Security Applications Conference. ACM, 2017,
pp. 141–153.

27

