
CDL: Classified Distributed Learning for Detecting Security
Attacks in Containerized Applications

Yuhang Lin
ylin34@ncsu.edu

North Carolina State University
Raleigh, North Carolina

Olufogorehan Tunde-Onadele
oatundeo@ncsu.edu

North Carolina State University
Raleigh, North Carolina

Xiaohui Gu
xgu@ncsu.edu

North Carolina State University
Raleigh, North Carolina

ABSTRACT
Containers have been widely adopted in production computing
environments for their efficiency and low overhead of isolation.
However, recent studies have shown that containerized applica-
tions are prone to various security attacks. Moreover, containerized
applications are often highly dynamic and short-lived, which fur-
ther exacerbates the problem. In this paper, we present CDL, a
classified distributed learning framework to achieve efficient secu-
rity attack detection for containerized applications. CDL integrates
online application classification and anomaly detection to over-
come the challenge of lacking sufficient training data for dynamic
short-lived containers while considering diversified normal behav-
iors in different applications. We have implemented a prototype of
CDL and evaluated it over 33 real world vulnerability attacks in
24 commonly used server applications. Our experimental results
show that CDL can reduce the false positive rate from over 12% to
0.24% compared to traditional anomaly detection schemes without
aggregating training data. By introducing application classification
into container behavior learning, CDL can improve the detection
rate from catching 20 attacks to 31 attacks before those attacks
succeed. CDL is light-weight, which can complete application clas-
sification and anomaly detection for each data sample within a few
milliseconds.

CCS CONCEPTS
• Security and privacy→ Virtualization and security.

KEYWORDS
Container Security, Anomaly Detection, Machine Learning

ACM Reference Format:
Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu. 2020. CDL:
Classified Distributed Learning for Detecting Security Attacks in Container-
ized Applications. In Annual Computer Security Applications Conference
(ACSAC 2020), December 7–11, 2020, Austin, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3427228.3427236

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427236

1 INTRODUCTION
Container technology is widely adopted in today’s distributed com-
puting environments for its efficiency and low overhead of isola-
tion. However, recent studies [2, 24] have shown that containers
are prone to various security attacks, which has become one of
the top concerns for users to fully adopt container technology [6].
Indeed, previous study [24] reveals an alarming degree of vulner-
ability exposure and spread in the official Docker Hub container
repository.

Security attack detection can be achieved by either a signature-
driven approach [16, 17] or an anomaly detection approach [10, 11].
In this work, we focus on studying the latter approach for dynami-
cally detecting both known and unknown attacks. Container-based
distributed systems bring both new challenges and opportunities
for security attack detection. On one hand, containerized applica-
tions are often ephemeral, which typically run for a short period of
time before the container is stopped for saving resources because
restarting a container is typically fast and incurs low cost [3, 7].
As a result, it is challenging for the anomaly detection system to
collect sufficient training data to build a reliable normal behavior
model. On the other hand, containerized applications are highly
replicated both spatially and temporally. The user often spawns
a large number of containers from the same container image to
achieve concurrent processing of a large workload. The same con-
tainer might be restarted at different times to process periodically
repeating requests. Thus, the inherent redundancy of the container
environment presents new opportunities for the anomaly detec-
tion model to leverage the power of distributed learning which can
aggregate related training data from a large number of distributed
containers to create a robust normal behavior model.

In this paper, we present a new classified distributed learning
(CDL) framework for achieving efficient security attack detection
in containerized applications. CDL implements a distributed learn-
ing framework to overcome the challenge of insufficient training
data in ephemeral container environments. Different from the tra-
ditional learning scheme which derives an independent normal
behavior model for each container from a limited set of training
data obtained during its short lifetime, CDL aims at building robust
normal behavior models by performing distributed learning over
aggregated training data from a group of distributed containers.
However, different applications can have very distinct normal be-
haviors. So it is insufficient to simply aggregate all training data
from all containers without considering the specific applications
running inside different containers. To address the challenge, we
propose to incorporate application-based classification into the dis-
tributed learning framework to createmore precise normal behavior
model for different applications.

https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1145/3427228.3427236

ACSAC 2020, December 7–11, 2020, Austin, USA Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu

CDL adopts a system call driven anomaly detection approach
using out-of-box container monitoring tools [1] to achieve non-
intrusive, low-cost security attack detection. Specifically, we con-
tinuously collect system call traces produced by each container
and extract feature vectors such as the invocation frequencies of
different system call types within each sampling interval (e.g., 0.1
second). We then feed the feature vectors into anomaly detection
models to detect different attacks. In this work, we choose autoen-
coder neural network [28] as our anomaly detection model because
of its computation efficiency and high accuracy.

Specifically, CDL consists of three integrated components: 1)
application classifiers which categorize different system call vectors
into their corresponding application groups for creating precise
normal behavior model for each application; 2) data assemblers
which collect system call feature vectors from different containers
and group system call feature vectors based on the application
classification results (e.g., Apache Tomcat versus OpenSSL), and 3)
classified learning which build normal behavior models for different
applications and perform attack detection using application-specific
models. This paper makes the following contributions:

• We propose a new classified distributed learning framework
to achieve efficient security attack detection for container-
ized applications.

• We present efficient application classification and anom-
aly detection schemes using light-weight, black-box online
learning methods.

• We have implemented a prototype of CDL and evaluated it
over 33 recent real critical vulnerabilities with high CVSS
scores in 24 commonly used server applications.

Our results show that CDL can successfully detect 31 out of 33
attacks with a low false positive rate (0.24% on average). In contrast,
the traditional learning scheme without aggregating any training
data incurs orders of magnitude higher false positive rate (12.74%
on average) because of lacking sufficient training data. We also com-
pare CDL with conventional distributed learning methods which
aggregate all training data without considering behavior variations
among different applications. The resulting model can only detect
20 out of 33 tested attacks due to unsorted training data. More-
over, CDL can detect two critical attack types (i.e., return a shell
and execute arbitrary code, consume excessive CPU) 15-18 sec-
onds before attacks succeed. CDL is lightweight and efficient, which
can finish online anomaly detection for each extracted system call
feature vector sampled at 100 millisecond intervals within a few
milliseconds.

The rest of the paper is structured as follows. Section 2 presents
CDL design in detail. Section 3 describes our experimental evalua-
tion methodology and our experimental results. Section 4 compares
CDL with related work. Section 5 concludes this paper.

2 SYSTEM DESIGN
In this section, we present the design of the CDL system. We first
provide an overview about the CDL system. We then describe each
CDL component in detail.

Figure 1: System overview of CDL.

2.1 System Overview
CDL implements a classified distributed learning framework shown
by Figure 1. CDL leverages an open-source container monitoring
tool called Sysdig [1] to collect system call traces from the out-
side of the containers. We leverage system calls for their ability to
reveal security attacks with low cost. CDL performs continuous
analysis over collected system call traces to achieve online attack
detection, which consists of four major steps: 1) system call feature
extraction, 2) application classification, 3) system call data grouping,
and 4) classified learning/detection. Specifically, the system call fea-
ture extraction component performs continuous system call data
pre-processing to extract useful features for attack detection. For
example, we compute the frequency count of each system call type
within a certain sampling interval to categorize the interactions be-
tween the application and the kernel. Next, the application classifier
identifies groupings of containerized applications and versions (e.g.,
ActiveMQ v1.0, Bash v3.0) based on their system call composition
and frequency. We currently leverage the random forest model to
perform application classification. Such an ensemble model offers
good accuracy by minimizing the over-fitting errors [13]. Next, the
system call grouping module assembles the feature data from differ-
ent containers into groups based on their application tags. Finally,
the grouped data are fed into an unsupervised neural network to
perform classified learning or detection. During classified training,
we create separate models for each application class. Those models
are then used to perform anomaly detection over the application
containers within their respective categories.

2.2 System Call Feature Extraction
To monitor containerized applications, we trace the system calls
they produce using the open source tool Sysdig [1]. The tracing
tool accesses the host kernel to provide helpful information about
operating system (OS) level events such as file read/write and syn-
chronization operations. Sysdig is also able to filter the events by
containers. Thus, the result is a detailed capture of the system calls
made by a specified container.

To achieve anomaly detection, we process the raw system call
trace into a stream of frequency vectors, that is, for each sampling
point, we calculate the occurrences of each system call type and
record it as a frequency vector feature for detecting security attacks.
To handle the diversity of system call types produced by different

CDL: Classified Distributed Learning for Detecting Security Attacks in Containerized Applications ACSAC 2020, December 7–11, 2020, Austin, USA

Table 1: A frequency vector sample for the Elasticsearch
application (CVE-2015-1427). An attack is triggered at t =
1586738324176. CDL raises alarms from t = 1586738324476.

Timestamp System Call Frequency
futex lseek read stat

1586738323776 8 0 361 0
1586738323876 6 0 349 0
1586738323976 8 0 344 0
1586738324076 6 0 309 0
1586738324176 (attack starts) 12 0 297 0
1586738324276 6 0 344 0
1586738324376 10 0 383 0
1586738324476 (attack detected by CDL) 8 0 451 0
1586738324576 8 6 375 3
1586738324676 370 64 434 32
1586738324776 118 193 625 94
1586738325876 (attack completes) 24 76 378 35

applications, we expand the frequency vector to the same dimension
by including all existing Linux system call types.

Table 1 shows an example of a partial frequency vector for an
attack exploiting the vulnerability CVE-2015-1427 in the Elastic-
search application. Each timestamp 𝑡 is associated with a vector
𝑉 = [𝑓1, 𝑓2, 𝑓3, ..., 𝑓𝑘] where 𝑓𝑖 (𝑖 ∈ [1, 𝑘]) is the occurrence count
for system call type 𝑠𝑖 during the last sampling period (100 mil-
liseconds) starting at time 𝑡 . For example, during the time period
[𝑡, 𝑡 + 100) milliseconds with 𝑡 = 1586738323776 (shown by the first
row in Table 1), the futex system call occurs 8 times, whereas read
is called 361 times. The attack starts at 𝑡 =1586738324176. We high-
light those system calls with abnormal frequency changes after the
attack starts. We notice significant frequency increases in futex,
lseek, read and stat system calls. CDL starts to raise an alarm
at 𝑡 = 1586738324476 during an initial increase in the number of
read calls. In the next sample, the containerized application starts
to invoke the stat call. However, by time 𝑡 = 1586738324676, the
frequency of the futex call is over an order of magnitude higher
than that before the attack starts.

It is also noteworthy that our extracted frequency vector trace
is orders of magnitude smaller than the original system call trace
in data size. For example, in our experiments, the average raw
system call trace has an average size of 1.2 GiB while the extracted
feature vector trace is only 4.8MiB on average. During the following
application classification and classified training/learning steps, we
only need to process feature vectors without transmitting large raw
system call traces over networks.

2.3 Application Classification
In order to create precise normal behavior models for different
applications, it is important to distinguish different applications.
However, we need to tackle a set of challenges to achieve the goal
in production container environments. First, we cannot rely on
human inputs to manually label each container since containers
can be highly dynamic and a production system often consists of
tens of thousands of containers. Second, we have to avoid intrusive
monitoring tools which can bring large overhead to light-weight
containers. Third, our application classification schemes need to be
workload insensitive since the containers of the same application

Figure 2: An example of random forest operation.

Figure 3: System call data grouping in the CDL system.

might process different workloads at different time. To this end, we
leverage the random forest learning scheme [13] to achieve the goal
shown by Figure 2. During our experiments, we observe that system
call feature vectors extracted by our system call preprocessing
scheme provide sufficient and workload insensitive patterns for us
to distinguish different applications.

The random forest classifier uses a number of decision trees
to improve accuracy while combating over-fitting. Each decision
tree receives only a portion of the training data. Each decision tree
makes local optimal splitting decisions among a random subset of
the features when splitting nodes. As a result, the trained decision
trees are usually quite different from one another. The output of
the random forest classifier then uses the majority voting result
among individual decision trees. For example, in Figure 2, the ran-
dom forest model consists of three decision trees. Given a system
call frequency vector, the first decision tree classifies the input
data is from the ActiveMQ application; the second and the third
decision trees classify the input data is from the Bash application.
The random forest model will output Bash as the final application
classification result.

2.4 System Call Data Grouping
The system call data grouping component handles the assembly
of data from multiple containers into different application classes
assigned by the application classifier. System call data grouping
operates in conjunction with the application classifier as shown by
Figure 3. Once the containers of the same application have been
identified by the application classifier, their data are aggregated
by concatenation, that is, the frequency vector traces of different
containers described in section 2.2 are appended to one another for
model training or attack detection. As all feature vectors are aligned

ACSAC 2020, December 7–11, 2020, Austin, USA Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu

Figure 4: Classified learning and anomaly detection of CDL.

ENCODE DECODE

hidden layers

output
layer

input
layer

neuron

Figure 5: Architecture of the autoencoder.

with the same dimension, it is easy to concatenate the classified
data from distributed containers.

Specifically, each application class has its own file with the fea-
ture vector data obtained from multiple containers of the same
class. Each feature vector is appended to the file corresponding to
the group predicted by the application classifier. The data grouping
module performs periodical data segmentation and send the newest
data segment to different application models for classified training
or attack detection, which will be described next.

2.5 Classified Learning and Anomaly Detection
Our classified learning scheme creates and maintains a model
ensemble consisting of different models for different application
classes shown by Figure 4. In this work, we chose autoencoder
neural networks for unsupervised model training and anomaly
detection to meet our goal of achieving online security attack de-
tection for containerized applications.

The autoencoder network consists of encode and decode regions
shown by Figure 5. Input data are compressed in the encode region
and reconstructed in the decode region. The model replicates its
input data after compressing the input data through intermediate
neural network layers. During the training phase, a model is built
to minimize the difference between its input and output. When the
autoencoder model is sufficiently trained, the model is able to pro-
duce an output data with small reconstruction error compared with
the normal input data. We can then use the reconstruction error to
implement anomaly detection. Specifically, when the autoencoder
model produces an output with high reconstruction error, we can
infer an abnormal input data is detected.

Our neural network consists of four layers of neurons with sig-
moid activation in addition to the input and output layers. Each
input data trains the autoencoder model for 10 iterations.We choose
to use a small neural network with just four layers and a small num-
ber of training iterations in order to achieve online training for
the container environment. We implement the autoencoder with
Tensorflow.

During training, our objective is to minimize mean squared error
(MSE).We perform backpropagationwith the Tensorflow implemen-
tation of the root mean square propagation (RMSProp) optimizer,
whose steps are executed with the following equations. Weight𝑤
is updated according to the formula:

𝑤𝑡 = 𝑤𝑡−1 − 𝛼 ∗ 𝑔𝑡√
𝑟𝑚𝑠𝑡 + 𝜖

(1)

where 𝛼 corresponds to learning rate, 𝐿 is MSE loss,𝑔 is the gradient
of the loss with respect to the weight (𝑑𝐿

𝑑𝑤
), 𝜌 and 𝜖 are small

Tensorflow default constants, and the root mean square of the
gradient 𝑟𝑚𝑠 is given by:

𝑟𝑚𝑠𝑡 = 𝜌 ∗ 𝑟𝑚𝑠𝑡−1 + (1 − 𝜌) ∗ 𝑔2𝑡 (2)

To determine proper error threshold for anomaly detection, we
adopt a statistical approach. Assuming majority of input data are
normal data during the training phase, we collect all the recon-
struction errors produced by the training data and compute a high
percentile value (e.g., 99.9 percentile) as the threshold. We refer to
this percentile value as the value of the training reconstruction er-
ror. This percentile value selection represents the tradeoff between
detection rate and false alarm rate. Intuitively, smaller threshold
yields more detections but also more false alarms. We conduct
experiments to illustrate such tradeoffs in Section 3.

3 EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation. We imple-
ment our prototype system and evaluate it on Amazon EC2 t3.large
instances with two 2.5 GHz vCPUs and 8 GB memory running
Ubuntu 16.04 64-bit.

3.1 Evaluation Methodology
In this subsection, we give details about our evaluationmethodology
as well as the alternative approaches that we compare our results
against.

3.1.1 Real-world vulnerabilities. We investigate 33 recent real-world
vulnerabilities documented in the Common Vulnerabilities and Ex-
posures (CVE) database. These selected vulnerabilities appear in 24
open source software, varying from back-end to front-end appli-
cations, which covers different types of containerized applications
commonly used in practice [3, 7]. All the studied vulnerabilities
and their attributes are summarized in Table 2.

3.1.2 Experiment setup. As mentioned in Section 2, we collect
system call data for each vulnerability in multiple containers for
training and testing. We design different workload intensity levels
that represent the normal operation of each application. To em-
ulate real world workload variations in dynamic containers, we
change the request rate by mutiplying a scale factor for each new
container. Each container receives a multiple (i.e. 1x, 2x, 4x and 8x.)

CDL: Classified Distributed Learning for Detecting Security Attacks in Containerized Applications ACSAC 2020, December 7–11, 2020, Austin, USA

Table 2: List of explored real-world vulnerabilities.

Threat
Impact

CVE ID CVSS
Score

Application Version

Return a shell
and execute
arbitrary code

CVE-2012-1823 7.5 PHP 5.4.1
CVE-2014-3120 6.8 Elasticsearch 1.1.1
CVE-2015-1427 7.5 Elasticsearch 1.4.2
CVE-2015-2208 7.5 phpMoAdmin 1.1.2
CVE-2015-3306 10.0 ProFTPd 1.3.5
CVE-2015-8103 7.5 JBoss 6.1.0
CVE-2016-3088 7.5 Apache ActiveMQ 5.11.1
CVE-2016-9920 6.0 Roundcube 1.2.2
CVE-2016-10033 7.5 PHPMailer 5.2.16
CVE-2017-7494 10.0 Samba 4.5.9
CVE-2017-8291 6.8 Ghostscript 9.2.1
CVE-2017-11610 9.0 Supervisor 3.3.2
CVE-2017-12149 7.5 JBoss 6.1.0
CVE-2017-12615 6.8 Apache Tomcat 8.5.19

Execute
arbitrary
code

CVE-2014-6271 10.0 Bash 4.2.37
CVE-2015-8562 7.5 Joomla 3.4.2
CVE-2016-3714 10.0 ImageMagick 6.7.9
CVE-2017-5638 10.0 Apache Struts 2 2.5
CVE-2017-12794 4.3 Django 1.11.4
CVE-2018-16509 9.3 Ghostscript 9.23
CVE-2018-19475 6.8 Ghostscript 9.25
CVE-2019-6116 6.8 Ghostscript 9.26

Disclose
credential
information

CVE-2014-0160 5.0 OpenSSL 1.0.1e
CVE-2015-5531 5.0 Elasticsearch 1.6.0
CVE-2017-7529 5.0 Nginx 1.13.2-1
CVE-2017-8917 7.5 Joomla 3.7.0
CVE-2018-15473 5.0 OpenSSH 7.7p1
CVE-2020-1938 7.5 Apache Tomcat 9.0.30

Consume
excessive CPU

CVE-2014-0050 7.5 Apache Commons
FileUpload

1.3.1

CVE-2016-6515 7.8 OpenSSH 7.2p2
Crash the
application

CVE-2015-5477 7.8 BIND 9
CVE-2016-7434 5.0 NTP 1.4.2.8

Escalate
privilege level

CVE-2017-12635 10.0 CouchDB 2.1.0

of the workload. We use Apache Jmeter to deliver different kinds
of workload. For example, we send HTTP GET requests to the web
application containers with the PHP vulnerability (CVE-2012-1823).
Whereas, application containers providing Network Time Protocol
(NTP) services are sent current time requests. While containers
are under the appropriate workload, we exploit their security vul-
nerabilities to investigate our attack detection model. We test four
containers for each vulnerability. For each container, the exper-
iments last a total time of seven minutes except in cases where
the attack crashes the application. The experiment procedure is as
follows. First, we run the application under normal workload condi-
tions for four minutes. Thereafter, we trigger the attack and allow it
to run until it succeeds. Finally, we exit the attack after it completes
where applicable. Thus, with a sample time of 0.1 seconds, each
container contributes about 2400 normal samples. The first minute
of each container data is used for training the application classifier,
the next two minutes are used for training autoencoder models,
and the last four minutes are used for testing the trained models.

3.1.3 Application classification setup. We consider each unique ap-
plication and version combination in Table 2 as a distinct application
class. There are two instances, corresponding to CVE-2015-8103
and CVE-2017-12149 vulnerabilities, that share the same application
and version number so we consider them to be the same applica-
tion. We compile a list of 555 system calls that are used by current
Linux kernels (as of version 4.19) as the frequency vector. This is

done to cover all system calls encountered both in our experiments
and in unobserved application environments CDL would operate
on. For any new application, we first expand its frequency vector
dimension to 555 by inserting zero values at the positions of system
calls that are not used during the application run-time.

The expanded data are then fed into a random forest classifier.
We use the scikit-learn implementation of random forest [4]. In

our experiment, every random forest classifier uses 200 decision
tree classifiers with no specified maximum depth. To produce a
stable output, we use a random state of zero. For each application,
we train a random forest classifier using the first minute of each
container instance of that application.

3.1.4 Autoencoder neural network setup. CDL adopts a small four
layer neural network for each of its individual models. The first
two layers form the encoder part of autoencoder while the third
and fourth layers form the decoder as depicted in Figure 5. Our
autoencoder prototype, implemented with Tensorflow, consists of
278 neurons in the first and fourth hidden layers and 70 in the
second and third layers. We set learning rate to 0.001 and utilize the
root mean square propagation (RMSProp) optimizer to minimize
the mean squared error (MSE) loss function. Once we train an
autoencoder model, we run anomaly detection on its training data
to analyze its reconstruction errors for choosing a threshold. We
select the values corresponding to the 99.9 percentile of those errors
as the default training reconstruction error for detecting anomalies.

3.1.5 Alternative approaches. We evaluate our classified learning
approach against two commonly used existing training methods.

The sampling method: Without aggregating training data
from multiple containers, each model is trained with a subset of
data samples. We call this traditional learning method the sampling
method. The drawback of this approach is that the captured por-
tions of historical training data may not adequately represent all
normal application behaviors.

The monolithic method: The monolithic approach combines
data from all containers without distinguishing different appli-
cations. This approach assumes that all data would improve the
model which may not necessarily be true. For instance, distinct
applications that experience differing trends may interfere with one
another during the training. This monolithic scenario represents
the other extreme where an excessive amount of data is utilized
blindly.

3.1.6 Evaluation metrics. We use true positive rate (TPR) and false
positive rate (FPR) metrics to compare the detection results among
different approaches. The calculation for these metrics are given by
the following equations where TP denotes the number of samples
that the detector correctly identifies while FP denotes the number
of samples that the detector falsely identifies and TN denotes the
number of the samples the detector correctly rejects while FN
denotes the number of the samples the detector falsely rejects.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 (4)

ACSAC 2020, December 7–11, 2020, Austin, USA Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu

(a) True positive rate. (b) False positive rate.

Figure 6: Classification results among different application classifiers.

Table 3: Classification results among different application
classifiers.

Application Classifier TPR FPR

SVM 49.44% 1.60%
Extremely Randomized Trees 89.84% 0.33%

CDL 91.03% 0.29%

We also measure the time from when the attack is first detected
to the time when the attack succeeds. We use call this time duration
the lead time. The longer the lead time is, the more likely the attack
can be stopped before it compromises the application.

3.2 Results Analysis
3.2.1 Application classification. We compare the random forest
classifier used by CDL with extremely randomized trees (ER Trees)
and support vector machine (SVM) classifiers. Similar to the random
forest case, we use scikit-learn implementations of both extremely
randomized trees and SVMwith a random state of zero. Table 3 gives
the overall true positive rate and false positive rate results of each
classifier. In addition, we present the classifier performance across
the different threat impact categories in Figure 6. Each classifier
has to accurately classify system call data from various applications
collected under different workload conditions.

SVM, which has only one classifier instance, finds this task dif-
ficult. It also generates the lowest true positive rate among all
attack categories. In contrast, both random forest and extremely
randomized trees are ensemble models which make use of the vot-
ing classification results of multiple decision trees. Thus, both CDL
and extremely randomized trees achieve much higher true positive
rate and much lower false positive rate than SVM. CDL achieves
higher true positive rate and lower false positive rate than extremely
randomized trees on average. CDL attains the highest true positive
rate among all threat impact categories.

3.2.2 Classified detection. Table 4 shows the detection results over
all vulnerability attacks used in our experiments. The results show
that CDL can successfully detect 31 out of 33 attacks while the
monolithic method can only detect 20 out of 33 attacks due to
conflicting training data. Although the sampling method can detect

Table 4: Detection results of all CVE examined among differ-
ent models.

Threat Impact CVE ID Detected
Sampling Monolitic CDL

Return a shell
and execute
arbitrary code

CVE-2012-1823 ✓ ✗ ✓
CVE-2014-3120 ✓ ✓ ✓
CVE-2015-1427 ✓ ✓ ✓
CVE-2015-2208 ✓ ✓ ✓
CVE-2015-3306 ✓ ✗ ✓
CVE-2015-8103 ✓ ✓ ✓
CVE-2016-3088 ✓ ✗ ✓
CVE-2016-9920 ✓ ✓ ✓
CVE-2016-10033 ✓ ✓ ✓
CVE-2017-7494 ✓ ✓ ✗
CVE-2017-8291 ✓ ✗ ✓
CVE-2017-11610 ✓ ✗ ✓
CVE-2017-12149 ✓ ✓ ✓
CVE-2017-12615 ✓ ✓ ✓

Execute
arbitrary
code

CVE-2014-6271 ✓ ✗ ✓
CVE-2015-8562 ✗ ✓ ✓
CVE-2016-3714 ✓ ✓ ✓
CVE-2017-5638 ✓ ✓ ✓
CVE-2017-12794 ✓ ✓ ✓
CVE-2018-16509 ✓ ✓ ✓
CVE-2018-19475 ✓ ✓ ✓
CVE-2019-6116 ✓ ✓ ✓

Disclose
credential
information

CVE-2014-0160 ✓ ✗ ✓
CVE-2015-5531 ✓ ✓ ✓
CVE-2017-7529 ✓ ✗ ✓
CVE-2017-8917 ✓ ✗ ✓
CVE-2018-15473 ✓ ✗ ✗
CVE-2020-1938 ✓ ✗ ✓

Consume
excessive CPU

CVE-2014-0050 ✓ ✓ ✓
CVE-2016-6515 ✓ ✓ ✓

Crash the
application

CVE-2015-5477 ✓ ✗ ✓
CVE-2016-7434 ✓ ✗ ✓

Escalate
privilege level CVE-2017-12635 ✓ ✓ ✓

Total successful detection 32 20 31

Table 5: Summary of detection results among different mod-
els.

Model TPR FPR Lead time

Sampling 89.39% 12.74% 12.16s
Monolithic 44.70% 0.08% 5.77s

CDL 74.24% 0.24% 9.23s

32 out of 33 attacks, it produces orders of magnitude higher false
positives than CDL, shown by Table 5. We also varied the percentile
threshold in the autoencoder model and show the results. The
results using 99 percentile of training reconstruction error are listed

CDL: Classified Distributed Learning for Detecting Security Attacks in Containerized Applications ACSAC 2020, December 7–11, 2020, Austin, USA

(a) True positive rate. (b) False position rate.

Figure 7: Detection results among different models with 99.9 percentile of training reconstruction error.

(a) True positive rate. (b) False positive rate.

Figure 8: Detection results among different models with 99 percentile of training reconstruction error.

(a) Lead time with 99.9 percentile of training reconstruction error. (b) Lead time with 99 percentile of training reconstruction error.

Figure 9: Comparisons of lead time among different models.

Table 6: Detection results among different models with 99
percentile of training reconstruction error.

Model TPR FPR Lead time

Sampling 90.15% 27.88% 12.77s
Monolithic 52.27% 0.93% 6.01s

CDL 81.06% 1.07% 10.91s

in Table 6. We observe that CDL can achieve both high true positive
rate and low false positive rate.

Figure 7 and Figure 8 illustrate the detection results across all
attack threat impact categories. CDL models achieve the highest
true positive rate in detecting “execute arbitrary code” attacks and
the lowest false positive rate in detecting “disclose credential infor-
mation” and “consume excessive CPU" attacks. Due to insufficient
training, sampling models usually do not have enough knowledge
of normal behavior. Thus, they under-fit the data and have high

ACSAC 2020, December 7–11, 2020, Austin, USA Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu

Table 7: CDL system run time measurements.

System Modules Time per sample

Classifier training 135.35±0.15 ms
Autoencoder training 2.53±0.01 ms
Application classification 3.80±0.04 ms
Attack detection 3.50±0.06 ms

true positive rate and high false positive rate at the same time. The
monolithic model is trained using all the training data from all
the different applications. Thus, it over-fits the data and has low
true positive rate and low false positive rate. CDL achieves good
trade-off between true positive rate and false positive rate. In terms
of true positive rate, CDL performs well in three categories: “return
a shell and execute arbitary code”, “execute arbitrary code” and
“escalate privilege level”, but less accurately in the remaining three
categories: “disclose credential information", “consume excessive
CPU" and “crash the application". We discuss in the next section,
Section 3.3, our observation that attacks in those three categories
usually result in significant changes to the top frequent system
calls, while the rest three categories usually happen suddenly with
little deviation in system calls.

The lead time comparison between two different percentile of
training reconstruction error values can be found in Figure 9 as
well as in Table 5 and Table 6. Higher percentile of training recon-
struction error generally leads to lower lead time. However, the lead
time result of the “escalate privilege level” category is not sensitive
to the percentile of training reconstruction error used. CDL models
have much larger lead time than the monolithic models in almost
all cases except in the “execute arbitrary code” attacks. Sampling
models generally have the largest lead time among all models. Note,
however, that sampling models have much higher false positive
rate which makes them unsuitable to apply in practice.

3.2.3 System Run Time Analysis. Lastly, we evaluate the run time
for different operations of the CDL system. Table 7 shows the time
per sample for key steps in our system. Classifier training is the
most time consuming step and it needs about 135.35 ms to train each
sample. Autoencoder training takes about 2.53 ms for training each
sample. Application classification takes about 3.8 ms to complete
and attack detection by autoencoder model takes about 3.5 ms for
each sample. Recall that each sample covers a sampling period of
100 ms, so CDL can detect attacks in real time. Overall, the run time
analysis show that CDL is lightweight and applicable for detecting
attacks in real time under real world settings.

3.3 Case Study
In this subsection, we discuss an example in detail to show how
CDL’s identification results help to better detect attacks. Thereafter,
we highlight an attack from each of the other categories.

3.3.1 Execute arbitrary code. We investigate an attack to the Joomla
CVE-2015-8562 exposure. The attack takes advantage of a vulnera-
bility in the HTTP User-Agent field of a request that allows PHP
object injection. In particular, the attack we trigger causes a deseri-
alization error. We study the alarms in the containers detected by
CDL but not by sampling and monolithic models by examining the

average system call frequencies in the normal period to compare
with that of the attack period. In all containers, the top frequent
system calls during the alarm period are the following: fstat, lstat,
access, close and open. These are also the system calls with the most-
changed average counts between the normal and the attack period.
Fstat and lstat are responsible for retrieving file status information
like file owner ID, file size or time of last file access. Access checks
whether the calling process can access a specified file. Open readies
a requested file, while close discontinues the use of a file descriptor.
These calls are very relevant to this Joomla attack that accesses
cookies secured in a MySQL database. Attempts are also made to
convert the file content from its serial format into data structures
in memory.

3.3.2 Return a shell and execute arbitrary code. Here, we highlight
the CVE-2016-9920 vulnerability of the Roundcube mail application.
This exposure allows custom parameters to be accepted in the
mail fields of the application. This allows an attacker to insert
commands that execute and can return a shell. The top system
calls made by the container while under attack are read, stat, close,
open, write and mmap. The attack triggers Roundcube to save a
PHP shell command into a file that will be run. Thus, stat obtains
file information that write can use to record the crafted command.
When the file contents are invoked to run, they are mapped into
memory with mmap. Finally, close and open calls are made to use
file descriptors as needed.

3.3.3 Disclose credential information. Next, we discuss the Heart-
bleed bug (CVE-2014-0160) of the OpenSSL library. The bug allows
a malicious user to access protected information outside an as-
signed memory buffer when receiving SSL Heartbeat responses.
We record the following top system calls during the attack: gettime-
ofday, stat, poll, writev, close, and open. The attack incorporates a
timeout mechanism while waiting for a server response to confirm
whether the server is vulnerable. This is responsible for the get-
timeofday calls, which significantly outnumber the other system
calls. Stat and writev calls retrieve file information and write from
multiple buffers respectively, to prepare Heartbeat response mes-
sages. Meanwhile, poll waits for the above files to ready their I/O
data. Open and close calls are also notably involved in managing
the life cycles of the files used.

3.3.4 Consume excessive CPU. In CVE-2016-6515, OpenSSH before
version 7.3 does not limit the length for passwords, which can
result in a denial-of-service attack (DoS attack) by a long string.
The top frequent system calls during the alarm period are: close,
read, mmap, open, mprotect and fstat. Those system calls are also
the top frequent system calls before triggering the attack, but we
observe the frequency of each system calls increase by at most
5 times. Processing password information is sensitive. Thus, we
deduce that mmap maps related disk contents into memory while
mprotect ensures proper access restrictions. The remaining system
calls get related file information, read the data and then close the
file descriptor when done. The infinite loop triggered by the attack
would likely cause these tasks to occur repeatedly.

3.3.5 Crash the application. According to CVE-2016-7434, NTP
suffers from a null pointer reference which could lead to crashing.
Because of the nature of crashing, the attack period usually lasts

CDL: Classified Distributed Learning for Detecting Security Attacks in Containerized Applications ACSAC 2020, December 7–11, 2020, Austin, USA

less than 0.3 second. The top frequent system calls during the alarm
period are: gettid, rt_sigprocmask, read, write, clock_gettime and
recvmsg. We believe that the attack happens in such a short time,
that there is not a significant change in system call composition.
Nevertheless, the NTP attack is triggered upon receiving amalicious
most recently used list (mrulist) query. Gettid may be used to obtain
the thread ID of the request delivered by recvmsg over the socket
connection. The mrulist then needs to be read and processed by
read and write calls. Meanwhile, clock_gettime would correspond
to expected NTP workload to acquire time information.

3.3.6 Escalate privilege level. We analyze the CouchDB CVE-2017-
12635 vulnerability. Because of different ways of parsing JSON
objects by JavaScript and Erlang, this vulnerability can be used to
gain access to create an administrator account. The top frequent sys-
tem calls during the alarm period are: close, epoll_wait, sched_yield,
futex, and switch. We notice that the appearance of system call close
is significantly larger than that of any other system calls. The reason
is that the attack changes the behavior of the application, so that it
deletes file descriptors more often. The attack is administered with
multiple HTTP requests with the close option set in the Connection
field. The close system call will be useful for closing unneeded files
related to those packets.

4 RELATEDWORK
In this section, we compare our work with closely related work.

Container Vulnerability. The security of containers has at-
tracted the attention of a lot of researchers in recent years. Zerouali
et al. [33] find that among 7,380 studied official and community
Docker images, every release is vulnerable. Docker image vulnera-
bility analysis (DIVA) [24] is a scalable framework for discovering,
downloading and analyzing both official and community Docker im-
ages. DIVA shows that both official and community Docker images
contain more than 180 vulnerabilities on average. Tunde-Onadele
et al. [29] compare multiple detection schemes and suggest that
dynamic detection outperforms static vulnerability scanning for
containers. By combing static and dynamic detection schemes, the
detection rate can be further improved. Martin et al. [22] identify,
in the different components of the Docker ecosystem, several vul-
nerabilities and detailed real world exploitation scenarios. They
also propose possible fixes and discuss the adoption of Docker by
platform-as-a-service (PaaS) providers. Lin et al. [18] study 11 ex-
ploits that can successfully bypass the isolation provided by the
container to achieve privilege escalation. The authors then propose
a defense mechanism to defeat those identified privilege escalation
exploits. These studies emphasize the current vulnerable state of
the container environment. Thus, there is a strong need for effective
methods of detecting security attacks with a system like CDL.

Anomaly Detection. Abed et al. [5] apply the bag of system
calls technique to detect anomalies in containers. This processes a
system call trace into vectors in intervals of the same total count.
Yolacan et al. [32] propose a process trace clustering approach using
multi-hidden Markov models (HMM) to detect system call anom-
alies. Maggi et al. [20] combine clustering and a behavioral Markov
model to build an unsupervised host-based intrusion detection sys-
tem based on system call arguments and sequences analysis. Geng

et al. [11] improve the efficiency of the sequence time delay embed-
ding (STIDE) algorithm by only considering system call sequences
that contain axis system calls. These axis system calls could more ef-
fectively represent the characteristics of normal behaviors with low
overhead. Deep learning models have been recently explored for
anomaly detection. Greenhouse [15] is designed as a zero-positive
machine learning system which does not require any anomalous
sample using long short-term memory (LSTM) method. Malhotra et
al. [21] present stacked LSTM networks for detecting anomalies in
several time series datasets. Taylor et al. [27] apply LSTM to detect
anomalies in a car’s controller area network (CAN) with low false
alarm rate for catching possible intrusion to CAN. Sakurada et al.
[23] propose to use autoencoders with nonlinear dimensionality
reduction for general anomaly detection.

In comparison to existing anomaly detection schemes, CDL fo-
cuses on addressing special challenges of insufficient training data
in container environments. CDL proposes a new classified dis-
tributed learning framework which is orthogonal to specific ma-
chine learning algorithms used for anomaly detection. Although
CDL currently employs the autoencoder anomaly detection algo-
rithm, it can be easily applied to other anomaly detection algo-
rithms.

Federated Learning. Konečnỳ et al. [14] propose a decentral-
ized approach to learning a shared centralized model, called fed-
erated learning. This is executed by aggregating local-computed
updates from a large number of clients over an unreliable network.
Later, Lin et al. [19] design deep gradient compression (DGC) to
reduce the communication bandwidth of federated learning. Yao et
al. [31] further improve federated learning by aggregating features
from both the local and global models to achieve higher accuracy
with less communication cost. Sozinov et al. [26] compare cen-
tralized training with federated learning and show that federated
learning can achieve acceptable accuracy similar to centralized
learning. CDL implements distributed learning using aggregated
training data in a similar way as federated learning. However, CDL
incorporates application classification into distributed learning to
overcome the challenge of detecting security attacks in dynamic
container systems.

Distributed Machine Learning. Hashdoop [9] improves the
detection accuracy of network traffic anomaly detectors on Hadoop.
They achieve this by carefully splitting network traffic such that
the sampled traffic maintains its original structure. Song et al. [25]
provide a parallel k-medoids clustering algorithm for high accu-
racy and efficiency. Chen et al. [8] provide a robust model training
system which is orders of magnitude faster than alternate median-
based approaches. Gopal et al. [12] achieve an order of magnitude
decrease in training time through a parallel calculation of the like-
lihood function in logistic models. Petuum [30] provides a unified
parallel optimization framework to help machine learning (ML) pro-
grams run faster. Similar to the above approaches, CDL promotes
the distributed learning approach. However, CDL differs from the
above work by focusing on improving the accuracy of security
attack detection using input data from similar applications to create
lightweight application-specific models with low training cost.

ACSAC 2020, December 7–11, 2020, Austin, USA Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu

5 CONCLUSION
In this paper, we have presented CDL, a new classified distributed
learning framework that aims at achieving practical and efficient
security attack detection for containerized applications. CDL in-
tegrates online application classification and application-specific
anomaly detection models to overcome the challenges of lacking
sufficient training data for individual short-lived containers. We
have implemented a prototype of CDL and conducted experiments
over 33 real world vulnerability exploits in 24 commonly used appli-
cations. Our results show that CDL can reduce false positive rates
from over 12% to 0.24% compared to traditional learning methods
without aggregating training data from different containers and
increase the true positive rate from 45% to 74% compared to simple
training data aggregation without performing application classifi-
cations. CDL supports real time security attack detection, which
makes it practical for production computing environments.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
valuable feedback. This work is supported by the NSA Science of
Security Lablet: Impact through Research, Scientific Methods, and
Community Development under the contract number H98230-17-
D-0080. Any opinions, conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES
[1] 2016. Secure DevOps platform for cloud native. https://www.sysdig.com
[2] 2017. Docker image vulnerability research. https://www.federacy.com/docker_

image_vulnerabilities
[3] 2018. 8 surprising facts about real Docker adoption. https://datadoghq.com/

docker-adoption
[4] 2019. Random forest classifier. https://scikit-learn.org
[5] Amr S Abed, T Charles Clancy, and David S Levy. 2015. Applying bag of system

calls for anomalous behavior detection of applications in Linux containers. In
2015 IEEE Globecom Workshops (GC Wkshps). IEEE, 1–5.

[6] Anthony Bettini. 2015. Vulnerability exploitation in Docker container environ-
ments. FlawCheck, Black Hat Europe (2015).

[7] Eric Carter. 2018. 2018 Docker usage report. https://sysdig.com/blog/2018-
docker-usage-report

[8] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos.
2018. DRACO: Byzantine-resilient Distributed Training via Redundant Gradients.
In International Conference on Machine Learning. 902–911.

[9] Romain Fontugne, Johan Mazel, and Kensuke Fukuda. 2014. Hashdoop: A MapRe-
duce framework for network anomaly detection. In Computer Communications
Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE, 494–499.

[10] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff.
1996. A sense of self for UNIX processes. In Symposium on Security and Privacy.
IEEE, 120–128.

[11] Li-zhong Geng and Hui-bo Jia. 2009. A low-cost method to intrusion detection
system using sequences of system calls. In 2009 Second International Conference
on Information and Computing Science, Vol. 1. IEEE, 143–146.

[12] Siddharth Gopal and Yiming Yang. 2013. Distributed training of large-scale
logistic models. In International Conference on Machine Learning. 289–297.

[13] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1. IEEE, 278–282.

[14] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[15] Tae Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, and Stan Zdonik.
2018. Greenhouse: a zero-positive machine learning system for time-series
anomaly detection. arXiv preprint arXiv:1801.03168 (2018).

[16] Wei Li. 2004. Using genetic algorithm for network intrusion detection. Proceedings
of the United States department of energy cyber security group 1 (2004), 1–8.

[17] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.
2013. Intrusion detection system: A comprehensive review. Journal of Network
and Computer Applications 36, 1 (2013), 16–24.

[18] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018.
A measurement study on Linux container security: Attacks and countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference.
418–429.

[19] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

[20] FedericoMaggi, MatteoMatteucci, and Stefano Zanero. 2008. Detecting intrusions
through system call sequence and argument analysis. IEEE Transactions on
Dependable and Secure Computing 7, 4 (2008), 381–395.

[21] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long
short term memory networks for anomaly detection in time series. In Proceedings,
Vol. 89. Presses universitaires de Louvain.

[22] AntonyMartin, Simone Raponi, Théo Combe, and Roberto Di Pietro. 2018. Docker
ecosystem–vulnerability analysis. Computer Communications 122 (2018), 30–43.

[23] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis. ACM, 4.

[24] Rui Shu, Xiaohui Gu, and William Enck. 2017. A study of security vulnerabilities
on Docker hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy. 269–280.

[25] Hwanjun Song, Jae-Gil Lee, and Wook-Shin Han. 2017. PAMAE: parallel k-
medoids clustering with high accuracy and efficiency. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1087–1096.

[26] Konstantin Sozinov, Vladimir Vlassov, and Sarunas Girdzijauskas. 2018. Human
activity recognition using federated learning. In 2018 IEEE Intl Conf on Parallel &
Distributed Processingwith Applications, Ubiquitous Computing&Communications,
Big Data & Cloud Computing, Social Computing & Networking, Sustainable Com-
puting & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE,
1103–1111.

[27] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. 2016. Anomaly detection
in automobile control network data with long short-term memory networks.
In 2016 IEEE International Conference on Data Science and Advanced Analytics
(DSAA). IEEE, 130–139.

[28] Benjamin Berry Thompson, Robert J Marks, Jai J Choi, Mohamed A El-Sharkawi,
Ming-Yuh Huang, and Carl Bunje. 2002. Implicit learning in autoencoder novelty
assessment. In Proceedings of the 2002 International Joint Conference on Neural
Networks. IJCNN’02 (Cat. No. 02CH37290), Vol. 3. IEEE, 2878–2883.

[29] Olufogorehan Tunde-Onadele, Jingzhu He, Ting Dai, and Xiaohui Gu. 2019. A
Study on Container Vulnerability Exploit Detection. In 2019 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 121–127.

[30] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A new
platform for distributed machine learning on big data. IEEE Transactions on Big
Data 1, 2 (2015), 49–67.

[31] Xin Yao, Tianchi Huang, Chenglei Wu, Ruixiao Zhang, and Lifeng Sun. 2019.
Towards faster and better federated learning: A feature fusion approach. In 2019
IEEE International Conference on Image Processing (ICIP). IEEE, 175–179.

[32] Esra N Yolacan, Jennifer G Dy, and David R Kaeli. 2014. System call anomaly
detection using multi-hmms. In 2014 IEEE Eighth International Conference on
Software Security and Reliability-Companion. IEEE, 25–30.

[33] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona.
2019. On the relation between outdated Docker containers, severity vulnerabili-
ties, and bugs. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 491–501.

https://www.sysdig.com
https://www.federacy.com/docker_image_vulnerabilities
https://www.federacy.com/docker_image_vulnerabilities
https://datadoghq.com/docker-adoption
https://datadoghq.com/docker-adoption
https://scikit-learn.org
https://sysdig.com/blog/2018-docker-usage-report
https://sysdig.com/blog/2018-docker-usage-report

	Abstract
	1 Introduction
	2 System Design
	2.1 System Overview
	2.2 System Call Feature Extraction
	2.3 Application Classification
	2.4 System Call Data Grouping
	2.5 Classified Learning and Anomaly Detection

	3 Experimental Evaluation
	3.1 Evaluation Methodology
	3.2 Results Analysis
	3.3 Case Study

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

