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Abstract. Many emerging on-line data analysis applications requinglyeng
continuous query operations such as correlation, agdoegaind filtering to
data streams in real-time. Distributed stream procesgistgsis allow in-network
stream processing to achieve better scalability and guafiservice (QoS) pro-
vision. In this paper we preseynergy, a distributed stream processing mid-
dleware that provides sharing-aware component composi8gnergy enables
efficient reuse of both data streams and processing comgsynérile composing
distributed stream processing applications with QoS delmaBynergy provides
a set of fully distributed algorithms to discover and evédutne reusability of
available data streams and processing components whantiasing new stream
applications. For QoS provision, Synergy performs QoS ihjmojection to
examine whether the shared processing can cause QoS aislaih currently
running applications. We have implemented a prototype @fSjnergy middle-
ware and evaluated its performance on both PlanetLab angdation testbeds.
The experimental results show that Synergy can achieve rbetter resource
utilization and QoS provision than previously proposedescebs, by judiciously
sharing streams and processing components during apgficmposition.

Keywords: Distributed Stream Processing, Component CompositioareshProcess-
ing, Quality-of-Service, Resource Management.

1 Introduction

Stream processing applications have gained considerabéptance over the past
few years in a wide range of emerging domains such as mamitafi network traffic
for intrusion detection, surveillance of financial trades fraud detection, observa-
tion of customer clicks for e-commerce applications, custation of multimedia or
news feeds, and analysis of sensor data in real-time [1n2j typical stream pro-
cessing application, stream processguogiponents process continuous data streams
in real-time [3] to generate outputs of interest or to idgntheaningful events. Of-
ten, the data sources, as well as the components that impleéheeapplication logic
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are distributed across multiple sites, constituting disted stream processing sys-
tems (DSPSs) (e.g., [4-9]). Stream sources often produge \@lumes of data in high
rates, while workload spikes cannot be predicted in advaRoeviding low-latency,
high-throughput execution for such distributed applimasi entails considerable strain
on both communication and processing resources and thesmisesignificant chal-
lenges to the stream processing middleware design.

While a DSPS provides the components that are needed foricatfpn execu-
tion, a major challenge still remains: Namely, how to setenbng different component
instances to compose stream processing applicationsmasdke While previous efforts
have investigated several aspects of component compoitid] and placement [8] for
stream applications, our research focuses on enaftargng-aware component com-
position for efficient distributed stream processing. Sharing-aamposition allows
different applications to utilize i) previously generatttbams and ii) already deployed
stream processing components. The distinct characterisfidistributed stream pro-
cessing applications make sharing-aware component catigmgzarticularly challeng-
ing. First, stream processing applications often havemimn quality-of-service (Qo0S)
requirements (e.g., end-to-end service delay). In a shan@zkssing environment, the
QoS of a stream processing application can be affected btipleutomponents that
are invoked concurrently and asynchronously by many apiiins. Second, stream
processing applications operate autonomously in a higjachic environment, with
load spikes and unpredictable occurrences of events. Tieispmponent composition
must be performed quickly, during runtime, and be able tgpata dynamic stream
environments. Third, a DSPS needs to scale to a large nunfilstreams and com-
ponents, which makes centralized approaches inapprepsiace the global state of a
large-scale DSPS is changing much faster than it can be caicatad to a single host.
Hence, a single host cannot make accurate global decisions.

Despite the aforementioned challenges, there are sigmificenefits to be gained
from a flexible sharing-aware component compositioanijanced QoSprovision (e.g.,
shorter service delay) since existing streams that meetske€s requirements can
be furnished immediately, while the time-consuming prscalsnew component de-
ployment is triggered only when none of the existing commtsean accommodate
a new request; and ineduced resource load for the system, by avoiding redundant
computations and data transfers. As a result, the oveistitsys processing capacity is
maximized to meet the scalability requirements of servirgyrconcurrent application
requests.

In this paper we presei@ynergy, a distributed stream processing middleware that
provides sharing-aware component composition. Synergniéemented on top of a
wide-area overlay network and undertakes the compositialistributed stream pro-
cessing applications. Synergy supports both data streahrpetessing component
reuse while ensuring that the application QoS requiremeats be met. The decision
of which components or streams to reuse is made dynamidallynatime taking into
accountthe applications’ QoS requirements and the cusysitém resource availability.
Specifically, this paper makes the following major conttibnos:

Y1n this paper, we focus on the end-to-end execution time QeS8ian consisting of both
processing delays at different components and networlysiéletween components.



— We propose a decentralized light-weight composition allyor that can discover
streams and components at run-time and check whether ahg ekisting compo-
nents or streams can satisfy the application’s requestr &tfie qualified candidate
components have been identified, components and strearselaoted and com-
posed dynamically such that the application resource remugnts are met and the
workloads at different hosts are balanced.

— We integrate a QoS impact projection mechanism into theillised component
composition algorithm to evaluate the reusability of arigtstream processing
components according to the applications’ QoS constraikiteen a component is
shared by multiple applications, the QoS of each applioatiat uses the compo-
nent may be affected due to the increased queueing delajis pndcessors and the
communication links. Synergy’s approach is to predict thpact of the additional
workload on the QoS of the affected applications and enbatetcomponent reuse
does not cause QoS violations in existing stream applicati®uch a projection can
facilitate the QoS provision for both current applicati@msl the new application
admitted in the system.

— We have implemented a prototype of Synergy and evaluatqueif®rmance on
the PlanetLab [10] wide-area network testbed. We have aladucted extensive
simulations to compare Synergy’s composition algorithrmexdsting alternative
schemes. The experimental results show that: i) Synergsistemtly achieves much
better QoS provision compared to other approaches, foriatyasf application
loads, ii) sharing-aware component composition incretie=aumber of admitted
applications, while scaling to large request loads and oitwsizes, iii) QoS im-
pact projection greatly increases the percentage of aghirépplications that meet
their QoS requirements, iv) Synergy’s decentralized casiijpm protocol has low
message overhead and offers minimal setup time, in the ofdefew seconds.

The rest of the paper is organized as follows: Section 2 duices the system
model. Section 3 discusses Synergy’s decentralized ghravimre component composi-
tion approach and its QoS impact projection algorithm. iBact presents an extensive
experimental evaluation of our system. Section 5 discussated work. Finally, the
paper concludes in Section 6.

2 System Model

In this section, we present the stream processing apmlicatodel, describe the ar-
chitecture of the Synergy middleware and provide an overaiiits operation. Table 1
summarizes the notations we use while discussing our model.

2.1 Stream Processing Application Model

A data stream; consists of a sequence of continuous data tuples. A streaca$s-
ing component; is defined as a self-contained processing element that ingrits an
atomic stream processing operatpon a set of input streanys, is; and produces a set
of output stream3 " os;. Stream processing components can have more than one inputs



[Notation] Meaning [[Notation] Meaning |
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Table 1. Notations.

(e.g. a join operator) and outputg.§. a split operator). Each atomic operator can be
provided by multiple component instancss. . ., c,. We associate metadata with each
deployed component or existing data stream in the systeracittéte the discovery
process. Both components and streams are named based omacamtology [11]
(e.g.,0;.name = Aggregator. COUNTF;.name = Video.MPEGII.Birthday).

A stream processing request (query) is describedduesy plan, denoted by. The
query plan is represented by a directed acyclic graph (DASekifying the required
operators; and the streams; among theri The CPU processing requirements of the
operator,,, Vo; € £ and the bandwidth requirements of the streamsvs; < £ are
also included ir¢. The bandwidth requirements are calculated accordingegautier-
requested stream rate, while the processing requirementsatculated according to
the data rate and resource profiling results for the opes§t@}. The stream processing
request also specifies the end-to-end QoS requirendgnts [¢i, ...gm ], such as end-
to-end execution time and loss rate. Although our schenmeegemeric to additive QoS
metrics, we focus on the end-to-end execution time metrimti byq,, which is
computed as the sum of the processing and communicatios fionea data tuple to
traverse the whole query plan.

The query plan can be dynamically instantiated into diffiéapplication compo-
nent graphs, denoted by\, depending on the processing and networking availabil-
ity. The vertices of an application component graph reprede components being
invoked at a set of nodes to accomplish the application gi@guwhile the edges
represent virtual network links between the components) eae of which may span
multiple physical network links. An edge connects two comgtsc; andc; if the out-
put of the component; is the input for the component. The application component
graph is generated by our component composition algoritihromatime, after selecting
among different component candidates that provide theimedjistream processing
operator; and satisfy the end-to-end QoS requiremeps

2.2 Synergy Architecture

Synergy is a wide-area middleware that consists of a setdifilolited hosts);
connected via virtual linkg; into an overlay mesh on top of the existing IP network.

2In general, there may be multiple query plans that can gasisitream processing request.
Query plan optimization however involves application setits and is outside the scope of
this paper. Thus, in this work we assume the query plan is\give
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Fig. 1. Synergy system architecture.
Synergy as a distributed stream processing middlewarertakes the component com-
position role to enable stream and component reusabiliflevaffering QoS manage-
ment. Figure 1 shows an overview of our architecture. Synlergerages the underlying
overlay network for registering and discovering availatdenponents and streams in a
decentralized manner. In our current Synergy prototypawypgement a keyword-based
discovery service [13] on top of the Pastry distributed habhe (DHT) [14]. However,
our middleware can also be integrated with other DHTSs, otruntured overlays [15],
since discovery is an independent module of our system.rg§yraglopts a fully dis-
tributed architecture, where any node of the middleware canpose a distributed
stream processing application. After a stream processiggest is submitted and a
query plan is produced, Synergy is responsible for selgetiisting streams that satisfy
the query and candidate components that can provide th@edmperators.

Each Synergy node, denoted by as illustrated in Figure 2, maintainsi&tadata
repository of active stream processing sessions, streams, and compdjmecluding
input and output buffers). Additionally, the architectofea Synergy node includes the
following main modules: i) aomposition module that is responsible for running the
component composition algorithm and uses: igiscovery module that is responsible
for locating existing data streams and components; iiipuing module that routes
data streams between different Synergy nodes; and pratoring module that is
responsible for maintaining resource utilization infotioa for v; and the virtual links
connected t@;. In the currentimplementation, the monitoring module caegktrack of
the CPU load and network bandwidth. The current processalp and the residual
processing capacityp,, on nodev; are inferred from the CPU idle time as measured
from the/ pr oc interface. The residual available bandwidth, on each virtual linki;
connected tay; is measured using a bandwidth measuring tool (e.g., [168) fially
useb;; to denote the amount of current bandwidth consumed.on

2.3 Approach Overview

We now briefly describe the basic operations of the Synergldlaware. A stream
processing application request is submitted directly tyrefyy nodev;, if the client



is running the middleware, or redirected to a Synergy nadéhat is closest to the
client based on a predefined proximity metric (e.g., gedgcgblocation). Alternative
policies can select, to be the Synergy node closest to the source or the sink fode(s
of the application. A query plag is produced, that specifies the required operators
and the order in which they need to be applied to execute teeyqlihe processing
requirements of the operators,, Vo, € & and the bandwidth requirements of the
streams,;, Vs; € & are also included ig. The request also specifies the end-to-end
QoS requirement§)¢ = [q1, ...¢m] for the composed stream processing application.
These requirements (i.€, Q¢) are used by the Synergy middleware running on that
node to initiate the distributed component compositiorigerol. This protocol produces
the application component graphthat identifies the particular components that shall
be invoked to instantiate the new request.

To avoid redundant computations, the sys-
tem first tries to discover whether any of the
requested streams have been generated by pre- Co %2

sharing benefit, the system reuses the result

stream(s) generated during the latest possible  Fig. 3. Probing example.
stages in the query plan. Thus, the system only

needs to instantiate the remaining query plan

for processing the reusable existing stream(s), to gemtratuser requested stream(s).
The system then probes those candidate nodes that can@uopedators needed in the
query plan, to determine: i) whether they have the availeddeurces to accommodate
the new application, ii) whether the end-to-end latencyitbiw the required QoS, and
iii) whether the impact of the new application would causeSs@iolations to existing
applications. Figure 3 gives a very simple example of hovwbpsocan be propagated
hop-by-hop to test many different component combinatidssuming components
andc, offer operaton;, while componentss andc, offer operaton,, and assuming
that the components can be located at any node in the systebregwill attempt to
travel from the source S to the destination D through p&hss ¢; — ¢35 — D,

S - ¢ -4 — DS — cg - c3 - D,andS — ¢ — cux — D. A
probe is dropped in the middle of the path if any of the abovedi@ns are not
satisfied in any hop. Thus, the paths that create resouraéoaus, result to end-to-
end delays outside the requested QoS limits, or unaccgptatrease the delays of
the existing applications, are eliminated. From the swsfoésandidate application
component graphs, our composition algorithm selects tleetbat results in a more
balanced load in the system and the new stream applicatiostantiated. The detailed
operation of Synergy’s sharing-aware component composi§i described in the next
section.

3 Design and Algorithm

In this section, we describe the design and algorithm detdilour Synergy dis-
tributed stream processing middleware, that offers shaainare component composi-
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Fig. 4. Query plan example.
Fig. 5. Synergy composition example.

tion. Synergy can i) reuse existing data streams to avoidn@gint computations, and
i) reuse existing components if the new stream load doedeaot to QoS violations
of the existing applications. We first describe the decéiméd component composition
protocol, followed by the detailed algorithms for streamse and component sharing.
Synergy’s fully distributed and light-weight compositigmotocol is executed when
instantiating a new application.

3.1 Synergy Composition Protocol

Given a stream processing request, the Synergy node fissttgelocally generated
query plar¢ and then instantiates the application component graptdlaséhe user’s
QoS requirement§),. Figure 4 shows an example of a query plan, while Figure 5
shows a corresponding component composition example. f@\ax decentralized,
light-weight component selection, Synergy employs a sptatbes to concurrently dis-
cover and select the best composition. Synergy differs fsoeaious work (e.g., [6, 13])
in that it judiciously considers the impact of stream and porent sharing on both the
new and existing applications. The probes carry the origeguest information (i.e.,
&, Q¢), collect resource and QoS information from the distridutemponents, perform
QoS impact projection, and select qualified compositiom®ating to the user's QoS
requirements. The best composition is then selected anibgggadified ones, based on
a load balancing metric. The composition protocol, a higklldescription of which is
shown in Algorithm 1, consists of the following five main step

Step 1. Probe creation.Given a stream processing query planthe Synergy
nodew; first discovers whether any existing streams can be useditfysthe user’s
request. The goal is to reuse existing streams as much ablpassavoid redundant
computations. For example, in Figure 4, starting from thetidation v, will first check
if the result stream (streamy) is available. If not, it will look for the streams one hop
away from the destination (streamsands), then two hops away from the destination
(streams4 andss) and so on, until it can find any streams that can be reusedeWete
this Breadth First Search on the query plan as identificaifdhe maximum sharable
point(s). The nodes generating the reusable streams may not havgheawvailable
bandwidth for more streaming sessions or may have virtaéisliwith unacceptable
communication latencies. In that case all probes are dbpgethose nodes and,
checks whether there exist components that can providepators requested in the
query plan, as if no streams had been discovered. The detaist determining the



Algorithm 1 Synergy composition.

Input: query(&, Q¢, ), nodevs
Output: application component graph
v, identifiesmaximum sharable point(s) in £
vs SPawns initial probes
for eachw; in path
checks available resourc&ND checks QoS so far i AND checksprojected QoS impact
if probed composition qualifies
performs transient resource allocatiorvat
discovers next-hop candidate components féom
spawns probes for selected components
else
drops the received probe
vs Selects the most load-balanced component composition
v, establishes the stream processing session

maximum sharable points and about discovering sharaldaras and components are
described in Section 3.2. Next, the Synergy nodmitiates a distributed probing pro-
cess to collect resource and QoS states from those candimfagonents that provide
the maximum sharable points. The goal of the probing proisess select qualified
candidate components that can best satjsiynd () and result in the most balanced
load in the system. The initial probing message carriesafjaast information&and
Q¢) and a probing ratio, that limits the probing overhead byc#pmg the maximum
percentage of candidate components that can be probedctoreguired operator. The
probing ratio can be statically defined, or dynamically dediby the system, based
on the operator, the components’ availability, the userfsSQequirements, current
conditions, or historical measurement data [6]. The ihpigbing message is sent
to the nodes hosting components offering the maximum shkagadints. We do not
probe the nodes that are generating streams before the mnasimarable points, since
the overhead would be disproportional to the probabiligt ttiney can offer a better
component graph than the one starting after the maximunablapoints.

Step 2. Probe processingWhen a Synergy node; receives a probing message
called probeP;, it processes the probe based on its local state and on threniafion
carried byP;. A probe has to satisfy three conditions to qualify for fertpropagation:
i) First, v; calculates whether the requested processing and bandwgliirementg,,
andb,, can be satisfied by the available residual processing dgpati bandwidth
rpy, andrb,, of the node hosting the component and of the virtual link phebe
came from respectively. Thus, botlp,, > p,, andrb;, > b,, have to hold. ii)
Secondy; calculates whether the QoS values of the part of the compamaph that
has been probed so far already violate the required QoS s/ajpecified inQ).. For
the end-to-end execution time QoS mefjcthis is done as follows: The sum of the
components’ processing and transmission times so far Hae less thag,. The time

3 In the general case, where other node resources such as ynernisk space are to be taken
into account in addition to the processing capacity, coegrequations have to hold for them
as well.



that was needed for the probe to travel so far gives an egtiafi#ite transmission times,
while the processing times are estimated in advance frodilipgo[12]. iii) Third, v;
calculates the QoS impact on the existing stream processggjons by admitting this
new request. In particular, the expected execution delergase due to the additional
stream volume introduced by the new request is calculatiee dEtails about the QoS
impact projection are described in Section 3.3. Similatlg impact of the existing
stream processing sessions on the QoS of the new one isatelduBoth the new and
the existing sessions have to remain within their QoS requénts.

If any of the above three conditions cannot be met, the prelgedpped immedi-
ately to reduce the probing overhead. Otherwise, the noderpestransient resource
allocation to avoid conflicting resource admissions (olecations) caused by concur-
rent probes for different requests. The transient resaaltoeation is cancelled after a
timeout period if the node does not receive a confirmationsags to setup the stream
processing application session.

Step 3. Hop-by-hop probe propagationlf the probeP; has not been dropped,
v; propagates it furthen,; derives the next-hop operators from the query plan and
acquires the locations of all available candidate comptafeneach next-hop operator
using the overlay infrastructure. Thenselects a number of candidate components to
probe, based on the probing ratio. If more candidates thandimber specified by the
probing ratio are available, random ones are selectedf atatency monitoring service
[17] is available— the ones with the smallest communicalidency are selected. If
no candidate components for the next operator are foundywacamponent has to be
deployed. We choose tmllocate this new component with the current one, deploying
it in the same node, if processing resources are availablis approach minimizes
the communication delay between the two components. Ofgpaches for choosing
an appropriate location with regards to future needs cants€mployed [8, 18]. Since
the probe processing checks will take place for the new compioas well, possible
resource or QoS violations can be detected. While the resallocation is transient,
the component deployment is permanent. If the particulatiegtion session is not
established through this path, the newly deployed companaght serve other stream
processing sessions.

After the candidate components have been selectespawns new probes fronP;
for all selected next-hop candidates. Each new probe irtiaddo ¢ (includingp,, and
bs,), Q¢, and the probing ratio, carries the up-to-date resourcte sfa;, namelyrp,,
andrb;;, and of all the nodes the previous probes have visited s&ifaally, v; sends
all new probes to the nodes hosting the selected next-hop@oents.

Step 4. Composition selectiomfter reaching the destination specifiedtirall suc-
cessful probes belonging to a composition request retuhetoriginal Synergy node,
that initiated the probing protocol. After selecting alladjfied candidate components,
v, first generates complete candidate component graphs fremprtbed paths. Since
the query plan is a DAGy, can derive complete component graphs by merging the
probed paths. For example, in Figure 5, a probe can travgsser cog — c40 — Coo
orcip — c30 — ¢50 — cgo- Thus,vs merges these two paths into a complete
component graph. Second, calculates the requested and residual resources for the
candidate component graphs based on the precise statestedlby the probes. Third,
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v, Selects qualified compositions according to the user'saiperresource, and QoS
requirements. LeV), be the set of nodes that is being used to instankaWe user;.o

to represent the operator provided by the compongfithe selection conditions are as
follows:

operator constraints : c;.o = 0;, Yo; € £,3¢c; € X Q)
QoS constraints : qTA < qf, 1<r<m (2)

processing capacity constraints : rp,, > 0,Yv; € Vy 3)
bandwidth constraints :rb;; >0, Vi; € A 4)

Among all the qualified compositions that satisfy the apgilan QoS requirements,
vs Selects the best one according to the following load batenoietric(\). The
qualified composition with the smallegt)\) value is the selected composition.

pOi ij
_ _0s 5
W= Y e 3 e (5)

v; €EVy,0,€E€ leA,SjG

Step 5. Application session setupFinally, the Synergy node; establishes the
stream processing application session by sending confomatessages along the se-
lected application component graph. If no qualified comjpmsican be foundi(e., all
probes were dropped, including the ones without streanejetige system node returns
a failure message. If all probes were dropped, apparendyettisting components
are too overloaded to accommodate the requested appficatib the specified QoS
requirements, or nodes in the probing path are too overtbarbost components that
need to be deployed. New components can then be instanitiesttegically chosen
places in the network [8, 18].

The goal of the described protocol is to discover and seleistieg streams and
components to share in order to accommodate a new applicatuest, assuming
components are already deployed on nodes. This is orthbgmrbe policies that
might be in place regarding new component deployment, wisidhutside the scope
of this paper. Furthermore, Synergy is adaptable middleytaking into account the
current status of the dynamic system at the moment the apiplicrequest arrives.
Therefore, it does not compare to optimal solutions catedlaffline that apply to static
environments.

3.2 Maximum Stream Sharing

Synergy utilizes a peer-to-peer overlay of the nodes inyhes for registering and
discovering the available components and streams in a ttatieed manner. As was
mentioned in Section 2.2, the current Synergy implemeortasi built over Pastry [14].
We follow a simple approach to enable the storage and retréhthe static metadata
of components and streams in the DHT, which include the logdhode) hosting the
component or stream. As was described in Section 2.1, eanpatent and stream is
given a name, based on a common ontology [11]. This name igecienl to a key, by
applying a secure hash function (SHA-1) on it, whenever apmmnt or stream needs
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to be registered or discovered. On the DHT this key is useddp the metadata to
a specific node, with the metadata of duplicated componemntg@ams being stored
in the same node. Configuration changes caused by nodelsiaivd departures are
handled gracefully by the DHT. Whenever components araimistted or deleted,
or streams are generated by new application sessions, @veeghbecause they are
not used by any sessions anymore, the nodes hosting thesteregii unregister their
metadata with the DHT.

The stream processing query plaspecifies the operatoss and streams; needed
for the application execution. Using Maximum Sharing Discovery algorithm, the
Synergy node in which the query plan was submitted utilihespeer-to-peer overlay
for discovering existing streams and components. Sinderdift users can submit
queries that have the same or partially the same query plasyant to reuse ex-
isting streams as much as possible to avoid redundant catgng. The goal of the
Maximum Sharing Discovery algorithm is to identify th&ximum sharable point(s)
in £. This is the operator(s) closest to the destination (in seofhops in¢), whose
output streams currently exist in the system and can (at peasally) satisfy the user’s
requirements. An extreme case is that the final stream aragalready exist in the
system, which can then be returned to the user directly witaoy further computation,
as long as the residual bandwidth and communication laenpermit so. For example
in Figure 4 if sg is already available in the system, it can be reused to gatisf
new query, incurring only extra communication but no extracessing overhead. In
that case, the maximum sharable pointiis og and Synergy will prefer to use no
components if possible. If the final stream or streams aravaitable, the system node
backtracks hop-by-hop the query plan to find whether preceding inteiatedesult
streams exist. For example, in Figure 4, if result streagmand s; are not found,
but s¢ andss are already available in the system, they may be reused isfyspéart
of the query plan. By reusing those existing streams, theefgynnode will prefer to
compose a partial component graph covering the operattmsthé reused streams, if
the resource and QoS constraints permit so. In that casejdkeEnum sharable points
in £ areos andos and only components offering operatogsandog will be needed. To
discover existing streams and existing components thattnhig needed, the peer-to-
peer overlay is utilized as was described.

3.3 QoS-Aware Component Sharing

To determine whether an existing candidate component caaused to satisfy a
new request, we estimate the impact of the component reude ttatencies of the
existing applications. An existing component can be reifsénd additional workload
brought by the new application will not violate the QoS requients of the existing
stream processing applications (and similarly the loadhefalready running appli-
cations will not violate the QoS requirements of the new &agibn). To calculate the
impact of admitting a new stream processing applicatiohedQoS of the existing ones
(and also the impact of the running applications to the pgakexecution of the one to
be admitted), a Synergy node that processes a probe utli@esS |mpact Projection
algorithm. This algorithm runs in all nodes with candidate componémisugh which
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the probes are propagated. The QoS Impact Projection isrpeefl for all the appli-
cations that use components on those nodes. If the proj€xi&dpenalty will cause
the new or the existing applications to violate their QoSstrints, these components
are not further considered and are thus removed from theidatedset. For example,
in Figure 5, candidate componentg andc,, are used by existing applications and
with the new stream workload QoS violations are projectdtlsTc;g and cyy are
not considered as candidate components for the operat@sd o, respectively. On
the contrary, even though, andcsg are used by existing applications, they are still
considered as candidate components for the operatanados respectively, because
no QoS violation is projected for them.

The QoS Impact Projection algorithm to estimate the efféatammponent reuse
works as follows: For each component the node estimates its execution time. This
includes the processing time, of the component; to execute locally on the node
and the queueing time in the scheduler's queue as it waitetfer components to
complete. The queueing time is defined as the differencedmtthe arrival time of
the componentinvocation and the time the component agtsialtts executing. We can
then determine the mean execution time ,,, for each componen; on the nodey;.

We assume a simple application behavior approximated by /&MYMjueueing model
for the execution time. Our experimental results show thest $implified model can
provide good projection performance.gdf, represents the load on the node hosting
component;, the mean execution time for componenbn nodev; is given by:

Te;
T (6)

The mean communication timg, ;, on the virtual linki; for the strearrs; trans-
mitted from component; to its downstream componeant is estimated similarly: It
includes the transmission time,, for the streams;, and also the queueing delay on
the virtual link. If b;, represents the load (consumed bandwidth) on virtual link
connecting component, the mean communication timg, ;, to transmit streans;
through the virtual link; is then given by:

Lejv; =

_ s

110y,
Given the processing times, and the transmission times, required respectively

for the execution of the componentsand the data transfer of the streamsf an

application, as well as the current respective lopgsandb;,, a Synergy node can
compute the projected end-to-end execution time for thieeeapplication as:

7 Te; Os;
t= MaZpath Z (1 + 1_ bl ) (8)

Vi €V, L EX _pvi

Ysil; (7)

where thenaz . is used in the cases where the application is representediaph
with more than one paths, in which case the projected exatctitne of the entire
application is the maximum path latency. The processingnd transmissios,, times
are however easily extracted from thg andb,, values which are included for the
corresponding operatooss and streams; in the query plarg and have been calculated
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by combining the user requests with profiling [12]. The cntieadsp,, andb;, are
known locally at the individual nodes. These values are tsedtimate the local impact
o of the component reuse on the existing applications asvistio

Let .—— — denote the mean execution time required for invoking corepbs} on
the nodev; by the application. After sharing the component with the mg@plication,
the projected execution time would become(“— where(p,,; + 7.;) represents
the new processing load on the node after reusing the compaile can then compute
the impact in the projected execution time for the entire applicatemthe difference
of the projected end-to-end execution time after the retisépom the one before the
reusej:

PN Te; Te;
b=t ! 1- (p’Ui, + Tcy',) 1= py, (9)

The projected impadtis acceptable 5+ < ¢, in other words if the new projected
execution time is acceptable. In the above inequadityis the requested end-to-end
execution time QoS metric that was specified by the us&pdnSimilarly to &, it is
cached for every application on each node that is part ofpipéication.f is the current
end-to-end execution time for the entire applicatibis measured by the receiver of
a stream processing session and communicated to all nodesgading in it using a
feedback loop [15]. This enables the processing to adapghifisant changes in the
resource utilization, such as finished applications or ettea of new components. For
an application that is still in the admission process,approximated by the sum of the
processing and transmission times up to this node, as dduyithe application’s probe.

Equation 9 summarizes the QoS Impact Projection algorithi®ynergy node has
locally available all the required information to compute tmpact for all applications
it is currently participating in. This information is avallle by maintaining local load
information, monitoring the local processor utilizatiand caching and Q). for all
applications it is running, along with their current endetod execution times. It uses
the projected application execution time to estimate tfecebf the component reuse
on the existing applications, by considering the effectmofeased processor load on
the time required to invoke the components.

This projection is performed for all applications currgritivoking a component to
be reused, for all applications invoking other componemtated on the node, and also
for the application that is to be admitted. If the projectegbact is acceptable for all
applications, the component can be reused. Otherwise fahdre are no other local
components that can be reused, the probe is dropped.

4 Experimental Evaluation

We now present the experimental evaluation of Synergy, thwtugh our prototype
implementation over the PlanetLab [10] wide-area netwesktted, and through simu-
lations. The prototype provided a realistic evaluation.Wed simulations in addition
to the prototype, to be able to test larger network sizes.



14
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Fig. 6. Average application end-to-end del&yg. 7. Successful application requests.

4.1 Prototype over PlanetLab

Methodology. Our Synergy prototype was implemented as a multi-threagsés of
about 18000 lines of Java code, running on each of 88 physarés of PlanetLab.
The implementation was based on the SpiderNet service csitiggoframework [13].
Uniformly across the nodes were instantiated 100 companenth a replication degree
of 5. We used a probing ratio of 10%. Application requesteddir 2 to 4 compo-
nents chosen randomly and for the corresponding streamgépthe components. We
generated approximately 9 requests per second throughewlystem. We generated
gueries using a Zipf distribution withh = 1.6, expecting stream processing applications
to follow trends similar to media streaming and web conteovision applications [19].
We also experimented with different request distributionhe simulations.

We comparedynergy against two different composition algorithms: Random
algorithm that blindly selected one of the candidates fahespplication component.
A Composition algorithm (such as [13]), that discarded those componemiidates
whose hosting nodes would not have the required processingnor communication
bandwidth to support the request with the specified QoS anohgrnthe remaining
candidates it chose the ones that resulted in the minimunteedd delay.

Results and Analysis. In this set of experiments we investigated Synergy’s perfor
mance and overhead in a real setting.

Average Application End-to-End Delay. Figure 6 shows the average application end-
to-end delay achieved by the three composition approachesatch transmitted data
tuple. Synergy offers a 45% improvement over Random and aigf¥fovement over
Composition. The average end-to-end delay is in the acolptange of less than a
second. Reusing existing streams offers Synergy an ady@ngéace for some of the
requests (fully or partially) only transmission and no @ssing time is required.

Successful Application Requests. An important metric of the efficiency of a com-
ponent composition algorithm is the number of requests ihagas to accommodate
and meet their QoS demands, shown in Figure 7. Synergy sfattgsaccommodates
27% more applications than Composition and 37% more thamé&tanRandom does
not take the QoS requirements into account, thus misassidgmisof requests. While
Composition takes operator, resource, and QoS requirem#ntaccount, it does not
employ QoS impact projection to prevent QoS violations omantly running appli-
cations. This results to applications that fail to meetrtlignS demands during their



15

Protocol Overhead

600
Random

g 500 Synerg
g 400 o Setup Time (msj|Random|Composition|$ynergy|
i; 200 - Discovery 240 188 243
s . - Probing 4509 | 4810 | 3141
E Total 4749| 4998 | 3384

100 LA

o 0w s w e o w w Fig. 9. Breakdown of average setup time.

Number of Nodes

Fig. 8. Protocol overhead.

execution, due to dynamic arrivals of new requests in theegysSynergy’s composi-
tion algorithm manages to increase the capacity of the syated also limit the QoS
violations.

Protocol Overhead. We show the overhead of the composition protocols which is
attributed to the probe messages in Figure 8. To discovepoaents and streams we
use the DHT-based routing scheme of Pastry, which keepsithber of discovery mes-
sages low, while the number of messages needed to probeeditercomponent graphs
guantifies our protocol’s overhead. Synergy’s sharingrave@mponent composition
manages to reduce the number of probes: By being able tovdisaad reuse existing
streams to satisfy parts or the entire query plan, it keepsntimber of candidate
components that need to be probed smaller. Also importahaisthe overhead grows
linearly to the number of nodes in the system, which alloves ihotocol to scale to
larger numbers of nodes. The probing ratio is another knabdan be used to tune the
protocol overhead further [6]. While Random’s overheadld@lso be tuned to allow
less candidates to be visited, its per hop selections waillbe QoS-blind.

Average Setup Time. Table 9 shows the breakdown of the average time needed for
an application setup, for the three composition algorithfine setup time is divided in
time spent to discover components and streams and time tgpgmatbe candidate com-
ponents. As is shown, the discovery of streams and compsisahly a small part of
the time needed to set up a stream processing session. Ttvepagijof the time is spent
in transmitting probes to candidate components and rurthingomposition algorithm
in them. Sharing streams allows Synergy to save time frompoorant probing, which
effectively results to 32% faster setup time than CompasitThe total setup time is
only a few seconds. Having to discover less components &adaout the cost of having
to discover streams. Discovering a stream, especiallystite final output of the query
plan, can render multiple component discoveries unnepessa

4.2 Simulations

Methodology. To further evaluate the performance of Synergy’s sharingra com-

position algorithm we implemented a distributed streantessing simulator in about
7500 lines of C++ code. The network topology fed to the sinmulavas a transit-stub
topology of 1500 routers, generated by the GT-ITM interrattopology genera-
tor [20]. We simulated a large overlay network of 500 nodesseim randomly from
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Fig. 10.Scalability. Fig. 11.Performance gain breakdown.

the underlying topology. Nodes and links were assignedgssing and communication
capacities from discrete classes, to simulate a heterogsrsystem.

A total of 1000 components were distributed uniformly asrttee nodes of the sys-
tem, with a uniform replication degree of 5. In other word3) 2nique components and
800 component replicas were instantiated at the nodesidgpioin requests consisted
of requests for 2 to 10 components chosen randomly and afrsg@f random rates
transmitted between the components. For each applicagosetvits QoS requirement
30% higher than its projected execution time. We made empsris to investigate
both the performance of Synergy’s composition algorithrd &a sensitivity to the
parameters mentioned above.

We comparedynergy not only againsRandom and Composition, but also against
a Greedy algorithm that at each composition step selected the catedicomponent
that resulted in the minimum delay between the two companétte, that this does
not necessarily result in the minimum end-to-end delay lierentire application. To
implement this algorithm in a distributed prototype someray monitoring service
such as [17] would be needed. We included it in the simulattbough, as a popular
centralized approach that provides results with low ovadhe

Other than the average application end-to-end delay, winicludes processing,
transmission, and queueing delays, our main metric for therighms’ comparison
was the success rate, defined as the percentage of applicagieests that get admitted
and complete within their requested QoS limits. This effety captures the success of
a composition algorithm to provide the requested operatessurces, and QoS.

Results and Analysis. In this set of experiments we investigated the performaifice o
Synergy’s sharing-aware component composition algorfttmmcreasing loads.

Scalability. Figure 10 shows the average end-to-end delay of all the egijgns
that are admitted in the system for increasing applicati@u] Synergy consistently
achieves the minimum average end-to-end delay. Furthesntonanages to maintain
the average end-to-end delay low, by not admitting moreiegipbns than those that
can be supported by the system. This is not the case with Ran@oeedy, or the
Composition algorithm which do not employ QoS impact priggc As the number
of deployed and requested applications increases, thabpiti} that existing streams
can be shared among applications increases as well. Thds §ynergy an additional
advantage, which explains the slight decline of the aveesugkto-end delay for large
numbers of application requests.
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Performance Gain Breakdown. To investigate what part of the performance benefit
of Synergy can be attributed to QoS Impact Projection andt\whe to Maximum
Sharing Discovery, we incorporated QoS projection to the@asition algorithm. Fig-
ure 11 shows how Composition together with the QoS projactfocomposition +
projection”) compares to Composition and Synergy, in teahachieved end-to-end
delay. QoS projection improves system performance pdatiguin high loads. While
for 100 requests Composition enhanced with projectionrsfialy 8% lower delay than
plain Composition, that improvement rises to 42% for 50uesqs.

System throughput capacity. Figure 12 shows the success rate for increasing request
load. The benefit of sharing-aware component compositi@vident, as Synergy is
able to scale to much larger workloads, by reusing existirepms. QoS impact pro-
jection helps Synergy to achieve very high success rategdigliag to disrupt currently
running applications. Cases of applications that missg tteadlines even with Synergy
can be explained by inaccurate estimations because of trentexecution time update
frequency, or because of inaccuracies in the approximatiche execution time of
the admitted applications. As expected, random allocasualts in poor QoS. Greedy
allocation does not perform well either and the reason it isources are assigned
hop-by-hop ad hoc, blindly to the applications’ end-to-€rafs requirements. Another
interesting observation is that ensuring that there wileheugh resources to run the
admitted applications by eliminating resource violaticaasthe Composition algorithm
does, does not suffice for these applications to meet theri®quirements.

In the following set of experiments we kept the number of agapilon requests at
100, which was a reasonable load for all algorithms as Fijidemonstrated. We then
investigated the sensitivity of Synergy to various pararset

Sensitivity to Replication. Figure 13 shows the success rate, as a function of the
replication degree of the components in the system. Theesgaif Synergy’s composi-
tion, as well as its advantage over the other compositioorgigns is clear, regardless
of the replication degree of the components. Having morelicates to select from in
the composition process does not seem to affect the QoS obthposed applications.

Sensitivity to QoS Requirements. Figure 14 shows the success rate as a function of
the QoS demands of the applications. Even for very striatireqents, where applica-
tions can only tolerate a 10% of extra delay, Synergy’s Qosaithprojection is able to
deliver in-time execution in more than 80% of the cases, ed&®the other composition
algorithms (Random, Greedy, Composition) fail in as man8G@ of the requests. As
QoS requirements become more lax, the performance of tHgedgthms improves.



18

Sensitivity to QoS Requirements Sensitivity to Popularity of Requests

L Random
Greedy ——
Composition
r Synerg { |

Random
Greedy ——
Composition
Synerg

Success Rate (%
@
3
T
P \ P
b
Average Application End-to-End Delay (sec)

. . . . . . . . . . .
01 015 02 025 03 035 04 045 05 0 5 10 15 20 25 30 35 40
QoS Strictness (%) Repeated Application Requests (%)

Fig. 14.Sensitivity to QoS requirementdrig. 15.Sensitivity to popularity of requests.

Yet, even in the case of a 50% tolerance in the delay, the hekem, Composition,
still delivers 12% less applications within their deadfinean Synergy.

Sensitivity to Popularity of Requests. To investigate how the distribution of user
requests affects Synergy’s performance in comparisongaeht of the composition
algorithms, we assumed a non-Zipfian distribution of aggian requests with a vary-
ing percentage of repetitions. Figure 15 shows the avenaddeend delay of all the
applications that are admitted in the system. Synergyzaslistream sharing and thus
can deliver results for the repeated application request®ut extra processing. For
a request repetition factor of 20% Synergy’s Maximum Stidiscovery algorithm
offers 34% lower average end-to-end delay than ComposiEiona repetition factor
of 40% Synergy achieves an improvement of 25% in comparisdoad without any
repetitions. Since the rest of the composition algorithmaat offer stream reuse, their
performance is not affected by the repetition in applicatiequests. That is as long as
the repetition factor is not extremely large, which woulduiéin rejecting application
requests due to resource contention.

5 Related Work

Distributed stream processing [4, 9] has been the focuswarakrecent research
efforts from many different perspectives. In [8] and [183 ftroblem of operator place-
ment in a DSPS to make efficient use of the network resourcgsrexximize query
performance is discussed. Our work is complementary, iratinafocus is on the effects
of sharing existing operators, rather than deploying newsoiWhile [8] mentions
operator reuse, they do not focus on the impact on alreadyingrapplications. [7]
describes an architecture for distributed stream managethat makes use of in-
network data aggregation to distribute the processing addae the communication
overhead. A clustered architecture is assumed, as oppos®ergy’s totally decen-
tralized protocols. Service partitioning to achieve loadabcing taking into account
the heterogeneity of the nodes is discussed in [21], whie lmalancing based on the
correlation of the load distributions across nodes is psedan [22]. While a balanced
load is the final selection criterion among candidate corepbgraphs in Synergy as
well, our focus is on QoS provision. The distributed composi probing approach
is first presented in [6,13]. Synergy extends this work bysidering stream reuse
and evaluating the impact of component sharing. Our teckasidor distributed stream
processing composition directly apply to multimedia stne415, 23] as well.
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Application task assignment has also been the focus of madyegearch efforts.
GATES [5] is a grid-based middleware for distributed strganmcessing. It uses grid
resource discovery standards and trades off accuracy @atitime response. While we
also address real-time applications, our focus is on theposition of the application
component graph. Similarly, work on grid resource manage2g] focuses on opti-
mally assigning individual tasks to different hosts, ratthen instantiatingromposite
network applications. Work on resource discovery such a®8% [25] can assist in
component composition, and is thus complementary to oukwor

Component composition has also been studied in the confteveto services from
many aspects, such as coordinating among different serticelevelop production
workflows [26], or providing reliability through replicatn [27]. Similar problems are
also encountered when providing dynamic web content at lszgles [28], or personal-
ized web content [29], the changing and on-demand naturénmhwender them more
challenging than static content delivery [30]. While wede®n component composi-
tion for stream processing, our techniques may be appédaldther applications with
QoS requirements as well, such as composing QoS-sensiibesarvices.

6 Conclusion

In this paper we have presented Synergy, a distributednstpracessing middle-
ware that provides sharing-aware component compositigne!gy is built on top of
a totally decentralized overlay architecture and utilizdgaximum Sharing Discovery
algorithm to reuse existing streams, andaS Impact Projection algorithm to reuse
existing components and yet ensure that the QoS requirsrogtite currently running
applications will not be violated. Both our prototype immlentation of Synergy over
PlanetLab and our simulations of its composition algoritsmow that sharing-aware
component composition can enhance QoS provision for bigetd stream processing
applications. Our future work includes the integration tefative execution of Syn-
ergy’s composition protocol with techniques for applioatmigration. This can enable
application adaptation to QoS-affecting changes in thérenment, such as a node
failure or overload.
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