
ViCo: An Adaptive Distributed Video Correlation System

Xiaohui Gu, Zhen Wen, Ching-Yung Lin, Philip S. Yu
IBM T. J. Watson Research Center

Hawthorne, NY 10532

{xiaohui, zhenwen, chingyung, psyu}@ us.ibm.com

ABSTRACT
Many emerging applications such as video sensor monitoring
can benefit from an on-line video correlation system, which
can be used to discover linkages between different video
streams in realtime. However, on-line video correlations are
often resource-intensive where a single host can be easily
overloaded. We present a novel adaptive distributed on-line
video correlation system called ViCo. Unlike single stream
processing, correlations between different video streams re-
quire a distributed execution system to observe a new cor-
relation constraint that any two correlated data must be
distributed to the same host. ViCo achieves three unique
features: (1) correlation-awareness that ViCo can guarantee
the correlation accuracy while spreading excessive workload
on multiple hosts; (2) adaptability that the system can adjust
algorithm behaviors and switch between different algorithms
to adapt to dynamic stream environments; and (3) fine-
granularity that the workload of one resource-intensive cor-
relation request can be divided and distributed among mul-
tiple hosts. We have implemented and deployed a prototype
of ViCo on a commercial cluster system. Our experiment
results using both real videos and synthetic workloads show
that ViCo outperforms existing techniques for scaling-up the
performance of video correlations.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
H.1.1 [Information Storage and Retrieval]

General Terms
Design, Algorithms, Performance

Keywords
Video correlation, Adaptive stream processing

1. INTRODUCTION
Video streams have become prevalent with the emergence

of video sensor networks [5, 12], web cameras, and Internet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’06, October 23–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-447-2/06/0010 ...$5.00.

stream S1

Diffusion
proxy

Correlation

Node1

Correlation
Node2

Correlation

Node3

Result
Integrator

Correlation

results

stream S
2

Figure 1: Distributed on-line video correlation.

TVs. Many applications such as sensor monitoring call for
on-line continuous analysis over video streams that can be
produced at distributed locations. In these applications,
distributed video streams are continuously pushed into a
stream processing system, where different processing func-
tions (e.g., classification[2], similarity comparison [22]) are
continuously applied to the input streams. Compared to
traditional off-line analysis systems, on-line processing facili-
tates realtime decision-making and eliminates excessive stor-
age requirements by continuously processing video streams
as they flow into the system. To support unbounded streams,
the stream processing system often associates a sliding-window
with each stream. The window contains the most recently
arrived data items on the stream. The window can be either
time-based (e.g., video frames arrived in the last 60 seconds)
or number-based (e.g., the last 1000 video frames). One of
the most important video processing functions is sliding-
window correlation between different video streams. The
output of the correlation contains all pairs of video frames
that satisfy a correlation predicate and are simultaneously
present in their respective windows. On-line video correla-
tions have many interesting applications, such as (1) corre-
lating different news video streams for hot topic detection;
(2) correlating video streams from multiple views for con-
structing environment models; and (3) correlating multiple
surveillance video streams for abnormal events identification
and verification.

One major challenge in processing on-line video correla-
tions is to handle continuous, high-volume, and time-varying
stream workload under system resource constraints. A single
host can be easily overloaded by the video correlation work-
load where each video frame has to compare with a number
of video frames on the other stream in realtime. Previous
work has proposed load shedding techniques (e.g., [10, 20])
to intelligently drop some “unimportant” data based on the
system predictions. However, data dropping can affect the
accuracy of stream correlations (i.e., some correlation results
can be missing). Thus, the goal of our work is to provide
an efficient distributed execution solution for on-line video

correlations, which is illustrated by Figure 1. Video streams
from different distributed locations are continuously pushed
into the system for correlation processing. We provide a
load diffusion proxy service that can efficiently spread the
correlation workload among multiple hosts. Although load
distribution has been extensively studied in conventional
distributed environments (e.g.,[13]), we are motivated to re-
examine the problem for video correlations by two key ob-
servations. First, stream correlations impose an additional
correlation constraint for the distribution system: any two
frames that need to be correlated must be distributed to the
same host exactly once. Second, distributed stream environ-
ments are highly dynamic where both data arrival rates and
computation workloads can dynamically change over time.
The change of data arrival rates can be caused by video
scene changes or network delay jitters when data arrive from
remote sites. The computation workloads can vary over time
when users require different video comparison algorithms or
the video scenes experience changes. Thus, the distribution
system must perform fast, on-line adaptations for maintain-
ing optimal on-line video correlation performance.

In this paper, we present the design and implementation
of a novel distributed on-line video correlation system called
ViCo. We first theoretically prove that any distributed cor-
relation scheme has to replicate some frames on multiple
hosts in order to preserve the correlation accuracy, which is
called diffusion overhead. Thus, the goal of our design is to
achieve minimum diffusion overhead while balancing the cor-
relation workload among different hosts. The ViCo system
employs a diffusion proxy to adaptively dispatch input video
frames to different hosts for correlation processing based on
both stream correlation constraint and host load conditions.
We propose two light-weight correlation-aware stream par-
tition algorithms for the load diffusion proxy. The stream
partition algorithm dynamically splits a high volume input
stream into multiple sub-streams, each of which only con-
tains a subset of data on the original input stream. The data
on these sub-streams are routed to different hosts for con-
current correlation processing. Hence, each host only shares
a partial workload since it only processes a subset of data
on the original stream. We prove that both stream partition
algorithms can preserve the accuracy of stream correlations
and analyze their theoretical properties in terms of diffusion
overhead. We then present a spectrum of on-line adapta-
tion algorithms based on our diffusion overhead analysis.
We first describe the micro-adaptation algorithms that can
dynamically adjust the distribution behaviors within each
stream partition algorithm. We then present the macro-
adaptation algorithms that can dynamically switch between
the two stream partition algorithms. We propose a novel
data marking technique to assure that the on-line adaptation
algorithms can still preserve the correlation constraint.

We have implemented a prototype of the ViCo system
on top of our distributed stream processing infrastructure
called System S [11, 7] that can perform scalable large-
scale stream processing using hundreds of commercial IBM
blade servers. We also implemented a news video correlation
application on top of the ViCo system. We conduct exten-
sive experiments using both real video data and a range of
different synthetic workloads. Our experiments show several
interesting results: (1) the load diffusion algorithms can
achieve much higher correlation throughput than conven-
tional distribution schemes; (2) the diffusion proxy is light-

P2

P1

Memory

buffer 1

Sliding window W
2

Video
stream S1s

1
(0)

Image similarity

analysis
Sliding window W

1

Video
stream S2

s
1
(1)s

1
(2)s

1
(3)s

1
(4)s

1
(5)s

1
(6)

Memory

buffer 2 s
2
(0)s

2
(1)s

2
(2)s

2
(3)s

2
(4)s

2
(5)s

2
(6)

Figure 2: On-line video correlation using sliding-
window stream join.

weight and fast, which can dispatch a video frame within
tens of micro-seconds on a commercial server host; and (3)
the performance of the diffusion algorithms is sensitive to
stream environment changes and the adaptation algorithms
can effectively achieve much better performance than static
diffusion algorithms. The rest of the paper is organized as
follows. Section 2 introduces the system model and the
problem definition. Section 3 presents the detailed design
and algorithms of our distributed video correlation system.
Section 4 presents the prototype implementation and exper-
imental results. Section 5 reviews related work. Finally, the
paper concludes in Section 6.

2. PRELIMINARY
In this section, we first present the on-line video corre-

lation application model followed by the centralized video
correlation algorithm. We then present the formal definition
of the distributed video correlation problem.

2.1 On-line Video Correlation
On-line video correlations perform continuous compar-

isons between two different video streams, illustrated by
Figure 2. A video stream, denoted by Si, consists of a
sequence of video frames denoted by si ∈ Si. We assume
that each frame si ∈ Si carries a time-stamp, denoted by
si.t, to record the time when the frame arrives on the stream
Si. We use ri to denote the average arrival rate of the stream
Si. The input video streams can be either local archived
video streams or live video streams from remote sites (e.g,
video sensors). Thus, the stream arrival rate can be affected
by several factors such as the video source production speed,
the network delays, and scene changes. For example, a
powerful video server can produce video streams much faster
than a resource-constrained video sensor. The arrival rate
of a stream can also dynamically change over time due to
network delay jitters (from the remote video source to the
processing host) and dynamic scene changes. To support
unbounded streams, we associate a sliding-window Si[Wi]
with each video stream Si that contains the most recently
arrived video frames1. The on-line video correlation can
be performed by a sliding-window correlation between two
streams2 S1 and S2 over a correlation predicate θ, denoted
by Ci = S1[W1] ./θ S2[W2]. The correlation output consists
of all pairs of video frames (s1, s2), such that (1) s1 and
s2 satisfy the correlation predicate θ and (2) s1 and s2

1For illustration, we only discuss time-based windows. The
frame-based windows can be translated into time-based
windows.
2In this paper, we focus on the two-way stream correlations.
We can extend our scheme to support multi-way correla-
tions, which is beyond the scope of this paper.

belong to their respective sliding windows. The correlation
predicate can be configured as finding similar or dissimilar
images according to the user’s requirements. For example, a
news video correlation application may want to find similar
images between different news videos for hot topic detection
while a detailed video analysis system may want to filter
out similar images for workload reduction and only perform
detailed analysis on distinct video frames. The video data
arrived at the video correlation system can be MPEG raw
data, low-level feature vectors (e.g., color features), or high-
level concept values (e.g., people, aircraft). Based on the
input data content, the similarity analysis can be performed
using different content analysis algorithms (e.g., [16, 22,
2]). To reduce the number of correlation computations,
we perform shot detection based on low-level features (e.g.,
color features) and only correlate the key frames of the two
input streams.

2.2 Centralized Video Correlation
The video correlation can be performed on a single host

using the following centralized algorithm. The host main-
tains two memory buffers B1 and B2 for caching incoming
video frames from two input streams S1 and S2 since on-line
correlation requires in-memory processing. We use si(t) to
denote a frame that arrives at Si at time t. The video frames
are processed in a temporal order, i.e., if s1 in the buffer B1

arrives before s2 in the buffer B2, s1 is processed first. For
example, in Figure 2, s1(3) is processed before s2(4). Each
buffer Bi, i = 1, 2 maintains a pointer Pi, i = 1, 2 to refer
to the frame currently being processed by the correlation
operator. The basic steps for processing a video frame s1 ∈
B1 include: (1) update the memory buffer B2 by removing
expired data si that arrived earlier than s1.t − W2 and
has been processed by the correlation operator; (2) produce
correlation results between s1 and S2[W2] by evaluating the
correlation predicate between s1 and ∀s2 ∈ S2[W2]; (3)
update the pointer P1 to refer to the next frame in B1.
A symmetric procedure is followed for processing a frame
s2 ∈ B2.

2.3 Problem Formulation
On-line stream correlations are often extremely resource-

intensive since they need to perform a large number of cor-
relations over continuously arrived data in realtime [20, 10].
Thus, a single host can be easily overloaded by the cor-
relation workload. The problem exacerbates in the video
correlation case since video analysis is often more resource-
intensive than ordinary data analysis. Thus, it is neces-
sary to provide a distributed solution for scaling-up the
on-line video correlation processing. However, unlike tra-
ditional workload distribution where data can be arbitrarily
distributed on different hosts, stream correlation requires
the distribution scheme to observe an additional correlation
constraint in order to preserve the accuracy of correlation
results. The correlation constraint requires that any two
data items that need to be correlated must be distributed
to the same host once and only once. This constraint im-
plies that the correlation workload cannot be divided cleanly
into independent partitions. In fact, we have proved that
distributed video correlations must replicate some frames
on multiple hosts in order to preserve correlation accuracy.
The proofs of all the theorems in this paper can be found in
appendix.

cluster

Diffusion

proxy

v
1

v
2

v
3

v5

v
6

S
1S
2

S
1,1

S
1,2

S
2,1

S
2,2

v
4

C
2

C
2

C
2

C
2

Integrator

correlation

resultsC1

C
2

C
1

C
1

C
1

C
1S

3
S

4

feedbacks

Figure 3: Distributed video correlation architecture.

Theorem 2.1. To distribute the workload of a stream cor-
relation S1[W1] ./θ S2[W2] on multiple hosts, there must
exist some video frames that are replicated on multiple hosts
for preserving the correlation accuracy.

Thus, a distributed stream correlation system has to repli-
cate some video frames on multiple hosts, which are called
the diffusion overhead. These overhead frames can consume
CPU time, memory space, and network bandwidth in the
system. Thus, the goal of our distributed execution scheme
is to achieve minimum replication overhead while balanc-
ing the stream correlation workload among different hosts,
which is formally defined as follows,

Definition 2.1. Distributed stream correlation prob-
lem: given a correlation operator Ci = S1[W1] ./θ S2[W2]
and m hosts {v1, ..., vm}, each data item is distributed to
one or more hosts such that (1) the correlation constraint is
satisfied, (2) the workload at different hosts is balanced, and
(3) the diffusion overhead is minimized.

Different from traditional distributed systems, streaming
environments are highly dynamic where data can arrive in
bursty and unpredictable fashions. The stream correlation
workload can dynamically change over time. As we will
describe in the next section, there are different ways to
achieve distributed stream correlations. The relative merit
of different algorithms depends on the properties of the input
streams (e.g., relative stream rates). Thus, the system must
be adaptive in order to achieve optimal distributed video
correlation performance in dynamic stream environments.

3. DESIGN AND ALGORITHMS
In this section, we first present an overview of our dis-

tributed video correlation system. We then describe two
different stream partition algorithms to achieve correlation-
aware load diffusion, followed by a set of on-line adaptation
algorithms for maintaining optimal video correlation perfor-
mance in dynamic stream environments.

3.1 Approach Overview
The ViCo distributed video correlation system is a multi-

tier distributed system consisting of a load diffusion proxy,
a set of worker nodes, and a result integrator, illustrated by
Figure 3. The load diffusion proxy serves as the gateway of
the system to distribute video correlation workload across
all servers. For each video correlation request, the load dif-
fusion proxy selects a number of worker nodes to instantiate
the sliding-window correlation operator that implements the
video correlation. The load diffusion proxy intercepts input
streams and re-directs them to proper servers responsible
for handling the stream correlations. In contrast, the re-
sult integration proxy aggregates the dispersed correlation

results into complete correlation answers based on the Join-
ID attached to each data item. Due to the memory and CPU
speed limits, a single worker node can only accommodate up
to a certain data arrival rate in order to keep the unprocessed
data in the memory. When frames arrive too fast, the
worker node has to drop frames using some load shedding
technique (e.g., [10]). However, dropping data can affect
the accuracy of stream correlation results. Thus, the goal of
our load diffusion scheme is to avoid dropping data as much
as possible by spreading stream correlation workload across
multiple servers. Compared to video correlation processing,
the operation performed by the load diffusion proxy is much
simpler and faster3. Thus, the load diffusion proxy is not
the bottleneck4

The diffusion proxy is the major controller in the ViCo
system, which performs two-level load distribution: (1) inter-
operator distribution where the diffusion proxy first selects
a worker set {v1, ..., vk} for processing a video correlation
request; and (2) intra-operator distribution where the dif-
fusion proxy can adaptively distribute the workload of a
single correlation request among the hosts in its worker set.
Different correlation operators can have overlapped worker
sets (i.e., including common worker nodes), which allows
them to share resources on the same host. For example,
in Figure 3, the correlation operator C1 is instantiated on
the server set {v1, v2, v3, v4} and the correlation operator C2

is instantiated on the server set {v3, v4, v5, v6}. The load
diffusion proxy can use different algorithms for diffusing
the workload of C1 and C2. This hierarchical approach
has several advantages: (1) it allows each sliding-window
correlation operator to scale independently by adding more
resources to its worker set; (2) it allows each sliding-window
correlation operator to adapt independently to the changes
of its input streams; and (3) it allows different operators
to share resources on the same server by supporting over-
lapped server set. The inter-operator load distribution is
similar to the conventional load distribution problem, which
can be addressed using conventional resource management
mechanisms (e.g., [21]). In contrast, the intra-operator load
diffusion needs to observe the new correlation constraint,
which is the focus of our work.

To allow a single correlation operator to be executed on
multiple hosts, the diffusion proxy adaptively split a high-
volume stream into multiple sub-streams, each of which are
sent to different worker nodes for concurrent processing.
Conceptually, the load diffusion proxy decomposes a resource-
intensive correlation operator into multiple sub-operators
executed on different worker nodes. Each sub-operator only
processes a subset of frames on the original input streams.
For example, in Figure 3, the diffusion proxy splits the input
stream S1 into four sub-streams S1,1, S1,2, S1,3, S1,4 that
are sent to the worker node v1, v2, v3, and v4, respectively.
The load diffusion proxy can use different stream partition
algorithms for different correlation operators based on the
properties of its input streams. Such fine-grained load par-
tition has two advantages: (1) it allows a single resource-

3In our experiments, the processing time of the load
diffusion proxy is often several orders of magnitude less than
the correlation computation
4Moreover, the load diffusion function can be easily repli-
cated, with the only constraint that the pair of streams
belonging to the same correlation operator pass through the
same load diffusion proxy.

intensive correlation operator that cannot be executed by
any single host to utilize aggregated resources on multiple
hosts; and (2) it enables multiple correlation operators to
more efficiently share resources at fine-granularity.

The load diffusion proxy performs runtime adaptations at
different levels to achieve optimal performance in dynamic
stream environments. The adaptations are informed by the
feedbacks from the worker nodes, the result integrator and
the users. First, the workload of a correlation operator
can increase when its input stream rates increase or a more
complicated video analysis algorithm is employed. Thus, the
diffusion proxy can dynamically add or reduce the worker set
to adapt to such workload changes. Second, the diffusion
proxy can adaptively adjust stream partition algorithm pa-
rameters or switch between different stream partition algo-
rithms to maintain optimal performance in dynamic stream
environments. The performance of different stream parti-
tion algorithms are affected when the system changes the
worker set allocated to the correlation operator, or the user
changes the correlation requirements (e.g., sliding-window
size). Finally, the diffusion proxy can also switch between
different video analysis algorithms based on the feedbacks
from the users or the result integrator.

3.2 Single Stream Partition
We now present a simple single stream partition (SSP)

algorithm that splits one stream for load balancing and
replicates the other stream for observing the correlation
constraint. The partitioned stream is called the master
stream and the replicated stream is called the slave stream.
Let us consider a correlation operator Ci = S1[W1] ./θ

S2[W2] that is instantiated on a host set {v1, ..., vk}. For
each frame on the master stream, SSP sends the frame to one
of the allocated k hosts based on the least-loaded-first (LLF)
policy. Since we need to consider different resources (e.g.,
CPU, memory, bandwidth) in the distributed stream pro-
cessing system, we define a combined metric wi to represent
the load condition of a host vi. For each resource type Ri

(e.g., CPU, memory, network bandwidth), we define a load

indicator φRi =
URi
CRi

, where URi and CRi denote the usage

and capacity of the resource Ri on the host vi, respectively.
We then define the load metric Li as follows,

Li = ω1 · φcpu + ω2 · φmemory + ω3 · φbandwidth (1)

where
3P

i=1

ωi = 1, 0 ≤ ωi ≤ 1 denotes the importance of

different resource types that can be dynamically configured
by the system5. For each frame on the slave stream, SSP
sends one copy of the frame to each of the k hosts. By par-
titioning the master stream, the workload of the correlation
operator is distributed among all k hosts since each host only
processes a subset of required correlation operations. We
have proved that SSP algorithm can preserve the correlation
accuracy by observing the correlation constraint.

Theorem 3.1. Let Θ(Ci) and Θ′(Ci) denote the sets of
correlation operations performed by the original correlation
operator and the distributed correlation operator using the
SSP algorithm, respectively. We have Θ(Ci) = Θ′(Ci).

5We can assign higher weight to CPU resource if the
join computation is CPU-bound or assign higher weight
to network resource if network bandwidth is limited (e.g.,
sensor networks).

V
2

s
1
(0)

 V
1

V
3

s
1
(3)s

1
(1) s

1
(2) s

1
(4) s

1
(5)s

1
(6) s

1
(7)s

1
(8)

V
2

s
2
(0)

 V
1 V

3

s
4
(3)s

2
(1) s

3
(2) s

5
(4) s

6
(5)s

7
(6) s

8
(7)s

9
(8)

{V1,V2,V3} V1 V2

adapt

V1 V2

Transition phase

V1 V2 V3 V3 {V1,V2,V3}

S#
1
(5)S#

1
(6)

V1

S
1
(0)S

1
(1)S

1
(2)S

1
(3)S

1
(4)S

1
(5)S

1
(6)S

1
(7)S

1
(8)S

1
(9)S

1
(10)

S*
2
(5)S*

2
(6)S*

2
(7)

S
2
(0)S

2
(1)S

2
(2)S

2
(3)S

2
(4)S

2
(5)S

2
(6)S

2
(7)S

2
(8)S

2
(9)S

2
(10)

V1 V2

V3 V3

Transition phase

S*
2
(4) S*

2
(6)

V
2

s
1
(0)

V
3

s
1
(3)s

1
(1) s

1
(2) s

1
(4) s

1
(5)s

1
(6) s

1
(7)s

1
(8)

V
2

s
2
(0)

V
3

s
4
(3)s

2
(1) s

3
(2) s

5
(4) s

6
(5)s

7
(6) s

8
(7)s

9
(8)

V1 V2 V3 V1

{V1,V2,V3}

S*
2
(5)

(a) Coupled stream partition algorithm

(b) Role adaptation in SSP (c) Switch from SSP to CSP

adapt
partition partition

{V1,V2} {V2,V3}

{V2,V3}{V1,V3} {V1,V2}

Figure 4: Correlation-aware load distribution and adaptations.

Since the number of total correlation operations is not
changed by the SSP algorithm, each server in {v1, ..., vk}
only processes on average one k′th of the original correlation
operations. We now analyze the overhead of the SSP algo-
rithm. Since SSP replicates each frame of the slave stream
on all allocated hosts, the diffusion proxy pushes more data
into the cluster than the original slave stream. The data of
the master stream are unchanged. We define the overhead
of the SSP algorithm as the number of the additional video
frames produced per time unit compared to the centralized
video correlation algorithm. Let r2 denote the rate of the
slave stream S2. Let k denote the host number. Let Ossp

denote the overhead of the SSP algorithm. We have

Ossp = (k − 1) · r2 (2)

We can easily derive the CPU, memory and network band-
width cost of SSP from the above overhead data number.
Let α denote the average frame size, β denote the average
network packet size for each frame, and γ denote the average
CPU cost for receiving one frame from the network. Then,
SSP incurs on average OSSP · α memory cost, OSSP · β
network cost, and OSSP · γ CPU cost in the system.

3.3 Coupled Stream Partition
We now describe a coupled stream partition (CSP) algo-

rithm that splits the input streams simultaneously, which
is illustrated by Figure 4 (a). Similar to SSP, CSP also
selects one stream as master stream and the other stream as
slave stream. The master stream is partitioned into disjoint
stream segments that are dispatched to different hosts based
on the pre-defined load balancing policy. In contrast, the
slave stream is partitioned into overlapped segments in order
to meet the correlation constraint. More specifically, let us
consider a correlation operator Ci = S1[W1] ./θ S2[W2]. We
use Si[t, t + T] to denote a segment of Si including all the
frames arrived on Si between time6 [t, t + T), where t is
called the segment’s start time and T is called the segment
length. When the diffusion proxy receives a video frame
s1 on the master stream, it first checks whether s1 belongs
to the current segment or starts a new segment based on its
time-stamp s1.t and the end time of the current segment. All
the frames belonging to the current segment S1[t, t + T] are
sent to the same host based on the load metric Li (Equation
1). The CSP algorithm sends each frame on the master
stream only once since its segments do not have any overlap
with each other. In contrast, CSP splits the slave stream
into overlapped segments.

6The purpose of this definition is to avoid overlapping
between Si[t, t + T] and Si[t + T, t + 2T].

If CSP sends the segment S1[t, t + T] to the host vi, CSP
needs to send the slave stream segment S2[t−W2, t+T +W1]
to the same server vi. The two segments S1[t, t + T] and
S2[t − W2, t + T + W1] are called coupled segments that
are sent to the same host for producing correlation results.
Similarly, if CSP sends the master stream’s next segment
S1[t + T, t + 2T] to the server vj , CSP needs to send the
slave stream segment S2[t+T−W2, t+2T +W1] to the same
server vj . Thus, the frames arrived on S2 during the period
[t+T−W2, t+T+W1] are sent to both vi and vj . The number
of duplicate frames is r2 · (W1 + W2). Figure 4 (a) shows a
simple example where r1 = r2 = 1, W1 = 1, W2 = 2. The
master stream S1 is partitioned into three disjoint segments
S1[0, 3], S1[3, 6], S1[6, 9] that are sent to the hosts v1, v2,
and v3, respectively. Correspondingly, the slave stream S2 is
partitioned into three overlapped segments S2[0, 4], S1[1, 7],
S1[4, 10] that are sent to the server v1, v2, and v3, respec-
tively. The video frames s2(1), s2(2), s2(3) are replicated on
both v1 and v2. We have also proved that CSP can preserve
the accuracy of stream correlations.

Theorem 3.2. Let Θ(Ci) and Θ′(Ci) denote the sets of
correlation operations performed by the original correlation
operator and by the distributed correlation operator using the
CSP algorithm, respectively. We have Θ(Ci) = Θ′(Ci).

According to the above theorem, CSP can reduce the
average workload of each host in the worker set into one k′th
of the original workload. However, CSP also pushes extra
video frames into the cluster due to the partial replication
of the slave stream. Let r2 denote the rate of the slave
stream S2. Let T denote the segment length. Let W1 and
W2 denote the sliding window sizes of the stream S1 and
S2. For each segment S1[t, t + T] over the time period T ,
the CSP algorithm introduces r2 · (W1 + W2) more frames
than the original input streams. Thus, let Ocsp denote the
overhead of the CSP algorithm, we have

Ocsp =
(W1 + W2)

T
· r2 (3)

Similar to the SSP algorithm, we can easily derive the CPU,
memory and network bandwidth cost of the CSP algorithm
based on the overhead data number.

3.4 Adaptation Algorithms
We now present a set of adaptation algorithms that can

dynamically adjust the behaviors of SSP and CSP to make
them maintain optimal performance in dynamic stream en-
vironments. Equation 2 indicates that the overhead of SSP
is only decided by the rate of the slave stream. For minimum
overhead, SSP should always select the higher rate stream
as the master stream and the lower rate stream as the slave

stream. Due to video scene changes and network delay
jitters from the remote stream sources, the arrival rates of
two correlated streams can dynamically change over time.
Thus, our first micro-adaptation algorithm is to dynamically
switch the roles of master stream and slave stream between
the two input streams, which is illustrated by Figure 4 (b).
For easy illustration, we use a simple case where r1 = r2 = 1,
W1 = 3, W2 = 2, and host set V = {v1, ..., v3}. In practice,
the stream role adaptation is triggered only when the slave
stream rate r2 becomes faster than the master stream rate
r1. At time 5, the system decides to switch the stream roles
between S1 and S2. After time 5, the frames of S1 are
replicated on all allocated hosts while the frames of S1 is
distributed among different hosts.

However, a brute-force stream role switching can miss
some correlation results or produce duplicate correlation
results. For example, in Figure 4 (b), the frame s2(5) needs
to correlate with the frame s1(4). However, they are dis-
tributed to different hosts v1 and v2, respectively. Moreover,
correlation results between s1(5) and s2(4) are duplicated7

on all hosts since S1 becomes the replicated slave stream
after time 5 while S2 is the replicated slave stream before
time 5. To address the problem, we propose a novel data
marking scheme to assure that the stream role adaptation
preserves the correlation constraint. Let ts denote the role
switching time (e.g., ts = 5 in Figure 4 (b)). The system
generates a set of marked frames during a transition phase.
The transition phase of S1 covers the time period [ts, ts+W2)
while the transition phase of S2 is defined as [ts, ts + W1).

For each frame s1 arrived during the transition phase,
we send a frame s1 to the host selected by the ordinary SSP
algorithm and an additional marked copy s#

1 to all the other

hosts. The marked frame s#
1 only correlates with unmarked

frames of S2 arrived after ts. In contrast, for each frame
s2 arrived during the transition phase of S2, we send an
ordinary copy to one selected host using the ordinary SSP
algorithm and a marked frame s∗2 to all the other hosts.
However, the marked frame s∗2 only correlates with ordinary
data s1 arrived before the switching time ts. After the
transition phase, the system restores to the ordinary SSP
operations. The rationale behind our approach is that the
marked frames are replicated on all hosts to avoid missing
correlation results. To avoid duplicate correlation results,
the marked frames do not correlate with those frames that
their ordinary copies can cover. For example, in Figure 4
(b), after the adaptation is triggered at time 5, we send
s1(5) and s1(6) to the selected host using the ordinary SSP

algorithm but also send three marked frames of s#
1 (5) and

s#
1 (6) to all the other hosts for correlating with the frames

of S1 whose frames are distributed on different hosts after
time 5. We have rigorously proved that the stream role
adaptation algorithm preserves the correlation constraint.

Theorem 3.3. The SSP’s stream role adaptation algo-
rithm satisfies the correlation constraint.

Similarly, the overhead of CSP is also merely decided by
the rate of the slave stream (Equation 3), which should
always use the high-rate stream as the master stream and
the low-rate stream as the slave stream. To preserve correla-
tion accuracy, CSP also needs to send some marked frames

7Figure 4 (b) did not show the replication of S1 between
time [5,6].

0 10 20 30 40 50
50

55

60

65

70

75

80

85

90

95

100

Segment Length (sec)

M
ea

n
T

hr
ou

gh
pu

t

Correlation A
Correlation B

Figure 5: Segment length effect.

during a transition phase. The data marking strategies are
very similar to that of the SSP algorithm, which are omitted
here due to space limitation. Different from SSP, CSP has
another tunable parameter, the segment length T . Equation
3 indicates that larger segment length incurs less replication
overhead. However, larger segment also implies coarser load
balancing granularity since a larger number of frames are
enforced to go to the same host. Thus, the segment length
denotes the trade-off between the replication overhead and
load balancing granularity. The optimal segment length
should lie between its minimum and maximum values based
on the current system conditions. For example, under high
stream rates, we need to employ a smaller segment length
to avoid including too many frames in one segment. Figure
5 shows the measured performance of the CSP algorithm
as a function of segment length for two different correlation
operators in our experiments. To adapt to dynamic stream
changes, CSP employs the following profiling process to dy-
namically search for the optimal segment length T ∗ when
the stream environment or user correlation specifications
experience significant changes. Let T denote the current
segment length and ∆T denote the adaptation step value.
The adaptation algorithm tests both T + ∆T and T −∆T .
If the performance of T +∆T is better, the optimal segment
length should be larger than the current segment length.
The system gradually increases the segment length until
the measured system performance reaches its peak value.
Otherwise, if T − ∆T produces better performance, the
system gradually decreases the segment length to search
for the optimal value. The CSP algorithm always performs
micro-adaptations at the end of one segment to assure that
the adaptation does not violate the correlation constraint.

In addition to micro-adaptations within each algorithm,
we can also perform macro-adaptations to switch between
different algorithms. According to Equation 2 and Equation
3, SSP has larger overhead than CSP if

k >
(W1 + W2 + T)

T
(4)

The above comparison indicates that the comparison be-
tween SSP and CSP depends on the size of the host set k,
the sliding window sizes W1 and W2, and the segment length
T . For example, if the workload of a correlation operator
can be satisfied by a small number of hosts, the sliding
window sizes are big, and the segment length is small, the
SSP algorithm has less overhead than the CSP algorithm.
Otherwise, the CSP algorithm is more cost-efficient. To
achieve minimum replication overhead, our system performs
macro-adaptation to dynamically switch between the SSP
algorithm and CSP algorithm when the stream environ-
ment experiences changes. Similar to the micro-adaptations,

Stream

correlation
table

Input

stream
monitor

Stream

Partitioner

Adaptation

Controller

s
1

s
1

s
1

s
1

s
1

s
2

s
2s

2s
2

s
2

s
3

s
3

s
3

s
3

s
3

s
4

s
4

s
4

s
4

s
4

Cluster

resource

directory

Input

streams

Output

streams

Update resource

soft states

Feedbacks from user/

other system nodes

Frame

dispatcher

Figure 6: The diffusion proxy node structure.

macro-adaptations also need to employ a transition algo-
rithm to preserve the correlation accuracy.

Let us consider the case of switching from SSP to CSP,
illustrated by Figure 4 (c). For easy illustration, we use
a simple case where r1 = r2 = 1, W1 = 1, W2 = 3,
and the host set V = {v1, ..., v3}. At the beginning, the
system employs the SSP algorithm where S1 is the master
stream and S2 is the slave stream. At time 4, the system
decides to switch to the CSP algorithm for lower overhead.
The master stream S1 is partitioned into disjoint segments
while the slave stream S2 is partitioned into overlapped
segments. However, this brute-force algorithm switch can
affect the correlation accuracy by missing some of the corre-
lation results. For example, in Figure 4 (c), the frame s2(4)
should correlate with s1(5), which however is distributed to
two different hosts v2 and v1. To address the problem, we
again introduce marked frames on the slave stream during
its transition phase [ts, ts + W1). For each frame s2 arrived
at S2 during its transition phase, we send an ordinary frame
s2 to the selected host for the current segment, and a marked
frame s∗2 to each of the other k−1 hosts. The marked frame
s∗2 only correlates with the master stream’s frames arrived
before the algorithm switching time ts. We have proved that
our macro-adaptation algorithm can preserve the correlation
accuracy.

Theorem 3.4. The macro-adaptation algorithm for switch-
ing from SSP to CSP satisfy the correlation constraint.

The case of switching from CSP to SSP is similar, which is
omitted here due to space limitation.

4. EXPERIMENTAL EVALUATION
We now present an experimental evaluation of our systems

using both prototype experiments with real cluster deploy-
ment and trace-driven simulations. The experiment results
show that our approach can better scale-up video correlation
processing than existing distribution schemes.

4.1 Evaluation Methodology
We have implemented a prototype of the ViCo distributed

video correlation system (as shown by Figure 3) in about
10K lines of C++ code and successfully deployed it on a
commercial cluster system. The load diffusion proxy con-
sists of the following major modules illustrated by Figure
6: (1) input stream monitor that keeps track of the ar-
rival rate of each input stream. The diffusion proxy keeps
a counter for each input stream to record the number of
arrived frames within a sampling period. The average ar-
rival rate of the input stream can be estimated by dividing
the counter value by the sampling period; (2) stream cor-
relation table that records the specifications (e.g., sliding-

window sizes, stream-IDs) of all currently running corre-
lation operators; (3) stream partitioner that executes the
SSP or CSP algorithms to split input streams; (4) adapta-
tion controller that performs micro-adaptations and macro-
adaptations based on the runtime monitoring and feedback
information; (5) cluster resource directory that maintains
dynamic information about load conditions (e.g., CPU, mem-
ory usages) of different cluster nodes and network bandwidth
usage on the network links from the diffusion proxy to differ-
ent cluster nodes; and (6) frame dispatcher that sends video
frames to different cluster nodes for correlation processing
based on the decisions made by the stream partitioner.

In addition to testing the prototype on the real cluster
system, we also conduct trace-driven simulations to perform
large-scale controllable experiments. The simulator consists
of a workload generator, a diffusion proxy, a set of correla-
tion operators and a result integrator. All these components
are fully implemented. Only the hardware, network, and
underlying CPU scheduler are simulated. We simulate a
heterogeneous cluster where the memory space of each host
is uniformly distributed in the range of [500,1000] MB, the
CPU capacity of each host is distributed in the range of
[500,1000] units, and the network bandwidth between cluster
nodes is distributed in the range of [100,1000] Mbps. The
workload generator can reproduce real application streams
from trace data using specified parameters. The real appli-
cation data used by our experiments are news videos (e.g.,
CNN, MSNBC, NTDTV) from the TRECVID-2005 data
set. We compare our algorithms with existing load dis-
tribution algorithms:(1) least-loaded-first distribution (LLF-
Distribution) algorithm that instantiates each correlation
operator as a whole on the currently least-loaded host; and
(2) least-loaded-first diffusion (LLF-Diffusion) algorithm that
distributes each input frame to the currently least-loaded
hosts without considering the correlation constraint. Com-
pared to our load diffusion algorithms (i.e., SSP and CSP),
the LLF-Distribution algorithm cannot divide the workload
of a correlation operator and only perform coarse-grained
load balancing among multiple correlation operators. The
major goal of distributed correlation processing is to scale
up the processing capacity to support complex correlation
predicate computation over high-rate streams. Thus, we
evaluate different algorithms using the throughput metric
that is defined as the number of correlation comparisons
performed by the system during a period time (e.g., every
second or during the whole experiment run).

4.2 Cluster Prototype Experiments
We implemented a news video correlation application on

top of the ViCo system and deployed it on a commercial
cluster system. Each host in the cluster has an Intel Xeon
3.2GHZ CPU and 3G memory connected by gigabips net-
works. The experiment uses the news video correlation
scenario illustrated by Figure 1 where all modules (including
the two video sources) are instantiated on different cluster
nodes. The diffusion proxy receives video streams from the
two sources and then spreads each video frame to different
hosts. Each host performs a set of operations for image
correlation: (1) extract a 576-dimensional feature vector [?];
(2) perform shot detection based on the feature vector; (3)
perform 40 concept classification on the fist frame of a shot;
and (4) correlate two key frames based on the concept values.
The correlation request is to discover similar images between

0 400 800 1200
0

0.5

1

1.5

2
x 10

4

Time (second)

C
or

re
la

tio
n

T
hr

ou
gh

pu
t

CSP
SSP
Centralized

Figure 7: Prototype performance
on a real cluster system.

0 400 800 1200
0

50

100

150

200

Time (second)

D
iff

us
io

n
T

im
e

(u
s)

CSP
SSP

Figure 8: Prototype per-frame
diffusion time on the cluster.

10 20 40 60 80 100
0

20

40

60

80

100

120

140

Number of hosts

M
ea

n
co

rr
el

at
io

n
th

ro
ug

hp
ut

CSP
SSP
LLF−diffusion
LLF−distribution

Figure 9: Scalability results under
slow stream rates.

10 20 40 60 80 100
0

20

40

60

80

100

120

Number of hosts

M
ea

n
co

rr
el

at
io

n
th

ro
ug

hp
ut

CSP
SSP
LLF−diffusion
LLF−distribution

Figure 10: Scalability results un-
der fast stream rates.

0 1000 2000 3000 4000 5000
20

30

40

50

60

70

Time (second)

S
am

pl
ed

 T
hr

ou
gh

pu
t

SSP−adaptive
SSP−static

Figure 11: Adaptation results of
SSP.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

Time (second)

S
am

pl
ed

 T
hr

ou
gh

pu
t

CSP−fullAdapt
CSP−segmentAdapt
CSP−roleAdapt
CSP−static

Figure 12: Adaptation results of
CSP.

two real news videos (CNN and MSNBC) within two 60-
second sliding windows. Figure 7 shows the measured to-
tal throughput of different algorithms during a 1200-second
duration. The centralized algorithm runs the correlation
operator on one cluster node while SSP and CSP can execute
the correlation using three cluster nodes. The throughput
value is sampled every second where the throughput at time
t measures the total number of correlation comparisons per-
formed by the cluster system from the beginning to the time
t. We observe that both CSP and SSP can achieve higher
throughput than the centralized processing. CSP performs
better than SSP due to smaller diffusion overhead. SSP
has little performance improvement since it is overloaded by
the diffusion overhead. Figure 8 shows the measured per-
frame diffusion time of CSP and SSP during the experiment.
The diffusion time is sampled every second and is averaged
over all the frames that are processed by the diffusion proxy
during one second. We observe that both CSP and SSP
have low diffusion time (i.e., tens of micro-seconds), which
is several magnitudes less than the correlation operations
(i.e., tens of or hundreds of milli-seconds).

4.3 Trace-Driven Simulation Experiments
We now present the performance of our systems under

large-scale cluster system and different workloads using sim-
ulations. The workload generator can emulate remote video
sources by adding a dynamic network delay to each video
frame. The inter-arrival times follow an exponential distri-
bution with a mean set to the current average data rate. The
average CPU cost for receiving a frame from network is 10
units and processing one correlation comparison is 250 units.
The sliding-windows are all set as 60 seconds. The video
data are taken from the TRECVID-2005 data set. Each

simulation run lasts 5000 seconds and has a certain warm-up
period for the system to reach its stable performance after
all the correlation operators start. Each throughput value is
the average number of correlation comparisons performed by
the system per second. Each average value is calculated over
the whole simulation duration after the warm-up period. To
achieve unbiased results, we repeat each experiment 5 times
with different random seeds and report the average results.

We first test the scalability of our system by running 20
correlation operators concurrently on a cluster system with
10 to 100 hosts. Figure 9 shows the scalability comparison
results between different algorithms under a slow-rate work-
load. The mean rates of all input streams are uniformly
distributed in the range of [1,5] frames/second. This work-
load simulates the scenario that the remote video sources can
perform some pre-processing on the raw video data and only
send key frames to the correlation cluster. With diffusion
algorithms (i.e., CSP or SSP), each correlation operator
is allowed to use all the hosts in the cluster and different
operators share the resources of one host proportionally. We
observe that both CSP and SSP can achieve much better
than the other two algorithms. The performance of the
LLF-Distribution algorithm becomes nearly unchanged after
the host number exceeds the correlation operator number
since each correlation operator is allowed to use at most one
host. In contrast, both CSP and SSP can utilize all the
cluster hosts. SSP performs a bit better than CSP since
(1) SSP employs finer-grained load balancing than the CSP
algorithm; and (2) the diffusion overhead is small under
low stream rates. The correlation-unaware load diffusion
scheme LLF-Diffusion cannot properly scale-up the system
throughput since many correlation comparisons are missing
due to misplacing correlated frames on different hosts. How-

ever, since the stream rates are low, the diffusion overhead
is insignificant compared to the correlation processing cost.
We then repeat the above experiments under a high-rate
workload where mean rates of input streams are uniformly
distributed in the range of [10,30] frames/second. Figure
10 shows the throughput results achieved by different al-
gorithms. We observe that both CSP and SSP achieve
less throughput capacity than the previous case since the
diffusion cost is increased due to higher stream rates. How-
ever, CSP still consistently performs much better than the
other alternatives while SSP becomes the worst since its
diffusion overhead becomes significant with too many data
replications.

We conducted the second set of experiments to evaluate
the efficiency of our adaptation algorithms. We execute
one correlation operator on 10 hosts using either SSP or
CSP algorithms. To emulate dynamic stream environments,
the system dynamically changes the mean rates of both
input streams every 500 seconds and the throughput value
is sampled every 50 seconds. We first evaluate the micro-
adaptation algorithm in SSP by dynamically switching the
master and slave streams based on the stream rate changes,
illustrated by Figure 11. We observe that the adaptive
SSP consistently achieves higher throughput than the static
algorithm and the improvement can be as much as three
times better depending on the stream rates. Figure 12 shows
the comparison results among the (1) fully adaptive CSP
algorithm CSP-fullAdapt that performs both master/slave
stream role switching and optimal segment length adjust-
ment, (2) partially adaptive CSP: CSP-segmentAdapt that
dynamically adjusts segment length but does not switch
the master and slave streams, and CSP-roleAdapt that only
switches master/slave streams but uses a fixed segment length
T = 10 seconds, (3) the static CSP algorithm that does not
switch master/slave streams and uses a fixed segment length
T = 10 seconds. The results show that the performance of
the CSP algorithm is sensitive to the stream rate changes
and the adaptation strategies can effectively maintain opti-
mal performance in dynamic stream environments.

5. RELATED WORK
Distributed multimedia processing has been exten-

sively studied in prior work. For example, Amir et al. pro-
posed the active service framework and applied it to a media
transcoding gateway service[3]. Chandra et al. developed a
quality-aware transcoding technique to enable differentiated
multimedia web services [4]. Ooi and Renesse proposed
a framework to decompose a media transformation com-
putation into sub-computations and assign them to mul-
tiple gateways [17]. Compared to the transcoding service,
video correlation needs to perform coordinated processing
on multiple input streams, which presents new challenges
to the system design. Our work is also related to various
adaptation research (e.g., [14, 1, 6]). Different from previous
work, our adaptation schemes are performed on continuous
video streams and need to observe the correlation constraint.

Multimedia correlations. Measuring the similarity of
key frames of video shots is a task that has been studied
in many applications. For instance, in traditional content-
based image retrieval, systems measure the similarity of
images based on the feature vector distance[16]. Usually,
color histogram, texture, edge and motion vectors (if key
frames are extracted from video shots) are used as features.

These features can be weighted based on user feedback us-
ing relevance feedback technique[18, 8]. Similarity can be
also measured based on the combination of audio and video
features[15]. Graph-based matching of images uses the rela-
tions of salient image parts to calculate the similarity of
images[22]. Different from the above work, our research
focuses on addressing the system infrastructure support to
enable online, continuous video correlation processing.

Distributed join operation on stream data. The
Flux project [19] supports parallel equijoin processing with
dynamic value-based load balancing, which however can-
not support non-equijoins required by video stream corre-
lations. In contrast, our work supports both equijoins and
non-equijoins. Ivanova and Risch proposed a customizable
parallel execution platform for scientific stream queries [9],
which did not consider the correlation constraint required
by distributed execution of windowed stream joins.

6. CONCLUSION
In this paper, we have presented a novel adaptive dis-

tributed execution system for scalable processing of online
video correlations. To the best of our knowledge, this is
the first work that has addressed the problem of adaptive
distributed executions of on-line video correlations. The
major contributions of this paper are as follows. First, we
formally define the optimal distributed stream correlation
problem and theoretically prove that a diffusion overhead
is unavoidable in order to preserve the accuracy of stream
correlations. Second, we propose a set of correlation-aware,
light-weight, stream partition algorithms that can dynami-
cally distribute a video stream correlation workload among
multiple hosts at fine-granularity. We theoretically prove
both stream partition algorithms can preserve the accuracy
of stream correlations and conduct theoretical analysis to
derive their overhead models. Third, we propose a spec-
trum of on-line adaptation algorithms based on the overhead
analysis that can dynamically adjust the behaviors within
each algorithm and switch between different algorithms on-
the-fly. We also provide a novel data marking technique
to guarantee that on-line adaptations preserve the correla-
tion accuracy. Finally, we have implemented a prototype of
the system and conducted extensive experiments using real
video and synthetic workloads. Our experimental results
show the feasibility and efficiency of our approaches.

7. REFERENCES
[1] T. F. Abdelzaher, K. G. Shin, and N. T. Bhatti. User-Level

QoS-Adaptive Resource Management in Server
End-Systems. IEEE Trans. Computers 52(5), 2003.

[2] A. Amir and et al. IBM Research TRECVID-2003 Video
Retrieval System. Proc. of NIST Text Retrieval Conference
TRECVID Workshop, Nov. 2003.

[3] E. Amir, S. McCanne, and R. H. Katz. An Active Service
Framework and Its Application to Real-Time Multimedia
Transcoding. Proc. of SIGCOMM 1998, Oct. 1998.

[4] S. Chandra, C. S. Ellis, and A. Vahdat. Differentiated
Multimedia Web Services Using Quality Aware
Transcoding. IEEE INFOCOM, 2000.

[5] W.-C. Feng and et al. Panoptes: A Scalable Architecture
for Video Sensor Networking Applications. ACM
Multimedia, 2003.

[6] D. Gotz and K. Mayer-Patel. A general framework for
multidimensional adaptation. ACM Multimedia, 2004.

[7] X. Gu, P. S. Yu, and K. Nahrstedt. Optimal Component
Composition for Scalable Stream Processing. Proc. of IEEE

International Conference on Distributed Computing
Systems (ICDCS), June 2005.

[8] K. A. Hua, N. Yu, and D. Liu. Query Decomposition: A
Multiple Neighborhood Approach to Relevance Feedback
Processing in Content-based Image Retrieval. ICDE, 2006.

[9] M. Ivanova and T. Risch. Customizable Parallel Execution
of Scientific Stream Queries. Proc. of VLDB, 2005.

[10] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive Stream
Resource Management Using Kalman Filters. Proc of ACM
SIGMOD, June 2004.

[11] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo,
and C. Venkatramani. Design, Implementation, and
Evaluation of the Linear Road Benchmark on the Stream
Processing Core. Proc. of SIGMOD, 2006.

[12] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu. SensEye: A
Multi-tier Camera Sensor Network. ACM Multimedia, 2005.

[13] V. Kumar, A. Y. Grama, and N. R. Vempaty. Scalable
Load Balancing Techniques for Parallel Computers. Journal
of Parallel and Distributed Systems, 22:60-79, 1994.

[14] B. Li and K. Nahrstedt. A Control-based Middleware
Framework for Quality of Service Adaptations. IEEE
JSAC, 1999.

[15] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Scene
Determination based on Video and Audio Features. Proc.
IEEE Conf. on Multimedia Computing and Systems, 1998.

[16] W. Niblack and et. al. QBIC project: querying images by
content, using color, texture, and shape. Prof. SPIE, Vol.
1908, pp. 173-187, Storage and Retrieval for Image and
Video Databases, 1993.

[17] W. T. Ooi and R. V. Renesse. Distributing Media
Transformation Over Multiple Media Gateways. Proc. of
ACM Multimedia, Sept. 2001.

[18] Y. Rui, T. S. Huang, and S. Mehrotra. Content-based
image retrieval with relevance feedback in MARS. Proc of
IEEE ICIP, 1997.

[19] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An Adaptive Partitioning Operator
for Continuous Query Systems. Proc. of ICDE, Mar. 2003.

[20] U. Srivastava and J. Widom. Memory Limited Execution of
Windowed Stream Joins. Proc. of VLDB, Aug. 2004.

[21] B. Urgaonkar and P. Shenoy. Rsource Overbooking and
Application Profiling in Shared Hosting Platforms. Proc. of
OSDI, 2003.

[22] D.-Q. Zhang and S.-F. Chang. Detecting Image
Near-Duplicate by Stochastic Attributed Relational Graph
Matching with Learning. Proc. of ACM Multimedia, 2004.

APPENDIX
Proof sketch of Theorem 2.1: Let us consider a group of
frames where each frame needs to correlate with at least one
the other frame in this group. Assume to the contrary that any
frame in this group is sent to only one host. Consider any two
consecutive frames si(ti) and sj(tj), ti ≤ tj . If i 6= j, since sj(tj)
must correlate with at least one frame in this group and si(ti)
and sj(tj) are two consecutive frames, we have tj − ti ≤ Wi.
Thus, sj(tj) should correlate with si(ti). Since si(ti) is sent to
only one host, sj(tj) must be sent to the same host as si(ti). If
i = j, sj(tj) needs to correlate with at least one the other frame
sk(tk) in this group. We have 0 ≤ tj − tk ≤ Wk and tk ≤ ti
since si(ti) and sj(tj) are two consecutive frames. Since ti ≤ tj ,
we have 0 ≤ ti − tk ≤ Wk. Thus, sk(tk) should also correlate
with si(ti). Since no frame is replicated, sk(tk) and si(ti) must
be located on the same host. Thus, sj(tj) must be sent to the
same host as si(ti). Thus, all the frames that have be correlated
are sent to the same host, which becomes centralized correlation.
Contradiction exists. Thus, replication is unavoidable.2

Proof sketch of Theorem 3.1: We first prove (1) Θ(Ci) ⊆
Θ′(Ci) by showing that ∀s1, if s1 ./θ S2[W2] ∈ Θ(Ci), then
s1 ./θ S2[W2] ∈ Θ′(Ci), and ∀s2, if s2 ./θ S1[W1] ∈ Θ(Ci), then
s2 ./θ S1[W1] ∈ Θ′(Ci). Suppose SSP sends s1 to the server
vi. Because SSP replicates the stream S2 on all servers, S2[W2]

must be present on the server vi, too. Thus, s1 ./θ S2[W2] ∈
Θ′(Ci). We now prove ∀s2, if s2 ./θ S1[W1] ∈ Θ(Ci), then
s2 ./θ S1[W1] ∈ Θ′(Ci). For any s2 ∈ S2, s2 needs to correlate
every frame in S1[W1]. Suppose SSP sends s1 ∈ S1[W1] to the
server vi. Because s2 is also present at vi, we have (s2, s1) ∈
Θ′(Ci). By aggregating all the results of (s2, s1),∀s1 ∈ S1[W1],
we have s2 ./θ S1[W1] ∈ Θ′(Ci). Thus, we have Θ(Ci) ⊆ Θ′(Ci).
We then prove (2) Θ′(Ci) ⊆ Θ(Ci) by showing that ∀s1, if
s1 ./θ S2[W2] ∈ Θ′(Ci), then s1 ./θ S2[W2] ∈ Θ(Ci), and ∀s2,
if s2 ./θ S1[W1] ∈ Θ′(Ci), then s2 ./θ S1[W1] ∈ Θ(Ci). The
proof is easy since any correlation operation in Θ′(Ci) follows the
correlation specification, which thus should appear in Θ(Ci), too.
Because ∀s1 ∈ S1, s1 is only sent to one server, two different
servers do not perform duplicate correlation operations. Thus,
we have Θ′(Ci) ⊆ Θ(Ci). Combining (1) and (2), we have
Θ(Ci) = Θ′(Ci). 2

Proof of Theorem 3.2: The proof is similar to the proof of
Theorem 3.1, which is omitted due to space limitation.2

Proof sketch of Theorem 3.3: First, we prove that SSP’s
role adaptation algorithm does not generate duplicate results.
Assume to the contrary that ∃s1, ∃s2 ∈ S2[W2], (s1, s2) appears
on two different hosts. If s1 is outside the transition phase, the
duplicate s1 only appears after ts + W2 while duplicate s2 only
appears before ts. Thus, we have s1.t− s2.t > W2, contradicting
the sliding-window definition s1.t − s2.t ≤ W2. If s1 is within

the transition phase, s#
1 only correlates with s2 arriving after ts,

which does not have replica except the marked copy s∗2. However,
s∗2 only correlates with s1 arrived before ts. Thus, (s1, s2), ∀s2 ∈
S2[W2] does not have duplicate results. We now prove that
(s2, s1), s1 ∈ S1[W1] does not appear on two different hosts.
First, duplicate s2 only appears before ts while s1 does not have
replication before ts. On the other hand, s∗2 only correlate with
s1 arrived before ts. However, s1 does not have duplication
before ts. Thus, SSP’s role adaptation does not produce duplicate
results for s2 ./θ S1[W1]. Second, we prove that SSP’s role
adaptation algorithm does not miss any correlation results. Any
frames outside the transition phase will not be affected since they
follow the original SSP algorithm. For ∀s1 arrived during the
transition phase (i.e., s1.t ∈ [ts, ts + W2)), s1 needs to correlate
with S2[s1.t − W2, s1.t]. The role adaptation algorithm assures

that s1 is co-located with S2[s1.t −W2, ts] and s#
1 is co-located

with S2[ts, s1.t]. Thus, we get full coverage by combining the

correlation results of s1 and s#
1 . For ∀s2 arrived during the

transition phase (i.e., s2.t ∈ [ts, ts + W1)), s2 needs to correlate
with S1[s2.t−W1, s2.t]. The adaptation algorithm assures that s∗2
is co-located with S1[s2.t−W1, ts]. For any frame in S1[ts, s2.t],

either s#
1 or s1 is replicated on all hosts. Thus s2 must co-

located with S1[ts, s2.t]. Combining (1) and (2), we conclude
that the SSP’s role adaptation algorithm preserves the correlation
constraint. 2

Proof sketch of Theorem 3.4: First, we prove that the

macro-adaptation algorithm does not generate any duplicate re-

sults. The proof is straight-forward since the master stream does

not have any duplication. Second, we prove that the macro-

adaptation does not miss any correlation results. We first prove

that ∀s1, s1 and S2[W2] are sent to the same host. The proof

is straight-forward since S2[W2] are either replicated on all hosts

(before ts) or co-located with s1 (after ts). We then prove that

∀s2, s2 and S1[W1] are co-located on at least one host. If s2.t < ts
or s2.t ≥ ts +W1, we can prove that s2 is co-located with S1[W1]

following the proof of theorem 3.1. If s2.t ∈ [ts, ts + W1), s2 and

s∗2 covers all the hosts. Thus, s2 and S1[W1] are co-located on at

least one host. 2

