A Programming Framework for Quality-Aware Ubiquitous
Multimedia Applications -

Duangdao Wichadakul, Xiaohui Gu, Klara Nahrstedt
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana,IL 61801

wichadak, xgu, klara @cs.uiuc.edu

ABSTRACT

Ubiquitous computing promises a computing environment
that seamlessly and pervasively delivers applications to the
user, despite changes of resources, devices, and locations.
However, few ubiquitous multimedia applications (UMAs)
exist up-to-date. One of the main reasons lies in the fact
that it is difficult and error-prone to build a UMA which is
mobile and deployable in different ubiquitous environments,
and still provides acceptable application-specific Quality-of-
Service (QoS) guarantees. In this paper, we present the
design and implementation of a novel programming frame-
work, called “QCompiler” to address the challenges. The
framework includes (1) a high-level application specifica-
tion for the application developer to easily write a UMA
with specific quality, mobility, and ubiquity supports, (2)
a meta-data compilation, which provides automated con-
sistency checks, translations, and substitutions, to relieve
the application developer from dealing with complex pro-
gramming related to quality, mobility, and ubiquity, (3) a
binding, which prepares a quality-aware specification to be
executable, in a specific deployment environment, and (4) a
run-time meta-data execution, utilizing the meta-data com-
pilation’s results, to manage and control a quality-aware
multimedia application. As a case study, we apply the pro-
gramming framework to build a mobile Video-on-Demand
(VoD) application. The experimental results show tradeoffs
between easiness and flexibility to develop and deploy UMA,
and overheads during UMA instantiation and adaptation.

1. INTRODUCTION

*This work was supported by the NASA grant under con-
tract number NASA NAG 2-1406, NSF under contract num-
ber 9870736, 9970139, NSF-CCR 9988199, and EIA 99-
72884EQ. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF
or NASA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Ubiquitous computing promotes the proliferation of vari-
ous stationary, embedded and mobile devices interconnected
by heterogeneous networks (e.g., wired, wireless, infrared).
It leads to a more dynamic distributed computing envi-
ronment than ever before, where resource fluctuations, de-
vice/service changes are a common phenomenon rather than
viewed as an extreme case. Many emerging distributed mul-
timedia applications such as Video-on-Demand and video
conferencing, are being developed in such a computing envi-
ronment. Thus, a big challenge for the application developer
is to build ubiquitous multimedia applications (UMAs) that
can continuously and pervasively deliver multimedia con-
tents with adequate quality to the user, in spite of resource
fluctuations, device heterogeneity and user mobility.

Although the hardware technology (e.g., hand-held de-
vices) and networking infrastructure (e.g., wireless networks),
necessary for implementing the vision of ubiquitous com-
puting, are becoming reality, and reusable multimedia com-
ponents are widely available, few multimedia applications
have been built in such a computing environment. The
main difficulties of building quality-aware UMAs are as fol-
lows: (1) different multimedia applications deal with dif-
ferent application-specific performance criteria (e.g., frame
rate for the Video-on-Demand, lip synchronization skew for
the video conferencing, and tracking precision for the visual
tracking application), (2) these applications are expected to
be deployable in dynamic distributed computing environ-
ment with different computing and communication capaci-
ties, and (3) mobility becomes a standard feature of these
applications.

Much research work has been done to provide solutions for
setup and enforcement of application’s quality in networks
[4, 24], in operating systems [25, 7, 21], and most recently in
middleware systems [17, 30, 5, 9, 13]. These QoS-enabling
services; however, are designed to support only particular
quality enabling mechanisms such as resource-specific reser-
vations (e.g., [4, 24, 25, 7, 21]), and adaptations of appli-
cation’s quality in the best effort environments (e.g., [17]).
Furthermore, all of them are implemented in specific lan-
guages with specific interfaces, and expected parameters.
Also, no services enable application-level mobility flexibly.

To include QoS-enabling services into UMA programs,
the application programmer needs to know them and select
among them appropriately. It means, he/she must well un-
derstand specific characteristics of the adopted QoS-enabling
services, know how to translate/map application-specific per-
formance criteria into the underlying network/OS services’



expected interfaces and parameters (e.g., resource require-
ments for resource-specific reservations), and know how to
“hook” the application with these adopted services. The
result is then that the developed multimedia application is
programmed as tightly-coupled with the adopted underlying
QoS-enabling services. Hence, it is not easily deployable in
different and dynamic environments.

To go beyond the traditional building of a quality-aware
multimedia application, as described above, we propose a

novel programming framework, called “QCompiler”, for quality-

aware ubiquitous multimedia applications. This framework
enables a flexible and efficient development and deployment
of distributed multimedia applications with mobility in ubig-
uitous environments. The framework is based on the con-
cepts of reusable multimedia components, reusable underly-
ing QoS-enabling services, the de-coupling of generic QoS-
enabling services and their specific implementations, and the
provision of automated translations and substitutions to re-
lieve the application developer from dealing with underlying
QoS-enabling services’ details.

The programming framework includes (1) a high-level ap-
plication specification, (2) a meta-data compilation, (3) a
binding, and (4) a run-time meta-data erecution. The high-
level application specification consists of a set of quality-
related specifications (e.g., attributes, rules), which allow
an application developer to flexibly represent an application
and its service quality requirements. The meta-data compi-
lation processes the specification in two steps: environment-
independent and environment-dependent translations. The
environment-independent translation maps the high-level ap-
plication specification into a QoS-aware application descrip-
tor!, representing a portable meta-level quality-aware ap-
plication code. The descriptor includes consistent compo-
sitions (configurations) of multimedia service components
and their associations with generic QoS-enabling services,
and adaptation rules. The environment-dependent transla-
tion helps the application developer to deploy the QoS-aware
application descriptor in a specific deployment environment.
It matches each configuration in the descriptor with the en-
vironment. Also, it provides automatic translations (e.g.,
between application-level quality parameters and resource-
level parameters) to ease the task for the application devel-
oper. The binding helps to bind components in the compiled
results from the environment-dependent translation. The
run-time meta-data execution helps controlling a quality-
aware application, based on specific user’s quality request,
current availability of devices and resources, user mobility,
and the compiled results from the environment-dependent
translation.

By using the proposed quality-aware programming frame-
work, an ordinary application developer can easily, and effi-
ciently implement different applications with quality, mobil-
ity, and ubiquity supports on top of available QoS-enabling
services (e.g., RSVP [4], DSRT [7]), in different deployment
environments.

The rest of this paper is organized as follows. Section
2 introduces fundamental models of ubiquitous multimedia
applications, used in our programming framework. Section
3 describes the high-level application specification as mech-
anism for developing a quality-aware ubiquitous multimedia
application. Section 4 presents the meta-data compilation

We use the convention of deployment descriptor as of EJB’s
deployment descriptor [22], and CCM’s descriptors [14].

which enables portability, quality-awareness, and adaptabil-
ity controls for the input specification. Section 5 describes
the binding and Section 6 briefly describes the run-time
meta-data execution. Section 7 presents experimental re-
sults, followed by Section 8 with related work overview. Sec-
tion 9 concludes this paper.

2. QUALITY-AWARE UBIQUITOUS MUL-
TIMEDIA MODELS

Our programming framework for quality-aware ubiquitous
multimedia applications requires sound models of these ap-
plications. We deploy the quality-aware task-flow model for
the overall UMA and the component model for each task as
discussed below.

2.1 Ubiquitous Multimedia Application (UMA)
Model

-
resources l'k

G Qi Qo
° input i, output E'k
—

()
(@)

Figure 1: (a) Task-Flow Model, (b) Reward Profile

40 =R, Ty 40

(b)

We deploy the task-flow model [18] as our quality-aware
UMA model. In the task-flow model (See Figure la), the
relationship among tasks can be represented by a directed
acyclic graph (DAG), called dependency graph. An edge
from task T} to task 7T; indicates that T produced the re-
sult consumed by task T;. S is a source node that is not
a consumer of any task, but is a producer of some task.
U is an end-user node that is not a producer of any task,
but a consumer of some task. Each task is a functional unit
consisting of two vectors, Qin and Qout, as its input and out-
put quality vectors, respectively. Qin and Qou: are related

—= .
such that ¢ (F«) = Rk(7, T (i ), where Ry is a reward
profile (See Figure 1b), representing a mapping from input
quality and resource allocation to output quality. 7(7k)
is a single output quality. 7(_1)k) is a single input quality.

1 1s the resource allocation of the task. A value function
Vi(¢ (&) is placed by a consumer task T; on the output
quality 7 (k) of a producer task Ty. It implicitly speci-
fies service quality expected by a consumer task. In UMA
model, a ubiquitous multimedia component (UMC) repre-
sents a task in the task-flow model.

2.2 Ubiquitous Multimedia Component (UMC)
Model

A multimedia component is a functional unit (e.g., me-
dia retrieving, encoding, streaming) or a set of functional
units (e.g., media retrieving+encoding+streaming) forming
a multimedia service (e.g., Video-on-Demand server).

A ubiquitous multimedia component (UMC) (See Figure
2) is modelled as a multimedia component code (software
program) or a composition of multimedia component codes,



UMC

Adaptation
handlers

] e

UMC

Adaptation
r handlers

uMC

- UMC ¢
description

description

T

MC: Multimedia Component code
UMC: Ubiquitous Multimedia Component

Figure 2: Ubiquitous Multimedia Component
(UMC) Model

attached with a meta-data description, and wrapped with a
set of adaptation handlers.

UMC description presents detailed information of the com-
ponent including component name, component model (e.g.,
CORBA, COM, Java), category (e.g., VoD Server Service,
Transcoding Service, Encoding Service), component repos-
itory, interface, hardware requirement, system software re-
quirement, system resource requirement, supporting quality,
and required libraries. The “supporting quality” points to
a profile which consists of quality parameters (described in
Section 3) and their reward profiles, that the UMC sup-
ports. The “required libraries” information points to a pro-
file which consists of a list of the UMC’s required libraries
with their locations or pointers to their locations. The UMC
description is mainly used by the programming framework
during the meta-data compilation.

Adaptation handlers are a set of (action) functions which
the programming framework includes in the UMC model for
enabling adaptations, and mobility of the UMCs in ubiqui-
tous environments. As a tool in the programming frame-
work, we wrap each UMC with a set of (action) functions:

tuneQualityParams(params_vector), and reconnect(service_id),

for handling adaptation controls from the underlying run-
time meta-data execution. Actions are described in detailed
in next section.

A UMC is a reusable component. Like normal multimedia
components, a UMC or a set of UMCs forms a multimedia
service.

3. HIGH-LEVEL APPLICATION SPECIFI-
CATION

3.1 Terminology

In the quality-aware programming framework, we use the
following definitions: QoS category and QoS dimension [3,
10] are part of the quality-aware application specification,
and UMC description. A QoS category consists of a set of
quality parameters (QoS dimensions) representing qualita-
tive or quantitative attributes for the QoS category. Real-
time video, real-time audio are examples of QoS categories.
Frame rate, frame size, color depth are examples of QoS di-
mensions describing real-time video category. In our frame-
work, we limit the QoS dimension to specify only the quan-
titative attribute.

3.2 Quality-Aware Application Specifications

High-Level application specification allows an application
developer to represent a quality-aware multimedia appli-

cation via a set of meta-data specifications that include
(1) detailed application specification, (2) user-to-application-
specific quality translation template (UtoA template), and
(3) adaptation rules.

3.2.1 Application Specification

An application specification includes (i) an application
functional dependency graph, (ii) setup configuration(s), (iii)
a service component description for each UMC in the graph,
and (iv) a connection description for each pair of connected
UMCs.

The application functional dependency graph represents
the quality-aware multimedia application via the composi-
tion of different ubiquitous multimedia components (UMCs).
It is described accordingly to the quality-aware task-flow
model, and representing a UMC service graph. The setup
configurations represent different compositions of compo-
nents in the dependency graph which are needed to be in-
stantiated during the application setup. The service com-
ponent description includes details of each UMC comprising
the dependency graph. It includes the same fields as the
UMC description with the following additions: component
type (e.g., Specific, Generic, Composite), target machine(s),
and state (e.g., Shared, or Exclusive). A dependency graph
is partially-defined if some of its components are Generic;
otherwise, it is fully-defined. The connection description in-
cludes connection type (e.g., unicasting, multicasting), and
security capability (e.g., enable encryption, decryption).

Figure 3 shows an example of application meta-data spec-
ification for a mobile Video-on-Demand (VoD) application,
entered via the visual programming environment [12]. As
shown in Figure 3, the mobile VoD consists of five UMCs:
a VoD server, a user profile server, a proxy server (for video
transcoding), a VoD client on a PC, and a VoD client on
a hand-held device. The dependency graph of the appli-
cation is represented on the left side. For simplicity, the
dependency graph does not show the relations between the
VoD clients and the user profile server. The dialog on the
right side represents the service component description of
the VoDClientPC. We assume that the three setup config-
urations: {VoDServer, VoDClientPC}, { VoDServer, User-
ProfileServer, VoDClientPC}, and { VoDServer, UserProfile-
Server, ProzyServer} have been specified (not shown in the
figure).

005 o lalx

75 )

Component Name VoDClientPC

Component Type 'Specific

Component Model javacomp

Component Params Imsp:/ifiorence. cs. uiuc.edu:5002/¢

Category VoDGlientService

Node Label -

Source Node ComponentRepository

Target Node satyam.cs.uiuc.edu

Supporting QoS Profile

State

Reservation Type :

Period (ms)

Peak Processing Time (ms):

Sustainable Processing Time (...

Burst Tolerance (ms)

Memory (KB)

Disk (MB)

Bandwidth (KB) .

Hardware Environment : PC Pentiumill

Software Environment : Windows 2000
= CANGEL

Figure 3: Application Specification for a Mobile
Video-on-Demand Application (Example)



3.2.2  User-to-Application-Specific Quality Transla-
tion Template (UtoA Template)

User-to-application-specific quality translation template de-
fines the mapping between different user quality levels and
corresponding application specific QoS categories, their QoS
guarantee levels, and their dimensions. User QoS levels are
provided by the application developer for a user to request
the application. Application-specific QoS categories and di-
mensions, for each user QoS level, are used by the meta-data
compilation to generate value functions. Figure 4 shows an
example of the UtoA template for the mobile VoD appli-
cation in the visual programming environment. In this ex-
ample, three user QoS levels: High, Medium, and Low are
mapped to [(format, {mpeg-2, mjpeg}), (frame rate, 30),
(frame size, 740x480), (color depth, 8)|, [(format, {mpeg-
2, mgpeg}), (frame rate, 20), (frame size, 480x360), (color
depth, 4)], and [ (format, {mpeg-2, mjpeg}), (frame rate, 10),
(frame size, 8602240), (color depth, 4)], respectively.

Number of User QoS Levels 3
Number of QoS Dimensions a

fasronntion dasraps e, o
ormat BeaLs Thibea g Beats ey Beass Thibea
;ra{neglxi 0x480 80x360 0x240
color deoth 4

Figure 4: User-to-Application-Specific Quality
Translation Template for a Mobile Video-on-
Demand (VoD) Application (Example)

3.2.3 Sp?cification of Events, Actions and Adaptation
Rules

To handle the dynamic characteristics of ubiquitous en-
vironments and their UMASs, our programming framework
provides a pre-defined set of events and actions that can
be used by the application developer to describe how the
run-time meta-data execution should control the applica-
tion corresponding to resource availability, load balancing,
and mobility.

Examples of events are clientMove(client_id, machinel,
machine2), serverSwitch(server_idl, server_id2), userMove-
(user_id, space_id1, space_id2), networkOverload(machinel,
machine2), serverShutdown(server_id), clientCPUQverrun-
(client_id), cpuExceeded(machinel). clientMove() represents
the moving of a specific client, defined by client_id, from
machinel to machine2, assuming that no instances of the
client are running on machine2. serverSwitch() represents
the switching of a server from a specific server_id! to an-
other server_id2, assuming that there exists an instance of
server_id2 already running. Moving and switching events
are applied to clients, servers, and peers. A client_id, a
server_id, or a peer_id, represent active instances of a mul-
timedia service. userMove() indicates user mobility from

space_id1 to space_id2, assuming that two spaces are part of
the same deployment environment. networkOverload() indi-
cates the overloaded network between two machines. server-
Shutdown() indicates that the server_id has been shutting
down. clientCPUQwverrun() indicates that the client with
client_id excessively consumes CPU. cpuEzceeded() indicates
that total CPU utilization in machinel exceeds a pre-defined
threshold.

In our programming environment, the following actions
are pre-defined: instantiate(UMC, machinel), insert(client_id,
UMC, server_id), tuneQualityParams([server, client, peer]_id,
params_vector), reconnect([server, client, peer|-id or UMC,
[server, client, peer]-id or UMC), and terminate(/server,
client, peer]_id, machinel). instantiate() instantiates a UMC
in machinel. insert() inserts a UMC (e.g., a peer proxy)
between client_id and server_id. tuneQualityParams() tunes
quality parameters of an instance of a server, a client or a
peer services with parameters defined in params_vector. re-
connect() reconnects an instance of a server, a client, a peer
or a UMC to an instance of another server, client, peer, or
UMC. terminate() stops an instance of a server, a client,
or a peer on machinel. A UMC in these actions represents
a component, which will be instantiated, as a multimedia
service or as a part of an active multimedia service. Be-
sides these actions, moving and switching events, described
previously, can be also considered as actions. Also, note
that target machine parameter, referred by an action (e.g.,
instantiate()), can be considered as a run-time parameter,
which will be determined by the run-time meta-data execu-
tion, during an application execution.

An application developer is responsible to specify the adap-
tation rules using the available pre-defined events and ac-
tions in if-then clause form. The adaptation rules are trans-
lated during the compilation into adaptation control script,
used as a part of the run-time meta-data execution, for man-
aging the application’s functional adaptations (reconfigura-
tions), and data adaptations (parameter tuning), during its
execution. An example of the mobile VoD’s adaptation rules
is illustrated in Figure 5. Note that the order presents the
priority of the rules. The first rule has the highest priority.

EEEE
if (clientCPUOverrun (VeDClientPC)) then
tuneQualityParams (VoDClientPC , (frame rate, 15));

if (size (clientCPUOverrun(VoDClientPC)) > 5) then
clientMove (VoDClientPC, satyam.cs.uiuc.edu,
florence.cs.uiuc.edu) ;

if (clientMove (VoDClientPC, machinel, machine2)) then {
instantiate (VoDClientPC, machine2) ;
reconnect (VoDClientPC, VoDServer) ;
terminate (VoDClientPC, machinel) ;
i3
if (clientSwitch (VoDClientPC, VoDClientHandheld)) then {
instantiate (ProxyServer, florence.cs.uiuc.edu) ;
reconnect (ProxyServer, VoDServer) ;
r (VoDC1i

1d, ProxyServer);

Figure 5: Adaptation Rules for a Mobile Video-on-
Demand (VoD) Application (Example)

4. META-DATA COMPILATION

The meta-data compilation translates the high-level appli-



cation specification into environment-independent and envi-
ronment-dependent lower-level meta-data representations.

4.1 Environment-Independent Translation

The environment-independent translation compiles the in-
put high-level application specification into a QoS-aware ap-
plication descriptor, representing a portable quality-aware
application meta code. The translation performs the fol-
lowing steps. First, it determines the correctness of each
setup configuration in the application functional dependency
graph, based on pre-defined application-specific models®. Sec-
ond, it associates the end-user node in each setup configura-
tion with a value function derived from the UtoA template.
Third, it performs the quality-aware consistency check be-
tween two connected components in each configuration, based
on input service component descriptions (e.g., component
model, and their supporting quality profile with reward pro-
file(s)), and their expected value functions. Fourth, it asso-
ciates each consistent configuration with possible configura-
tion(s) of generic QoS-enabling services, based on the pre-
defined rule base®. Finally, it translates the adaptation rules
into XML format.

The compilation result of the environment-independent
translation is the QoS-aware application descriptor. The
descriptor includes general information of the application
such as application name and category, service component
descriptions of all UMCs in the dependency graph, descrip-
tions of generic QoS-enabling services, generic quality-aware
configurations, and adaptation rules. Each generic configu-
ration is a consistent setup configuration of the application
dependency graph, with the association with generic QoS-
enabling services. The descriptor represents the meta-level
quality-aware application, which can be flexibly and effi-
ciently deployed in different deployment environments by
the environment-dependent translation with the help of the
run-time meta-data execution. The QoS-aware application
descriptor, in XML format, for the mobile VoD application
is shown in Figure 6. Value “*” of attribute machine in el-
ement TargetLocation indicates that the component can be
instantiated in any machine which satisfies the component’s
hardware and system software requirements.

4.2 Environment-Dependent Translation

The environment-dependent translation helps the appli-
cation developer to customize and deploy the QoS-aware
application descriptor in a specific deployment environment,
with the satisfactory quality and mobility requirements, cor-
responding to available UMCs and QoS-enabling services.
The translation is dynamic and distributed, based on the
help from the run-time meta-data execution. It assumes the
availability of UMC and underlying system/middleware/OS
QoS-enabling service repositories, and interface binder repos-
itory. The translation maps the QoS-aware application de-
scriptor as follows.

2An application-specific model consists of sound service config-
urations with specific associations to QoS categories and con-
straints for all UMCs and connections in the configurations.
3Rule base specifies mappings from a UMC or a connection, its
required QoS category, and its QoS guarantee level into proper
generic QoS-enabling services. An example of a rule is: if Compo-
nent’s QoS category is “real-time video” and QoS guarantee level
is “Soft” then bind Component with “soft-real-time cpu schedul-
ing service”. Note that some examples of Component are VoD-
Server, ProxyServer, VoDClientPC.

<?xml version=""1.0"?>
<QoSAwareApplicationDescriptor>
<ApplicationInformation>
<Name name=""mobileVoD"/>
<Category category=""VoD application"/>
<Accessibility accessibility=""public"/>
</ApplicationInformation>
<ServiceComponentDescriptions>
<UMC>
<Name name=""VoDServer"/>
<Type type=""Specific"/>
<Model model=""javacomp"/>
<Category category=""VoDServerService"/>
<Interface name=""VoDServerInf"
repid=""UMCRepository"/>
<TargetLocation machine=""*"/>
<HWRequirement requirement=""PentiumIII"/>
<SystemSoftwareRequirement
requirement=""Windows 2000"/>
<State state=""Shared"/>
<SupportingQoS profile=""VoDServerQoS.xml"/>
<RequiredLibs profile=""VoDServerLibs.xml"/>
</UMC>

</ServiceComponentDescriptions>
<QoSEnablingServiceDescriptions>
<QoSEnablingService>
<Name name=""CPUSchedulingService"/>
<TargetLocation machine=""*"/>
<HWRequirement requirement=""PentiumIII"/>
<SystemSoftwareRequirement
requirement=""Windows 2000"/>
<Interface name=""CPUSchedulingInf"
repid=""QoSEnablingServiceRepository"/>
</QoSEnablingService>

</QoSEnablingServiceDescriptions>
<GenericQoSAwareConfiguration>
<SetupConfiguration>
<Connection consumer=""VoDClientPC"
producer=""VoDServer" value_function=
“{[High:[(frame rate, 30),...]], [Medium:[...]],...}">
<ConnectionType type=""unicasting"/>
<CommunicationModel model=""RSVP"/>
<SecurityCapability capability=""N/A"/>
</Connection>
</SetupConfiguration>
<Associations>
<QoSRequester name=""VoDServer">
<QoSEnablingService name =
*CPUSchedulingService"/>

</6;)Schucslcr>
<//‘\Nssnciations>
</éénericQoSAwareC0nﬁgurati0n>
ZAdaptationRules>
<Rule control = "if" events = " {clientCPUOverrun(VoDClientPC)}"

actions= "' {tuneQoSParams(VoDClientPC, (framerate, 15))}"/>

</AdaptationRules>
</QoSAwareApplicationDescriptor>

Figure 6: QoS-Aware Application Descriptor for the
Mobile Video-on-Demand (VoD) Application (Ex-
ample)

First, the translation substitutes each generic quality-aware
configuration, with specific UMCs and QoS-enabling ser-
vices, available in the deployment environment. The substi-
tutions are modelled as constraint satisfaction problems [33].
The result of the substitutions is a set of specific quality-
aware configurations, where each configuration is a setup
configuration of specific UMCs, their associations with con-
figuration(s) of specific QoS-enabling services, and their de-
scriptions.

Second, the translation provides the automatic transla-
tions from application-specific quality requirements of each
UMC into specific QoS-enabling services’ expected inter-
faces and parameters (e.g., translation from application-
level quality parameters into expected interfaces and param-
eters of resource-specific QoS-enabling services (e.g., DSRT,
RSVP)), based on the availability of semantic-specific trans-



lation schemes®, and suitable interface binders®.

Third, the translation estimates setup cost and running
cost for each specific quality-aware configuration. The setup
cost is mainly derived from the availability of instances or ex-
ecutable codes of required UMCs and specific QoS-enabling
services in the expected target machines. The running cost
represents resource requirements, derived from each UMC’s
reward profile and semantic-specific translation schemes, for
ensuring quality provisions during the application execution.

Finally, the translation compiles the adaptation rules into
adaptation control script, that can be used as a part of the
run-time meta-data execution to manage and control the
adaptations of the application.

The compilation result of the environment-dependent trans-
lation is the QoS-aware Component-based Application Spec-
ification (QoSCASpec). QoSCASpec can be considered as
QoS-aware application descriptor in a specific deployment
environment. It includes application’s overall information
with the addition of the location of generated adaptation
control script, specific service component descriptions, spe-
cific underlying system/middleware/OS QoS-enabling ser-
vice descriptions, and specific quality-aware configurations,
ranked by their setup costs. The structure of a specific
quality-aware configuration is similar to the structure of a
generic quality-aware configuration. In addition, it also in-
cludes supporting QoS levels, alternative associations cor-
responding to different specific QoS-enabling service substi-
tutions, as well as setup cost, running cost, and interface
binders for each association. QoSCASpec, in XML format,
for the mobile Video-on-Demand application is shown in
Figure 7.

5. THE BINDING

The binding helps the application developer to bind com-
ponents in a specific quality-aware configuration into ex-
ecutable codes ready to be instantiated in the deployment
environment. The binding helps performing two main steps:
code instrumentation, and code rebuilding.

5.1 Code Instrumentation

Code Instrumentation is required only if an interface binder
is needed to be instrumented into a UMC. The binding pro-
vides two types of code instrumentations: partially auto-
matic and automatic.

5.1.1 Partially Automatic Code Instrumentation
Partially automatic code instrumentation is needed if a

specific QoS-enabling service is not an integrated part of the

UMC’s code, and/or the code deals with a specific content.

4Sernantic—speciﬁc translation schemes represent different types
of QoS translations; for instances, translation from specific
UMC’s QoS dimensions into common parameters of generic QoS-
enabling services, translation from common parameters of a
generic QoS-enabling service into expected interfaces and param-
eters of a specific QoS-enabling service, and translation from spe-
cific UMC’s QoS dimensions to expected interfaces and parame-
ters of a specific QoS-enabling service.

5 An interface binder is a piece of software code, which is used by
the binding as a “glue code” between a UMC’s source code and
a specific QoS-enabling service. An interface binder implements
the expected interfaces of a specific QoS-enabling service with
specific semantic-specific translation schemes. The presentations
of semantic-specific mapping schemes and interface binders are
beyond the scope of this paper.

<?xml version=""1.0"?>
<QoSCASpec>
<ApplicationInformation
(same structure as in Section 4.1)
<AdaptationScript filename ="'mobileVoDAdapt.lua"/>
</ApplicationInformation>
<ServiceComponentDescriptions>
(same structure as in Section 4.1 with specific information)
</ServiceComponentDescriptions™>
<QoSEnablingServiceDescriptions>
(same structure as in Section 4.1 with specific information)
</QoSEnablingServiceDescriptions>
<SpecificQoSAwareConfiguration>
<SetupConfiguration>
<SupportingQoS qosLevel =
*{[High:[(frame rate, 30),...]], [Medium:[...]],...}"/>
<Connection consumer=""VoDClientPC"
producer=""VoDServer" value function=
*{[High:[(frame rate, 30),...]], [Medium:[...]],...}">
<ConnectionType type=""unicasting"/>
<CommunicationModel model="RSVP"/>
<SecurityCapability capability=""N/A"/>
</Connection>
</SetupConfiguration>
</Associations>
<Association>
<SetupCost cost=""1"/>
<RunningCost cost=""[(machine, resources), ...]"/>
<QoSRequester name=""VoDServer">
<QoSEnablingService name=""DSRT",
infBinder=""VoDServerToDSRTInfBinder.java"/>

</QoSRequester>
<QoSRequester name=""VoDClientPC">

</QoSRequester>
</Association>

</Associations>

</SpecificQoSAwareConfiguration>

</QoSCASpec>

Figure 7: QoSCASpec for the Mobile Video-on-
Demand (VoD) Application (Example)

An example of a specific underlying QoS-enabling service
is the dynamic soft real-time CPU scheduling service called
DSRT. It expects to be used by multimedia application ser-
vice with a for or while loop performing a specific task such
as video or audio capturing, encoding, filtering, decoding,
and playing.

In this type of instrumentation, the application developer
is required to insert some pre-defined tags into the UMC’s
code. For example, in case of DSRT, we have defined the fol-
lowing tags: STARTLOOP, ENDOPERATION, and END-
LOOQP. The binding then parses the component’s code, looks
for these tags, and replaces them with APIs of an interface
binder to DSRT.

5.1.2 Automatic Code Instrumentation

The binding can perform the automatic code instrumen-
tation for a UMC’s code if the interfaces of a specific QoS-
enabling service can be mapped to some functions normally
called by the code. For example, interfaces of RSVP can
be mapped to standard socket system calls. Assuming the
availability of pre-defined mappings between interfaces of
a specific QoS-enabling service and a set of standard in-
terfaces (e.g., socket system calls), the binding parses the
component’s code, looks for the standard system calls, and



replaces them with an interface binder to the specific QoS-
enabling service.

5.2 Code Rebuilding

The binding helps the application developer to rebuild
a UMC’s code with instrumented interfaces. The code re-
building is activated only if the rebuilt version of the instru-
mented component is unavailable®. Assuming the availabil-
ity of typical programming language compilers on different
OS platforms, the binding can rebuild an instrumented com-
ponent as follows. First, it selects a machine with suitable
OS platform (e.g., Windows 2000, Unix) and required pro-
gramming language compilers (e.g., C/C++, Java). Sec-
ond, it downloads the instrumented UMC’s source code,
its related codes, project file or make file, its required li-
braries, the interface binder’s interface definition, its library,
and required libraries, into the selected machine. Third,
the binding automatically modifies the project file or make
file to link to the interface binder’s library, and rebuilds
the instrumented UMC using the modified project file or
make file. Fourth, it uploads the rebuilt component into the
rebuilt-UMC repository. Finally, it updates the component’s
description in the specific quality-aware configuration with
the description of its rebuilt version. After finishing code
rebuilding, the built specific quality-aware configuration is
ready to be instantiated in the deployment environment.

6. RUN-TIME META-DATA EXECUTION

The run-time meta-data execution [34] is a component-
based and reconfigurable middleware, which helps to instan-
tiate, manage, and control a quality-aware multimedia appli-
cation, during the application setup and execution. It also
helps the meta-data compilation to deal with distributed
interactions. An instance of the run-time meta-data execu-
tion is running on each distributed machine which is consid-
ered as a part of the specific deployment environment. The
run-time meta-data execution system consists of a set of
management services, including configuration selection ser-
vice, location discovery service, instantiation service, regis-
tration service, distributed environment monitoring service,
and adaptation management service.

Configuration selection service selects the best configura-
tion among setup configurations of a quality-aware multime-
dia application, corresponding to the input user quality re-
quest (with specific required QoS level), current availability
of resources and devices in the deployment environment, and
the compiled results in QoSCASpec. Location discovery ser-
vice helps to determine suitable locations (target machines)
if a specific target machine is not resolved during the compi-
lation. Instantiation service helps to instantiate UMCs and
their associated QoS-enabling services of the selected config-
uration, into the distributed machines. Registration service
registers the instantiated components to a directory service.
Distributed environment monitoring service provides current
availability of resources and devices, and mobility of users
and devices, in the deployment environment, for other ser-
vices (e.g., configuration selection service). Adaptation man-
agement service manages and controls data adaptations and
functional adaptations of a quality-aware multimedia appli-
cation based on the compiled adaptation control script.

SWe assume that a rebuilt version of an instrumented UMC, if
available, will be found in the rebuilt-UMC repository.

7. IMPLEMENTATION AND RESULTS

The implementation is divided in two main parts: (1)
quality-aware application specifications, and meta-data com-
pilation are implemented in Java, and integrated with visual
programming environment[12]; (2) run-time meta-data eze-
cution is implemented as Lua scripts[6], running over Gaia
services” in the active space project [28]. The application
test-bed is the mobile VoD application which consists of four
mains UMCs: a user profile server, a VoD server, a proxy
server, and a VoD client on Windows platform.

The run-time meta-data execution nodes are connected
via a 100 Mbps Ethernet. The nodes are three PCs (1)
Satyam is Pentium IIT machine with a 700 MHz proces-
sor and 128 MB RAM,(2) Florence is a Pentium III ma-
chine with a 930 MHz processor and 256 MB RAM, (3)
Casablanca is a Pentium III machine with a 930 MHz proces-
sor and 256 MB RAM. All PCs are running windows 2000.
Florence and Casablanca share the same executable codes of
the run-time meta-data execution and all executable UMCs,
available on Satyam via the mapping of network drive.

We demonstrate concepts, design and implementation of
our quality-aware programming framework via measuring
(1) the overhead of UMCs’ instantiation, (2) the overhead
of mobile VoD setup with different setup configurations, pre-
extracted from QoSCASpec of the application, and (3) the
overhead of a functional adaptation, corresponding to user
mobility.

o Experiment 1: Overhead of UMCSs’ instantia-
tion

In this experiment, we measure the instantiation over-
head of individual UMC comprising the mobile VoD
application in two scenarios: (a) instantiations of UMCs
on Satyam, where its local disk contains all UMCs,
and (b) instantiations of UMCs on Florence, which
maps its network drive to Satyam’s local disk. The in-
stantiation service parses a UMC description (See de-
scriptions in Section 4.1, 4.2), represented in a XML
file, and instantiates the UMC corresponding to its
description. The instantiation includes some inter-
actions among Lua script, underlying Gaia services,
and java component manager. The instantiation over-
head of each UMC in both Figure 8a and 8b is an
average value of ten runs. The instantiation overhead
of the VoD client from both scenarios is much higher
than other components’, because it includes more exe-
cutable codes (e.g., java GUI, decoding engine, trans-
port protocol) which are needed to be loaded into the
target machine’s memory before the instantiation. Com-
paring the results of two scenarios, accessibility to net-
work drive does not affect the performance, because
Satyam and Florence are connected with a high-speed
network. The major overhead for the UMC instan-
tiation depends on the processor power and available
memory of the target machine.

"Gaia is a distributed operating system for a ubiquitous smart
room environment. It brings the functionality of operating system
to physical spaces. Gaia kernel consists of a set of services; for
example, context service, component repository, event manager,
component manager core, etc.[28].



7

Seconds
o
Seconds
«

VoDserver
ProxyServer
VoDClientPC

VoDServer
ProxyServer

UserProfileServer
UserProfileServer

(a) (b)
Figure 8: (a) Overhead of UMCs’ Instantiation
on Satyam; (b) Overhead of UMCs’ Instantia-
tion on Florence

Experiment 2: Overhead of mobile VoD setup

In this experiment, we measure the overhead of mobile
VoD setup with different setup configurations: config-
uration 1, comprising of a VoD server on Florence, and
a VoD client on Satyam; configuration 2, comprising
of a VoD server and a user profile server on Florence,
and a VoD client on Satyam; configuration 3, compris-
ing of a VoD server, a user profile server, and a proxy
server on Florence. Configuration 3 represents a setup
VoD system that will wait for a new VoD client to
join. The instantiation service parses a setup configu-
ration, represented in a XML file, pre-extracted from
the mobile VoD’s QoSCASpec, and instantiates the
configuration in the distributed machines correspond-
ing to the description. The setup overhead for each
setup configuration in Figure 9 is an average value of
ten runs. The main setup overhead comes from the
instantiation overhead of individual UMC. The setup
overhead of configuration 3 is much lower than other
two configurations because it does not include the in-
stantiation of the VoD client which takes much more
overhead than other components.

12-

10~

o

Seconds

o
T

IS
T

~

Configuration 1
Configuration 2
Configuration 3

Figure 9: Overhead of Mobile VoD Setup with
Different Setup Configurations

Experiment 3: Overhead of a functional adap-
tation corresponding to user mobility

In this experiment, we measure the overhead of func-
tional adaptation, corresponding to user mobility be-
tween an original space to two different spaces (See

Figure 10a). The original space is represented by Satyam.

The two target spaces are represented by two target
machines: Florence and Casablanca. Within the ex-
periment, we assume that the generated adaptation
control script detects the userMove() event, and per-

VoDClientPC

forms the functional adaptation, with the help of un-
derlying Gaia services, by instantiating a new VoD
client on a target machine. The VoD server redirects
the streaming to the new VoD client. The moving over-
head from Satyam to Florence, in Figure 10b, is lower
than from Satyam to Casablanca for all runs. The
reason for this result is that Florence is running all
required Gaia services locally while Casablanca is not.
Casablanca needs to contact Florence to use some Gaia
services for its VoD client instantiation. This produces
additional overhead.

Florence 12

Gaia services

VoDServer
(b) VoDClientPC

Seconds

. o a
Gaia serv} Gala service 6 T O S S R

0*'_'\-‘._._/\""\.

ce y
VoDClientPC

Satyam

VoDClientPC Trials
(a) move from Satyam to Casablanca
(b) move from Satyam to Florence

(a) (b)
Figure 10: (a) Moving Scenario (b) Overhead of
Functional Adaptation Corresponding to User
Mobility

Casablanca

e Overall evaluation

Although, the results of all experiments present the
high overhead (in seconds), corresponding to interac-
tions among underlying Gaia services, java component
manager, and Lua script, this overhead is produced
only during the application setup or reconfiguration®.
It does not affect the performance of data transmission
or media delivery during the application execution.
From the programming framework’s point of view, we
achieve the goals for enabling the flexibility and easi-
ness of developing and deploying a distributed multi-
media application with mobility in ubiquitous environ-
ments, with the current trade-off of large instantiation
overhead.

8. RELATED WORK

In this section, we discuss related work in five areas: pro-
gramming tools for building distributed multimedia applica-
tions, QoS-enabling services for ensuring quality-awareness
for the applications, QoS languages, deployment descriptors,
and open framework for multimedia delivery and consump-
tion.

Tools for building distributed multimedia applica-
tions. Different development tools have been developed for
building multimedia applications. For example, the Mash
programming environment [1], developed at UC Berkeley,
provides a set of multicast streaming toolkits. Ooi et al de-
veloped a multimedia software library, called Dali [26], which
includes a set of intermediate level abstractions between C
and conventional libraries. The Streamlt [32] project pro-
vides a special-purpose language to improve programmer
productivity and program robustness within the streaming

8The reconfiguration happens only occasionally, i.e. functional
adaptation is considered over coarse time intervals of minutes,
hours, or days, hence, the overhead in seconds in acceptable.



domain. All of the above work mainly focused on the mul-
timedia content manipulation, presentation, or (multicast)
streaming.

From the object-oriented or component-based side, soft-
ware toolkits [23, 8, 20] have been proposed to help the ap-
plication developer to develop a distributed multimedia ap-
plications flexibly and more easily. For example, DAVE [23]
provides a plug-and-play programming paradigm, which al-
lows the application developer to connect the distributed ob-
jects or devices forming the distributed application. SCOOT
[8] provides the reliable multimedia collaboration, based on
the object-oriented approach. In [20], Mccanne et al pro-
pose the common infrastructure, which allows the applica-
tion developer to utilize different media and protocol ob-
jects from different research groups to develop a distributed
multimedia application flexibly. Our work distinguishes it-
self by focusing on assisting the application developer to
develop and deploy application-specific quality support for
distributed multimedia applications with mobility in ubig-
uitous environments. Our approach is based on reusable
application and middleware service components, meta-data
compilation and run-time meta-data execution.

QoS-enabling services for quality-aware UMA. In
addition to the work mentioned in the introduction, there
is other related work on providing system support for QoS-
aware UMA. For example, Black et al proposed InfoPipes
[2] for multimedia applications to expose communication
at the application level and to achieve adaptive QoS con-
trol. Smith et al presented InfoPyramid [31], which man-
ages different variations of media objects with different fi-
delities and modalities and selects among the alternatives
in order to achieve the ubiquitous delivery to heterogeneous
client devices. Pham et al [27] described the concept “Small
Screen/Composite Device” to deliver multimedia applica-
tions on mobile devices by outsourcing computing tasks redi-
rected to nearby powerful proxy hosts. We believe that all
above work is useful for providing quality-aware UMA and
probably coexists in the ubiquitous computing environment.
Our programming framework allows the application devel-
oper to flexibly leverage any of them, as QoS-enabling ser-
vices, for implementing application-specific quality support.

QoS languages. A QoS specification language (e.g., [10,
11]) allows the implementor to specify the properties of the
application, namely its required input quality and delivered
output quality. However, they do not actually simplify the
task of building a multimedia application.

Most closely related work proposes QoS specialized lan-
guages or QoS specialized specifications to allow the appli-
cation to utilize the quality-enabling facilities, provided by
run-time systems. In [29], a scripting language is imple-
mented to allow legacy applications to take advantage of
quality-enabling facilities described by the network DiffServ
framework [24]. The Quality Object (QuO) framework [19]
introduces a set of aspect languages, called Quality Descrip-
tion Languages (QDLs), to provide quality support for the
distributed object applications via CORBA. In Agilos mid-
dleware [17], application quality is defined via rules and
membership functions. As stated in the introduction, these
QoS run-time systems support particular aspects of qual-
ity provisions. In our programming framework, we reuse
some of these available QoS run-time systems as underlying
QoS-enabling services. We provide then semantic-specific
translation schemes, which help mapping from high-level ap-

plication specification into their specialized languages.

Deployment descriptors. The compiled results (QoS-
aware application descriptor and QoSCASpec) of our pro-
gramming framework share similar ideas as of the EJB’s de-
ployment descriptor [22], CCM’s descriptors [14](e.g, CORBA
software, CORBA component, and component assembly de-
scriptors), and COM+’s attributed-based or declarative pro-
gramming [16]. Our descriptors, however, are tailored to-
wards describing quality-aware, ubiquitous multimedia ap-
plications with mobility.

Open framework for multimedia delivery and con-
sumption. The QCompiler enables the Digital Item Adap-
tation and Universal Multimedia Access (UMA) concepts in
MPEG-21 [15]. It considers what are required for universally
multimedia access, and helps to fulfils these requirements
from the development and deployment, and the component-
based quality-aware programming point of view.

9. CONCLUSION

Ubiquitous computing brings new challenges for deliver-
ing distributed multimedia applications with application-
specific quality guarantees. In this paper, we present a novel
programming framework for quality-aware ubiquitous multi-
media applications. Key features of our programming frame-
work are: (1) the high-level application specification which
can be used to easily describe a ubiquitous multimedia ap-
plication with quality requirements and controls of adapta-
tions, (2) the meta-data compilation which translates input
high-level application specification into lower-level applica-
tion/system descriptors which are portable, and customized,
to different deployments, respectively, (3) the binding which
helps rebuilding the application in a specific deployment en-
vironment, and (4) the run-time meta-data execution which
provides underlying interaction mechanisms for the meta-
data compilation, and helps to instantiate, manage and con-
trol the setup, execution, and adaptations of a quality-aware
multimedia application, flexibly.

10. ACKNOWLEDGEMENTS

We would like to thank Yi Cui for his contribution to the
original multimedia components of the mobile VoD applica-
tion, and Renato Cerqueira for an example of Lua script.

11. REFERENCES

[1] Open Mash Consortium. http://www.openmash.org, 1999.

[2] A. Black, J. Huang, and J. Walpole. Reifying
Communication at the Application Level. In Proc. of
International Workshop on Multimedia Middleware,
Ottawa, Canada, Oct. 2001.

[3] G. Bochmann, B. Kerherve, and M. Mohamed-Salem.
Quality of service management issues in electronic
commerce applications. to be published as a chapter in a
book.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource ReServation Protocol (RSVP) - Version 1
Functional Specification. RFC 2205, 1997.

[5] A. Campbell. Mobiware: Qos aware middleware for mobile
multimedia communications. In Proc. of 7th IFIP
International Conference on High Performance
Networking, pages 166—184, Apr. 1997.

[6] R. Cerqueira, C. Cassino, and R. Ierusalimschy. Dynamic
component gluing across different componentware systems.
In Proc. of International Symposium on Distributed
Objects and Applications, pages 362-71, 1999.



[7]

8

[9]

(10]

11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

19

(20]

(21]

(22]

(23]

H. Chu and K. Nahrstedt. Cpu service classes for
multimedia applications. In Proc. of IEEE International
Conference on Multimedia Computing and Systems, pages
296-301, June 1999.

E. Craighill, M. Fong, K. Skinner, R. Lang, and

K. Gruenefeldt. Scoot: An object-oriented toolkit for
multimedia collaboration. In Proc. of ACM Multimedia
Conference, pages 41-49, 1994.

T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and

P. Robin. Software architecture for adaptive distributed
multimedia applications. IEE Proceedings - Software,
145(5):163-171, Oct. 1998.

S. Frolund and J. Koistinen. Quality of service specification
in distributed object systems design. In Proc. of the 4th
USENIX Conference on Object-Oriented Technologies and
Systems, pages 1-18, 1998.

X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu.
An XML-based QoS Enabling Language for the Web.
Journal of Visual Language and Computing, Special Issue
on Multimedia Language for the Web, 2002.

X. Gu, D. Wichadakul, and K. Nahrstedt. Visual qos
programming environment for ubiquitous multimedia
services. In Proc. of IEEE International Conference on
Multimedia and Ezpo, Aug. 2001.

M. A. Hiltunen, R. D. Schlichting, X. Han, M. Cardozo,
and R. Das. Real-time dependable channels: Customizing
qos attributes for distributed systems. IFEE Transactions
on Parallel and Distributed Systems, 10(6):600-612, June
1999.

O. M. G. Inc. Corba 3.0 new components chapters. online
documentation at
ftp://ftp.omg.org/pub/docs/ptc/01-11-03.pdf, Nov. 2001.
K. H. J. Bormans. Mpeg-21 overview v.4. online
documentation at

http://mpeg.telecomitalialab. com/standards/mpeg-21/mpeg-
21.htm, May

2002.

M. Kirtland. The com+ programming model makes it easy
to write components in any language. Microsoft System
Journals, online documentation at
hitp://www.microsoft.com/com/wpaper/default.asp, Dec.
1997.

B. Li and K. Nahrstedt. A control-based middleware
framework for quality of service adaptations. IEEE Journal
of Selected Areas in Communications, Special Issue on
Service Enabling Platforms, 17(9):1632-1650, Sept. 1999.
J. W. Liu, K. Nahrstedt, D. Hull, S. Chen, and B. Li. Epiq
qos characterization, draft version. July 1997.

J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr,

R. Vanegas, and K. Anderson. Qos aspect languages and
their runtime integration. In Lecture Notes in Computer
Science, Springer-Verlag of the Fourth International
Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, 1511:303-318, May 1998.
S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir,

Y. Chawathe, A. Coopersmith, K. Mayer-Patel, S. Raman,
A. Schuett, D. Simpson, A. Swan, T. Tung, D. Wu, and

B. Smith. Toward a common infrastructure for
multimedia-networking middleware. In Proc. of the 7th
International Workshop on Networking and Operating
System Support for Digital Audio and Video, pages 39—49,
May 1997.

C. Mercer, S. Savage, and H. Tokuda. Processor Capacity
Reserves: Operating System Support for Multimedia
Application. In Proc. of IEEE International Conference on
Multimedia Computing and Systems, pages 90-99, 1994.

S. Microsystems. Enterprise javabeans tm specification,
version 2.0. online documentation at
http://java.sun.com/Download5, Aug. 2001.

R. F. Mines, J. A. Friesen, and C. L. Yang. Dave: A
plug-and-play model for distributed multimedia application
development. In Proc. of ACM Multimedia Conference,

(24]

25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

pages 59-66, 1994.

K. Nichols, V. Jocobson, and L. Zhang. A Two-bit
Differentiated Services Architecture for the Internet. RFC
2638, 1999.

B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,

J. Flinn, and K. Walker. Agile Application-Aware
Adaptation for Mobility. In Proc. of the 16th ACM
Symbosium on Operating System Principles, 1997.

W. Ooi, B. Smith, S. Mukhopadhyay, H. H. Chan, S. Weiss,
and M. Chiu. Dali : A Multimedia Software Library. In
Proc. of SPIE Multimedia Computing and Networking,
Jan. 1999.

T. L. Pham and G. Schneider. A Situated Computing
Framework for Mobile and Ubiquitous Multimedia Access
using Small Screen and Composite Devices. In Proc. of the
8th ACM International Conference on Multimedia, pages
323-331, Oct. 2000.

M. Romn, C. K. Hess, A. Ranganathan, P. Madhavarapu,
B. Borthakur, P. Viswanathan, R. Cerqueira, R. H.
Campbell, and M. D. Mickunas. Gaiaos: An infrastructure
for active spaces. Technical Report UIUCDCS-R-2001-222/
UILU-ENG-2001-1731, Universiy of Illinois at
Urbana-Champaign, 2001.

T. Roscoe and G. Bowen. Script-driven Packet Marking for
Quality of Service Support in Legacy Applicaitons. In Proc.
of SPIE Conference on Multimedia Computing and
Networking 2000, pages 166—-176, Jan. 2000.

M. Shankar, M. DeMiguel, and J. Liu. An end-to-end qos
management architecture. In Proc. of the 5th IEEE
Real-Time Technology and Applications Symposium, pages
176-189, June 1999.

J. Smith, R. Mohan, and C.-S. Li. Scalable Multimedia
Delivery for Pervasive Computing. In Proc. of ACM
International Conference on Multimedia, pages 131-140,
1999.

W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:
A Language for Streaming Applications. In Proc. of
International Conference on Compiler Construction, 2002.
E. Tsang. Foundations of Constraint Satisfaction, chapter
Introduction. Academic Press, 1993.

D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu. 2KQ+:
An Integrated Approach of QoS compilation and
Component-Based, Run-Time Middleware for the Unified
QoS Management Framework. In Proc. of IFIP/ACM
International Conference on Distributed Systems
Platforms, Nov. 2001.



