
An XML-based Quality of Service Enabling Language for the Web

Xiaohui Gu, Klara Nahrstedt, Wanghong Yuan, Duangdao Wichadakul
Department of Computer Science

University of Illinois at Urbana-Champaign
xgu, klara, wyuan1, wichadak@cs.uiuc.edu

Dongyan Xu
Department of Computer Sciences

Purdue University
dxu@cs.purdue.edu

Abstract

In this paper, we introduce an XML-based Hierarchical QoS Markup Language, called HQML, to enhance

distributed multimedia applications on the World Wide Web (WWW) with Quality of Service (QoS) capability. The

design of HQML is based on two observations: (1) the absence of a systematic QoS specification language, that can be

used by distributed multimedia applications on the WWW to utilize the state-of-the-art QoS management technology;

and (2) the power and popularity of XML to deliver richly structured contents over the Web. HQML allows distributed

multimedia applications to specify all kinds of application-specific QoS policies and requirements. During runtime,

the HQML Executor translates the HQML file into desired data structures and cooperates with the QoS proxies that

assist applications in end-to-end QoS negotiation, setup and enforcement. In order to make QoS services tailored

toward user preferences and meet the challenges of uncertainty in the distributed heterogeneous environments, the

design of HQML is featured as interactive and flexible. In order to allow application developers to create HQML

specifications correctly and easily, we have designed and developed a unified visual QoS programming environment,

called QoSTalk. In QoSTalk, we adopt a grammatical approach to perform consistency check on the visual QoS

specifications and generate HQML files automatically. Finally, we introduce the distributed QoS compiler, which

performs the automatic mappings between application and resource level QoS parameters to relieve the application

developer of the burden of dealing with low level QoS specifications.

keywords

Quality of Service, XML, Distributed Multimedia Applications, Visual Programming Environment

1 Introduction

Future computing systems have been envisioned as ubiquitous, pervasive and nomadic [42, 3, 25]. They will

consist of devices that are diverse in size, capability, and power consumption. People view videos or join video

1

conferencing on the Web using laptops, Personal Digital Assistants (PDAs) or even Cell-Phones. The emergence

of wireless network further increases the heterogeneity of current computing environment. Nomadic users hope

to receive consistent, predictable, timely, and reliable services on the World Wide Web (WWW) in spite of the

fluctuation and shortage of underlying resources (e.g., network congestion). In order to realize such a vision, Web

multimedia applications need specification and provision of Quality of Service (QoS). By “QoS”, we mean not only

the specification and provision of proper synchronization and integration of multimedia streams, which are extensively

addressed by different multimedia languages [7, 10], but also the specification and provision of predictability (the

ability to maintain the contracted QoS and have minimum probability of QoS violations during the resource fluctuation

period), continuity (the ability to degrade gracefully and adjust resource allocation distributions dynamically to

tolerate transient resource scarcity) and accessibility (the ability to access the service from a wide range of devices,

including PCs, workstations, cell-phones, and PDAs).

A wealth of research work has been done to support Quality of Service for distributed multimedia applications.

Researchers provided solutions for setup and enforcement of QoS in the networks, in the operating system (OS), in

applications themselves, and most recently in the middleware systems which reside between applications and OS. The

network and OS solutions definitely help, but they may not be easily and rapidly deployed, hence they may not keep

up with the explosive growth of the Internet. The application-level solutions, such as adaptive source coding [38] and

tightly-coupled application control of critical QoS parameters [8], yield (1) complex implementation of applications,

and (2) difficult adjustment or full re-implementation of applications to new devices, and their underlying operating

systems and networks. In recent years, middleware solutions have evolved to overcome the above shortcomings.

QoS middleware systems assist multimedia applications in QoS setup and enforcement by utilizing QoS services in

networks and operating systems if available, or by providing adaptation services if best effort services exist only. Two

major types of QoS middleware systems have been developed: (1) Reservation-based Systems [27, 34] get the QoS

specifications in the form of system resource requirements, reserve the specified resources and enforce the delivery

of requested QoS during runtime; and (2) Adaptation-based Systems [6, 4, 29] get the QoS specifications in the

form of bounds on resource utilization, application-specific adaptation rules, and adapt resource allocations according

to changes in resource availability. Recently developed reconfigurable component-based QoS middleware systems

[26, 35, 22, 41] combine these two mechanisms together. In these systems, QoS management mechanisms (e.g.,

reservation, adaptation, reconfiguration) and QoS policies, are separated in order to reduce the burden on application

developers and enable generic QoS middleware systems. In this paper, we call those generic QoS middleware entities

the QoS Proxies. They should provide QoS management services (e.g., negotiation, adaptation, (re)configuration,

resource allocation and reservation, service/host discovery, etc.) for the application according to the application-

specific QoS specifications.

Although so many QoS solutions are available, application developers still cannot create QoS-aware multimedia

2

applications easily, especially for the Web applications. The reason lies in the fact that a universal QoS specification

language is still absent. Although different QoS specification languages have been developed, they are either tightly

coupled with a specific programming language or cannot be extended easily to catch up with the rapid development of

new QoS services. On the other hand, the traditional Web languages like HTML cannot be used and extended to fulfill

the task of QoS specification. Although new multimedia languages (e.g., TAOML [7], SMIL [10]) have been proposed

to address the increasing requirements of distributed multimedia applications on the WWW, their solutions are still

limited to the synchronization and integration issues and do not provide interactions with generic QoS management

systems (QoS Proxies) to address the quality guarantees and adaptation issues in case of resource fluctuation and

scarcity in the distributed heterogeneous environments. The Extensible Markup Language (XML) [9] is an ideal QoS

specification language, that can be used by distributed Web multimedia applications, because it is the universal format

for structured documents and data on the Web and also extensible. In addition, we can use XML query language [12]

to access and lookup the XML-based QoS specification on the WWW very easily. However, XML itself does not

tell application developers how to specify QoS requirements for his/her applications. We must define a minimum set

of suitable tags to allow application developers to express their QoS requirements and policies, based on the XML

syntax. Application developers are also allowed to define their own service-specific tags.

In this paper, we introduce an XML-based QoS enabling language for the WWW, called HQML, an acronym for

“Hierarchical QoS Markup Language”. The HQML specifications are classified into three levels.

� User Level HQML specifications provide tags to specify qualitative QoS criteria (e.g., high, low, average), user

focus of attention (e.g., smoothness, clarity), prices for the required services and the price model (e.g., flat rate,

per transmitted byte charges) the service provider adopts. The user level QoS specifications are used, during

runtime, to find the best “match” between the user’s economic condition, preferred QoS level and the available

QoS levels provided by different service providers. We do not expect users to give very detailed quantitative

specifications of all kinds of application-specific QoS parameters which may potentially be very complex.

� Application Level HQML specifications provide tags to specify all kinds of application level QoS parameters

(e.g., frame rate, frame size, resolution, etc.), application-specific QoS policies (e.g., adaptation rules, recon-

figuration rules). For distributed Web multimedia applications, HQML also provides tags to describe their

application configurations, which are a set of application components connected into directed acyclic graphs.

The QoS specifications of this level are used by the QoS Proxies (e.g., adaptor, configurator) to set up and

enforce the QoS on behalf of the application even if the underlying OS and network QoS support is absent.

� System Resource Level HQML specifications provide tags to specify different system resource requirements.

(e.g., memory, cpu, network bandwidth, power, etc.). If OS and network QoS management services are available,

the QoS Proxies could initiate the reservation of the required end-to-end resources on behalf of the application

3

according to this level’s QoS specifications.

In order to improve QoS provisions automatically, based on history data and user’s preferences, HQML provides

special tags to enable the interactions between the user and QoS Proxies. Application developers could use those tags

to specify under what circumstances a particular notification should be sent to the user (e.g., if a certain adaptation or

reconfiguration happens) or a specific feedback is desired from the user. (e.g., ”satisfaction”, ”dissatisfaction”). These

feedbacks are used to derive users preference profiles and improve the satisfaction degree of QoS provisions (e.g.,

optimization of adaptation rules) based on AI methods for learning rules (e.g., Neural Networks) [20]. Furthermore,

the syntax of HQML is designed as flexible as possible to enable the highest accessibility of QoS-aware multimedia

services on the WWW. For example, there may be services available to an application at run-time that are not known

or available to the application developer at design-time, but may be useful for multimedia applications. Thus, the

application developer should be allowed to abstractly specify optional services that, if present at runtime, enhance the

application. But if the optional services are not available, the application should be allowed to start as well.

Although HQML follows standard XML syntax and can be used very easily, several critical issues require careful

considerations. First, some information in HQML specifications cannot be derived directly. For example, the applica-

tion developer may not know the system resource requirements for his/her applications in advance. For the adaptation

rules, the application developer needs to specify the threshold values of each adaptation triggers, which will actually

decide the activation timing of each adaptation choice. But those threshold values may not be easily derived. Second,

we need to check the consistency or accuracy of HQML specifications. Since application developers are allowed

to use HQML to specify their own QoS requirements and policies, any illegal specifications may break down the

underlying systems. Although document type definition (DTD) [9] can be used to check some errors in the XML-

based files, it is far from enough for the QoS specifications. For example, we must make sure that there is no deadlock

or starvation in the specifications of application configurations for a distributed multimedia application. Moreover,

the QoS parameters between two connected components must be consistent. For example, if an MPEGII encoder is

connected with an H261 decoder, or a low quality video player is connected with a high performance video server,

then the application will not work properly. We address those problems by introducing a visual QoS programming

environment, called QoSTalk, which assists application developers to generate HQML files correctly and easily.

Finally, we introduce the HQML Executor module that is responsible for translating the HQML specifications into

desired data structures and cooperating with QoS proxies to provide QoS for the Web multimedia applications. The

HQML Executor can be installed into any user-preferred Web browser in advance. Our approach does not require

any major re-implementation of the legacy Web multimedia applications. Application developers are relieved from

the burden of implementing QoS “knowledge” in their applications themselves. Instead, they use HQML to specify

their application-specific QoS policies and requirements and delegate the responsibility of QoS provisions to the QoS

4

Proxies. By following this approach, the QoS can be provided in a more fair and efficient way because the QoS Proxies

have the global knowledge about the system resource conditions and control multiple applications simultaneously. Our

approach does not assume any specific QoS middleware framework and can be applied to any of them as long as they

provide generic QoS middleware services (negotiation, adaptation, configuration, monitoring, resource reservation

(optional)). Since HQML is based on the XML syntax, new tags can be incorporated very easily to utilize any

emerging QoS services via self-describing, extensible nature of XML.

The rest of the paper is organized as follows. In section 2, we present the design of HQML in detail. In section 3,

we present the Visual QoS Programming Environment QoSTalk. In section 4, we introduce the HQML Executor. In

section 5, we present the initial experimental results from the HQML Executor and QoSTalk prototype. In section 6,

we review related works about multimedia languages and QoS specifications . Section 7 concludes this paper.

2 HQML: XML-based Hierarchical QoS Markup Language

2.1 Application Model

Figure 1: Application Configuration for Video-On-Demand Application.

We first introduce the application model upon which the design of HQML is based. We consider a generic

application component model to characterize the structure of distributed multimedia applications. All application

components are constructed as tasks, which perform specific operations on the multimedia data passing through them,

such as transformation, aggregation, prefetching and filtering. Each component accepts input with a QoS level
�����

and generates output with a QoS level
�����
	

, both of which are vectors of application-level QoS parameter values. In

order to process input and generate out, a specific amount of resources is required. The multimedia data can be either

basic multimedia objects, such as text, image, video/audio streams or composite objects containing multiple media

types. Tasks can be connected into a directed acyclic graph (DAG), which is called an application configuration. The

application configuration is the “flow chart” upon which multimedia data flows between the service providers and the

end user. Finally, all multimedia objects, received by the end host, are synchronized (if necessary) and presented to the

Web user by using any existing multimedia languages or softwares (e.g., SMIL, TAOML, Authoring Systems). For

example, in the video-on-demand application illustrated in Figure 1, data is read from the disk, stored in buffers at the

sender side, transmitted over the network and again stored in the receiver buffer, and then decoded before presenting

5

to the Web user. The buffers are regarded as application components rather than memory storage so that we can utilize

different buffer management schemes explicitly.

Figure 2: Service Polymorphism in Video-On-Demand Application.

The design of HQML is based on the important QoS concept of “Service Polymorphism”. More precisely, the

same distributed multimedia Web services can be delivered in multiple forms and formats, using different application

configurations from the service provider to different types of clients, and possibly through an intermediate gateway

(infrastructure proxy) [17, 45]. Different application configurations provide various quality levels or similar quality

levels but have distinct resource requirements. For example, a simple Video On Demand application on the WWW can

have two different configurations. For a powerful desktop client, connected to a high-speed LAN, the application

configuration may only contain two components, a MPEG Video Server (service provider) and a MPEG Video

Player including the MPEG decoder (WWW user). For a resource-constrained device, like Handheld PC connected

with a wireless network, however, the application configuration may be changed to include three components, a

MPEG Video Server (service provider), a MPEG to Bitmap Transcoder (gateway), and a Bitmap Player (WWW

user). The second configuration delivers lower or similar quality, depending on the performance of transcoder, but

requires less computation resource on the WWW client. Figure 2 illustrates the above concept. For other complex

distributed multimedia applications like Video Conferencing, more diversified application configurations may exist to

accommodate the large range of client capabilities.

We adopt a hierarchical approach to characterize the application configurations. The hierarchical approach helps

accommodate the scalability problem for the complex distributed multimedia applications. [21] The basic building

block of the configuration is called atomic component, which only contains one basic multimedia function, (e.g.,

MPEGII Decoder, MPEG to Bitmap Transcoder, Prefetcher, etc.). A collection of interconnected atomic components

forms a service on a single host, which is called compound component. Beyond a single end host, we group the

entire distributed application into clients, gateways, servers and peers, with each of them running on one of networked

hosts. A group of interconnected hosts of the same type, such as servers or gateways, forms a cluster. The connections

between these components, which are called links, represent the media transfer flows. We have designed three different

6

link types: (1) Fixed Links; (2) Mobile Host Links; and (3) Mobile User Links. A fixed link defines a wired data

communication channel, which cannot be interrupted or “moved” during the runtime. A mobile host link defines a

wireless communication channel, which means the end host could move within certain range during runtime. A mobile

user link is defined to specify the user mobility, which means the user could move from one machine to another during

the runtime. When the user moves from the old machine to a new one during the runtime of an application, such as

the Video On Demand application, the old link from the server to the old machine is torn down. A new connection

from the server to the new machine is established and the application session is recovered and resumed, from the

interruption point, automatically. All of these links could be one-way or two-way connections. The media data flow

between two atomic components in a single host is also defined as the fixed link.

Figure 3: Two Hierarchical Configurations for the Live Media Streaming Application.

Figure 3 (a) and (b) illustrate two possible hierarchical configurations for the Live Media Streaming application.

The configuration (a) delivers higher quality (for higher price) to a client with high resource availability, such as a

powerful PC connected to the MBone. The “server2” is a mirror site of the primary live media server “server1”. The

QoS proxies could automatically switch from the server 1 to server 2 when the primary server is overloaded. The

dotted line represents an alternative route. The configuration (b) delivers lower yet acceptable quality (for lower price)

to a client with low resource availability, such as a PDA connected with a wireless network. An intermediate gateway

performs transformations and necessary degradations to meet capabilities of resource-constrained devices like PDA.

We will use this Live Media Streaming application as an example throughout the paper.

7

2.2 XML Overview

We now provide a short overview of XML. It is a markup language for documents containing structured informa-

tion. Structured information contains both content (words, pictures, etc.) and some indication of what role that content

plays (for example, content in a section heading has a different meaning from content in a footnote.). Almost all

documents have some structure. A markup language is a mechanism to identify structures in a document. The XML

specification defines a standard way to add markup to documents. Unlike HTML, the set of tags in XML is flexible;

the tag syntax is defined by a document’s associated DTDs. In fact, XML is really a meta-language for describing

markup languages. In other words, XML provides a facility to define tags and the structural relationships between

them. Since there’s no predefined tag set, there can’t be any preconceived semantics. All of the semantics of an XML

document will be defined by the applications that process them.

We have chosen to build atop the XML for the HQML schema design, leveraging its allowances for the creation of

customizable, application-specific markup languages. We believe there is a natural synergy between XML’s need for

new schema to become successful and the QoS specification requirements of Web multimedia applications. We will

introduce the HQML syntax in the next section. The design of HQML schema is based on a hierarchical approach

and organized into three different levels: (1) User level, (2) Application level and (3) System resource level. Figure 4

illustrates the three-level hierarchical structure of the HQML schema.

Figure 4: Three-level Hierarchical Structure of the HQML Schema.

2.3 HQML Syntax for User Level QoS Specifications

The user level QoS specifications mainly include three parts: (1) The overall descriptions about the application.

(e.g., name, service provider); (2) The multiple application configurations with associated qualitative user level QoS

criteria (e.g., low, average, high, smoothness, clarity) and the initial prices ($1, $5, $10); and (3) The price models

which the service provider would like to use (e.g., flat rate, per transmitted byte charges, per minutes charges).

8

 <Configuration id = "100">
 <UserLevelQoS> high </UserLevelQoS>

 </Configuration>
 <Configuration id = "101">

 <Price unit = "$"> 5 </Price>

 <UserLevelQoS> Average </UerLevelQoS>

 <Price unit = "$"> 1 </Price>

 <PriceModel> flat rate </PriceModel>

 <PriceModel> flat rate </PriceModel>
 </Configuration>
 <Configuration id = "200">
 <UserLevelQoS> high </UserLevelQoS>

 <Price unit = "$"> 2 </Price>
 <PriceModel> per hour increase <PriceModel>
 </Configuration>
</App>

<App name = "Live Media Streaming" ServiceProvider = "Company X">

 <QoSPreference> smoothness </QoSPreference>

 <QoSPreference> smoothness </QoSPreference>

 <QoSPreference> clarity </QoSPreference>

Figure 5: Example of User Level HQML Specifications for the Live Media Streaming Application Shown in Figure 3.

The � App � tag is a container tag. It has one required attribute, “name”, which is either a string or a reference iden-

tifying the type/class of the application being described. It has several optional attributes such as “ServiceProvider”,

which is a string specifying the company name of the service provider. It contains at least one � Configuration �

tag, which is also a container tag. The � Configuration � tag has one required attribute, “id”, which is the identi-

fication number used to retrieve the HQML file about the corresponding application configuration. It includes one

� UserLevelQoS � tag providing the qualitative description of the application configuration from a user’s point of

view. It contains one � QoSPreference � tag indicating the user’s quality preference while using the multimedia

services on the WWW. For example, some users may think ”smoothness” is the most important satisfaction criteria

for the Video On Demand application for the purpose of entertainment. However, if the Video On Demand service is

used for the remote medical surgery, the doctor may think “clarity” is the most important criteria. In the latter case,

we can drop some frames (especially B or P frames of the MPEG video) to preserve the resolution of the video when

the network bandwidth becomes deficient. Each � Configuration � tag also includes one � Price � tag, indicating the

initial charging price, when the user invokes the multimedia service with a specific application configuration on the

WWW. It also contains one � PriceModel � tag indicating the price model the service provider would like to adopt.

Figure 5 gives an example of user level HQML specifications for the Live Media Streaming application illustrated in

Figure 3. The Configuration “100” represents the application configuration of Figure 3(a). The configuration “101” is

shown in Figure 3 (b).

2.4 HQML Syntax for Application Level QoS Specifications

HQML provides many tags for application level QoS specifications, which include all application level QoS

parameters and policies about a particular application configuration. The specifications begin with the � AppConfig �

9

 <ServerCluster>

 <HostAddr type = "Primary">
 paris.cs.uiuc.edu
 </HostAddr>

 boston.cs.uiuc.edu
 </HostAddr>
 ...
 </Server>
 </ServerCluster>
 <GatewayCluster>

 ...
 <Gateway>
 </GatewayCluster>
 <ClientCluster>

 ...
 <Client>
 </ClientCluster>
 <LinkList>

 <End> gateway </End>
 ...
 </Link>

 <Link type = "FixedLink">

 <Start> gateway </Start>
 <End> Client </End>
 ...
 </Link>
 </LinkList>
</AppConfig>

 <Start> Server </Start>

 <Client type = "required">

 <Server type = "replacable">

<AppConfig id = "101">
 <CriticalQoS type = "frame rate">

 </CriticalQoS>
 </Range>

 <LowerBound> 10 </LowerBound>
 <Range unit = "fps">

 <Gateway type = "replacable">

 <HostAddr type = "alternative">

 Configuration Shown in Figure 3 (a).
(b)Example Specification of Application

 Configuration Shown in Figure 3 (b).

 <Range unit = "fps">
 <UpperBound> 40 </UpperBound>
 <LowerBound> 30 </LowerBound>
 </Range>
 </CriticalQoS>
 <ServerCluster>

 </HostAddr>

 </HostAddr>
 ...
 </Server>
 </ServerCluster>
 <ClientCluster>

 <Software> Windows 2000 </Software>
 ...
 </Client>
 </ClientCluster>
 <LinkList>
 <Link type = "FixedLink">
 <Start> Server </Start>
 <End> Client </End>
 ...
 </Link>
 </LinkList>

 <ReconfigRule>

 </Condition>

<AppConfig id = "100">
 <CriticalQoS type = "frame rate">

 <Server type = "replacable">
 <HostAddr type = "primary">
 paris.cs.uiuc.edu

 <HostAddr type = "alternative">
 boston.cs.uiuc.edu

 <Client type = "required">

 <ReconfigRuleList>

 very low

 <Hardware> Pentium PC 500 </Hardware>

(a)Example Specification of Application

 <ReconfigRule>

 </ReconfigRuleList>
</AppConfig>

 <Notification> Reconfigured </Notification>
 <Feedback> early or late </Feedback>

 <UpperBound> 20 </UpperBound>

 <Link type = "MobileHostLink">

 <Condition type = "Bandwidth">

 </ReconfigAction>

 <ReconfigAction type = "switch to" >
 101

Figure 6: Example of Application Level HQML Specifications for the Two Configurations of the Live Media
Streaming Application Shown in Figure 3.

tag, which is a container tag with one required attribute, “id”, the same as that of the � Configuration � tag in the

user level specifications. The � AppConfig � tag contains one � CriticalQoS � tag, zero or one � ServerCluster �

tag, � GatewayCluster � tag, � ClientCluster � tag, and � PeerCluster � tag. The “server”, “gateway” and “client”

are used to specify the dedicated services. We can use “peer” to describe any other generic services. The network

connections among application components are specified by the � LinkList � tag. � AppConfig � could also contain

one � ReconfigRuleList � tag to specify the policies for the dynamic QoS reconfiguration services. Figure 6 gives the

examples of application level QoS specifications in HQML for the configurations “100” and “101” of the Live Media

Streaming application.

The � CriticalQoS � tag specifies the critical QoS parameter [29] which is the most important end-to-end application-

level QoS parameter protected by degrading other QoS parameters during the resource deficiency period. The critical

QoS parameters are usually mapped to the user’s quality preference. This tag has one required attribute ”type”

specifying the name of the parameter (e.g., frame rate, resolution). It has one internal tag � Range � specifying

the allowed fluctuation range of the critical QoS parameter. The � Range � tag has one attribute ”unit” indicating the

10

 <Hardware> Pentium 500 </Hardware>
 <Software> Windows 2000 </Software>

 <Method name = "getStates"/>
 <Method name = "setStates">
 <param lextype = "strings"> states </param>
 </Method>
 <Method name = "scale">

 scalingfactor
 </param>
 </Method>
 <InputQoSList>
 <MediaObjectList>

 <param lextype = "real:range = 0−1">

Video
</MediaObject>

Audio
</MediaObject>

 <MediaObject format = "wav">

...

 <Atomic type = "Replacable">
 <Name> Transcoder </Name>

 <MediaObjectList>
 ...
 </OutputQoSList>
 </Atomic>

 <param lextype = "int:range = 2−256">
 </Method>
 ...
 </Atomic>
 <LinkList>
 <Link type = "FixedLink">
 <Start> Transcoder </Start>
 <End> ColorFilter </End>
 </Link>
 </LinkList>
</Gateway>

 <Delay unit = "ms"> 100 </Delay>
 <Jitter unit = "ms"> 30 </Jitter>
 <LossRate unit = "%"> 5 <LossRate>
 <InputQoSList>
 <OutputQoSList>
 <MediaObjectList>

 </MediaObjectList>

Video
</Mediaobject>

 <MediaObject format = "Bitmap">

 <Name> ColorFilter </Name>
 <Method name = "ChangeColorDepth">

 <MediaObject format = "MPEGII">

<Gateway type = "replacable">

 <Atomic type = "optional">

(a)Example of Application Level Specification for Compound
 Component "Gateway" Shown in Figure 3 (b).

(b)Example of Application Level Specification for Compound
 Component "Client" Shown in Figure 3 (b).

 <Hardware> PDA </Hardware>
 <Software> Windows CE </Software>

 <InputQoSList>
 <MediaObjectList>

 Video
 </MediaOjbect>

 <MediaObject format = "Bitmap">

 ...
 </MediaObjectList>
 <FrameRate unit = "fps">
 <UpperBound> 30 </UpperBound>
 <LowerBound> 5 </LowerBound>
 </FrameRate>

 ...
 </Atomic>

 ...
 </Atomic>

 </Atomic>
 <LinkList>
 <Link type = "FixedLink’>
 <Start> Prefetcher </Start>
 <End> Video Player </End>
 </Link>
 ...
 <LinkList>
 <AdaptationRuleList>

 </Condition>
 <Action>

 </Action>

</AdaptationRule>
</AdaptationRuleList>

</InputQoSList>

...

</Client>

<Client type = "required">

 <Atomic type = "Optinal">
 <name> Prefetcher </Name>

 <Atomic type = "Required">
 <Name> Video Player </Name>

 <Atomic type = "Required">
 <Name> Audio Player </Name>

<AdaptationRule>

 <Component> ColorFilter </Component>
 <Method> ChangeColorDepth </Method>

 <Notification> color degrade! </Notification>
 <Feedback> early or late </Feedback>

 low
 <Condition type = "Bandwidth">

Figure 7: Example of Application Level HQML Specifications for the Two Compound Components in Configuration
“101” - “Gateway” and “Client”.

measured unit (e.g., ”ms”, ”fps (frames per second)”). The � Range � tag includes two internal tags, � UpperBound �

and � LowerBound � .

The � ServerCluster � , � GatewayCluster � , � ClientCluster � and � PeerCluster � tags are all container tags and

have similar internal structures. We use � GatewayCluster � as an example to explain their internal structures. Each

� GatewayCluster � tag should include at least one � Gateway � tag which represents one compound application

component or one host machine. The Figure 7 (a) illustrates the HQML specifications for the compound component,

“Gateway” of the configuration “101”. As we mentioned in Section 1, HQML allows the application developer to

abstractly specify optional services that, if present at runtime, enhance the application. Thus, each component has an

attribute “type” to specify whether it is “required”, “replacable” or “optional”.

If the component has the type “required”, the QoS Proxies must discover and instantiate the component. If the

component is specified as “replacable” and a QoS violation is detected, the QoS Proxies could select one or more

alternate components and perform a transparent transition from the primary components to the alternative ones to

maintain the initially agreed QoS. For example, when the initial video server becomes overloaded, the QoS Proxies

could select one of its mirror servers to recover automatically from the QoS violations. Finally the type “optional”

gives the highest flexibility to the QoS Proxies which could discover a similar service to replace it or simply neglect

11

it to accommodate unexpected runtime environments. The � Server � , � Gateway � and � Peer � tags can include any

number of � HostAddr � tags which indicate the host addresses where all their atomic components will be dynamically

downloaded and instantiated. If multiple � HostAddr � tags are included, one of them is the primary server or gateway

while others are their mirror sites. Figure 6 (a) gives the example of � HostAddr � tag usage for the “Server” compound

component. If there is no � HostAddr � tag included, the QoS discovery proxy will discover a suitable machine in

the distributed environment to instantiate the compound component. In this case, the � Server � tag will include

two internal tags, � Hardware � and � Software � , which specifies the hardware (e.g., PC, PDA) and software (e.g.,

Windows 2000, Solaris 5.3) requirements of executing the specified services. Figure 7 (a) gives such an example

for the “Gateway” component. Thus the QoS discovery proxy will try to find a machine to instantiate the gateway

compound component, which is at least a Pentium 500 PC and has installed windows 2000.

Each � Gateway � tag contains at least one � Atomic � tag, which represents an atomic application component.

The � Atomic � tag also has one attribute “type” specifying whether it is “required”, “replacable” or “optional”. It has

one internal tag � Name � to give the service name of the atomic component (e.g., “Transcoder”, “ColorFilter”). Each

� Atomic � tag could include any number of � Method � tags specifying the method calls that can be invoked on it.

There are two default methods for each atomic component, “start” and “stop”. In Figure 7 (a), three additional methods

“getstates”, “setstates” and “scale” are included in the atomic component “transcoder”. Each � Method � tag may

include several internal tags “ � Param � ”, which describe the input parameters required by the method. For example,

the “scale” method requires one input parameter “scalingfactor”, which controls the resolution of the output bitmap

images from the transcoder. For each atomic component, we also need to specify its input and output application

level QoS parameters by using tags � InputQoSList � and � OutputQoSList � . The application developer could use

� MediaObjectList � to characterize the features of the input or output media streams. The specifications may include

the “media type”(e.g., text, image, audio, video), “media format” (e.g., JPEG, MPEG, Bitmap, wav) and also the

temporal and spatial relationships among multiple streams. We could use TAOML [7] to describe the complex media

streams. Next, we need to specify the input QoS parameters required by the atomic component and the output QoS

parameters guaranteed by it. HQML provides tags like � Delay � , � Jitter � , � LossRate � , � Throughput � to fulfill

the task. Application developers could also define their own application-specific QoS parameters in HQML. Then

application developers could use � LinkList � tag to specify the connections between different atomic components.

Finally, each � Server � , � Gateway � , � Client � or � Peer � tag could contain zero or one � AdaptationRuleList �

tag which specifies the adaptation policies the compound component will follow. In Figure 7 (b), � AdaptationRuleList �

tag is used to specify the adaptation policies the client compound component of confiugration “101” follows. The

� AdaptationRuleList � tag includes at least one � AdaptationRule � tag which consists of two required internal tags,

� ConditionList � and � Action � tags. The � ConditionList � tag specifies a list of linguistic values (e.g., high, low,

very low) for each system resources (e.g., cpu, network, power) that decide the activation timing of a certain adaptation

12

action. These linguistic values will be mapped into a set of threshold values according to the system resource level

QoS specifications introduced in the next section. The � Action � tag includes two internal tags, � Component � and

� Method � that defines which method belonging to which component will be invoked for the action. The component

may reside in the local host or a remote site. In Figure 7 (b), for example, one adaptation action for the client to

take, when the bandwidth drops below a certain threshold, is to ask the “ColorFilter” component in the intermediate

gateway to decrease color depth.

As we mentioned in Section 1, the design of HQML is featured as interactive. HQML provides two tags � Notification �

and � Feedback � to enable the interactions between the user and the QoS Proxies. In Figure 7 (b), for instance, the

application developer specifies that a notification message “Color degrade!” should be sent to the user when that

particular adaptation happens. The developer also tells the QoS Proxy to request a feedback about the timing of the

adaptation from the user. These feedbacks are useful for the QoS Proxies to derive a user profile so that the QoS

provisions can be tuned toward user preferences and improved with experience.

After we finish the QoS specifications for each cluster component, we need to specify how these compound

components are connected into an application configuration. HQML provides the � LinkList � tag for this purpose. It

includes a set of � Link � tags. Each � Link � tag has one attribute “type”. As we mentioned in section 3.1, there are

three different link types: (1) Fixed Link; (2) Mobile Host Link; and (3) Mobile User Link. The QoS proxy will treat

them differently, such as different calculation function of end-to-end bandwidth for the wired and wireless networks.

For the mobile user link, the QoS Proxy also needs to insert the persistent state manager to store the frame number,

for example. Thus the video streaming session could be restarted from the interrupting point when the user moves to

a new machine. The � Link � tag includes two internal tags, � Start � and � End � indicating the two end points of the

connection.

The � ReconfigRuleList � is the last important internal tag contained in the � AppConfig � tag. It includes a

list of � ReconfigRule � tags, which tell the QoS proxy how to dynamically reconfigure the application when the

system resources drop below certain minimum bounds and cannot be hidden by the data adaptations like decreasing

colordepth, dropping frames. The syntax of the � ReconfigRule � tags is similar to that of the � AdaptationRule �

tags. It also consists of two internal tags, � Condition � and � Action � . However, the action here is switching to

another application configuration instead of invoking some method of a component. In Figure 6 (a), the application

developer specifies that when the end-to-end bandwidth between the server and the client drops to a very low degree,

the QoS proxies should reconfigure the application from configuration “100” to “101” to guarantee the continuity

of services. Similar to the adaptation rule specifications, the application developer could use � Notification � and

� Feedback � tags here to enable the interactions between the user and the QoS Proxies. The dynamic reconfiguration

usually takes relatively larger overhead and causes QoS violations. Thus it should be avoided as much as possible.

Thus, the advantage of HQML is to allow the QoS proxy to always choose the optimal configuration at the beginning

13

rather than a fixed configuration like current distributed multimedia applications on the WWW.

2.5 HQML Syntax for Resource Level QoS Specifications

 <high type = "CPU">

 40
 <LowerBound unit = "%">

 </LowerBound>
 <UpperBound unit = "%">
 60
 <UpperBound>
 </high>
 <low type = "Bandwidth">
 <LowerBound unit = "KB">
 60
 </LowerBound>
 <UpperBound unit = "KB">
 100
 </UpperBound>
 </low>

<AppConfig id = "100">
 ...
 <ServerCluster>
 ...
 </ServerCluster>
 <ClientCluster>
 ...
 </ClientCluster>
 <LinkList>
 <Link type = "FixedLink">
 ...

 <Delay unit = "ms"> 100 </Delay>

<Throughput>
 <Average unit = "MB"> 50 </Average>
 <Burstiness unit = "MB"> 5 </Burstiness>

</Throughput>

 <Jitter unit = "ms"> 10 </Jitter>
 <Level> hard </Level>
 </Link>
 <Link type = "FixedLink">
 <ReconfigRuleList>
 ...
 </ReconfigRuleList>

 <very high type = "Bandwidth">
 <LowerBound unit = "MB">

 </LowerBound>
 70

</very high>
 <high type = "Bandwidth">
 <LowerBound unit = "MB">
 50
 </LowerBound>
 ...
 <very low type = "Bandwidth">
 <UpperBound unit = "MB">
 5
 </UpperBound>
 </very low>
 ...

 </AppConfig>

 <LossRate unit = "%"> 3 </LossRate>

 Application Configuration Shown in Figure 3 (a).
(a) Example of Resource Level Specification for the

 Component "Client(PDA)" Shown in Figure 3 (b).
(b) Example of Resource Level Specification for the Compound

 <ThresholdList>

 </ThresholdList>

<Client type = "required">
 <Hardware> PDA </Hardware>
 <Software> Windows CE </Software>
 ...
 <Atomic type = "optional">
 <Name> Prefetcher </Name>
 ...
 <CPU unit = "%">
 <Average> 30 </Average>
 <Deviation> 10 </Deviation>
 </CPU>
 <Memory unit = "KB">
 <Average> 3 </Average>
 <Deviation> 1 </Deviation>
 </Memory>
 <Disk unit = "MB">
 <Average> 16 </Average>
 <Deviation> 0 </Deviation>
 </Disk>
 </Atomic>
 ...

 ...

</Client>

 <ThresholdList>

 </ThresholdList>

Figure 8: Example of Resource Level HQML Specifications.

The importance of the system resource level QoS specifications is two fold. First, they allow multimedia ap-

plications to utilize the OS and network QoS services (e.g., CPU scheduling and reservations, network bandwidth

reservations) if they are available. To be able to commit necessary OS and network resources, the QoS Proxies must

have prior knowledge of the expected traffic characteristics associated with each component and link before resource

guarantees can be met. In Figure 8 (a), the end-to-end network QoS parameters are specified for the link between

the live media server and client. The “throughput”, “delay”, “loss rate” and “jitter” here refer to the network level

parameters and have different meanings from those in the application level specifications. For example, the “delay”

in the network level means the interval between two TCP or UDP packets. However, in the application level, the

“delay” means the interval between two application samples. The � Level � tag is used to specify the degree of end-

to-end resource commitment required (e.g., hard (deterministic), firm (predictive), and soft (best effort)). HQML also

provides tags like � CPU � , � Memory � , � Disk � to specify the QoS parameters of the end system resources. The

14

QoS specifications at this level are often based on a statistical model and expressed in average and deviation values.

In Figure 8 (b), the end system resource QoS requirements are specified for the atomic component “prefetcher” in the

client compound component.

Second, the system resource level QoS specifications set the threshold values for the linguistic values (e.g., high,

low) of different resources used in adaptation and reconfiguration rules. Those threshold values actually determine

the activation timing of a specific adaptation or reconfiguration action. HQML provides the � ThresholdList � tag for

this purpose. In Figure 8 (a), an example of threshold list specifications are given for the linguistic values used in the

reconfiguration rules of the Live Media Streaming application. In Figure 8 (b), the threshold specifications are given

for the adaptation rules of the “client” compound component.

As we mentioned in section 1, although HQML can be used very easily to specify application-specific QoS

requirements and policies, several critical issues require thorough explorations for the success of HQML, most notably

Consistency Check and Automatic QoS Mappings. We have developed the visual QoS programming environment to

assist application developers to create accurate HQML specifications easily.

3 Visual QoS Programming Environment QoSTalk

In this section, we introduce the visual QoS programming environment QoSTalk in detail. QoSTalk provides visual

tools to help the application developer to create QoS specifications in HQML easily. It provides the consistency check

on QoS specifications based on the theory of graph grammar. Further, QoSTalk includes the distributed QoS compiler

to perform the automatic mappings between application and resource level QoS parameters to relieve the application

developer of the burden of dealing with low level QoS specifications

3.1 Architecture Overview

The overall architecture of QoSTalk is shown in Figure 9. The application developer first uses the Visual Hierarchi-

cal QoS Editor to draw all possible application configurations, using visual tools, and input all kinds of user-level and

application-level QoS requirements via dialogs. Second, the developer uses our Consistency Check tools to “debug”

the input visual QoS specifications (application configurations with user-level QoS parameters and application-level

QoS parameters for each individual components). If there is any inconsistency, the error messages are returned to

the application developer in the Visual Hierarchical QoS Editor. Otherwise, the legal application configurations are

passed to the Distributed QoS Compiler [43] to instrument the application source code with middleware APIs, probe

the resource requirements and establish the mappings between application-level and resource-level QoS parameters

automatically. In the fourth step, the legal application configurations with complete QoS specifications (user, applica-

tion and resource level) are passed to the HQML Generator. It “traverses” the complete application configurations to

15

Legal Configurations

Illegal

Configuration

Graph

Visual Hierarchical QoS Editor

Consistency Checker (ConfigG Parser)

Distributed QoS Compiler

HQML Generator

Complete Configurations

Application−specific

QoS

Profile

Configuration Graphs

Web/HQML Server

Application

QoS

Profiles

(XML)

Web Pages

Contains

Applications

(HTML)

QoS Programming Environment

Multimedia

Figure 9: The QoS Programming Environment Architecture.

generate the HQML file automatically. Finally, the complete HQML file is saved into the QoS Profile Database.

3.2 Visual Hierarchical QoS Editor

(a) Screenshot (1) (b) Screenshot (2)

Figure 10: Screenshots of the Visual Hierarchical QoS Editor.

The Visual Hierarchical QoS Editor is a visual programming tool, which allows application developers to draw

application configurations for distributed multimedia applications easily. It also provides dialogs for application

developers to input all kinds of QoS parameters and policies. The design of the Visual QoS Editor is based on

the application model introduced in Section 2.1 and follows the hierarchical approach. The application developer

could refine a compound component by drawing all of its subcomponents in a subframe. We use different shapes to

differentiate between different component types: (1) the rectangle represents the server component; (2) the rhombus

represents the gateway component; (3) the oval represents the client component; and (4) the round rectangle represents

16

Gateway

C4

Gateway Client
C3 C4

Server

Gateway Client

C1
C3

C2

C4

(a)
(b)

(c)

Server

C1

C2
C3

Server
Client

C1

C2
C4C3

(d)

C1 C2
Server

Figure 11: Illegal Configuration Graph Examples.

the peer component. We also use three line types to represent three different links: (1) the solid line is used to define

the fixed link; (2) the dashed line is used to define the mobile host link; and (3) the dotted line is used to represent the

mobile user link. Finally we use three different colors, blue, green, and yellow to represent the cluster, compound and

atomic component respectively. Figure 10 shows some screenshots of the Visual Hierarchical QoS Editor. After the

application developer finishes those visual QoS specifications, the next challenges are how to check their consistencies

and generate the HQML file from them automatically. Our solution for the above challenges is to utilize the formal

graph grammar theory. We have designed a special Boundary Symbol Relation grammar, called ConfigG, which will

be introduced in the next section.

3.3 ConfigG: A Special Boundary Symbol Relation Grammar

The tasks of consistency check are two fold: (1) find illegal application configurations; (2) find mismatched QoS

parameters between any two connected components (atomic or compound). Figure 11 shows some examples of illegal

configurations. In Figure 11 (a), the atomic component “c1” is not connected with any other components; In Figure 11

(b), the client component “c4” does not receive any data flow; In Figure 11 (c), there is not client component to receive

the media data flow; In Figure 11 (d), there is a loop within the server host (compound component). The examples

of mismatched QoS parameters include an MPEGII encoder connected with an H261 decoder, or a low quality video

player, which could only handle up to 15 fps (frames per second), connected with a high performance video server,

which sends video stream at 30 fps.

Our solution to address these challenges is to utilize formal graph grammar theory. Each application configuration

is described by a graph grammar sentence. Hence, the problems of consistency check on the visual QoS specifications

(application configurations with application-level QoS parameters for each individual component) is reduced to that of

”debugging” a graph grammar sentence using its syntactic and semantic parsers. The Symbol Relation (SR) grammar

[14] is a very powerful graph grammar for handling complex graph structures. We designed a special grammar, called

ConfigG, for the consistency check based on the SR grammar. The consistency check is divided into two stages. In the

first stage, the ConfigG Syntactic Parser translates the input application configurations into a ConfigG sentence. If the

17

translation process is not successful, the configuration graph is illegal. Otherwise, a derivation tree [14] is generated

for the configuration graph. In the second stage, the ConfigG Semantic Parser traverses the derivation tree to check

the semantic consistencies according to the semantic rules associated with each derivation step.

3.3.1 Symbol Relation Grammar Overview

In this section, we give a brief overview of Symbol Relation (SR) [14] Grammar. Each sentence in an SR language

is composed of a set of symbol occurrences representing visual elementary objects, which are related through a set

of binary relational items. The main feature of SR grammars is that the derivation of a sentence is performed by

rewriting both symbol occurrences and relation items by means of simple context-free style rules. The basic concepts

of the SR grammar are formalized in the following definitions. We will demonstrate each concept with examples

from our special Symbol Relation grammar, called ConfigG. We will present ConfigG in the next section based on the

definitions introduced in this section.

DEFINITION 3.1 Given an alphabet T, the set of symbol occurrences (s-items) on T is defined as ���������
	 ,

where N is the set of natural numbers. For simplicity, the element �
������� of ��� will be written as ��� .
For example, the alphabet T in ConfigG includes VideoServer, Transcoder, etc. The s-items in ConfigG are defined

as ���������! "�$#!%��&#(' , �)#+*-,/.�01�2���&#�3 , etc.

DEFINITION 3.2 Given a set R of relation symbols, an alphabet T, and M 45��� (definition 3.1), a relational

item (r-item) on R and M has the form r(X,Y), where #76�8 , �96�: , ;<6�: , and �>=�?; . The set L of r-items is

defined as L ��@ r(X,Y) A1#B6C8 , �D6
: , ;E6
: and �F=�G;IH .
For example, the set R in ConfigG includes @ fl, mul, mhl H (“fl”, “mul”, “mhl” represents the fixed link, the mobile

user link and the mobile host link respectively). Correspondingly, the r-items are defined as:
JLK

(���������! NMO#(�$*-PQ�R,LST3 , :VU K MO�W0X*�.1MW'), P�Y K (�)#+*-,/.�01�2���&#(Z , [\�RMOPQ*�]L^ K *-_`�$#+a), etc.

The notion of a Symbol Relation (SR) sentence can be now formally defined based on the Definition 3.1, 3.2.

DEFINITION 3.3 Given a set R of relation symbols and an alphabet T, an SR sentence on R and T is a pair

�b:V�dc � , where M is a finite nonempty subset of �e� (definition 3.1), and K is a finite nonempty subset of L

(definition 3.2) . More explicitly, the general form of a sentence is

�f:V��c �g� ��@$� 3 �$hihjh �lkmHn�o@&# 3 �p;q3���r�3X�X�$hihjh #�sL�p;msL��rts���H � , where

u�vVw �dx vVw , �zy{67�|� , for 1 } j } u

� 6C8 , for 1 } i }~x , ; � �Xr � 6 M, for 1 } i }~x
For example, a ConfigG sentence has the form as following:

18

��@!���������! "�&#!%`�&#+' , ���O�-���!^ K *-_`�&#+'(H , @ JLK (� �������! "�&#!%`�&#+' , ���������!^ K *-_`�&#+') H � .

An SR grammar is specified by a set of productions that state how to rewrite s-items and r-items. The rewrite rules

of s-items are called s-productions, and the rewrite rules of r-items are called r-productions. The right-hand side of

each s-production consists of an SR sentence and the r-productions allow us to embed the righthand side of the applied

s-production into the host sentence. In other words, r-productions replace r-items containing the rewritten s-item, with

r-items relating the new s-items to existing ones in the host sentence. The above ideas are formalized in the following

definition.

DEFINITION 3.4 A Symbol Relation (SR) grammar is a 6-tuple G = (� � � �)�d8 �d t�d "^e�d8�^), where

- � � is a finite nonempty set of nonterminal symbols.

- T is a finite nonempty set of terminal symbols, i.e. the alphabet in the Definition 3.1.

- R is a finite set of relation symbols, i.e. the set “R” in the Definition 3.2.

- 6�� � is the start symbol.

- SP is a finite set of symbol-item rewriting rules, called s-productions, of the form
K�� ;z'�� �f:V�dc � , where:

K
is an integer uniquely labeling the s-production; �f:V�dc � is an SR sentence on R and � ��� � ; ;E6�� � �d;\'B=6

: .

- RP is a finite set of relation-item rewriting rules, called r-productions, of the form

#��p;z'+� � 3X���
	 K�� � or #��
� 3$�d;\'2�
��	 K�� � , where:

#
6~8 ; l is the label of an s-production ; '�� � :V�dc � ; � 6 � ��� � and � 3 =6 : ;
� =��� is a finite set of

r-items of the form #���r�� �~3X� or #��
� 3$��r{� , with rV6
: .

The label “l” in the right-hand side of an r-production establishes an operative link among s-productions and

r-productions; i.e., an r-production

#��p;z'+� � 3X���
	 K�� � h
can be applied only after the symbol ;l' has been rewritten using the s-production with label “l”. More precisely,

during a derivation step, a symbol occurrence ��' in a sentence e3 is replaced by a sentence Z , according to a s-

production of the form � '�� oZ . After ��' has been rewritten, the replacement of the set of r-items involving ��' is

performed through r-production of the form #��
� '(� ;q3X��� �
, where Q is a set of r-items relating ; 3 to s-items in oZ .

Multiple occurrence of the same symbol within a sentence is possible. Thus, they are distinguished by different index

numbers.

We conclude this section with a note about complexity issues. A limit on the complexity of parsers of graph

19

grammars has been given by Brandenburg in the confluence property.[5] The confluence property means that all

grammatical derivations in a language are independent of the rewriting order of the nonterminals. This property is

indispensable for efficient parsers since any order of application rules must result in the recognition of the sentences

belonging to the language. The Boundary Symbol Relation (BSR) grammar has the confluence property and thus

a lower computational complexity. An efficient parser has been given [14] for BSR grammars, which have the

connectivity and limited degree properties. This last property means that the number of relations that associate one

object with another is limited. Since our legal configuration graphs have the connectivity and limited degree properties,

the ConfigG, which is used to generate all legal configuration graphs, has the confluence property and thus belongs to

the BSR grammars.

3.3.2 ConfigG Syntactic Parser

We now introduce the special SR grammar ConfigG based on the definition 3.4 in the previous section.

ConfigG = (� � , � , 8 , , "^ , 8�^), where

- � � = @ S, SC, GWC, CC, GC, A, B, C, D, AT, BT, CT, DT H . S is the start symbol. SC, GWC, CC and GC

represent the server, gateway, client, and general composite component group (cluster) respectively. A, B, C and D

represent the server, gateway, client and general composite component, respectively. AT, BT, CT and DT are temporary

symbols used during derivation to avoid ambiguity;

- � = @ AR, AP, VR, VP, RC, ..., etc H is the set of terminals representing the atomic components, such as

AudioRecorder (AR), AudioPlayer (AP), VideoRecorder (VR), RemoteController (RC), etc;

- 8 = @ fl, mul, mhl H is the set of terminals representing different links (fixed link, mobile user link, mobile host

link) between components;

- S is the start symbol;

- SP is the set of s-productions;

- RP is the set of r-productions.

The complete set of the ConfigG production rules is given in [19]. A simple ConfigG Syntactic Parser algorithm is

given in Figure 12. The “L” represents either FixedLink, MobileHostLink or MobileUserLink. Now, let us consider the

configuration graph of the Live Video Streaming application, illustrated in Figure 3(b). We will show how derivation

steps are performed to construct the ConfigG sentence according to the algorithm given in Figure 12.

Step1: We start from the following s-production:

4. t'�� ��@2 "�\Z2�������\Z!��� �\Z2Hn�1@ JmK �R "�\Z!������� Z$�X� P�Y K �������\Z2�d�\� Z$��H �

We start from this s-production because the top-view of the application configuration is the Server-Gateway-Client

20

Figure 12: The ConfigG Syntactic Parser Algorithm.

model; The derived ConfigG sentence becomes the following:

��@2 "� Z ������� Z �d�\� Z Hn�1@ JLK �R o� Z ������� Z �X� P
Y K ������� Z ��� � Z ��H � (1)

which corresponds to the configuration graph illustrated in Figure 13(a).

Step 2: Rewrite the nonterminal s-items “ o�zZ ”, “ �����\Z ”, and “ �\�\Z ” into “ ��Z ”, “ [Z ”, “ �\Z ” respectively using

the following s-productions:

17. "�B3 � ��@�� Z2Hn� � �

22. �����B3 � ��@�[Z!Hn� � �

35. � �B3 � ��@��\Z2Hn� � �

Correspondingly, we need to rewrite all the r-items in the sentence (1). The derived ConfigG sentence becomes the

following:

��@�� Z ��[Z ��� Z Hn�1@ JmK ��� Z �d[Z �X� P�Y K �R[Z ��� Z ��H � (2)

which corresponds to Figure 13(b) ;

Step 3: Since there is one atomic component LiveMediaServer (�":? |Z), we need to rewrite the nonterminal s-item

� Z using the following s-productions:

21

TC CF PF
VP

AF

SC
Server Cluster

AGWC
Gateway Cluster

CC
Gateway Cluster

CB
Server Gateway

LMS TC CF LMS

Client

C
Client

(a) (b)

(c) (d)

LMS = Live Media Streaming; TC = Transcoder; CF = ColorFilter

Figure 13: ConfigG Derivation Examples.

44. ���������	��
��
�������
47. ��
��������
���������������
The r-item fl(��� , ���) in the sentence (2), which contains the rewritten s-item � � , must be rewritten using the

following r-productions:

R112 !#"%$&���'�����	()�+* ,�,�-&��!."/$&��
��'�����	(��
R113 !#"%$&��
��'�����	()�+* ,10	-&��!."/$2���3���������	(��
The derived ConfigG sentence becomes the following:

�4�
���3� � ��� � ��5 � ���6��!#"%$2����� � ��� � (7�98;:<"%$2� � ��5 � (�� � (3)

Next, because there are two atomic components Transcoder (
�5��) and ColorFilter (5>= �), we need to rewrite the

nonterminal s-item ��� using the following s-productions:

52. � � ���4�
�
 � �������
55. �>
������4�
�
�?���5>= �
���6��!#"%$2�
�����5>= �@(�� �
57. �>
�?A���B�C
�5 �
�����D� After we rewrite the related r-items correspondingly, the derived ConfigG sentence

becomes the following:

�4�
����� � �E
�5 � ��5>= � ��5 � ���6��!."/$2���3� � �9
�5 � (7��!#"%$F
�5 � ��5>= � (7�98;:G"/$25>= � ��5 � (��>� (4)

which corresponds to Figure 13(c);

Step 4: we rewrite the nonterminal s-items 5�� into the terminal symbols, Prefetcher(HI=��), AudioPlayer(��H>�),

22

Component
Application Next

Component Component

C

C.in := c.in; C.out := c.out
(b)

Component

C

Component

CComponent
c1

c2

Component
c1 c2

c

C.in := c1.in c2.in; C.in := c1.in; C.out := c2.out

(d)(c)

C.out := c1.out c2.out;

in inQout Q
Output QoS
parameters

input QoS
parameters

Resources

Q

(a)

RS

Λ V

Figure 14: Categorization and Calculation of QoS parameters.

VideoPlayer(�z^ Z) using the following s-productions:

58. � Z � �5@�����Z2Hn� � �

61. � ��Z � �5@�^��\Z+�d����a!Hn�1@ JLK �R^��\Z!��� ��a+H �

59. � ��a�� �5@������(��� ���!Hn� � �

63. � ��� � �5@2�\^ Z!Hn� � �

63. � ��� � �5@ � ^ Z2Hn� � �

Then we rewrite the related r-items correspondingly, the derived sentence becomes:

��@��o:? Z � ��� Z �d��� Z �d^�� Z � � ^ Z ���z^ Z Hn�1@ JLK � �o:? Z � ��� Z �X� JLK �
��� Z �d��� Z �X� P
Y K �R��� Z �d^�� Z �X�
JmK �R^�� Z � � ^ Z �X� JmK �R^�� Z ���\^ Z ��H � (5)

which corresponds to Figure 13(d);

All the illegal configurations illustrated in Figure 11 cannot be translated into any ConfigG sentence. Although

ConfigG Syntactic Parser could check many inconsistencies in the configuration graph, it can not find all inconsis-

tencies like mismatched QoS parameters between two connected components. Our solution is the ConfigG Semantic

Parser, which is introduced in the next section.

3.3.3 ConfigG Semantic Parser

First, we consider a scheme of categorizing QoS parameters. For this purpose, we focus on a single application

component, which could be an atomic component, a compound component or a cluster. We assume that the application

component accepts input with a QoS level
� ���

and generates output with a QoS level
� ���
	

, both of which are vectors

of application-level QoS parameter values. The value of an application-level QoS parameter could be the media type

(text, image, audio, video, etc.), media format (MPEG, JPEG, H261, wav, mp3), resolution(1600*1200), frame-rate

range ([15,30]), or color depth (16), etc. In order to process input and generate output, a specific amount of resources

23

RS is required, which is a vector of resource requirements. Figure 14(a) illustrates such characterization in terms of

QoS parameters and resources. Formally, we define the vectors
� ���

,
� ���
	

, and RS as follows:

� ��� � 	 � ���3 ���
���

Z �$hihjhi���
���
�
�

� ���
	 � 	 � � � 	3 ��� ���
	Z �$hihjhi��� � � 	�
�

8� � 	 8� 3 � 8� Z �$hihjhj� 8� ��
�

(6)

Intuitively, if a component A is connected to a component B, the output QoS of A (
� � � 	�) must “match” the input QoS

requirements of component B (
� � ��). In order to formally describe this QoS consistency requirements, we define an

inter-component relation “ � ”, called Satisfy, as follows:
� ���
	� � � ���� if and only if

� �d� w } �o}
	l��P�� � ���� �X����
n� w }�
q}
	q�RP�� � ���� �X��� ���
	� y ��� � �� � �Q� J � � �� � �W.|*\.&�R,LS K � %�* K UL���
� ���
	� y 4�� ���� � �C� J � ���� � �W.|*�#+*n,LS`�nh (7)

The Dim(
� �) represents the dimension of the vector “

� � ”. The single value QoS parameters include media type (text,

image, video, etc.), media format (JPEG, MPEG, etc.), resolution (1024*768), etc. The range value QoS parameters

include throughput ([10fps,30fps]), jitter ([0,3ms]), delay ([0,300ms]), lossrate ([0,20%]).

Based on the above definitions, we further define how to calculate QoS parameter vector of a compound component

from its subcomponents’ QoS parameter vectors. We define a function “ � ” between two QoS parameter vectors, called

�R, M �&#n.���0XMO�O��,�� , as following:
���

=
� � � � � if and only if

 � �� � � �
� �m� w }G� }f01*n#+�m�R � �X�Q� J . � 6
 ��� � *-, ��� � � h MO_�]L����� � ynh MO_�]m�{�5. � ���

�
� ��� � � � � � y

� J . � 6C ��� � *-, �
� � � h MO_�]L�{�5. � ���
�
� ��� � �

� J . � 6 ��� � *n, ��� � y(h MO_2]m�{�5. � ���
�
� ��� � y (8)

 � �d � �d � represent the sets of the QoS parameter types contained in
� � ,

� � and
���

respectively. (For example,

 � = @ 1 }g�o}�	l�RP�� � � �|A � � h MO_�]L��H). The definition “card(�)” represents the number of elements in the set � .

We also define a new function “ � ” between two QoS parameter vectors, called UT, �W��, � , as following:
���

=
� � � � �

if and only if

 � �� � � �
� �m� w }G� }f01*n#+�m�R � �X�Q� J . � 6
 ��� � *-, ��� � � h MO_�]L����� � ynh MO_�]m�{�5. � ���

�
� ��� � � � � � y

24

Table 1: Semantic rules of s-productions for Consistency Check

(4). t'�� �5@2 "� Z!�������\Z!�d�\� Z!H(�&@ JmK �R "�\Z2�������\Z$�X� JLK �������\Z2�d�\� Z���H �
@e "� Z h ��UTM � ����� Z ������� Z �f� � Z �d "� ' h �R, � �� "� Z h �R,��� "� ' h ��UTM � ��� � Z h ��UTMXh H

(13) "� '�� ��@2 "� Z+�d "� a!Hn� � �
@e "� '+h �R, � �� "�\Z!h �R, � "� a+h �R,��d o� Z!h ��UTM � �� o� Z+h ��UTM � "��a+h ��UTMXh-H

(47) ����' � ��@ ����Z+� � Z!Hn�1@ JmK ������Z!� � Z$��H �
@ ����Z!h ��UTM � � Z � ����'+h �R, � � ����Z+h �R,�� ����'+h ��UTM � � � Z+h ��UTMXh-H

� J . � 6C ��� � *-, �
� � � h MO_�]L�{�5. � ���
�
� ��� � �

� J . � 6 ��� � *n, ��� � y(h MO_2]m�{�5. � ���
�
� ��� � y (9)

We use attribute “in” to represent an application component’s input QoS parameter vector, and the attribute “out”

to represent its output QoS. If the subgraph of the compound component is like the one illustrated in Figure 14(b),

the compound component’s attributes, “in” and “out”, are the same as those of its subcomponent. If the subgraph

is like the one illustrated in Figure 14(c), the attribute “in” of the compound component is the �R, M �&#n.���0�MO�O��, � of the

two subcomponents’ “in” attributes. Intuitively, it means that the input QoS parameters of the compound component

must satisfy both subcomponents’ input QoS parameters, because the stream is sent to both components. The attribute

“out” of the compound component is the UT, �O��, � of the two subcomponents’ “out” attributes. It means that the

next component, connected to this compound component, must be able to handle both subcomponents’ output QoS

parameters. If the configuration of the compound component is like the one illustrated in Figure 14(d), the attribute

“in” of the compound component is the same as that of its first subcomponent. The attribute “out” of the compound

component is the same as that of its second subcomponent. In order to use ConfigG Semantic Parser to perform

consistency check, we associate semantic rules with each s-production (semantic rules for r-productions are not needed

for this purpose). We also assign attributes “in” and “out” to each s-item as mentioned above. Some examples of

semantic rules for s-productions are given in table 1. The first rule in table 1 says that if the s-production with label 4

is used in a derivation step, the output QoS of "� Z must satisfy the input QoS of �����zZ because o�\Z is connected

with ����� Z by a FixedLink “fl("�zZ , ����� Z)”. Similarly, the output QoS of �����zZ must also satisfy the input QoS

of � �\Z . The rule also specifies that the attributes “in” and “out” of the s-item |' are calculated by assigning “ "�zZ .in”

and “ � � Z .out” to them respectively. The other rules can be interpreted similarly.

If ConfigG Syntactic Parser derives a ConfigG sentence from an input application configuration successfully, a

derivation tree is generated. For example, Figure 15 shows the derivation tree of the ConfigG sentence (4) for the

Live Media Streaming application, illustrated in figure 13(c). Then ConfigG Semantic Parser traverses the derivation

25

Figure 15: Example of ConfigG Derivation Tree for the Application Configuration Shown in Figure 13 (c).

Table 2: Semantic rules of s-productions for HQML file generation

(4) t'�� ��@2 "� Z+������� Z!��� �\Z2H(�&@ JmK �R "�\Z2�������\Z$�X� JLK �������\Z2��� �\Z$��H �
 t'(h Y �2P K � � �

� �o](]m�\��, J �RS �
� � AjA � �f "�&#!%`�&#(� K U .1M �$# �

� � AiA� "� Z+h Y �2P K AjA � �
� "�&#!%`�&#(� K U .&M �&# �

� �

AjA � � ��*-M ���{*-_`� K U .&M �&# �
� � AjA$�����\Z!h Y �2P K AjA � �

�
��*-M ���{*-_`� K U .1M �$# �

� � AiA � �f� K �O�&, M � K U .&M �&# �
� �

AjA�� � Z h Y �2P K AjA � �
� � K �W�&, M � K U .&M �&# �

� � AiA � � �N��,/� �t�W.&M �
� � AjA � � �t�R,/� �

� � AiA JmK h Y �2P K AjA � �
�
�t�R,/� �

� �

AjA � � �N��,/� �
� � AjA JLK h Y �2P K AiA � �

�
�t�R,/� �

� � AiA � �
�
�t�R,/� �t�W.&M �

� � AjA � �
�
�o]n]m�\��, J �pS � ”

(13) o� ' � ��@2 "� Z �d o� a Hn� � �
 "� '+h Y �2P K � �� "�\Z!h Y �2P K AjA$ o��a+h Y �2P K

tree depth-first to check the consistency (“ � ” operation) and calculates the attributes for the left-hand side s-item,

according to the semantic rules associated with each s-production used in each derivation step. If any inconsistency is

found, ConfigG Semantic Parser stops traversing the derivation tree immediately, and sends error messages back to the

Visual Hierarchical QoS Editor. Otherwise, the consistency check is successful for the input appliation configuration.

A byproduct of this procedure is the end-to-end application-level QoS input (' .in) and QoS output ("' .out) for

the distributed multimedia application. If we associate another attribute “s” with each s-item to represent its system

resource requirements, the end-to-end resource requirements for a particular application configuration could also be

derived in a straightforward manner.

The ConfigG Semantic Parser can also be used to generate HQML file automatically. Each s-item or r-item is

assigned the attribute ”hqml”, which represents the HQML file fragment the s-item or r-item generates. The ConfigG

Semantic Parser traverses the ConfigG derivation tree of the ConfigG sentence for an application configuration with

complete and consistent QoS specifications, generating the HQML file according to the semantic rules associated with

each s- or r- productions used in each derivation step. Some examples of the semantic rules for s-productions are given

26

in table 2, where the symbol ” AiA ” denotes the string concatenation function.

3.4 Distributed QoS Compiler

Application developers could specify the system resource requirements in the Visual Hierarchical QoS Editor using

dialogs easily if they know them in advance. However, it is often difficult for developers to map the application level

QoS parameters into the system resource level ones directly. Thus, we propose the Distributed QoS Compiler, which

is part of the QoSTalk framework and performs the Automatic QoS Mappings, for the developer, from the application

level QoS parameters into the system resource level parameters. The automatic translation is based on two major

approaches: (1) the analytical translation; and (2) the probing and profiling services.

The analytical translation is based on translation functions between application level QoS parameters and system

resource parameters. Examples of the analytical translation functions from the application QoS parameters to the

transport subsystem QoS parameters are ^ � = �
: � / : ��� x ^ � , and [� = ^ � x : � where ^ � , : � , : � , ^ � ,

and [� are transport packet rate, application sample size, transport packet size, application sample rate, and transport

network bandwidth, respectively. : � and ^ � can be frame size and frame rate specified as application level QoS

parameters. Another example is the translation of MPEG video’s QoS parameters into CPU requirements, which is

presented in [24].

While the analytical translation gives precise resource requirements for some cases, the dependencies among dif-

ferent QoS parameters, and the dependencies among multiple system resources make an accurate translation function

hard to be quantified. To predict reasonable resource requirements in these cases, we utilize resource probing and

profiling techniques with the optimistic assumption that the probing result is the minimum resource requirements for

instantiating an application configuration.

The probing and profiling services are based on the distributed probing protocol [28] [43]. Based on the application

level QoS specifications of an application configuration, the QoS compiler collaborates with the distributed runtime

systems to dynamically download, start, and stop an application configuration in a distributed lightly loaded environ-

ment. The system resource requirements (e.g., different threshold values) are discovered and predicted by multiple

resource brokers, notably cpu, network bandwidth and power. A hierarchical QoS probing algorithm has been given

in [28].

4 HQML Executor

In this section, we introduce the HQML executor module, which translates the HQML specifications into desired

data structures and cooperates with the QoS Proxies to provide QoS enabled distributed Web multimedia applications.

Figure 16 illustrates the overall architecture of the QoS enabled Web browser, the QoS Proxies and the underlying

27

Figure 16: The QoS Enabled Web Brower Architecture.

OS and network systems. The major steps for the HQML executor to carry out, during the runtime phase, are the

following:

� Step 1: The HQML executor intercepts the user’s request for the distributed Web multimedia application “X”,

his/her focus of attention and desired QoS level. It then contacts the local QoS Proxies, such as Resource Brokers

and Monitors, to get client’s current resource availabilities (e.g., CPU, bandwidth, memory, disk, power).

� Step 2: The HQML executor forwards the user QoS requests with client’s resource conditions and also its

platform information (e.g., PDA, Laptop, or Desktop with Windows CE, PalmOS or windows 2000) to the

Web/HQML server. The Web/HQML server searches the related HQML files (QoS Profiles) and finds a set of

possible application configurations that matches the user’s requests and could also be supported by the client’s

current resource availabilities. The match is found based on the user level and system resource level QoS

specifications in HQML files. The Web/HQML server then sends those HQML files back to the HQML Executor

or failure message if no match could be found.

� Step 3: The HQML executor displays all possible choices to the user according to the received HQML files. The

user could choose one of them according to their prices and his/her preferences for different service providers.

Then the HQML executor translates the chosen HQML specification file (Application level and system resource

level) into desired data structures by the underlying QoS Proxies. For example, the HQML executor retrieves

adaptation rules and feeds them into the QoS adaptor; It retrieves the application configuration, reconfiguration

rules and sends them to the QoS configurator; It may also get the system resource requirements and feeds them

28

into different resource brokers. The resource brokers initiate resource reservations for the application if the

underlying OS and network QoS services are available.

After the above three steps, the QoS Proxies will be responsible for providing the user with QoS enabled distributed

Web multimedia applications. The QoS Proxies query the user profile to personalize the adaptation and reconfiguration

rules. They collaborate with other QoS Proxies in the distributed environment to set up and maintain the end-to-

end QoS level according to the policies and requirements they receive from the HQML executor. By using HQML,

users receive satisfactory QoS from distributed multimedia applications on the Web, within the end-to-end resource

constraints, automatically.

5 Implementation and Experiments

(a)

Step1: Draw Hierarchical Application Configurations&
 Input Application Level QoS parameters and Policies

Step3: Invoke Distributed QoS Compiler to derive the

 system resource requirements in the Editor
(c)

Step2: Consistency Check

(b)

Step4: Generate the HQML specification file

(d)

Figure 17: The Workflow in the Visual QoS Programming Environment QoSTalk.

We have implemented a prototype of QoSTalk on top of the �(c
�

middleware system. [44] The Hierarchical Visual

QoS Editor is implemented in Java Swing. The ConfigG Syntactic Parser, ConfigG Semantic Parser, Distributed

QoS Compiler and HQML Executor are also implemented in Java. The QoSProxies, namely the unified middleware

29

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(m
ill

is
ec

on
d)

number of components

ConfigG Syntactic Parser
ConfigG Semantic Parser

(a) Average Processing Time of ConfigG Syntactic
Semantic Parser

(b) Average Processing Overhead of Distributed
QoS Compiler

Figure 18: Average Processing Time of QoS Programming Phase.

management entities, such as Configurator, Adaptor, and Resource Brokers, are implemented as CORBA objects

and written in C++. The multimedia application components are also implemented as CORBA objects. Figure 17

illustrates the workflow of building a QoS-aware Video On Demand application in QoSTalk framework. It includes

both the off-line programming phase and the runtime instantiation phase. Figure 18 (a) shows the average processing

time of ConfigG Syntactic Parser and Semantic Parser for different application configurations. The x-axis represents

the number of components (including links) contained in the application configuration graphs. The processing times

(y-axis) of both parsers increase polynomially with the number of components. Figure 18 (b) shows the overhead

of probing protocol in the Distributed QoS Compiler for three different configurations of the Video On Demand

application.

50

100

150

200

250

300

0 10 20 30 40 50 60

av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(m
ill

is
ec

on
d)

number of components

"HQML-Translator"

(a) Average Processing Overhead of HQML Trans-
lation

(b) Average Overhead of QoS Setup using QoS
Proxies in LAN

Figure 19: Average Processing Overhead of Runtime Phase.

Figure 19 shows the average processing overhead of runtime instantiation phase. It includes two parts: (a)

30

The HQML translation overhead increases linearly with the number of components (including links) contained in

application configurations, illustrated by Figure 19(a). (b) Runtime instantiation overhead includes the dynamic

downloading time of components from the component repository and initialization overhead, illustrated in Figure

19(b).

6 Related Work

In the multimedia language research community, several new languages have been proposed to address the chal-

lenges of supporting distributed multimedia applications on the WWW. Most notably TAOML [7], an extension of

HTML, has been introduced to allow distributed multimedia applications to be prototyped on the Web easily. TAOML

framework is based on the concept of Teleaction Object, which is a multimedia object with associated hyper-graph

structure and knowledge structure. TAOML can also be translated into XML. But TAOML mainly focuses on the

integration and synchronization issues in prototyping distributed multimedia applications. Their support for QoS is

limited to the QoS services of network subsystems. Thus TAOML cannot utilize many other available QoS services

such as CPU reservation and scheduling services, middleware adaptation and dynamic reconfiguration services. More-

over, application developers are required to explicitly deal with the system resource QoS parameters (e.g., bandwidth),

which often cannot be mapped from application-level QoS parameters (e.g., frame rate) straightforwardly. The quality

of service is also considered in the presentation layer of the multimedia systems [18, 32]. In [31], authors propose an

extension of HTML to describe the meta-data for using QoS management in the WWW. However, their specification

language only provides limited QoS support for simple multimedia applications because of the limitation of HTML.

Recently, researchers have proposed new formatting standards like XML to address the limitations of HTML. XML

has been used as user interface language [33, 23], application description language [13] and many other specification

languages due to its extensibility and flexibility. Our work is orthogonal and complementary to the above approaches,

since our research focuses on leveraging XML and all the state-of-the-art QoS technology to provide access to QoS

support for complex distributed multimedia applications on the WWW in the heterogeneous environments.

In the QoS research community, several recent works have addressed the problems of QoS specifications from

different directions and at different levels, namely user level, application level and system resource level. In INDEX

project [1], authors address the user-level QoS specifications, such as different user preferences and price models, in

detail. Some system resource level QoS specifications such as RSL by the Globus project [11, 16] are also developed.

However, much effort has been put in how to specify QoS at the application level. In [37], a scripting language

SafeTcl is implemented to allow existing applications, written in C language, to take advantage of QoS facilities

described by the DiffServ framework. In QOS-A [40], a service contract-based API is designed to formalize the end-

to-end QoS requirements of the user and the potential degree of service commitment of the provider. A contract is a

31

Yes No No No No No No

No Yes No No No No No No

No Yes No No No No No

No Yes

No

No No No No No

No Yes No Yes No No

YesNo No Yes No No

No Yes No No

No No Yes Yes No

No

Yes

Yes

No No

No

No NoYes

Yes

No

No

Index

SafeTcl

QoS−A

QuAL

QDL

QML

RSL

TAOML

with Web Mapping

Automatic Independent

Language

 Integration

Application Check

Consistency Automatic

Specification

Generation

User

Level

Application

Level

Resource

Level

QoS QoS QoS

Yes

HQML Yes Yes Yes Yes Yes Yes Yes Yes

Figure 20: Comparisons among Different QoS Specifications.

C data structure, including all the conceived clauses. In [15], authors developed QuAL (Quality-of-Service Assurance

Language), which is a process-oriented programming language and further extends C language. Although it is possible

to mix QoS-related code or specification with the functional code, it is highly desirable to separate the non-functional

requirements from the functional requirements so that the two parts can be developed and maintained independently.

Moreover, all these approaches are tightly coupled with C programming language. Thus it is difficult for applications

written in other languages like Java to utilize them. The Quality Object (QuO) framework [30, 2, 36] supports QoS

at the CORBA object layer by opening up distributed object implementations to give access to the system properties

of the CORBA ORB and objects. QuO extends the CORBA functional IDL (Interface Definition Language) with

a QoS Description Language (QDL). QDL allows specifications of possible QoS states, the system resources and

mechanisms for measuring and providing QoS, and behavior for adapting to changes in QoS. QML (QoS Modeling

Language)[39] is another independent QoS specification language for distributed object systems (by independent,

we mean the specification language is not coupled with any specific programming language). It allows users to

specify non-functional aspects of services (such as QoS specifications) separate from the interface definition. However,

QDL and QML does not consider the QoS specifications about multiple possible configurations for the reconfigurable

applications.[45] Furthermore, they does not provide any consistency check mechanism to prevent incorrect QoS

specifications, such as illegal configurations or mismatched QoS requirements, from injecting into the underlying

systems. Most of all, they are not extensible and cannot be used by Web applications conveniently. In Figure 20, we

summarize the main features of the QoS specification languages and multimedia languages introduced above.

32

7 Conclusions

In this paper, we introduce an XML-based QoS Enabling language for the Web, called HQML, an acronym for

“Hierarchical QoS Markup Language”. HQML allows different distributed multimedia applications including all the

legacy applications on the WWW, to utilize all kinds of available QoS technology (middleware, OS and network).

Then, we introduce a visual QoS programming environment, called QoSTalk, which assists application developers to

create HQML files correctly and easily. We propose a special boundary symbol relation grammar, called ConfigG, to

perform consistency check and generate HQML files automatically. Finally, we introduce the distributed QoS compiler

to perform automatic QoS mappings between different levels and thus relieve the application developer of the burdens

of dealing with complex low level QoS specifications. The future works include extending HQML and visual QoS

programming environment to meet the following challenges: (1) scalability (how do we apply HQML to complex

distributed applications with a large amount of components and many configurations; (2) extensibility (how do we

include new QoS services, such as security and power management, easily.) and (3) reusability (how do we apply

HQML to different types of multimedia applications.).

8 Acknowledgment

This work was supported by the NASA grant under contract number NASA NAG 2-1406, National Science

Foundation under contract number 9870736, National Science Foundation Career Grant under contract number NSF

CCR 96-23867, NSF CISE Infrastructure grant under contract number NSF EIA 99-72884, NSF CISE Infrastructure

grant under contract number NSF CDA 96-24396. The views and conclusions contained in this paper are those of the

authors and should not be interpreted as representing the official policies, either expressed or implied, of NASA, NSF,

or the U.S. government.

References

[1] J. Altmann and P. Varaiya. INDEX: User Support for Buying QoS with Regard to User’s Preferences. Sixth

International Workshop on Quality of Service (IWQOS98), May 1998.

[2] John A.Zinky, David E.Bakken, and Richard D.Schantz. Architectural Support for Quality of Service for CORBA

Objects. Theory and Practice of Object Systems,, 1997.

[3] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski. An Application Model for Pervasive

Computing. Proceedings of MobiCOM 2000: the 6th Annual International Conference on Mobile Computing

and Networking, 2000.

33

[4] Gordon S. Blair, Geoff Coulson, Nigel Davies, Philippe Robin, and Tom Fitzpatrick. Adaptive Middleware for

Mobile Multimedia Applications. Network and Operating System Support for Digital Audio and Video, 1997.

[5] F.J. Brandenburg. On polynomial time graph grammars. Lecture Notes in Computer Science,, 294, 1988.

[6] A. Campbell and G. Coulson. A QoS Adaptive Transport System: Design, Implementation and Experience.

Forth ACM International Conference on Multimedia (ACM Multimedia 96), 1996.

[7] S. K. Chang. Multimedia Software Engineering. Kluser Academic Publishers, Boston/Dordrecht/London, 2000.

[8] Z. Chen, S. M. Tan, R. H. Campbell, and Y. Li. Real Time Video and Audio in the World Wide Web. World Wide

Web Journal, vol. 1, 1996.

[9] World Wide Web Consortium. eXtensible Markup Language. http://www.w3c.org/XML/.

[10] World Wide Web Consortium. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification.

http://www.w3c.org/TR/REC-smil/.

[11] Karl Czajkowski, Ian Foster, Carl Kesselman, Stuart Martin, Warren Smith, and Steven Tuecke. A Resource

Management Architecture for Metacomputing Systems. Proceedings of IPPS/SPDP98 Workshop on Job

Scheduling Strategies for Parallel Processing, 1998.

[12] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language for XML.

http:www.w3c.org/TR/1998/NOTE-xml-ql-19980819/, 1998.

[13] K. Eustice, T. Lehman, A. Morales, M.C. Muson, S. Edlund, and M. Guillen. A Universal Information Appliance.

IBM Systems Journal, 1999.

[14] F. Ferrucci, G. Pacini, and G. Satta. Symbol-Relation Grammars: A Formalism for Graphical Languages.

Information and Computation, 131, 1996.

[15] P. Florissi. QoSME: QoS Management Environment. PhD Thesis, Department of Computer Science, Columbia

University, 1996.

[16] Ian Foster and Carl Kesselman. The Globus Project: A Status Report. Proceedings of IPPS/SPDP98

Heterogeneous Computing Workshop, 1998.

[17] A. Fox, S. D. Gribble, and Y. Chawathe. Adapting to Network and Client Variation Using Infrastrural Proxies:

Lessons and Perspectives. IEEE Personal Communications, August 1998.

[18] K. Fujikawa and et.al S. Shimojo. Application Level QoS Modeling for a Distributed Multimedia System.

Proceedings of 1995 Pacific Workshop on Distributed Multimedia Systems, March 1995.

34

[19] X. Gu. Visual Quality of Service Programming Environment for Distributed Heterogeneous Systems. MS Thesis,

Department of Computer Science, University of Illinois at Urbana-Champaign, January 2001.

[20] X. Gu and K. Nahrstedt. An Event-Driven, User-Centric, QoS-aware Middleware Framework for Ubiquitous

Multimedia Applications. Proc. of 9th ACM Multimedia (Multimedia Middleware Workshop), 2001.

[21] X. Gu, D. Wichadakul, and K. Nahrstedt. Visual QoS Programming Environment for Ubiquitous Multimedia

Services. Proc. of IEEE International Conference on Multimedia and Expo 2001 (ICME2001), 2001.

[22] A. Hafid and G. Bochmann. Quality of Service Adaptation in Distributed Multimedia Applications. ACM

Springer-Verlag Multimedia Systems Journal, vol. 6, no. 5, 1998.

[23] Todd D. Hodes and R. H. Katz. A Document-based Framework for Internet Application Control. 2nd USENIX

Symposium on Internet Technologies and Systems, 1999.

[24] K. Kim and K. Nahrstedt. QoS Translation and Admission Control for MPEG Video. Proceedings of IEEE/IFIP

International Workshop on QoS 1997 (IWQoS 97), May 1997.

[25] T. Kindberg and J. Barton. A Web-based Nomadic Computing System. Computer Networks, Special Edition on

Pervasive Computing, 2001.

[26] R. Koster and T. Kramp. Structuring QoS-Support Services with Smart Proxies. Middleware 2000: IFIP/ACM

International Conference on Distributed Systems Platforms, 2000.

[27] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek. On Quality of Service Optimization with Discrete QoS

Options. Proceedings of the IEEE Real-time Technology and Applications Symposium, 1999.

[28] B. Li, W. Kalter, and K. Nahrstedt. A Hierarchical Quality of Service Control Architecture for Configurable

Multimedia Applications. Journal of High Speed Networks, Special Issue on Management of Multimedia

Networking IOS Press, 2001.

[29] B. Li and K. Nahrstedt. A control-based middleware framework for quality of service adaptation. IEEE Journal

on Selected Areas in Communication, September 1999.

[30] Joseph P. Loyall, Richard E. Schantz, John A.Zinky, and David E.Bakken. Specifying and Measuring Quality of

Service in Distributed Object Systems. Proceedings of ISORC98, 1998.

[31] E. Madja, A. Hafid, R. Dssouli, G. v. Bochmann, and J. Gecsei. Meta-data Modeling for Quality of Service

(QoS) Management in the World Wide Web (WWW). Proceedings of International Conference on Multimedia

Modeling, Lausanne, Switzerland, 1998.

35

[32] D. Maier, R. Staehli, and J. Walpole. Quality of Service Specification for Multimedia Presentations. Multimedia

Systems, 3 (5/6), pp. 251-263, Springer-Verlag, 1995.

[33] Mozilla.org. Introduction to a XUL (XML-based User Interface Language).

http://www.mozilla.org/xpfe/xptoolkit/xulintro.html.

[34] K. Nahrstedt, H. Chu, and S. Narayan. QoS-Aware Resource Management for Distributed Multi-media

Applications. Journal on High-Speed Networking, Special Issue on Multimedia Networking, 8, 1998.

[35] K. Nahrstedt, Duangdao Wichadakul, and Dongyan Xu. Distributed QoS Compilation and Runtime Instantiation.

Proceedings of IEEE/IFIP International Workshop on QoS 2000 (IWQoS2000),, June 2000.

[36] Joseph P.Loyall, David E. Bakken, Richard E.Schantz, John A.Zinky, David A.karr, Rodrigo Vanegas, and

Kenneth R.Anderson. QoS Aspect Languages and Their Runtime Integration. Lecture Notes in Computer

Science, 1511, May 1998.

[37] T. Roscoe and G.Bowen. Script-driven Packet Marking for Quality of Service Support in Legacy Applicaitons.

Proceedings of SPIE Conference on Multimedia Computing and Networking 2000, January 2000.

[38] S. Servetto, K. Ramchandran, V. Vaishampayan, and K. Nahrstedt. Multiple Description Wavelet Based Image

Coding. IEEE Transactions on Image Processing, May 2000.

[39] S.Frolund and J.Koistinen. QML: A Language for Quality of Service Specification. Technical Report HPL-98-

10,, February 1998.

[40] Andrew T.Campbell. A Quality of Service Architecture. PhD Thesis, Computing Department, Lancaster

University,, January 1996.

[41] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and D. Bakken. QuO’s Runtime Support for Quality of

Service in Distributed Objects. Proceedings of IFIP International Conference on Distributed Systems Platforms

and Open Distributed Processing (Middleware 98), Springer, 1998.

[42] M. Weiser. Some Computer Science Issues in Ubiquitous Computing. Communication of the ACM, 36(7), pp.

74-84, 1993.

[43] D. Wichadakul and K. Nahrstedt. Distributed QoS Compiler. Technique Report No. UIUC DCS-R-2000-2201,

Computer Science Department, University of Illinois at Urbana -Champaign, 2001.

[44] D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu. 2KQ+: An Integrated Approach of QoS Compilation and

Component-Based, Runtime Middleware for the Unified QoS Management Framework. Proc. of IFIP/ACM

International Conference on Distributed Systems Platforms (Middleware 2001), 2001.

36

[45] D. Xu, D. Wichadakul, and K. Nahrstedt. Multimedia Service Configuration and Reservation in Heterogeneous

Environments. Proceedings of IEEE International Conference on Distributed Computing Systems(ICDCS 2000),

April 2000.

A Schema DTD for HQML

The document type definition (DTD) for the initial, minimal version of user level HQML is as follows.

� !ElEMENT App (Configuration+) �

� !ATTLIST App name CDATA #REQUIRED ServiceProvider CDATA #IMPLIED �

� !ELEMENT Configuration (UserLevelQoS, QoSPreference, Price, PriceModel) �

� !ATTLIST Configuration id ID #REQUIRED �

� !ELEMENT UserlevelQoS (#PCDATA) �

� !ELEMENT QoSPreference (#PCDATA) �

� !ELEMENT Price (#PCDATA) �

� !ATTLIST Price unit DATA #REQUIRED �

� !ELEMENT PriceModel (#PCDATA) �

The document type definition (DTD) for the initial, minimal version of application level and system resource level

HQML is as follows. Due to the page limit, we omitted DTD for the tags which have the similar structure to the

following tags.

� !ELEMENT AppConfig (CriticalQoS, ServerCluster*, GatewayCluster*, ClientCluster*, PeerCluster*, Lin-

kList, ReconfigRuleList?, ThresholdList?) �

� !ATTLIST AppConfig id ID #REQUIRED �

� !ElEMENT CriticalQoS (Range) �

� !ATTLIST CriticalQoS type CDATA #REQUIRED �

� !ELEMENT Range (UpperBound,LowerBound) �

� !ATTLIST Range unit CDATA #REQUIRED �

� !ELEMENT UpperBound (#PCDATA) �

� !ELEMENT LowerBound (#PCDATA) �

� !ELEMENT ServerCluster (Server+, LinkList?) �

� !ELEMENT Server (HostAddr*, Hardware?, Software?, Atomic+, CPU?, Memory?, Disk?, Power?, LinkList?,

AdaptationRuleList? �

� !ATTLIST Server type (required A replacable A optional) ’required’ �

37

� !ELEMENT HostAddr (#PCDATA) �

� !ATTLIST HostAddr type (primary A alternative) ’alternative’ �

� !ELEMENT Hardware (#PCDATA) �

� !ELEMENT software (#PCDATA) �

� !ELEMENT Atomic (name, Method*, InputQoSList, OutputQoSList, CPU?, Memory?, Disk?, Power?) �

� !ATTLIST Atomic type (required A replacable A optional) ’required’ �

� !ELEMENT name (#PCDATA) �

� !ELEMENT Method (param*) �

� !ATTLIST Method name CDATA #REQUIED �

� !ELEMENT param (#PCDATA) �

� !ATTLIST param name CDATA #REQUIRED lexType (int A real A boolean A enum A string) ’string’ �

� !ELEMENT InputQoSList (MediaObjectList, Delay?, Jitter?, LossRate?, FrameRate?, FrameSize?,...) �

� !ELEMENT MediaObjectList (MediaObject+) �

� !ELEMENT MediaObject (#PCDATA) �

� !ATTLIST MediaObject format (JPEG A MPEGI A MPEGII A Bitmap A wav ...) ’MPEGI’ �

� !ELEMENT Delay (#PCDATA) �

� !ELEMENT Jitter (#PCDATA) �

� !ELEMENT LossRate (#PCDATA) �

� !ELEMENT LinkList (Link+) �

� !ELEMENT Link (Start,End, Throughput?, Delay?, Jitter?, LossRate?) �

� !ATTLIST Link type (FixedLink A MobileHostLink A MobileUserLink) ’FixedLink’ �

� !ELEMENT Start (#PCDATA) �

� !ELEMENT End (#PCDATA) �

� !ELEMENT Throughput (Average, Burstiness) �

� !ELEMENT Average (#PCDATA) �

� !ATTLIST Average unit CDATA #REQUIRED �

� !ELEMENT AdaptationRule (Condition+, Action+, Notification?, Feedback?) �

� !ELEMENT Condition (#PCDATA) �

� !ATTLIST Average type CDATA #REQUIRED �

� !ELEMENT Action (Component, Method) �

� !ELEMENT Notification (#PCDATA) �

� !ELEMENT Feedback (#PCDATA) �

� !ELEMENT ReconfigRule (Condition+, ReconfigAction, Notification?, Feedback?) �

38

� !ELEMENT ReconfigAction (#PCDATA) �

� !ELEMENT CPU (Average, Deviation) �

� !ELEMENT ThresholdList (VeryHigh?, High?, Average?, Low?, VeryLow?) �

� !ELEMENT VeryHigh (LowerBound) �

� !ATTLIST VeryHigh type (Bandwidth A CPU A Memory A Disk A Power) ’Bandwidth’ �

39

